CN116207172A - Photovoltaic module and preparation method thereof - Google Patents
Photovoltaic module and preparation method thereof Download PDFInfo
- Publication number
- CN116207172A CN116207172A CN202310111863.5A CN202310111863A CN116207172A CN 116207172 A CN116207172 A CN 116207172A CN 202310111863 A CN202310111863 A CN 202310111863A CN 116207172 A CN116207172 A CN 116207172A
- Authority
- CN
- China
- Prior art keywords
- encapsulation layer
- layer
- photovoltaic module
- battery
- fluidity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/80—Encapsulations or containers for integrated devices, or assemblies of multiple devices, having photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/90—Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
- H10F77/215—Geometries of grid contacts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本申请实施例涉及光伏技术领域,提供一种光伏组件及其制备方法,光伏组件包括:多个电池片,每个所述电池片的表面均具有多条栅线;连接部件,所述连接部件位于所述电池片表面,且所述连接部件分别连接相邻的所述电池片,位于所述栅线上的部分所述连接部件与相邻的部分所述栅线接触连接;封装层,所述封装层覆盖所述电池片的表面以及所述连接部件的表面,且所述封装层至少包括沿远离所述电池片的方向依次排布第一封装层、第二封装层以及第三封装层,其中,所述第三封装层的流动性、所述第二封装层的流动性以及所述第一封装层的流动性依次减小。本申请实施例至少有利于提升光伏组件的效率以及良率。
The embodiment of the present application relates to the field of photovoltaic technology, and provides a photovoltaic module and its preparation method. The photovoltaic module includes: a plurality of battery sheets, each of which has a plurality of grid lines on the surface of the battery sheet; a connecting part, the connecting part It is located on the surface of the battery sheet, and the connection parts are respectively connected to the adjacent battery sheets, and the part of the connection part located on the grid line is in contact with the adjacent part of the grid line; the encapsulation layer, the The encapsulation layer covers the surface of the battery sheet and the surface of the connecting part, and the encapsulation layer at least includes a first encapsulation layer, a second encapsulation layer and a third encapsulation layer arranged in sequence along a direction away from the battery sheet , wherein the fluidity of the third encapsulation layer, the fluidity of the second encapsulation layer and the fluidity of the first encapsulation layer decrease in sequence. The embodiments of the present application are at least beneficial to improving the efficiency and yield of photovoltaic modules.
Description
技术领域technical field
本申请实施例涉及光伏技术领域,特别涉及一种光伏组件及其制备方法。The embodiments of the present application relate to the field of photovoltaic technologies, and in particular to a photovoltaic module and a manufacturing method thereof.
背景技术Background technique
随着光伏技术的发展,在光伏电池或者光伏组件的制造中,节约制造成本的同时,实现对光伏电池效率的提升以及实现光伏电池良率的提升已成为关注的主要问题。With the development of photovoltaic technology, in the manufacture of photovoltaic cells or photovoltaic modules, it has become a major concern to improve the efficiency of photovoltaic cells and improve the yield of photovoltaic cells while saving manufacturing costs.
栅线作为太阳能电池的重要组成部分,用于收集光生伏特效应产生的电子并导出,焊带用于光伏组件中电池片的连接,栅线与焊带的排布方式、焊带与栅线的焊接质量、焊带材料与栅线材料的选择、焊带与栅线的焊接方式以及焊带上方的胶膜等均对电池片的光电转换效率、光伏组件的效率、光伏组件的良率以及光伏组件的寿命具有一定影响,目前,光伏组件中栅线、焊带以及胶膜的设置方式有待改进。As an important part of solar cells, grid wires are used to collect and export electrons generated by the photovoltaic effect. Ribbons are used to connect cells in photovoltaic modules. The quality of welding, the selection of ribbon material and grid wire material, the welding method of ribbon and grid wire, and the adhesive film above the ribbon all have a great impact on the photoelectric conversion efficiency of the cell, the efficiency of the photovoltaic module, the yield of the photovoltaic module, and the photovoltaic The life of the module has a certain impact. At present, the arrangement of grid lines, soldering strips and adhesive films in photovoltaic modules needs to be improved.
发明内容Contents of the invention
本申请实施例提供一种光伏组件及其制备方法,至少有利于提升光伏组件的效率以及良率。Embodiments of the present application provide a photovoltaic module and a manufacturing method thereof, which are at least beneficial to improving the efficiency and yield of the photovoltaic module.
根据本申请一些实施例,本申请实施例一方面提供一种光伏组件,包括:多个电池片,每个电池片的表面均具有多条栅线;连接部件,连接部件位于电池片表面,且连接部件分别连接相邻的电池片,位于栅线上的部分连接部件与相邻的部分栅线接触连接;封装层,封装层覆盖电池片的表面以及连接部件的表面,且封装层至少包括沿远离电池片的方向依次排布第一封装层、第二封装层以及第三封装层,其中,第三封装层的流动性、第二封装层的流动性以及第一封装层的流动性依次减小。According to some embodiments of the present application, the embodiments of the present application provide a photovoltaic module on the one hand, including: a plurality of battery sheets, each of which has a plurality of grid lines on the surface of the battery sheet; a connecting part, the connecting part is located on the surface of the battery sheet, and The connection parts are respectively connected to the adjacent cells, and the part of the connection part on the grid line is in contact with the adjacent part of the grid line; the packaging layer, the packaging layer covers the surface of the battery chip and the surface of the connection part, and the packaging layer at least includes The first encapsulation layer, the second encapsulation layer and the third encapsulation layer are sequentially arranged in the direction away from the battery sheet, wherein the fluidity of the third encapsulation layer, the fluidity of the second encapsulation layer and the fluidity of the first encapsulation layer decrease in turn. Small.
在一些实施例中,第一封装层的ML值与第二封装层的ML值的比值为1.1~3。In some embodiments, the ratio of the ML value of the first encapsulation layer to the ML value of the second encapsulation layer is 1.1˜3.
在一些实施例中,第二封装层的ML值与第三封装层的ML值的比值为1.1~4。In some embodiments, the ratio of the ML value of the second encapsulation layer to the ML value of the third encapsulation layer is 1.1˜4.
