CN116223060A - Part stamping passing detection method - Google Patents
Part stamping passing detection method Download PDFInfo
- Publication number
- CN116223060A CN116223060A CN202310119570.1A CN202310119570A CN116223060A CN 116223060 A CN116223060 A CN 116223060A CN 202310119570 A CN202310119570 A CN 202310119570A CN 116223060 A CN116223060 A CN 116223060A
- Authority
- CN
- China
- Prior art keywords
- stamping
- passability
- parameter
- parameters
- height difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 39
- 238000013461 design Methods 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 32
- 230000008569 process Effects 0.000 claims abstract description 14
- 238000000465 moulding Methods 0.000 claims abstract description 13
- 238000004080 punching Methods 0.000 claims description 18
- 238000012360 testing method Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 60
- 239000000463 material Substances 0.000 abstract description 11
- 238000010586 diagram Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- Computational Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
本申请实施例公开了一种零件冲压通过性检测方法,涉及车辆制造技术领域,可解决零件造型设计前期,零件的冲压通过性难以检测的问题。该零件冲压通过性检测方法包括提取零件的造型面在沿冲压方向上的相对高差的参数值;获取后工序压机的滑块最大行程参数;获取相对高差最大值下造型面的进料侧冲压通过性参数和出料侧冲压通过性参数;基于进料侧冲压通过性参数、出料侧冲压通过性参数及滑块最大行程参数,确定零件冲压通过性的检测结果,检测结果用于表征零件是否满足零件冲压通过性。本申请的零件冲压通过性检测方法用于检测零件的冲压通过性。
The embodiment of the present application discloses a method for detecting stamping passability of a part, which relates to the technical field of vehicle manufacturing, and can solve the problem that the stamping passability of a part is difficult to detect in the early stage of part modeling design. The stamping passability detection method of the part includes extracting the parameter value of the relative height difference of the molding surface of the part along the stamping direction; obtaining the maximum stroke parameter of the slider of the subsequent process press; obtaining the feeding material of the molding surface under the maximum value of the relative height difference Side stamping passability parameters and discharge side stamping passability parameters; based on the feed side stamping passability parameters, discharge side stamping passability parameters and the maximum stroke parameter of the slider, the detection results of the stamping passability of the parts are determined, and the detection results are used for To characterize whether the part meets the stamping passability of the part. The part stamping passability detection method of the present application is used to detect the stamping passability of the part.
Description
技术领域technical field
本申请实施例涉及车辆制造技术领域,尤其涉及一种零件冲压通过性检测方法。The embodiments of the present application relate to the technical field of vehicle manufacturing, and in particular, to a method for detecting passability of stamping parts.
背景技术Background technique
在汽车研发的造型设计阶段,初步造型面(Concept A Surface,CAS)需根据不同的功能进行分缝,分缝后的零件,还要考虑制造性是否满足要求,其中一项非常重要的点就是分缝的钣金需要满足冲压生产线的零件通过性。在造型设计阶段,根据前期制造分工,已经明确了在哪条生产线生产,但是此阶段太过靠近前期,没有模具结构图,无法按照传统的判断零件通过性方法,判定零件是否满足生产线通过性;且因部分生产线比较老旧,无干涉曲线,也无法通过干涉曲线和模具图,判断零件通过性。In the modeling design stage of automobile research and development, the preliminary modeling surface (Concept A Surface, CAS) needs to be split according to different functions. After splitting the parts, it is also necessary to consider whether the manufacturability meets the requirements. One of the very important points is The sheet metal of the seam needs to meet the part passability of the stamping production line. In the modeling design stage, according to the division of labor in the early stage, it has been clarified which production line will be produced, but this stage is too close to the early stage, there is no mold structure diagram, and it is impossible to judge whether the part meets the passability of the production line according to the traditional method of judging the passability of the part; And because some production lines are relatively old, there is no interference curve, and it is impossible to judge the passability of parts through the interference curve and mold diagram.
相关技术中,在汽车造型设计阶段往往只能参照以往项目零件,对零件分块提出限制,但参照以往项目尺寸,已无法有效满足现有汽车造型设计对分块的需求,易出现零件无法满足冲压生产线通过性的情况。In related technologies, in the stage of automobile styling design, it is often only possible to refer to the parts of previous projects, and put forward restrictions on the division of parts. However, referring to the size of previous projects, it can no longer effectively meet the needs of existing automobile styling design for division, and it is easy for parts to fail to meet Passability of the stamping production line.
发明内容Contents of the invention
本申请实施例提供一种零件冲压通过性检测方法,可解决零件造型设计前期,其冲压通过性难以检测的问题。The embodiment of the present application provides a method for detecting stamping passability of a part, which can solve the problem that the stamping passability of the part is difficult to detect in the early stage of modeling design.
本申请实施例提供一种零件冲压通过性检测方法,应用于零件造型设计前期的冲压通过性检测,该零件冲压通过性检测方法包括:获取零件的造型面在沿冲压方向上的相对高差最大值,获取后工序压机的滑块最大行程参数,获取造型面的进料侧冲压通过性参数和出料侧冲压通过性参数,进料侧冲压通过性参数至少包括零件的进料侧相对高差参数,出料侧冲压通过性参数至少包括零件的出料侧相对高差参数;其中,进料侧通过性参数和出料侧冲压通过性参数均为零件的造型面在其相对高差最大值情况下需要经过压机时的通过性参数;The embodiment of the present application provides a part stamping passability detection method, which is applied to the stamping passability detection in the early stage of part modeling design. The part stamping passability detection method includes: obtaining the largest relative height difference of the part's modeling surface along the stamping direction value, to obtain the maximum stroke parameter of the slider of the post-process press, to obtain the stamping passability parameters of the feed side and the discharge side of the molding surface, and the stamping passability parameters of the feed side include at least the relative height of the feed side of the part. Difference parameter, the stamping passability parameter of the discharge side at least includes the relative height difference parameter of the discharge side of the part; among them, the passability parameter of the feed side and the stamping passability parameter of the discharge side are the part’s modeling surface where the relative height difference is the largest Passability parameters when passing through the press in the case of value;
基于进料侧冲压通过性参数、出料侧冲压通过性参数及滑块最大行程参数,确定零件冲压通过性的检测结果,检测结果用于表征零件是否满足零件冲压通过性。Based on the stamping passability parameters of the feed side, the stamping passability parameters of the discharge side and the maximum stroke parameters of the slider, the detection results of the stamping passability of the part are determined, and the detection results are used to indicate whether the part meets the stamping passability of the part.
具体地,零件的类型不作限定,诸如,可以是车身侧围、翼子板、发动机盖及背门等。例如,以侧围零件为例,在汽车造型设计初期,设计出侧围造型面,提取侧围零件的相对高差参数值,比如,沿侧围不同方向上的相对高差的参数值,而通常,通过对侧围零件工序分析,侧围冲压方向沿车身高度方向时,侧围零件通过性最差,因此,对于侧围零件当其沿车身高度方向上能通过压机生产线时,侧围零件沿其它方向上也能满足压机生产线的通过性,即在提取侧围零件的多个不同方向的相对高差参数值中,应至少包括冲压方向上零件的造型面在沿冲压方向上相对高差中的相对高差最大值。获取后工序压机的滑块最大行程参数,这里,压机的滑块最大行程参数是指压力机在冲压生产过程中滑块从下死点移动到上死点这段距离,这里,当选定某一压机生产线时,也即压机的滑块最大行程参数通常是不变的,因此,需要在零件造型设计初期,获取零件的多种冲压通过性参数,以用来与压机的滑块最大行程参数进行比较,从而判断造型设计前期的零件是否能满足压机冲压生产线通过性。Specifically, the type of the part is not limited, for example, it may be a body side wall, a fender, an engine cover, a back door and the like. For example, taking the side wall parts as an example, in the early stage of automobile modeling design, the side wall modeling surface is designed, and the relative height difference parameter values of the side wall parts are extracted, for example, the parameter values of the relative height difference in different directions along the side wall, and Usually, through the process analysis of side wall parts, when the side wall stamping direction is along the height direction of the vehicle body, the passability of the side wall parts is the worst. Therefore, when the side wall parts can pass through the press production line along the body height direction, the Parts can also meet the passability of the press production line in other directions, that is, in extracting the relative height difference parameter values of multiple different directions of the side wall parts, it should at least include The relative height difference maximum value in the height difference. Obtain the maximum stroke parameter of the slider of the post-process press. Here, the maximum stroke parameter of the slider of the press refers to the distance that the slider moves from the bottom dead center to the top dead center during the stamping production process of the press. Here, the selected When setting a certain press production line, that is, the maximum stroke parameter of the slider of the press is usually unchanged. Therefore, it is necessary to obtain various stamping passability parameters of the part in the early stage of part modeling design, so as to be used for matching with the press. The maximum stroke parameters of the slider are compared to judge whether the parts in the early stage of modeling design can meet the passability of the press stamping production line.