在一些实施例中,第一封装层的ML值为0.4dN·m~0.85dN·m,和/或第二封装层的ML值为0.3dN·m~0.4dN·m。In some embodiments, the ML value of the first encapsulation layer is 0.4 dN·m˜0.85 dN·m, and/or the ML value of the second encapsulation layer is 0.3 dN·m˜0.4 dN·m.
在一些实施例中,第三封装层的ML值为0.1dN·m~0.3dN·m。In some embodiments, the ML value of the third encapsulation layer is 0.1 dN·m˜0.3 dN·m.
在一些实施例中,还包括:胶点,胶点位于部分电池片与连接部件之间,且胶点位于栅线以外的电池片的表面。In some embodiments, it further includes: glue points, the glue points are located between some of the battery sheets and the connection components, and the glue points are located on the surface of the battery sheets other than the grid lines.
在一些实施例中,第一封装层、第二封装层以及第三封装层为一体成型结构。In some embodiments, the first encapsulation layer, the second encapsulation layer and the third encapsulation layer are integrally formed.
在一些实施例中,沿电池片指向封装层的方向上,第一封装层的厚度与连接部件的最大厚度的比值为0.4~1。In some embodiments, the ratio of the thickness of the first encapsulation layer to the maximum thickness of the connection part is 0.4˜1 along the direction from the cell sheet to the encapsulation layer.
在一些实施例中,沿电池片指向封装层的方向上,第一封装层的厚度与第二封装层的厚度的比值为1~4。In some embodiments, the ratio of the thickness of the first encapsulation layer to the thickness of the second encapsulation layer is 1-4 along the direction from the cell sheet to the encapsulation layer.
在一些实施例中,沿电池片指向封装层的方向上,第二封装层的厚度与第三封装层的厚度的比值为0.2~0.7。In some embodiments, the ratio of the thickness of the second encapsulation layer to the thickness of the third encapsulation layer is 0.2-0.7 along the direction of the battery sheet pointing to the encapsulation layer.
在一些实施例中,第一封装层的材料、第二封装层的材料以及第三封装层的材料相同。In some embodiments, the material of the first encapsulation layer, the material of the second encapsulation layer and the material of the third encapsulation layer are the same.
根据本申请一些实施例,本申请实施例另一方面还提供一种光伏组件的制备方法,包括:提供多个电池片,每个电池片的表面均具有多条栅线;在电池片的表面设置连接部件;在电池片的表面设置封装层,且封装层位于连接部件远离电池片的一侧,封装层包括沿远离电池片的方向依次排布第一封装层、第二封装层以及第三封装层;在预设温度下对电池片、连接部件以及封装层进行层压处理,以使位于栅线上方的部分连接部件与相邻的部分栅线接触连接,以及使得电池片与封装层相固定;其中,第三封装层在预设温度下的流动性、第二封装层在预设温度下的流动性以及第一封装层在预设温度下的流动性依次减小。According to some embodiments of the present application, on the other hand, the embodiment of the present application also provides a method for preparing a photovoltaic module, including: providing a plurality of battery sheets, each of which has a plurality of grid lines on the surface of the battery sheet; The connection part is arranged; the encapsulation layer is arranged on the surface of the cell sheet, and the encapsulation layer is located on the side of the connection part away from the cell sheet, and the encapsulation layer includes a first encapsulation layer, a second encapsulation layer and a third Encapsulation layer: Laminate the cells, connecting parts and encapsulation layer at a preset temperature, so that the part of the connection part located above the grid lines is in contact with the adjacent part of the grid lines, and the cells and the encapsulation layer are in contact with each other. fixed; wherein, the fluidity of the third encapsulation layer at a preset temperature, the fluidity of the second encapsulation layer at a preset temperature, and the fluidity of the first encapsulation layer at a preset temperature decrease in sequence.
在一些实施例中,设置连接部件还包括:形成胶点,胶点位于部分电池片与连接部件之间,且胶点位于栅线以外的电池片表面。In some embodiments, arranging the connection part further includes: forming a glue point, the glue point is located between a part of the battery sheet and the connection part, and the glue point is located on the surface of the battery sheet other than the grid lines.
本申请实施例提供的技术方案至少具有以下优点:栅线可以是电池片表面的细栅,连接部件可以是取代主栅设置在电池片表面且用于连接相邻电池片的焊带,利用连接部件取代主栅,一方面避免了设置较粗的主栅,有利于降低光伏组件的成本;另一方面,避免了主栅对电池片表面造成过多的遮挡,有利于提升电池片的光电转换效率,进而有利于提升光伏组件的效率。封装层用于覆盖电池片以及连接部件的表面,用于对电池片进行保护,封装层至少包括沿远离电池片的方向依次排布第一封装层、第二封装层以及第三封装层,且第三封装层的流动性、第二封装层的流动性以及第一封装层的流动性依次减小,其中,第一封装层的流动性、第二封装层的流动性以及第三封装层的流动性均为层压温度下的流动性,即光伏组件为层压过程中的光伏组件。层压过程是指:在电池片的表面铺设连接部件,并在连接部件上以及连接部件露出的电池片表面覆盖封装层后,对电池片、连接部件以及封装层进行层压的过程,层压过程具有一定的层压温度,在层压温度下,连接部件与位于连接部件下方的栅线形成合金,进而形成接触连接。通常情况下,在层压温度下的封装层处于焦烧阶段时,封装层为具有流动性的状态,为了避免焦烧阶段的封装层在连接部件与栅线形成合金之前流入连接部件与栅线之间,造成连接部件与栅线的接触不良,将邻近连接部件与电池片的第一封装层设置为流动性较小的状态,即可避免第一封装层流至连接部件与栅线之间,进而避免连接部件与栅线接触不良,有利于提升光伏组件的效率以及良率。此外,利用第一封装层对流动性相对较大的第二封装层以及第三封装层进行隔离,利用第二封装层作为第一封装层与第三封装层之间的桥梁,有利于增大第一封装层与第三封装层的粘合强度,流动性最大的第三封装层有利于保证封装层与盖板具有较强的粘接强度,进而有利于提升光伏组件寿命。The technical solution provided by the embodiment of the present application has at least the following advantages: the grid line can be a fine grid on the surface of the battery sheet, and the connecting part can be a solder strip arranged on the surface of the battery sheet instead of the main grid and used to connect adjacent battery sheets. Parts replace the main grid, on the one hand, it avoids setting a thicker main grid, which is beneficial to reduce the cost of photovoltaic modules; on the other hand, it avoids the excessive shielding of the surface of the cell by the main grid, which is conducive to improving the photoelectric conversion of the cell Efficiency, which in turn helps to improve the efficiency of photovoltaic modules. The encapsulation layer is used to cover the surface of the battery sheet and the connecting parts, and is used to protect the battery sheet. The encapsulation layer at least includes a first encapsulation layer, a second encapsulation layer and a third encapsulation layer arranged in sequence along a direction away from the battery sheet, and The fluidity of the third encapsulation layer, the fluidity of the second encapsulation layer and the fluidity of the first encapsulation layer decrease sequentially, wherein the fluidity of the first encapsulation layer, the fluidity of the second encapsulation layer and the fluidity of the third encapsulation layer The fluidity is the fluidity at the lamination temperature, that is, the photovoltaic module is the photovoltaic module in the lamination process. The lamination process refers to the process of laying the connecting parts on the surface of the battery sheet, covering the connecting parts and the surface of the battery sheet exposed by the connecting parts with the encapsulation layer, and then laminating the battery sheet, the connecting parts and the encapsulating layer. The process has a certain lamination temperature, and at the lamination temperature, the connection part and the grid wire located below the connection part form an alloy, thereby forming a contact connection. Normally, when the encapsulation layer is in the scorch stage at the lamination temperature, the encapsulation layer is in a fluid state. In order to prevent the encapsulation layer in the scorch stage from flowing into the connection part and the grid line before the connection part and the grid line are alloyed between the connecting parts and the grid lines, and the first encapsulation layer adjacent to the connecting parts and the battery sheet is set to a state of less fluidity, which can prevent the first encapsulating layer from flowing between the connecting parts and the grid lines , thereby avoiding poor contact between the connecting part and the grid line, which is conducive to improving the efficiency and yield of the photovoltaic module. In addition, using the first encapsulation layer to isolate the second encapsulation layer and the third encapsulation layer with relatively high fluidity, and using the second encapsulation layer as a bridge between the first encapsulation layer and the third encapsulation layer is beneficial to increase the The adhesive strength between the first encapsulation layer and the third encapsulation layer, the third encapsulation layer with the highest fluidity is beneficial to ensure that the encapsulation layer and the cover plate have strong adhesive strength, which in turn is beneficial to improve the life of the photovoltaic module.
附图说明Description of drawings
一个或多个实施例通过与之对应的附图中的图进行示例性说明,这些示例性说明并不构成对实施例的限定,除非有特别申明,附图中的图不构成比例限制;为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。One or more embodiments are exemplified by the figures in the accompanying drawings, these exemplifications are not construed as limiting the embodiments, unless otherwise stated, the figures in the accompanying drawings do not constitute a scale limitation; for To more clearly illustrate the technical solutions in the embodiment of the present application or the conventional technology, the following will briefly introduce the accompanying drawings required in the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present application , for those skilled in the art, other drawings can also be obtained according to these drawings on the premise of not paying creative work.
图1为本申请一实施例所提供的一种光伏组件的剖面结构示意图;Fig. 1 is a schematic cross-sectional structure diagram of a photovoltaic module provided by an embodiment of the present application;
图2为本申请一实施例所提供的一种电池片表面的栅线以及连接部件的结构示意图;Fig. 2 is a structural schematic diagram of grid lines and connecting parts on the surface of a cell provided by an embodiment of the present application;
图3为本申请一实施例所提供的一种硫化曲线的示意图;Fig. 3 is a schematic diagram of a vulcanization curve provided by an embodiment of the present application;
图4为本申请一实施例所提供的一种层压前的光伏组件的局部剖面结构示意图;Fig. 4 is a partial cross-sectional structural schematic diagram of a photovoltaic module before lamination provided by an embodiment of the present application;
图5为本申请一实施例提供的一种光伏组件的制备方法中提供电池片的步骤对应的结构示意图;Fig. 5 is a schematic structural diagram corresponding to the step of providing cells in a method for preparing a photovoltaic module provided by an embodiment of the present application;
图6为本申请一实施例提供的一种光伏组件的制备方法中形成胶点的步骤对应的结构示意图;Fig. 6 is a structural schematic diagram corresponding to the step of forming glue points in a method for preparing a photovoltaic module provided by an embodiment of the present application;
图7为本申请一实施例提供的一种光伏组件的制备方法中利用胶点对连接部件进行固定的步骤对应的结构示意图;Fig. 7 is a structural schematic diagram corresponding to the step of fixing the connecting parts with glue points in a method for preparing a photovoltaic module provided by an embodiment of the present application;
图8为本申请一实施例提供的一种光伏组件的制备方法中设置封装层的步骤对应的结构示意图;Fig. 8 is a structural schematic diagram corresponding to the step of setting an encapsulation layer in a method for preparing a photovoltaic module provided by an embodiment of the present application;
图9为本申请一实施例提供的一种光伏组件的制备方法中进行层压处理后的光伏组件的对应的结构示意图。FIG. 9 is a schematic structural diagram of a photovoltaic module after lamination in a method for manufacturing a photovoltaic module according to an embodiment of the present application.
具体实施方式Detailed ways
由背景技术可知,光伏组件中栅线、焊带以及胶膜的设置方式有待改进。It can be seen from the background art that the arrangement of grid lines, solder strips and adhesive films in photovoltaic modules needs to be improved.