由此,还需进一步获取沿冲压方向上零件的造型面的相对高差最大值情况下的进料侧和出料侧的冲压通过性参数,诸如,以侧围零件为例,在侧围零件沿其车身高度方向上,即侧围零件相对高差在最大值的情况下通过压机生产线时,需获取进料侧冲压通过性参数,其中,进料侧冲压通过性参数至少包括零件的进料侧相对高差参数;相应地,出料侧冲压通过性参数至少包括零件出料侧相对高差参数。其中,进料侧通过性参数和出料侧冲压通过性参数均为零件的造型面在其相对高差最大值情况下需要经过压机时的通过性参数。Therefore, it is necessary to further obtain the stamping passability parameters of the feed side and the discharge side under the condition of the maximum relative height difference of the molding surface of the part along the stamping direction, such as, taking the side wall part as an example, in the side wall part Along the height direction of the vehicle body, that is, when the relative height difference of the side wall parts passes through the press production line, it is necessary to obtain the stamping passability parameters of the feed side, where the stamping passability parameters of the feed side include at least the feed The relative height difference parameter of the material side; correspondingly, the stamping passability parameter of the material side at least includes the relative height difference parameter of the material material side. Among them, the passability parameters of the feed side and the stamping passability parameters of the discharge side are passability parameters when the molding surface of the part needs to pass through the press under the condition of the maximum relative height difference.
这里,至少包括零件的进料侧相对高差参数具体是指,零件在进料侧通过压机时通常为了提高冲压生产线自动化程度,需通过机器手臂等抓取组件自动抓取零件,此种情况下,由于机器手臂等抓取组件需占用压机冲压空间,因而还需考虑机器手臂等抓取组件相对高差参数,另外,考虑到零件进料时存在干涉风险区,通常也需要设计零件冲压通过的安全余量参数,如此,即使不考虑冲压生产线采用机械手臂等抓取组件抓取零件以及不设计安全余量参数的情况下,要使零件在进料侧通过冲压生产线,也至少要包括零件的进料侧相对高差参数,且使其不大于滑块最大行程参数,才能达到零件在进料侧通过冲压生产线的最低所需条件。相类似的,出料侧也需至少要包括零件的出料侧相对高差参数。Here, at least including the relative height difference parameters of the feed side of the parts specifically means that when the parts pass through the press on the feed side, usually in order to improve the automation of the stamping production line, it is necessary to automatically grab the parts through grabbing components such as robotic arms. In this case Next, because the grabbing components such as the robot arm need to occupy the stamping space of the press, it is also necessary to consider the relative height difference parameters of the grabbing components such as the robot arm. In addition, considering the interference risk area when the parts are fed, it is usually necessary to design the parts stamping Passed safety margin parameters, so that even if the stamping production line uses grabbing components such as robotic arms to grab parts and does not design safety margin parameters, to make the parts pass the stamping production line on the feed side, at least include The relative height difference parameter of the feed side of the part and make it not greater than the maximum stroke parameter of the slider can achieve the minimum required conditions for the part to pass through the stamping production line on the feed side. Similarly, the discharge side also needs to include at least the relative height difference parameters of the part's discharge side.
这其中,基于以上进料侧冲压通过性参数、出料侧冲压通过性参数及滑块最大行程参数,确定零件冲压通过性的检测结果,具体是指,将进料侧冲压通过性参数中包括的零件的进料侧相对高差参数等其它可能的进料侧冲压通过性参数求和与压机的滑块最大行程参数比较,比如,进料侧冲压通过性各参数和不大于滑块最大行程参数,且出料侧冲压通过性各参数和也不大于滑块最大行行程参数则可确定零件能够通过冲压生产线,而若进料侧或出料侧的至少一个各参数和大于滑块最大行程参数,则可确定零件不能通过冲压生产线,由此,检测结果可用于表征零件是否满足零件冲压通过性。通过上述检测方法,即可实现即使在冲压生产线老旧无干涉曲线,且前期造型阶段无模具图纸的情况下,仍然可检测零件是否满足压机冲压通过性,使得该检测方法能够适用更多场景。Among them, based on the above parameters of the stamping passability of the feed side, the stamping passability parameters of the discharge side and the maximum stroke parameters of the slider, the detection results of the stamping passability of the parts are determined. Specifically, the stamping passability parameters of the feed side include The relative height difference parameters of the feed side of the parts and other possible feed-side stamping passability parameters are compared with the maximum stroke parameters of the slider of the press. For example, the sum of the feed-side stamping passability parameters is not greater than the maximum slider. Stroke parameters, and the sum of each parameter of stamping passability on the discharge side is not greater than the maximum stroke parameter of the slider, it can be determined that the part can pass through the stamping production line, and if the sum of at least one parameter of the feed side or the discharge side is greater than the maximum of the slider If the stroke parameters are used, it can be determined that the parts cannot pass through the stamping production line. Therefore, the test results can be used to characterize whether the parts meet the stamping passability of the parts. Through the above detection method, it can be realized that even if the stamping production line is old and there is no interference curve, and there is no mold drawing in the early modeling stage, it can still detect whether the part meets the stamping passability of the press, making this detection method applicable to more scenarios .
在本申请的一种可能的实现方式中,进料侧冲压通过性参数和出料侧冲压通过性参数均包括压料器行程参数、沿零件冲压方向上的抓取组件相对高差参数和安全余量参数。其中,为了提高冲压生产线自动化程度,通常需通过抓取组件自动抓取零件,此种情况下,由于抓取组件沿冲压方向上需占用压机冲压空间,因而往往还需考虑抓取组件相对高差参数。另外,考虑到零件进料时存在干涉风险区,通常也需要设计零件冲压通过的安全余量参数,如此,可在不降低冲压效率的前提下,保证造型设计前期设计的零件能够通过冲压生产线。In a possible implementation of the present application, the punching passability parameters on the feed side and the punching passability parameters on the discharge side both include the stroke parameters of the presser, the relative height difference parameters of the grabbing components along the stamping direction of the parts, and the safety parameters. Margin parameter. Among them, in order to improve the automation of the stamping production line, it is usually necessary to automatically grab the parts through the grabbing component. difference parameter. In addition, considering that there is an interference risk area when the parts are fed, it is usually necessary to design the safety margin parameters for the stamping of the parts. In this way, it is possible to ensure that the parts designed in the early stage of the modeling design can pass through the stamping production line without reducing the stamping efficiency.
在本申请的一种可能的实现方式中,进料侧冲压通过性参数和出料侧冲压通过性参数均还包括预留安全值,预留安全值用于为压机后期调整结构面预留安全量。诸如,为压机后期布置斜楔、挡料杆以及增加零件结构面等预留安全量,以满足零件在多种工序下的零件冲压通过性。In a possible implementation of the present application, both the punching passability parameters on the feed side and the punching passability parameters on the discharge side also include reserved safety values, which are reserved for adjusting the structural surface in the later stage of the press. Safe amount. For example, reserve a safe amount for the arrangement of wedges, stopper rods and increase the structural surface of parts in the later stage of the press, so as to meet the stamping passability of parts in various processes.