分析发现,太阳光从电池片表面进入电池,电池片表面的栅线会对电池片造成遮挡,照射在金属电极上的光能也就无法转变成电能,因此,从对光照造成遮挡这个角度看,通常希望栅线做的越细越好;而栅线用于传导电流,从电阻率的角度分析,栅线越细则导电横截面积越小,电阻损失越大。因此,栅线设计的核心是在遮光和导电之间取得平衡。通常情况下,制作栅线的浆料的主要成分为价格较高的贵金属银,并且将电池片连接为组件的过程中,需要将一个电池片的主栅通过焊带与相邻电池片的主栅焊接,因此,通常需要形成较粗的主栅来保证焊带与主栅的连接。综上,材料成本较高且较粗的主栅造成组件制备成本较高。因此,若利用材料成本较低的焊带取代主栅,让更多更细的焊带直接与电池的细栅相连接,不仅有利于降低栅线与焊带的制备成本,还有利于提升太阳能电池的光电转换效率。The analysis found that when sunlight enters the battery from the surface of the cell, the grid lines on the surface of the cell will block the cell, and the light energy irradiated on the metal electrode will not be converted into electrical energy. Therefore, from the perspective of blocking the light , it is generally desired that the grid lines be made as thin as possible; while the grid lines are used to conduct current, from the perspective of resistivity, the thinner the grid lines, the smaller the conductive cross-sectional area and the greater the resistance loss. Therefore, the core of grid line design is to strike a balance between shading and conductivity. Usually, the main component of the paste for making the grid lines is the expensive precious metal silver, and in the process of connecting the cells into modules, it is necessary to connect the main grid of one cell to the main grid of the adjacent cell through the welding ribbon. Gate welding, therefore, generally needs to form a thicker main grid to ensure the connection between the ribbon and the main grid. To sum up, the material cost is high and the thicker busbar results in higher component manufacturing cost. Therefore, if the main grid is replaced by a ribbon with a lower material cost, and more and thinner ribbons are directly connected to the fine grid of the battery, it will not only help reduce the preparation cost of grid lines and ribbons, but also help improve solar energy. The photoelectric conversion efficiency of the battery.
但是,常规的焊带与栅线的连接需要通过焊接使焊带与栅线之间合金化,通常情况下,常规的焊带包括锡焊层,焊带中锡焊层的熔点为183℃,在实际焊接过程中,焊接温度要高于焊料熔点20℃以上,因此,使焊带与栅线之间合金化需要较高的焊接温度,较高的焊接温度导致电池片在焊接过程中翘曲变形较大,进而导致电池片在焊接后隐裂风险大、破片率较高,造成组件返修率升高以及成品率降低。因此,为了降低焊接损伤,可以采用低温焊带。低温焊带通常在层压过程中形成与栅线的连接。但层压过程中,由于温度的升高,位于焊带上方的胶膜会转变为具有流动性的状态,具有流动性的胶膜在焊带与栅线形成合金之前容易流至焊带与栅线之间,造成焊带与栅线的接触不良,进而影响光伏组件的效率以及良率。However, the connection between the conventional ribbon and the grid wire needs to be welded to alloy the ribbon and the grid wire. Usually, the conventional solder ribbon includes a solder layer, and the melting point of the solder layer in the solder ribbon is 183°C. In the actual soldering process, the soldering temperature is 20°C higher than the melting point of the solder. Therefore, a higher soldering temperature is required to alloy the ribbon and the grid line, and the higher soldering temperature will cause the cell to warp during the soldering process. The deformation is large, which in turn leads to a high risk of hidden cracks and a high rate of fragmentation after welding, resulting in an increase in the repair rate of components and a decrease in yield. Therefore, in order to reduce welding damage, low temperature soldering tape can be used. Low temperature ribbons are usually used to form the connections to the gatelines during the lamination process. However, during the lamination process, due to the increase in temperature, the adhesive film on the top of the ribbon will change into a fluid state, and the fluid adhesive film will easily flow to the ribbon and grid before the alloy is formed between the ribbon and the grid line. Between the wires, resulting in poor contact between the ribbon and the grid wires, which in turn affects the efficiency and yield of photovoltaic modules.
为解决上述问题,本申请实施提供一种光伏组件及其制备方法,光伏组件中,栅线可以是电池片表面的细栅,连接部件可以是取代主栅设置在电池片表面且用于连接相邻电池片的焊带,利用连接部件取代主栅,一方面避免了设置较粗的主栅,有利于降低光伏组件的成本;另一方面,避免了主栅对电池片表面造成过多的遮挡,有利于提升电池片的光电转换效率,进而有利于提升光伏组件的效率。封装层用于覆盖电池片以及连接部件的表面,用于对电池片进行保护,封装层至少包括沿远离电池片的方向依次排布第一封装层、第二封装层以及第三封装层,且第三封装层的流动性、第二封装层的流动性以及第一封装层的流动性依次减小,其中,第一封装层的流动性、第二封装层的流动性以及第三封装层的流动性均为层压温度下的流动性,即光伏组件为层压过程中的光伏组件。将邻近连接部件与电池片的第一封装层设置为流动性较小的状态,即可避免第一封装层流至连接部件与栅线之间,进而避免连接部件与栅线接触不良,有利于提升光伏组件的效率以及良率。此外,利用第一封装层对流动性相对较大的第二封装层以及第三封装层进行隔离,并利用第二封装层作为第一封装层与第三封装层之间的桥梁,有利于增大第一封装层与第三封装层的粘合强度,流动性最大的第三封装层有利于保证封装层与盖板具有较强的粘接强度,进而有利于提升光伏组件寿命。In order to solve the above problems, the present application provides a photovoltaic module and its preparation method. In the photovoltaic module, the grid line can be a fine grid on the surface of the battery sheet, and the connecting part can be arranged on the surface of the battery sheet instead of the main grid and used to connect phases. The connecting parts are used to replace the main grid for the soldering strips adjacent to the cells. On the one hand, it avoids setting a thicker main grid, which is beneficial to reduce the cost of photovoltaic modules; , which is conducive to improving the photoelectric conversion efficiency of the battery sheet, which in turn is beneficial to improving the efficiency of the photovoltaic module. The encapsulation layer is used to cover the surface of the battery sheet and the connecting parts, and is used to protect the battery sheet. The encapsulation layer at least includes a first encapsulation layer, a second encapsulation layer and a third encapsulation layer arranged in sequence along a direction away from the battery sheet, and The fluidity of the third encapsulation layer, the fluidity of the second encapsulation layer and the fluidity of the first encapsulation layer decrease sequentially, wherein the fluidity of the first encapsulation layer, the fluidity of the second encapsulation layer and the fluidity of the third encapsulation layer The fluidity is the fluidity at the lamination temperature, that is, the photovoltaic module is the photovoltaic module in the lamination process. Setting the first encapsulation layer adjacent to the connection part and the battery sheet to a state of low fluidity can prevent the first encapsulation layer from flowing between the connection part and the grid line, thereby avoiding poor contact between the connection part and the grid line, which is beneficial to Improve the efficiency and yield of photovoltaic modules. In addition, using the first encapsulation layer to isolate the second encapsulation layer and the third encapsulation layer with relatively high fluidity, and using the second encapsulation layer as a bridge between the first encapsulation layer and the third encapsulation layer is beneficial to increase The bonding strength between the first encapsulation layer and the third encapsulation layer is large, and the third encapsulation layer with the highest fluidity is conducive to ensuring a strong bonding strength between the encapsulation layer and the cover plate, thereby improving the life of the photovoltaic module.
下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。Various embodiments of the present application will be described in detail below in conjunction with the accompanying drawings. However, those of ordinary skill in the art can understand that in each embodiment of the application, many technical details are provided for readers to better understand the application. However, even without these technical details and various changes and modifications based on the following embodiments, the technical solutions claimed in this application can also be realized.
图1为本申请一实施例所提供的一种光伏组件的剖面结构示意图;图2为本申请一实施例所提供的一种电池片表面的栅线以及连接部件的结构示意图。Fig. 1 is a schematic cross-sectional structure diagram of a photovoltaic module provided by an embodiment of the present application; Fig. 2 is a schematic structural diagram of grid lines and connecting parts on the surface of a battery sheet provided by an embodiment of the present application.
参考图1和图2,光伏组件包括:多个电池片100,每个电池片100的表面均具有多条栅线110;连接部件120,连接部件120位于电池片100表面,且连接部件120分别连接相邻的电池片100,位于栅线110上的部分连接部件120与相邻的部分栅线110接触连接。Referring to Fig. 1 and Fig. 2, the photovoltaic module includes: a plurality of battery slices 100, each of which has a plurality of
电池片100用于吸收入射光线中的光子,并产生电子空穴对,电子空穴对被电池片100中的内建电场分离,在PN结两端产生电势,从而将光能转换为电能。在一些实施例中,电池片100的一个表面作为受光面,用于吸收入射光线。在另一些实施例中,电池片100的两个表面均作为受光面,用于吸收入射光线。在一些实施例中,电池片100可以是晶体硅太阳能电池,例如可以是单晶硅太阳能电池或者多晶硅太阳能电池。可以理解的是,在一些实施例中,一个光伏组件中的电池片100数量可以为一个或者多个,当电池片100的数量为多个时,可以以整片或者多分片(例如,1/2等分片、1/3等分片、1/4等分片等多分片)的形式电连接形成多个电池串,多个电池串以串联和/或并联的方式进行电连接。The
电池片100可以包括但不限于PERC电池(Passivated Emitter and Rear Cell,钝化发射极和背面电池)、PERT电池(Passivated Emitter and Rear Totally-diffusedcell,钝化发射极背表面全扩散电池)、TOPCon电池(Tunnel Oxide PassivatedContact,隧穿氧化层钝化接触电池)、HIT/HJT电池(Heterojunction Technology,异质结电池)的任意一种。The
电池片100可以包括基板,基板可以为硅基板。在一些实施例中,电池片100具有相对的正面101以及背面102,正面101以及背面102可以均印刷有金属浆料,以形成具有特定图形的栅线110。The
在一些实施例中,光伏组件中的多个电池片100间隔排布,且多个电池片100平行设置,连接部件120通过分别连接相邻的两个电池片100的相对的两个表面,来形成两个电池片100之间的电连接。In some embodiments, a plurality of
在一些实施例中,连接部件120可以是焊带,沿垂直于连接部件120的延伸方向上,连接部件120的剖面形状可以为圆形、矩形、梯形或者三角形中的任一种。In some embodiments, the connecting
在一些实施例中,栅线110可以是电池片100表面的细栅,细栅用于收集光生伏特效应产生的电子并导出。连接部件120可以是取代主栅设置在电池片100表面且用于连接相邻电池片100的焊带,利用连接部件120取代主栅,一方面避免了设置较粗的主栅,有利于降低光伏组件的成本;另一方面,避免了主栅对电池片100表面造成过多的遮挡,有利于提升电池片100的光电转换效率,进而有利于提升光伏组件的效率。In some embodiments, the
在一些实施例中,参考图2,栅线110可以是电池片100表面的细栅,连接部件120可以是取代主栅设置在电池片100表面且用于连接相邻电池片100的焊带,多条栅线110在电池片的表面沿第一方向X延伸且沿第二方向Y间隔排布,多个连接部件120在电池片的表面沿第二方向Y延伸且沿第一方向X间隔排布,其中,第一方向X与第二方向Y相交。In some embodiments, referring to FIG. 2, the
在一些实施例中,栅线110也可以是主栅和细栅。细栅用于引导电流,主栅用于收集细栅上的电流,以进行汇流。连接部件120为与主栅相连接的焊带。In some embodiments, the
需要说明的是,本申请实施例中的连接部件120为低温焊带,低温焊带在层压过程中形成与栅线110的连接,避免了采用高温焊带所导致的焊接温度过高,进而避免了焊接温度过高对电池片100造成的损伤,有利于降低光伏组件的返修率,以及有利于提高光伏组件的成品率。It should be noted that the connecting
在一些实施例中,连接部件120为涂锡金属焊带,锡层熔化温度不高于150℃,一般为130℃~150℃,有利于适应光伏组件的层压温度。In some embodiments, the connecting
参考图1,光伏组件还包括封装层130,封装层130覆盖电池片100的表面以及连接部件120的表面,且封装层130至少包括沿远离电池片100的方向依次排布第一封装层131、第二封装层132以及第三封装层133,其中,第三封装层133的流动性、第二封装层132的流动性以及第一封装层131的流动性依次减小。封装层130用于对电池片进行封装保护,封装层可以为胶膜。Referring to FIG. 1 , the photovoltaic module further includes an
需要说明的是,第一封装层131的流动性、第二封装层132的流动性以及第三封装层133的流动性均为在层压温度下的流动性,即光伏组件为层压过程中的光伏组件,层压过程是指在电池片100的表面铺设连接部件120,并在连接部件120上以及连接部件120露出的电池片100表面覆盖封装层130后,对电池片100、连接部件120以及封装层130进行层压的过程,层压过程具有一定的层压温度,在层压温度下,连接部件120与位于连接部件120下方的栅线110形成合金,进而形成接触连接。层压温度下,封装层处于焦烧阶段时,封装层为具有流动性的状态,将邻近连接部件120与电池片100的第一封装层131设置为流动性较小的状态,避免了第一封装层131流至连接部件120与栅线110之间,造成连接部件120与栅线110接触不良,有利于提升光伏组件的效率以及良率。此外,利用第一封装层131对流动性相对较大的第二封装层132以及第三封装层133进行隔离,利用第二封装层132作为第一封装层131与第三封装层133之间的桥梁,有利于增大第一封装层131与第三封装层133的粘合强度,流动性最大的第三封装层133有利于保证封装层130与盖板具有较强的粘接强度,进而有利于提升光伏组件寿命。It should be noted that the fluidity of the
第一封装层131的流动性可以用第一封装层131的ML值进行表示,第二封装层132的流动性可以用第二封装层132的ML值进行表示,第三封装层133的流动性可以用第三封装层133的ML值进行表示,ML值为胶膜硫化曲线中的最低扭矩,ML值越低,胶膜在层压过程中发生交联反应前的流动性越大;ML值越高,胶膜在层压过程中发生交联反应前的流动性越小。The fluidity of the