在本申请的一种可能的实现方式中,基于进料侧冲压通过性参数、出料侧冲压通过性参数及滑块最大行程参数,确定零件冲压通过性的检测结果的步骤中,包括:对压料器行程参数、安全余量参数、抓取组件相对高差参数、进料侧相对高差参数、凸模进料侧高度参数及预留安全值进行求和,得到进料侧冲压通过性参数和;对压料器行程参数、安全余量参数、抓取组件相对高差参数、出料侧相对高差参数、凸模进料侧高度参数及预留安全值进行求和,得到出料侧冲压通过性参数和;判断进料侧冲压通过性参数和及出料侧冲压通过性参数和是否小于滑块最大行程参数;若进料侧冲压通过性参数和及出料侧冲压通过性参数和均小于滑块最大行程参数,则确定零件满足冲压通过性;若进料侧冲压通过性参数和及出料侧冲压通过性参数和中的至少一个大于或等于滑块最大行程参数,则确定零件不满足冲压通过性。In a possible implementation of the present application, the step of determining the detection result of the stamping passability of the part based on the stamping passability parameter at the feed side, the stamping passability parameter at the discharge side, and the maximum stroke parameter of the slider includes: The stroke parameters of the feeder, the safety margin parameters, the relative height difference parameters of the grasping components, the relative height difference parameters of the feed side, the height parameters of the feed side of the punch and the reserved safety values are summed to obtain the stamping passability of the feed side Sum of parameters; sum the stroke parameters of the feeder, the safety margin parameters, the relative height difference parameters of the grasping components, the relative height difference parameters of the discharge side, the height parameters of the feed side of the punch and the reserved safety value, and obtain the discharge The sum of the passability parameters of the side stamping; determine whether the sum of the passability parameters of the stamping side of the feed side and the sum of the passability parameters of the stamping side of the discharge side is less than the maximum stroke parameter of the slider; and are both less than the maximum stroke parameters of the slider, it is determined that the part meets the stamping passability; if at least one of the stamping passability parameters of the feed side and the stamping passability parameters of the discharge side is greater than or equal to the maximum stroke parameter of the slider, then it is determined The part does not meet punch passability.
在本申请的一种可能的实现方式中,在基于进料侧冲压通过性参数、出料侧冲压通过性参数及滑块最大行程参数,确定零件冲压通过性的检测结果步骤之后,还包括:若零件不满足冲压通过性,则重新构建零件的造型面,并重新提取零件相对高差的参数值。其中,零件不满足冲压通过性包括在零件在进料侧和/或出料侧不满足零件冲压通过性,当出现此种情况时,可重新构建零件的造型面,以适应冲压生产线的通过性,这时,调整后的零件并不一定满足冲压通过性,需重新提取零件相对高差的参数值并重复以上零件冲压通过性检测方法的步骤,直至设计的零件满足零件冲压通过性。In a possible implementation of the present application, after the step of determining the detection result of the stamping passability of the part based on the stamping passability parameter of the feed side, the stamping passability parameter of the discharge side and the maximum stroke parameter of the slider, it also includes: If the part does not meet the stamping passability, the modeling surface of the part is reconstructed, and the parameter value of the relative height difference of the part is re-extracted. Among them, the part does not meet the stamping passability, including that the part does not meet the stamping passability of the part on the feed side and/or the discharge side. When this happens, the modeling surface of the part can be rebuilt to adapt to the passability of the stamping production line , at this time, the adjusted parts do not necessarily meet the stamping passability. It is necessary to re-extract the parameter value of the relative height difference of the part and repeat the steps of the above part stamping passability detection method until the designed part meets the stamping passability of the part.
在本申请的一种可能的实现方式中,进料侧相对高差参数和出料侧相对高差参数均小于或等于相对高差最大值。这其中,进料侧相对高差参数、出料侧相对高差参数分别为零件在进料侧和出料侧通过性最差时对应的相对高差参数,也即沿冲压方向上零件的造型面相对高差最大值下的情况。这里,之所以将零件在进料侧和出料侧通过性最差时对应的相对高差参数分别作为进料侧相对高差参数和出料侧相对高差参数,是因为此种零件通过性最差情况下若零件满足冲压通过性,那么沿冲压方向上零件改变相对于压机的位置角度时,也通常会满足冲压通过性。In a possible implementation manner of the present application, both the relative height difference parameter on the feed side and the relative height difference parameter on the discharge side are less than or equal to the maximum value of the relative height difference. Among them, the relative height difference parameters of the feed side and the relative height difference parameters of the discharge side are the relative height difference parameters corresponding to the parts with the worst passability on the feed side and the discharge side, that is, the shape of the part along the stamping direction The situation under the maximum relative elevation difference. Here, the reason why the relative height difference parameters corresponding to the worst passability of the parts on the feed side and the discharge side are respectively used as the relative height difference parameters of the feed side and the relative height difference parameters of the discharge side is because the passability of the part In the worst case, if the part meets the stamping passability, then when the part changes its position angle relative to the press along the stamping direction, it will usually meet the stamping passability.
在本申请的一种可能的实现方式中,安全余量参数包括第一安全余量参数和第二安全余量参数,其中,在抓取组件与压机的上模座之间的干涉风险区具有第一安全余量,以使抓取组件避让所述上模座;零件沿冲压方向上靠近压机的下模座一端与下模座之间的干涉风险区具有第二安全余量,以使零件避让下模座。这里,第一安全余量和第二安全余量的设计可进一步保证造型初期设计的零件造型能够满足零件冲压通过性。另外,这其中,第一安全余量参数和第二安全余量参数可以相等也可以不等,具体不作限定。In a possible implementation of the present application, the safety margin parameters include a first safety margin parameter and a second safety margin parameter, wherein, the interference risk area between the grasping assembly and the upper die seat of the press There is a first safety margin, so that the grasping assembly avoids the upper mold base; the interference risk area between the end of the lower mold base of the part close to the press along the stamping direction and the lower mold base has a second safety margin, so that Keep the part out of the way of the lower die seat. Here, the design of the first safety margin and the second safety margin can further ensure that the shape of the part designed in the initial stage of modeling can meet the stamping passability of the part. In addition, the first safety margin parameter and the second safety margin parameter may be equal or unequal, and the details are not limited.
在本申请的一种可能的实现方式中,沿零件冲压方向上,抓取组件上端面与上模座上进料干涉风险点之间的高度差以及抓取组件上端面与上模座上出料干涉风险点之间的高度差为第一安全余量参数。这其中,由于抓取组件在冲压空间内抓放零件过程中,其抓放动作难免与理论设计结果存在偏差,以上如此设计可为抓取组件的运动偏差提供余量,以使抓取组件避免在易干涉风险区磕碰压机,进而影响零件冲压通过性。In a possible implementation of the present application, along the stamping direction of the part, the height difference between the upper end surface of the grabbing component and the risk point of material interference on the upper die base, and the height difference between the upper end surface of the grabbing component and the outlet on the upper die base The height difference between the material interference risk points is the first safety margin parameter. Among them, since the grasping component is in the process of grasping and placing parts in the stamping space, its grasping and placing action inevitably deviates from the theoretical design results. The above design can provide a margin for the movement deviation of the grasping component, so that the grasping component can avoid Knocking the press in the easy-to-interference risk area will affect the stamping passability of the parts.
在本申请的一种可能的实现方式中,基于进料侧冲压通过性参数、出料侧冲压通过性参数及滑块最大行程参数,确定零件冲压通过性的检测结果的步骤中,还包括:创建零件进料侧冲压通过性草图,且沿零件冲压方向上,在零件进料侧冲压通过性草图上的压机上滑块和压机床台之间,自上而下依次获取并标出压料器行程参数、第一安全余量参数、抓取组件相对高差参数、进料侧相对高差参数、凸模进料侧高度参数、第二安全余量参数,并将获取的上述所有参数与预留安全值求和,得到进料侧冲压通过性参数和;若进料侧冲压通过性参数和小于滑块最大行程参数,则确定零件在进料侧满足冲压通过性;若进料侧冲压通过性参数和大于或等于滑块最大行程参数,则确定零件不满足冲压通过性。如此,可通过创建的进料侧冲压通过性草图更直观地分析出零件是否满足通过性,且可便于根据零件造型分析出易干涉风险点,及配置进料侧冲压通性性参数和出料侧冲压通过性参数。In a possible implementation of the present application, the step of determining the detection result of the stamping passability of the part based on the stamping passability parameter of the feed side, the stamping passability parameter of the discharge side and the maximum stroke parameter of the slider further includes: Create the stamping passability sketch on the feed side of the part, and along the stamping direction of the part, between the upper slider of the press machine and the press bed on the stamping passability sketch of the part feed side, obtain and mark the presses in sequence from top to bottom Feeder stroke parameters, first safety margin parameters, relative height difference parameters of grabbing components, relative height difference parameters of the feed side, height parameters of the feed side of the punch, second safety margin parameters, and all the above parameters obtained Summing up with the reserved safety value, the sum of the stamping passability parameters on the feed side is obtained; if the sum of the stamping passability parameters on the feed side is less than the maximum stroke parameter of the slider, it is determined that the part meets the stamping passability on the feed side; if the feed side If the stamping passability parameter sum is greater than or equal to the maximum stroke parameter of the slider, it is determined that the part does not meet the stamping passability. In this way, it is possible to more intuitively analyze whether the part satisfies the passability through the created passability sketch of the feed side stamping, and it is convenient to analyze the risk point of easy interference according to the shape of the part, and configure the stamping passability parameters and output of the feed side Passability parameters of side stamping.