硫化曲线用于表征胶膜的硫化性能,硫化性能为胶膜进行硫化过程的性能,硫化过程中胶膜会发生硫化反应,硫化反应(交联反应)是指:胶膜分子链在化学的或物理的因素作用下产生化学交联作用,变成空间网状结构。未硫化胶膜的线型大分子呈卷曲状并处于自由运动状态,当受外力作用时,线型大分子易发生位移,即存在较大的塑性流动,硫化后的胶膜中,柔软的线型大分子通过交联变成空间网状结构,因而线性大分子的相对运动受到一定限制,在外力作用下,不易发生较大位移,而产生较高的应力和强度,物理机械性能和化学性能通过硫化获得了改善。The vulcanization curve is used to characterize the vulcanization performance of the film. The vulcanization performance is the performance of the vulcanization process of the film. During the vulcanization process, the film will undergo a vulcanization reaction. The vulcanization reaction (cross-linking reaction) refers to: the molecular chain of the film is chemically or Under the action of physical factors, chemical cross-linking occurs and becomes a spatial network structure. The linear macromolecules of the unvulcanized rubber film are curled and in a state of free movement. When an external force is applied, the linear macromolecules are prone to displacement, that is, there is a large plastic flow. In the vulcanized rubber film, the soft linear macromolecules Type macromolecules become a spatial network structure through cross-linking, so the relative motion of linear macromolecules is limited to a certain extent. Under the action of external force, large displacements are not easy to occur, resulting in higher stress and strength, physical mechanical properties and chemical properties. Improved by vulcanization.
通常情况下,采用硫化测试仪即可测定胶膜在硫化过程中硫化性能的变化,硫化测试仪的原理为:对位于模腔内的胶膜试样进行压塑,以使胶膜试样连续地承受恒定、小振幅且低频率的正弦剪切变形,由硫化测试仪的测力传感器测定剪切应力,并以扭矩为单位表示剪切应力,记录下的剪切应力-时间的曲线即为硫化曲线。Usually, the vulcanization tester can be used to measure the change of the vulcanization performance of the film during the vulcanization process. Under constant, small amplitude and low frequency sinusoidal shear deformation, the shear stress is measured by the load cell of the vulcanization tester, and the shear stress is expressed in units of torque, and the recorded shear stress-time curve is vulcanization curve.
图3为本申请一实施例所提供的一种硫化曲线的示意图。参考图3,胶膜的硫化过程可分为四个阶段:焦烧阶段、热硫化阶段、平坦硫化阶段以及过硫阶段。焦烧阶段相当于硫化反应中的诱导期,在这段时间内,交联尚未开始,胶膜具有流动性,胶膜试样产生可交联的游离基。热硫化阶段是硫化反应(交联反应)阶段,胶膜分子逐渐形成网状结构,胶膜的弹性和强度急剧上升。平坦硫化阶段中胶膜已达到适当的交联度,在这段时间里,胶膜的各项物理机械性能分别达到或接近最佳点,或取得最佳综合平衡。过硫阶段中,胶膜中的交联键发生重排作用,胶膜中交联键和分子链发生热裂解反应,胶膜的性能下降。FIG. 3 is a schematic diagram of a vulcanization curve provided by an embodiment of the present application. Referring to Figure 3, the vulcanization process of the film can be divided into four stages: scorching stage, heat vulcanization stage, flat vulcanization stage and overvulcanization stage. The scorch stage is equivalent to the induction period in the vulcanization reaction. During this period, the crosslinking has not yet started, the film has fluidity, and the film sample produces crosslinkable free radicals. The thermal vulcanization stage is the vulcanization reaction (crosslinking reaction) stage, the film molecules gradually form a network structure, and the elasticity and strength of the film rise sharply. During the flat vulcanization stage, the film has reached an appropriate degree of crosslinking. During this period, the physical and mechanical properties of the film have reached or approached the optimum point, or achieved the best comprehensive balance. In the oversulfurization stage, the cross-linking bonds in the film are rearranged, and the cross-linking bonds and molecular chains in the film undergo thermal cracking reactions, and the performance of the film decreases.
参考图3,最低扭矩ML表示胶膜的交联反应开始前最小的剪切应力值,即硫化过程中交联反应开始前胶膜流动性的最大值。Referring to FIG. 3 , the minimum torque ML represents the minimum shear stress value before the cross-linking reaction of the rubber film starts, that is, the maximum value of the fluidity of the rubber film before the cross-linking reaction starts during the vulcanization process.
在一些实施例中,封装层也可以包括沿远离电池片的方向依次排布第一封装层、第二封装层、第三封装层以及第四封装层,其中,第四封装层的流动性、第三封装层的流动性、第二封装层的流动性以及第一封装层的流动性依次减小。本申请实施例对封装层中具有不同流动性的叠层的数量不做具体限制,只要保证电池片表面上的多个叠层的流动性沿远离电池片的方向依次增大即可。In some embodiments, the encapsulation layer may also include sequentially arranging the first encapsulation layer, the second encapsulation layer, the third encapsulation layer and the fourth encapsulation layer along the direction away from the battery sheet, wherein the fluidity of the fourth encapsulation layer, The fluidity of the third encapsulation layer, the fluidity of the second encapsulation layer and the fluidity of the first encapsulation layer decrease sequentially. The embodiment of the present application does not specifically limit the number of stacked layers with different fluidities in the encapsulation layer, as long as the fluidity of multiple stacked layers on the surface of the cell sheet increases sequentially along the direction away from the cell sheet.
在一些实施例中,封装层130设置于电池片100的正面101以及背面102,且覆盖电池片100表面的连接部件120,用于对电池片100进行封装,并且可以将电池片100与盖板(未图示)进行粘结。In some embodiments, the
在一些实施例中,层压前的第一封装层131为预交联胶膜,层压前的第二封装层132为预交联胶膜,层压前的第三封装层133为非预交联胶膜,预交联胶膜和非预交联胶膜的区别在于:层压前,胶膜材料内部分子之间是否发生交联反应。交联反应是指2个或者更多的分子(一般为线型分子)相互键合交联成网络结构的较稳定分子(体型分子)。通常情况下,进行层压的过程中,在一定的层压温度下经过一定的层压时间后,胶膜呈现具有较大流动性的状态(焦烧阶段),胶膜中的交联剂分解产生自由基。随着时间的延长,自由基引发胶膜中长链分子间的结合,使胶膜、电池片以及盖板粘合固定在一起。层压前,预交联胶膜内部的部分分子已经发生了交联反应,因此,预交联胶膜在焦烧阶段的流动性小于非预交联胶膜在焦烧阶段的流动性,预交联胶膜在焦烧阶段的流动性取决于层压前预交联胶膜内部已经发生了交联反应的分子的比例。In some embodiments, the
在一些实施例中,第一封装层131可以为POE(乙烯辛烯共聚物)胶膜。在一些实施例中,第二封装层132可以为POE(乙烯辛烯共聚物)胶膜。在一些实施例中,第三封装层133可以为POE(乙烯辛烯共聚物)胶膜。POE胶膜由饱和脂肪链构成,具有良好的耐紫外老化性能、优异的耐热性能以及耐低温性能,且POE胶膜的使用温度范围广,具有透光率良好、电绝缘性能优异、性价比高以及易加工等特点。In some embodiments, the
在一些实施例中,第一封装层131可以为EVA胶膜。在一些实施例中,第二封装层132可以为EVA胶膜。在一些实施例中,第三封装层133可以为EVA胶膜。EVA胶膜是较为常见的胶膜,EVA胶膜的主要成分为乙烯-醋酸乙烯酯共聚物(EVA),EVA胶膜还可以包括少量的交联剂、助交联剂、抗老化剂和其它功能助剂。In some embodiments, the
在一些实施例中,第一封装层131的材料、第二封装层132的材料以及第三封装层133的材料相同。采用相同的材料作为第一封装层131、第二封装层132以及第三封装层133,有利于保证第一封装层131的分子与第二封装层132的分子具有较高的结合强度,以及保证第二封装层132的分子与第三封装层133的分子具有较高的结合强度,进而有利于提高层压后的第一封装层131与第二封装层132之间的粘合强度,以及有利于提高层压后的第二封装层132与第三封装层133之间的粘合强度。In some embodiments, the material of the
在一些实施例中,第一封装层131、第二封装层132以及第三封装层133为一体成型结构。相较于对分体式的第一封装层131、第二封装层132以及第三封装层133进行层压,直接采用一体成型的第一封装层131、第二封装层132以及第三封装层133作为封装层130,有利于保证第一封装层131与第二封装层132之间具有较高的粘合固定强度,以及有利于保证第二封装层132与第三封装层133之间具有较高的粘合固定强度,进而有利于提升光伏组件的结构稳定性。In some embodiments, the
在一些实施例中,第一封装层131的材料、第二封装层132以及第三封装层133的材料均相同,且第一封装层131、第二封装层132以及第三封装层133为一体成型结构。在一些实施例中,形成封装层130方式可以为:获取初始封装层,初始封装层可以为非预交联胶膜,且初始封装层包括层叠的第一部分、第二部分以及第三部分,自第一部分的远离第三部分的一侧对初始封装层进行预交联处理,以使第一部分的初始封装层内的部分分子发生交联反应,以及使第二部分的初始封装层内的部分分子发生交联反应,且第一部分的初始封装层内发生交联反应的分子的比例高于第二部分的初始封装层内发生交联反应的分子的比例,以形成流动性依次变大的预交联的第一封装层131以及预交联的第二封装层132,第三部分的初始封装层仍为非预交联胶膜,将第三部分的初始封装层作为流动性最大的第三封装层133,如此,有利于降低封装层130的获取难度。其中,预交联处理可以为电子束辐照或紫外光辐照等交联处理。In some embodiments, the materials of the
在一些实施例中,形成封装层130的方式可以为:获取分体式的初始第一封装层、初始第二封装层以及初始第三封装层,初始第一封装层、初始第二封装层以及初始第三封装层均为非预交联胶膜,对初始第一封装层以及初始第二封装层进行程度不同的预交联处理,以使初始第一封装层内的部分分子发生交联反应,以及使初始第二封装层内的部分分子发生交联反应,且第一部分的初始封装层内发生交联反应的分子的比例高于第二部分的初始封装层内发生交联反应的分子的比例,以形成流动性依次变大的预交联的第一封装层131以及预交联的第二封装层132,初始第三封装层作为流动性较大的非预交联的第三封装层133。将分体式的第一封装层131、第二封装层132以及第三封装层133固定在一起,以形成封装层130。其中,预交联处理可以为电子束辐照或紫外光辐照等交联处理。In some embodiments, the method of forming the
在一些实施例中,第一封装层131的ML值与第二封装层的ML值的比值为1.1~3。若定义第一封装层131的ML值为ML1,以及定义第二封装层132的ML值为ML2,ML1与ML2的比值为1.1~3,例如可以为:1.5、2、2.5、2.6或者2.7。ML1与ML2的比值过小,则会导致第一封装层131为流动性较大的状态,进而造成焦烧阶段的第一封装层131流至未形成合金的栅线110与连接部件120之间,造成栅线110与连接部件120的接触不良。ML1与ML2的比值过大,则会导致第一封装层131的流动性过小,即在层压前,第一封装层131中已经发生交联反应的分子比例过大,导致层压后的光伏组件中,第一封装层131的粘合固定能力较差,使得光伏组件中的电池片100与第一封装层131存在分离风险。因此,将ML1与ML2的比值设置为1.1~3,不仅有利于避免造成的栅线110与连接部件120的接触不良,还有利于保证第一封装层131具有较高的粘合强度。In some embodiments, the ratio of the ML value of the