在本申请的一种可能的实现方式中,在若进料侧冲压通过性参数小于于滑块最大行程参数,则确定零件在进料侧满足冲压通过性的步骤中,还包括:创建零件出料侧冲压通过性草图,且沿零件冲压方向上,在零件出料侧冲压通过性草图上的压机滑块和压机床台之间,自上而下依次获取并标出压料器行程参数、第一安全余量参数、抓取组件相对高差参数、出料侧相对高差参数、凸模进料侧高度参数、第二安全余量参数,并将获取的上述所有参数与预留安全值进行求和,得到出料侧冲压通过性参数和;若所述出料侧冲压通过性参数和小于滑块最大行程参数,则确定零件满足冲压通过性;若出料侧冲压通过性参数和大于或等于滑块最大行程参数,则确定零件不满足冲压通过性。In a possible implementation of the present application, if the stamping passability parameter on the feed side is less than the maximum stroke parameter of the slider, then in the step of determining that the part satisfies the stamping passability on the feed side, it also includes: creating a part output Stamping passability sketch on the material side, and along the stamping direction of the part, between the press slide block and the press machine table on the part discharge side stamping passability sketch, obtain and mark the stroke parameters of the presser in sequence from top to bottom , the first safety margin parameter, the relative height difference parameter of the grasping component, the relative height difference parameter of the discharge side, the height parameter of the feed side of the punch, and the second safety margin parameter, and all the above parameters obtained and the reserved safety The values are summed to obtain the sum of the stamping passability parameters on the discharge side; if the sum of the stamping passability parameters on the discharge side is less than the maximum stroke parameter of the slider, it is determined that the part meets the stamping passability; if the stamping passability parameters of the discharge side and If it is greater than or equal to the maximum stroke parameter of the slider, it is determined that the part does not meet the stamping passability.
附图说明Description of drawings
图1为本申请实施例提供的一种车辆的正视图;Fig. 1 is the front view of a kind of vehicle provided by the embodiment of the present application;
图2为本申请实施例提供的一种车辆的俯视图;Fig. 2 is a top view of a vehicle provided by an embodiment of the present application;
图3为本申请实施例提供的一种图1和图2中车辆的A-A剖面图;Fig. 3 is an A-A sectional view of a vehicle in Fig. 1 and Fig. 2 provided by the embodiment of the present application;
图4为本申请实施例提供的一种进料侧车身侧围零件冲压通过性草图;Fig. 4 is a sketch of the stamping passability of the body side wall part on the feed side provided by the embodiment of the present application;
图5为本申请实施例提供的一种出料侧车身侧围零件冲压通过性草图;Fig. 5 is a sketch of the stamping passability of the body side wall parts on the discharge side provided by the embodiment of the present application;
图6为本申请实施例提供的一种零件冲压通过性检测方法的流程示意图一;Fig. 6 is a schematic flow diagram 1 of a part stamping passability detection method provided by the embodiment of the present application;
图7为本申请实施例提供的一种零件冲压通过性检测方法的流程示意图二;Fig. 7 is a schematic flow diagram II of a part stamping passability detection method provided by the embodiment of the present application;
图8为本申请实施例提供的一种零件冲压通过性检测方法的流程示意图三;Fig. 8 is a schematic flow diagram III of a part stamping passability detection method provided by the embodiment of the present application;
图9为本申请实施例提供的一种零件冲压通过性检测方法的流程示意图四。FIG. 9 is a schematic flow diagram 4 of a method for detecting passability of part stamping provided by the embodiment of the present application.
附图标记:Reference signs:
1-压机1;11-压机滑块;12-压料器;13-压机床台;14-上模座;15-下模座;2-抓取组件;3-侧围;B-进料干涉风险点;C-出料干涉风险点;H1-压料器行程参数;H2-抓取组件相对高差参数;H3-进料侧相对高差参数;H4-凸模进料侧高度;H51-第一安全余量参数;H52-第二安全余量参数;H6-出料侧相对高差参数;H7-滑块最大行程参数。1-
具体实施方式Detailed ways
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请的具体技术方案做进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present application clearer, the specific technical solutions of the present application will be further described in detail below in conjunction with the drawings in the embodiments of the present application. The following examples are used to illustrate the present application, but not to limit the scope of the present application.
在本申请实施例中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。In the embodiments of the present application, the terms "first" and "second" are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present application, unless otherwise specified, "plurality" means two or more.
此外,在本申请实施例中,“上”、“下”、“左”以及“右”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。In addition, in the embodiments of the present application, orientation terms such as "upper", "lower", "left" and "right" are defined relative to the schematic placement orientations of components in the drawings. It should be understood that these orientations The terminology is a relative concept, and they are used for description and clarification relative to each other, which may change correspondingly according to the change of orientation of parts placed in the drawings.
在本申请实施例中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。In this embodiment of the application, unless otherwise specified and limited, the term "connection" should be understood in a broad sense. For example, "connection" can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection , can also be indirectly connected through an intermediary.
在本申请实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。In the embodiments of the present application, the term "comprising", "comprising" or any other variant thereof is intended to cover a non-exclusive inclusion, such that a process, method, article or device comprising a series of elements not only includes those elements, but also includes Including other elements not expressly listed, or also including elements inherent in such process, method, article or apparatus. Without further limitations, an element defined by the phrase "comprising a ..." does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。In the embodiments of the present application, words such as "exemplary" or "for example" are used as examples, illustrations or illustrations. Any embodiment or design solution described as "exemplary" or "for example" in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design solutions. Rather, the use of words such as "exemplary" or "such as" is intended to present related concepts in a concrete manner.
随着汽车行业产销量的不断扩大,各大汽车生产商在生产线上也不断要求提高生产效率。自动化生产作为提高生产效率最为有效的手段已经大规模的发展起来。冲压是汽车生产的第一工序,冲压自动化的发展速度也十分迅猛。近几年来自动化冲压生产线在国内主流汽车厂的普及程度已经很高,而且节拍也是越来越快。With the continuous expansion of production and sales in the automobile industry, major automobile manufacturers are also constantly demanding to improve production efficiency on the production line. As the most effective means to improve production efficiency, automated production has been developed on a large scale. Stamping is the first process of automobile production, and the development speed of stamping automation is also very fast. In recent years, the popularity of automated stamping production lines in domestic mainstream automobile factories has been very high, and the pace is getting faster and faster.
目前典型的冲压自动化形式主要分为机器人形式和机械手形式两种。其原理都是一致的,即通过机器人或者机械手代替人工搬运冲压板料。比如以机械手形式为例,整条冲压自动线主要自动化设备分为:上料小车、拆垛机械手、皮带机、对中系统、上料机械手、输送机械手、下料机械手、下料皮带机等。其自动化冲压生产线的主要工作流程为:车间工人将坯料用行车或叉车放置到上料小车上、将模具用行车放置到压机移动工作台上。上料小车进入生产线,带有模具的移动工作台进入压机内部,生产线启动。每台压机边废料斗打开,废料线自动运行,拆垛机械手将一个料片从上料小车上抓取送至皮带机,之后料片进入清洗机、涂油机进行清洗、涂油,随后进入对中装置中对中,再由上料机械手抓取送入首台压机内进行冲压成型,之后通过输送机械手将料片送至每一工序的压机内完成指定的冲压工作,最后由下料机械手将成品冲压零件放置到下料皮带机上,人工检验最后下线装筐。At present, the typical stamping automation forms are mainly divided into two types: robot form and manipulator form. The principle is the same, that is, the stamping sheet is transported manually by a robot or a manipulator. For example, taking the form of manipulators as an example, the main automation equipment of the entire stamping automatic line is divided into: loading trolley, unstacking manipulator, belt conveyor, centering system, feeding manipulator, conveying manipulator, unloading manipulator, unloading belt machine, etc. The main workflow of its automated stamping production line is: workshop workers place the blanks on the loading trolley with a crane or forklift, and place the mold on the mobile workbench of the press with a crane. The feeding trolley enters the production line, the mobile table with molds enters the press, and the production line starts. The waste hopper on the side of each press is opened, and the waste line runs automatically. The unstacking manipulator grabs a piece from the loading trolley and sends it to the belt conveyor. After that, the piece enters the washing machine and oiler for cleaning and oiling, and then Enter the centering device for centering, and then the feeding manipulator grabs and sends it to the first press for stamping and forming, and then sends the material sheet to the press of each process through the conveying manipulator to complete the specified stamping work, and finally by The unloading manipulator places the finished stamping parts on the unloading belt conveyor, manual inspection, and finally off-line loading into baskets.