在一些实施例中,第二封装层132的ML值与第三封装层133的ML值的比值为1.1~4。若定义第二封装层132的ML值为ML2,以及定义第三封装层133的ML值为ML3,ML2与ML3的比值为1.1~4,例如可以为:1.5、2、2.5、2.6或者3.5。ML2与ML3的比值过小,则第二封装层132的流动性过于接近第三封装层133的流动性,导致第二封装层132无法作为第一封装层131与第三封装层133之间良好的连接桥梁,即造成第一封装层131与第二封装层132之间的粘合强度降低。ML2与ML3的比值过大,则第二封装层132的流动性过于接近第一封装层131的流动性,导致第二封装层132无法作为第一封装层131与第三封装层133之间良好的连接桥梁,即造成第三封装层133与第二封装层132之间的粘合强度降低。因此,将ML2与ML3的比值设置为1.1~4,有利于保证第一封装层131与第二封装层132之间具有较高的粘合强度,以及有利于保证第二封装层132与第三封装层133之间具有较高的粘合强度。In some embodiments, the ratio of the ML value of the
在一些实施例中,第一封装层131的ML值为0.4dN·m~0.85dN·m。例如,可以为0.42dN·m、0.45dN·m、0.5dN·m、0.75dN·m或者0.8dN·m等。第一封装层131的ML值过小,则第一封装层131的流动性过大,会导致焦烧阶段的第一封装层131流至未形成合金的栅线110与连接部件120之间,造成栅线110与连接部件120的接触不良。第一封装层131的ML值过大,则第一封装层131的流动性过小,即在层压前,第一封装层131中已经发生交联反应的分子比例过大,会导致层压后的光伏组件中,第一封装层131的粘合固定能力过差。因此,将第一封装层131的流动性ML值设置为0.4dN·m~0.85dN·m,即可保证第一封装层131的流动性在合理的范围内,不仅有利于避免造成的栅线110与连接部件120的接触不良,还有利于保证第一封装层131具有较高的粘合强度。In some embodiments, the ML value of the
若定义第一封装层的ML值为ML1、定义第二封装层的ML值为ML2以及定义第三封装层的ML值为ML3,参考以下表格中第一封装层的ML值、第二封装层的ML值以及第三封装层的ML值对层压后的栅线与连接部件的连接状态的影响。If the ML value of the first encapsulation layer is defined as ML1, the ML value of the second encapsulation layer is ML2, and the ML value of the third encapsulation layer is ML3, refer to the ML value of the first encapsulation layer and the second encapsulation layer in the following table The influence of the ML value of and the ML value of the third encapsulation layer on the connection state of the laminated gate line and the connecting part.
上述表格中的数据来源可以如下:对多个对比例的电池片上位于相同区域的连接部件与栅线的连接点进行取样,以及对多个实施例的电池片上位于相同区域的连接部件与栅线的连接点进行取样,每个电池片上的总样本数量可以均为50个,统计电池片上连接栅线与连接部件形成接触连接的样本数量,从而得出每个对比例的连接部件与栅线形成接触连接的样本数量占总样本数量的百分比,以及得出每个实施例的连接部件与栅线形成接触连接的样本数量占总样本数量的百分比。The data sources in the above table can be as follows: sampling the connection points of the connection parts and the grid lines located in the same area on the battery sheets of multiple comparative examples, and sampling the connection parts and grid lines located in the same area on the battery sheets of multiple embodiments The connection point of each cell is sampled, the total number of samples on each cell can be 50, and the number of samples that connect the grid line and the connection part to form a contact connection on the cell sheet is counted, so as to obtain the formation of the connection part and the grid line of each comparative example. The percentage of the number of samples that are contacted and connected to the total number of samples, and the percentage of the number of samples that form a contact connection between the connecting component and the gate line of each embodiment to the total number of samples.
参考上述表格,当第二封装层的ML值(ML2)的数值一定,第三封装层的ML值(ML3)的数值一定,第一封装层的ML值(ML1)越大,连接部件与栅线形成接触连接的样本数量占总样本数量的百分比越高,即连接部件与栅线接触不良的比例越低(参考对比例1、实施例1、实施例2以及实施例4,或者参考对比例3、实施例5、实施例6以及实施例8)。当第一封装层的ML值(ML1)大于或等于0.4dN·m时,连接部件与栅线形成接触连接的样本数量占总样本数量的百分比大于95%,即光伏组件为合格品(参考实施例1~8)。当第一封装层的ML值(ML1)小于0.4dN·m时,连接部件与栅线形成接触连接的样本数量占总样本数量的百分比小于95%,光伏组件为不合格品(参考对比例1~3)。因此,将第一封装层的ML值设置为大于0.4dN·m,有利于提升光伏组件的良率以及效率。Referring to the above table, when the value of the ML value (ML2) of the second encapsulation layer is constant, the value of the ML value (ML3) of the third encapsulation layer is constant, and the greater the ML value (ML1) of the first encapsulation layer, the connection between the component and the grid The higher the percentage of the number of samples in which the line forms a contact connection to the total number of samples, the lower the ratio of poor contact between the connection part and the grid line (refer to Comparative Example 1, Example 1, Example 2 and Example 4, or refer to Comparative Example 3. Embodiment 5, Embodiment 6 and Embodiment 8). When the ML value (ML1) of the first encapsulation layer is greater than or equal to 0.4