在冲压生产过程中,其中,压机是负责零件的冲压生产,自动化设备是负责从压机间将零件输送的,模具则是负责将板料生产成所需要形状的工装期间,安装在压机的工作台与滑块中间,要使冲压件顺利的一台压机输送到下一台压机,则必须充分考虑其通过性,与通过性有关的内容涉及到压机滑块的行程、模具的基准面高度以及自动化设备的运行空间。通常,在冲压自动化生产中,生产车间的压机设备数量及类型是有限定,当指定某一压机作为冲压压机时,其滑块最大行程则是确定的。另外,在冲压自动化生产时,机械手要顺利将冲压零件从一台压机上运送到下一台压机过程中,机械手所需要占用到压机内的空间,通常对于不同的冲压零件,由于其外形的不同,其所暂用的空间也不一样,机械手的占用空间通常指应对各个零件时,其运动曲线所需要的最上限与最下限之间的空间。In the stamping production process, the press is responsible for the stamping production of the parts, the automation equipment is responsible for transporting the parts from the press, and the mold is responsible for producing the sheet into the required shape. During the tooling, it is installed on the press In the middle of the working table and the slider, in order to make the stamping parts smoothly transported from one press to the next press, its passability must be fully considered. The content related to the passability involves the stroke of the press slider, the mold The height of the reference plane and the operating space of the automation equipment. Usually, in stamping automation production, the number and type of press equipment in the production workshop are limited. When a certain press is designated as a stamping press, the maximum stroke of its slider is determined. In addition, in the stamping automation production, the manipulator needs to occupy the space in the press to smoothly transport the stamping parts from one press to the next press. Usually, for different stamping parts, due to its The space used temporarily varies with the shape. The occupied space of the manipulator usually refers to the space between the upper limit and the lower limit required for the motion curve of each part.
而在零件造型设计前期,根据前期制造分工,已经明确了在哪条生产线生产,但是此阶段太过靠近前期,没有模具结构图,无法按照传统的判断零件通过性方法,判定零件是否满足生产线通过性;而且,因部分生产线比较老旧,无干涉曲线,也没法通过干涉曲线结合模具图,判断零件通过性。In the early stage of part modeling design, according to the division of labor in the early stage, which production line has been clarified, but this stage is too close to the early stage, there is no mold structure diagram, and it is impossible to judge whether the part meets the requirements of the production line according to the traditional method of judging the passability of the part. Moreover, because some production lines are relatively old, there is no interference curve, and it is impossible to judge the passability of parts by combining the interference curve with the mold diagram.
以往项目,在此阶段无有效判定方法对零件分块提供通过性指导意见,往往只能参照以往项目零件,对零件分块提出限制,在目前造型越来越夸张的行业趋势下,参照以往项目尺寸,已无法有效满足现有造型对分块的需求。容易出现前期造型设计的零件无法满足冲压生产线的情况。In previous projects, at this stage, there was no effective judgment method to provide passing guidance on parts division, and often only the parts of previous projects could be referred to, and restrictions on parts division were put forward. Under the current industry trend of more and more exaggerated shapes, refer to previous projects The size has been unable to effectively meet the needs of the existing shape for partitioning. It is easy to appear that the parts designed in the early stage cannot meet the stamping production line.
为此,本申请实施例提供一种零件冲压通过性检测方法,应用于零件造型设计前期的冲压通过性检测。参照图4、图5和图6,该零件冲压通过性检测方法包括以下步骤:For this reason, the embodiment of the present application provides a part stamping passability detection method, which is applied to the stamping passability detection in the early stage of part modeling design. Referring to Fig. 4, Fig. 5 and Fig. 6, the part stamping passability detection method includes the following steps:
步骤S100:获取零件的造型面在沿冲压方向上的相对高差最大值;Step S100: Obtain the maximum relative height difference of the modeling surface of the part along the stamping direction;
步骤S200:获取后工序压机的滑块最大行程参数;Step S200: Obtain the maximum stroke parameter of the slider of the subsequent process press;
步骤S300:获取造型面的进料侧冲压通过性参数和出料侧冲压通过性参数,进料侧冲压通过性参数至少包括零件的造型面的进料侧相对高差参数,出料侧冲压通过性参数至少包括零件的造型面的出料侧相对高差参数;其中,进料侧通过性参数和出料侧冲压通过性参数均为零件的造型面在其所述相对高差最大值情况下需要经过压机时的通过性参数;Step S300: Obtain the stamping passability parameters of the feed side and the discharge side stamping passability parameters of the molding surface, the stamping passability parameters of the feed side include at least the relative height difference parameters of the feed side of the molding surface of the part, and the stamping passability parameters of the discharge side The performance parameters at least include the relative height difference parameter of the discharge side of the modeling surface of the part; wherein, the passability parameter of the feed side and the punching passability parameter of the discharge side are the parameters of the relative height difference of the part's modeling surface at the maximum value of the relative height difference. Passability parameters when passing through the press;
步骤S400:基于进料侧冲压通过性参数、出料侧冲压通过性参数及滑块最大行程参数,确定零件冲压通过性的检测结果,检测结果用于表征零件是否满足零件冲压通过性。Step S400: Based on the stamping passability parameters of the feed side, the stamping passability parameters of the discharge side and the maximum stroke parameter of the slider, determine the detection result of the stamping passability of the part, and the detection result is used to indicate whether the part meets the stamping passability of the part.
这其中,零件的类型不作限定,诸如,可以是车身侧围、翼子板、发动机盖及背门等,由于侧围通过性出问题的可能性相对较高,因此,本申请实施例中,若无特别说明均以侧围3为实施例进行说明。具体地,通过步骤S100,在汽车造型设计初期,设计出侧围3造型面,提取侧围3零件的相对高差参数值,比如,沿侧围3不同方向上的相对高差的参数值,而通常,通过对侧围3零件工序分析,侧围3冲压方向沿车身高度方向时,侧围3零件通过性最差,因此,对于侧围3零件当其沿车身高度方向上能通过压机1生产线时,侧围3零件沿其它方向上也能满足压机1生产线的通过性,即在提取侧围3零件的多个不同方向的相对高差参数值中,应至少包括冲压方向上零件的造型面的相对高差中的相对高差最大值。通过步骤S200,获取后工序压机1的滑块最大行程参数H7,这里,压机1的滑块最大行程参数H7指压力机在冲压生产过程中滑块从下死点移动到上死点这段距离,这里,当选定某一压机1生产线时,也即压机1的滑块最大行程参数H7通常是不变的,因此,需要在零件造型设计初期,获取零件的多种冲压通过性参数以用来与压机1的滑块最大行程参数H7进行比较,从而判断造型设计前期的零件是否能满足压机1冲压生产线通过性。Among them, the type of parts is not limited, such as, it can be the side wall of the vehicle body, the fender, the engine cover and the back door, etc., because the possibility of problems with the passability of the side wall is relatively high, therefore, in the embodiment of the present application, Unless otherwise specified, the side wall 3 is taken as an example for description. Specifically, through step S100, in the early stage of automobile modeling design, the side wall 3 modeling surface is designed, and the relative height difference parameter values of the side wall 3 parts are extracted, for example, the parameter values of the relative height difference in different directions along the side wall 3, Usually, through the process analysis of the side wall 3 parts, when the side wall 3 stamping direction is along the vehicle body height direction, the side wall 3 parts have the worst passability. Therefore, the side wall 3 parts can pass through the press when they are along the vehicle body height direction. 1 production line, the side wall 3 parts can also meet the passability of the
由此,还需进一步通过步骤S300,获取在沿冲压方向上零件的造型面相对高差最大值的情况下进料侧和出料侧的冲压通过性参数,诸如,参照图1、图2和图3,零件以侧围3零件为例,在侧围3零件沿其车身高度方向上,即侧围3零件相对高差在相对高差最大值的情况下通过压机生产线时,需获取进料侧冲压通过性参数,其中,进料侧冲压通过性参数至少包括零件的进料侧相对高差参数H3;相应地,出料侧冲压通过性参数至少包括零件出料侧相对高差参数H6。这里,至少包括零件的进料侧相对高差参数H3具体是指,零件在进料侧通过压机1时通常为了提高冲压生产线自动化程度,需通过机器手臂等抓取组件2自动抓取零件,此种情况下,由于机器手臂等抓取组件2需占用压机1冲压空间,因而还需考虑机器手臂等抓取组件2相对高差参数H2,另外,考虑到零件进料时存在干涉风险区,通常也需要设计零件冲压通过的安全余量参数,如此,即使不考虑冲压生产线采用机械手臂等抓取组件2抓取零件以及不设计安全余量参数的情况下,要使零件在进料侧通过冲压生产线也至少要包括零件的进料侧相对高差参数H3,且使其小于滑块最大行程参数H7,才能达到零件在进料侧通过冲压生产线的最低所需条件。相类似的,出料侧也需至少要包括零件的出料侧相对高差参数H6。Therefore, it is necessary to further pass step S300 to obtain the stamping passability parameters of the feed side and the discharge side under the condition of the maximum relative height difference of the molding surface of the part along the stamping direction, such as referring to Fig. 1, Fig. 2 and Figure 3. Taking the side wall 3 part as an example, when the side wall 3 part passes through the press production line in the direction of the body height of the side wall 3 part, that is, when the relative height difference of the side wall 3 part is at the maximum relative height difference, it is necessary to obtain Stamping passability parameters on the material side, where the stamping passability parameters on the feed side include at least the relative height difference parameter H3 on the feed side of the part; correspondingly, the stamping passability parameters on the discharge side at least include the relative height difference parameter H6 on the discharge side of the part . Here, at least including the relative height difference parameter H3 of the feed side of the parts specifically means that when the parts pass through the
这其中,通过步骤S400,基于以上进料侧冲压通过性参数、出料侧冲压通过性参数及滑块最大行程参数H7,确定零件冲压通过性的检测结果,具体是指,将进料侧冲压通过性参数中包括的零件的进料侧相对高差参数H3等其它可能的进料侧冲压通过性参数求和与压机1的滑块最大行程参数H7比较,比如,进料侧冲压通过性各参数和小于滑块最大行程参数H7,且出料侧冲压通过性各参数和也小于滑块最大行行程参数H7则可确定零件能够通过冲压生产线,而若进料侧的所有参数和或出料侧的所有参数和中至少有一个大于滑块最大行程参数H7,则可确定零件不能通过冲压生产线,由此,通过检测结果可用于表征零件是否满足零件冲压通过性。通过上述检测方法,即可实现即使冲压生产线老旧无干涉曲线,且前期造型阶段无模具图纸下,仍然可检测零件是否满足压机1冲压通过性。Among them, through step S400, based on the above parameters of the stamping passability of the feed side, the stamping passability parameters of the discharge side and the maximum stroke parameter H7 of the slider, the detection result of the stamping passability of the part is determined, specifically, the stamping passability of the feed side The relative height difference parameter H3 of the feed side of the part included in the passability parameters and other possible feed side stamping passability parameters are compared with the maximum stroke parameter H7 of the slider of the
在一些实施例中,进料侧冲压通过性参数和出料侧冲压通过性参数均包括压料器行程参数H1、沿零件冲压方向上的抓取组件2相对高差参数H2和安全余量参数。其中,为了提高冲压生产线自动化程度,通常需通过抓取组件2自动抓取零件,此种情况下,由于抓取组件2沿冲压方向上需占用压机1冲压空间,因而往往还需考虑抓取组件2相对高差参数H2。另外,考虑到零件进料时存在干涉风险区,通常也需要设计零件冲压通过的安全余量参数,如此,可在不降低冲压效率的前提下,保证造型设计前期设计的零件能够通过冲压生产线。这里,压料器行程参数H1可以是指压料板和凸模固定板的间隙,通常也称上模活动量,其大小与产品及模具结构有关,本申请实施例中,压机1一定时,压料器行程参数H1也就可以确定。In some embodiments, the punching passability parameters on the feed side and the punching passability parameters on the discharge side both include the stroke parameter H1 of the feeder, the relative height difference parameter H2 of the grasping assembly 2 along the stamping direction of the part, and the safety margin parameter . Among them, in order to improve the automation of the stamping production line, it is usually necessary to automatically grasp the parts through the grasping component 2. In this case, since the grasping component 2 needs to occupy the stamping space of the
在一些实施例中,参照图4和图5,进料侧冲压通过性参数和出料侧冲压通过性参数均还包括预留安全值,预留安全值用于为压机1后期调整零件结构面预留安全量。诸如,预留安全值用于为压机后期调布置斜楔、挡料杆以及增加零件结构面等预留安全量。以满足零件在多种工序下的零件冲压通过性。In some embodiments, referring to FIG. 4 and FIG. 5 , both the punching passability parameters on the feed side and the punching passability parameters on the discharge side also include reserved safety values, which are used to adjust the part structure for the later stage of the
参照图4、图5和图7,步骤S400中,包括步骤S401和步骤S402,其中步骤S401:对压料器行程参数H1、安全余量参数、抓取组件2相对高差参数H2、进料侧相对高差参数H3、凸模进料侧高度H4参数及预留安全值进行求和,得到进料侧冲压通过性参数和;对压料器行程参数H1、安全余量参数、抓取组件2相对高差参数H2、出料侧相对高差参数H6、凸模进料侧高度H4参数及预留安全值进行求和,得到出料侧冲压通过性参数和。步骤S402:判断进料侧冲压通过性参数和及出料侧冲压通过性参数是否均小于滑块最大行程参数H7。其中,若进料侧冲压通过性参数和及出料侧冲压通过性参数和均小于滑块最大行程参数H7,则确定零件满足冲压通过性;若进料侧冲压通过性参数和及出料侧冲压通过性参数和中的至少一个大于或等于滑块最大行程参数H7,则确定零件不满足冲压通过性。Referring to Fig. 4, Fig. 5 and Fig. 7, step S400 includes step S401 and step S402, wherein step S401: the stroke parameter H1 of the presser, the safety margin parameter, the relative height difference parameter H2 of the grasping assembly 2, the feeding The side relative height difference parameter H3, the punch feed side height H4 parameter and the reserved safety value are summed to obtain the stamping passability parameter of the feed side; the stroke parameter H1 of the presser, the safety margin parameter, and the grabbing component 2 The relative height difference parameter H2, the relative height difference parameter H6 of the discharge side, the height H4 parameter of the feed side of the punch and the reserved safety value are summed to obtain the stamping passability parameter of the discharge side. Step S402: Determine whether the punching passability parameter at the feed side and the punch passability parameter at the discharge side are both smaller than the maximum stroke parameter H7 of the slider. Among them, if the stamping passability parameters on the feed side and the stamping passability parameters on the discharge side are both less than the maximum stroke parameter H7 of the slider, it is determined that the part meets the stamping passability; if the stamping passability parameters on the feed side and the discharge side If at least one of the stamping passability parameters sum is greater than or equal to the maximum stroke parameter H7 of the slider, it is determined that the part does not meet the stamping passability.
这里,需要说明的是,诸如,在进料侧除了压料器行程参数H1、安全余量参数、抓取组件相对高差参数H2、进料侧相对高差参数H3、凸模进料侧高度H4参数及预留安全值之外,还可以根零件造型面实际需要增加其它参数值,具体不作限定。Here, it needs to be explained that, for example, on the feed side, in addition to the stroke parameter H1 of the presser, the safety margin parameter, the relative height difference parameter H2 of the grabbing component, the relative height difference parameter H3 of the feed side, and the height of the punch feed side In addition to the H4 parameter and the reserved safety value, other parameter values can also be added according to the actual needs of the part modeling surface, which is not limited.
在一些实施例中,参照图4、图5和图9,在步骤S402之后,若零件不满足冲压通过性,进行步骤S001:重新构建零件的造型面;并重新提取零件相对高差的参数值。其中,零件不满足冲压通过性包括在零件在进料侧和/或出料侧不满足零件冲压通过性,当出现此种情况时,可重新构建零件的造型面,以适应冲压生产线的通过性,这时,调整后的零件并不一定满足冲压通过性,需重新提取零件相对高差的参数值并重复步骤S100~步骤S400,直至设计的零件满足零件冲压通过性。In some embodiments, with reference to Fig. 4, Fig. 5 and Fig. 9, after step S402, if the part does not meet the stamping passability, proceed to step S001: rebuild the modeling surface of the part; and re-extract the parameter value of the relative height difference of the part . Among them, the part does not meet the stamping passability, including that the part does not meet the stamping passability of the part on the feed side and/or the discharge side. When this happens, the modeling surface of the part can be rebuilt to adapt to the passability of the stamping production line , at this time, the adjusted part does not necessarily meet the stamping passability, it is necessary to re-extract the parameter value of the relative height difference of the part and repeat steps S100 to S400 until the designed part meets the stamping passability of the part.
在一些实施例中,进料侧相对高差参数H3和出料侧相对高差参数值H6均小于或等于相对高差最大值。这其中,进料侧相对高差参数H3和出料侧相对高差参数值H6的确定可根据零件的不同造型面通过压机时的情况而定,具体不作限定,只需进料侧相对高差参数H3和出料侧相对高差参数值H6均小于或等于相对高差最大值即可。例如,示例的,参照图4和图5,以侧围3的造型面在沿冲压方向上相对高差最大值情况下需要通过压机为例,进料侧相对高差参数H3等于相对高差最大值、出料侧相对高差参数H6小于相对高差最大值。这里,之所以将零件在进料侧和出料侧通过性最差时对应的相对高差参数分别作为进料侧相对高差参数H3和出料侧相对高差参数H6,是因为此种情况下若零件满足冲压通过性,那么沿冲压方向上零件改变相对于压机1的位置角度时,也通常会满足冲压通过性。In some embodiments, the relative height difference parameter H3 at the feed side and the relative height difference parameter H6 at the discharge side are both less than or equal to the maximum value of the relative height difference. Among them, the determination of the relative height difference parameter H3 on the feed side and the relative height difference parameter value H6 on the discharge side can be determined according to the situation when the different molding surfaces of the parts pass through the press. Both the difference parameter H3 and the relative height difference parameter value H6 on the discharge side are less than or equal to the maximum value of the relative height difference. For example, referring to Fig. 4 and Fig. 5, taking the molding surface of the side wall 3 as an example in the case of the maximum relative height difference along the punching direction, the relative height difference parameter H3 on the feed side is equal to the relative height difference The maximum value and the relative height difference parameter H6 on the discharge side are less than the maximum value of the relative height difference. Here, the reason why the relative height difference parameters corresponding to the worst passability of the parts on the feed side and the discharge side are respectively used as the relative height difference parameter H3 of the feed side and the relative height difference parameter H6 of the discharge side is because of this situation Next, if the part satisfies the stamping passability, then when the part changes its position and angle relative to the
继续地,参照图4和图5,安全余量参数包括第一安全余量参数H51和第二安全余量参数H52,其中,在抓取组件2与压机1的上模座14之间的干涉风险区具有第一安全余量,以使抓取组件2避让上模座14;零件沿冲压方向上靠近压机1的下模座15一端与下模座15之间的干涉风险区具有第二安全余量,以使零件避让下模座15。这里,第一安全余量和第二安全余量的设计可进一步保证造型初期设计的零件能够满足零件冲压通过性。另外,这其中,第一安全余量参数H51和第二安全余量参数H52可以相等也可以不等具体不作限定。4 and 5, the safety margin parameters include a first safety margin parameter H51 and a second safety margin parameter H52, wherein the gripping assembly 2 and the
进一步地,参照图4和图5,沿零件冲压方向上,抓取组件2上端面与上模座14上进料干涉风险点B之间的高度差以及抓取组件2上端面与上模座14上出料干涉风险点C之间的高度差为第一安全余量参数H51。这其中,由于抓取组件2在冲压空间内抓放零件过程中,其抓放运动轨迹难免会与理论设计结果存在偏差,以上如此设计可为抓取组件2的运动偏差提供余量,以使抓取组件2避免在易干涉风险区磕碰压机1,进而影响零件冲压通过性。Further, referring to FIG. 4 and FIG. 5 , along the part stamping direction, the height difference between the upper end surface of the grab assembly 2 and the risk point B of the feed interference risk point B on the
在一些实施例中,参照图4、图5和图8,步骤S401中还包括步骤S4011和步骤S4012,其中,步骤S4011:创建零件进料侧冲压通过性草图,且沿零件冲压方向上,在零件进料侧冲压通过性草图上的压机1滑块11和压机床台13之间,自上而下依次获取并标出压料器行程参数H1、第一安全余量参数H51、抓取组件2相对高差参数H2、进料侧相对高差参数H3、凸模进料侧高度H4参数、第二安全余量参数H52,并将获取的上述所有参数与预留安全值进行求和,得到进料侧冲压通过性参数和。这其中,若进料侧冲压通过性参数和小于滑块最大行程参数H7,则确定零件在进料侧满足冲压通过性;若进料侧冲压通过性参数和大于或等于滑块最大行程参数H7,则确定零件不满足冲压通过性。如此,可通过创建的进料侧冲压通过性草图更直观的分析出零件是否满足通过性,并便于根据零件造型分析出易干涉风险点,及配置进料侧冲压通性性参数和出料侧冲压通过性参数。In some embodiments, referring to FIG. 4 , FIG. 5 and FIG. 8 , step S401 also includes step S4011 and step S4012, wherein, step S4011: create a stamping passing sketch on the feeding side of the part, and along the stamping direction of the part, in Between the
若进料侧冲压通过性参数不大于滑块最大行程参数H7,则在步骤S4011之后,进行步骤S4012,步骤S4012中包括创建零件出料侧冲压通过性草图,且沿零件冲压方向上,在零件出料侧通过性草图的压机滑块11和压机床台13之间,自上而下依次获取并标出压料器行程参数H1、第一安全余量参数H51、抓取组件2相对高差参数H2、出料侧相对高差参数H6、凸模进料侧高度H4参数、第二安全余量参数H52,并将获取的上述所有参数与预留安全值进行求和,得到出料侧冲压通过性参数和;其中,若出料侧冲压通过性参数和小于滑块最大行程参数H7,则确定零件满足冲压通过性;若出料侧冲压通过性参数和大于或等于滑块最大行程参数H7,则确定零件不满足冲压通过性。If the stamping passability parameter on the feed side is not greater than the maximum stroke parameter H7 of the slider, then after step S4011, proceed to step S4012. Step S4012 includes creating a stamping passability sketch on the discharge side of the part, and along the stamping direction of the part, on the part Between the
另外,在一些实施例中,以汽车造型设计初期的侧围3零件为例,参照图4、图5和图9,结合步骤S100,先在冲压方向上提取侧围3相对高差中的最大值,即侧围3相对高差最深处提取剖面,参照图3所示。结合步骤S200,确定选用的冲压生产线,获取后工序压机滑块11最大行程参数,比如,滑块最大行程参数H7为1100mm。结合步骤S300,获取压料器行程参数H1为70mm,抓取组件2相对高差参数H2为700mm,侧围3的进料侧相对高差为1100mm,凸模进料侧高度H4为1100mm,侧围3的出料侧相对高差为1100mm,第一安全余量参数H51和第二安全余量参数H52均为30mm,预留安全值为50mm。继续地,结合步骤S400,分别创建侧围3的进料侧和出料侧冲压通过性草图,如图4和图5所示,并分别在进料侧和出料侧计算后工序压机1通过性。具体地,结合步骤S4011和步骤S4012,其中,对进料侧的压料器行程参数H1、第一安全余量参数H51、抓取组件2相对高差参数H2、进料侧相对高差参数H3、第二安全余量参数H52、凸模进料侧高度H4及预留安全值进行求和,进料侧检测零件冲压通过性的计算公式为H1+H51+H2+H3+H52+H4+a,也即,70+30+250+440+30+230+50=1100mm,这里,a表示预留安全值。用此时,进料侧各参数和不大于H7(1100mm),即零件在进料侧满足通过性。继续地,对出料侧压料器行程参数H1、第一安全余量参数H51、抓取组件2相对高差参数H2、出料侧相对高差参数H6、第二安全余量参数H52、凸模进料侧高度H4及预留安全值a进行求和,这里,相应地,出料侧的计算公式为H1+H51+H2+H6+H52+H4,结合示例的各参数值有,并对各参数值求和,70+30+250+230+30+230+50=890mm<1100mm,也即侧围3零件满足通过性要求。相反,若进料侧和出料侧的各参数求和后至少有一侧的各参数和大于1100mm时,则零件不满足冲压通过性。In addition, in some embodiments, taking the part of the side wall 3 at the initial stage of automobile modeling design as an example, referring to Fig. 4, Fig. 5 and Fig. 9, in combination with step S100, first extract the maximum relative height difference of the side wall 3 in the stamping direction. value, that is, the profile extracted from the deepest part of the relative height difference of side wall 3, as shown in Figure 3. Combined with step S200, the selected stamping production line is determined, and the maximum stroke parameter of the
需要说明的是,以上参数值为一种车身侧围3零件的示例参考值,即车身侧围3零件作为检查其是否能通过冲压生产线的一种实施例。诸如,当在该压机1上判断其它零件的冲压通过性时,可调整零件的进料侧和出料侧相对高差参数H6值和凸模进料侧高度H4,其中,压料器行程参数H1、抓取组件2相对高差参数H2、预留安全值a可不变。It should be noted that the above parameter values are an example reference value of a body side panel 3 part, that is, the body side panel 3 part is used as an example of checking whether it can pass through the stamping production line. For example, when judging the stamping passability of other parts on the
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。The serial numbers of the above embodiments of the present application are for description only, and do not represent the advantages and disadvantages of the embodiments. The above are only preferred embodiments of the present application, and are not intended to limit the patent scope of the present application. All equivalent structures or equivalent process transformations made by using the description of the application and the accompanying drawings are directly or indirectly used in other related technical fields. , are all included in the patent protection scope of the present application in the same way.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310119570.1A CN116223060A (en) | 2023-02-15 | 2023-02-15 | Part stamping passing detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310119570.1A CN116223060A (en) | 2023-02-15 | 2023-02-15 | Part stamping passing detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116223060A true CN116223060A (en) | 2023-06-06 |
Family
ID=86569029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310119570.1A Pending CN116223060A (en) | 2023-02-15 | 2023-02-15 | Part stamping passing detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116223060A (en) |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6082720A (en) * | 1995-12-19 | 2000-07-04 | Compagnie Generale Des Etablissements Michelin - Michelin & Cie | Precise adjustment of MacPherson strut: adjustment means on the strut and measuring bench |
CN1430721A (en) * | 2001-12-14 | 2003-07-16 | 香港中文大学 | Method and system for online monitoring of stamping process |
CN102722619A (en) * | 2012-06-05 | 2012-10-10 | 湖南大学 | Method for determining material utilization rate of parts for stamping automobile covering parts |
CN102735754A (en) * | 2011-03-30 | 2012-10-17 | 富士重工业株式会社 | Pressed workpiece inspection apparatus |
CN108465732A (en) * | 2017-12-25 | 2018-08-31 | 襄阳光瑞汽车零部件有限公司 | Metallic plate punching forming method |
CN108491965A (en) * | 2018-03-14 | 2018-09-04 | 广东省智能制造研究所 | Trend prediction method, device, electronic equipment and the storage medium of stamping equipment |
US20180373680A1 (en) * | 2017-06-26 | 2018-12-27 | Interactive Media, LLC | Document stamping system and method |
CN109482699A (en) * | 2019-01-08 | 2019-03-19 | 宁波朗迪叶轮机械有限公司 | A kind of automatic balancing machine and its balance weight produce mechanism |
CN111537517A (en) * | 2020-05-18 | 2020-08-14 | 江汉大学 | An unmanned intelligent stamping defect identification method |
CN211955023U (en) * | 2020-05-15 | 2020-11-17 | 梅州市梅县区庆达实业有限公司 | Stamping pressure testing equipment for asymmetric stretching piece |
CN213301654U (en) * | 2020-11-20 | 2021-05-28 | 石家庄市明远锻件制造有限公司 | Life detection device of forging stamping workpiece |
CN114186479A (en) * | 2021-11-16 | 2022-03-15 | 北京百度网讯科技有限公司 | Stamping process parameter processing method and device, electronic equipment and storage medium |
CN216262631U (en) * | 2021-12-01 | 2022-04-12 | 阿维塔科技(重庆)有限公司 | Scrap collecting mechanism and stamping die |
CN115165327A (en) * | 2022-06-01 | 2022-10-11 | 东风本田汽车有限公司 | Automatic simulation device for stamping die |
CN115479788A (en) * | 2021-05-31 | 2022-12-16 | 深圳富桂精密工业有限公司 | Stamping equipment abnormal detection method and electronic device |
-
2023
- 2023-02-15 CN CN202310119570.1A patent/CN116223060A/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6082720A (en) * | 1995-12-19 | 2000-07-04 | Compagnie Generale Des Etablissements Michelin - Michelin & Cie | Precise adjustment of MacPherson strut: adjustment means on the strut and measuring bench |
CN1430721A (en) * | 2001-12-14 | 2003-07-16 | 香港中文大学 | Method and system for online monitoring of stamping process |
CN102735754A (en) * | 2011-03-30 | 2012-10-17 | 富士重工业株式会社 | Pressed workpiece inspection apparatus |
CN102722619A (en) * | 2012-06-05 | 2012-10-10 | 湖南大学 | Method for determining material utilization rate of parts for stamping automobile covering parts |
US20180373680A1 (en) * | 2017-06-26 | 2018-12-27 | Interactive Media, LLC | Document stamping system and method |
CN108465732A (en) * | 2017-12-25 | 2018-08-31 | 襄阳光瑞汽车零部件有限公司 | Metallic plate punching forming method |
CN108491965A (en) * | 2018-03-14 | 2018-09-04 | 广东省智能制造研究所 | Trend prediction method, device, electronic equipment and the storage medium of stamping equipment |
CN109482699A (en) * | 2019-01-08 | 2019-03-19 | 宁波朗迪叶轮机械有限公司 | A kind of automatic balancing machine and its balance weight produce mechanism |
CN211955023U (en) * | 2020-05-15 | 2020-11-17 | 梅州市梅县区庆达实业有限公司 | Stamping pressure testing equipment for asymmetric stretching piece |
CN111537517A (en) * | 2020-05-18 | 2020-08-14 | 江汉大学 | An unmanned intelligent stamping defect identification method |
CN213301654U (en) * | 2020-11-20 | 2021-05-28 | 石家庄市明远锻件制造有限公司 | Life detection device of forging stamping workpiece |
CN115479788A (en) * | 2021-05-31 | 2022-12-16 | 深圳富桂精密工业有限公司 | Stamping equipment abnormal detection method and electronic device |
CN114186479A (en) * | 2021-11-16 | 2022-03-15 | 北京百度网讯科技有限公司 | Stamping process parameter processing method and device, electronic equipment and storage medium |
CN216262631U (en) * | 2021-12-01 | 2022-04-12 | 阿维塔科技(重庆)有限公司 | Scrap collecting mechanism and stamping die |
CN115165327A (en) * | 2022-06-01 | 2022-10-11 | 东风本田汽车有限公司 | Automatic simulation device for stamping die |
Non-Patent Citations (1)
Title |
---|
赵博,孙刚: "《高速冲压生产线虚拟轴同步控制系统研究》", 《锻造与冲压》, 31 December 2022 (2022-12-31) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201855869U (en) | Numerical control complete punching system of long stroke board | |
CN109604466A (en) | A kind of the stamping parts feeding robot and charging method of view-based access control model identification | |
EP3156146A1 (en) | Centering system for blanks | |
CN208005088U (en) | White body robot squab panel gripping apparatus | |
CN116223060A (en) | Part stamping passing detection method | |
TWI813115B (en) | Automatic stamping production system and method | |
JPH05349A (en) | Forging device for crankshaft | |
CN104759573B (en) | A kind of robotic gripper automatization die forging system | |
JP5861159B2 (en) | Turret forging equipment | |
WO2016150172A1 (en) | Fully mechanical arm smart-bending machine | |
CN107414450A (en) | View-based access control model guides articulated robot assembly machine | |
JP2891363B2 (en) | Method and apparatus for detecting thickness and tensile strength during press working | |
JP2016007609A (en) | Workpiece clamp device of workpiece operation robot and method of the same | |
CN106966181A (en) | A kind of punching press metal plate factory thin flat plate material is said good-bye code fetch unit | |
CN205869184U (en) | Hot automatic press line and conveying manipulator thereof | |
JP2024062288A (en) | Material-short inspection device, and transfer-type press machine comprising material-short inspection device | |
CN110640481A (en) | Drive axle housing automatic production line | |
CN211235600U (en) | Detection device for X-ray detection | |
US7444850B2 (en) | Method and device for shaping workpieces | |
CN206500494U (en) | A kind of stamping parts of automobile production movement alternating multiple site punching system | |
JP2005216112A (en) | Control method and control device for reciprocating machine transfer robot | |
CN211053091U (en) | Automatic production line for driving axle housing | |
CN206047735U (en) | A secondary positioning structure for CNC feeding | |
TWI820553B (en) | Quick die change system and method for stamping press | |
CN116197341B (en) | Fastener hot heading forming equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |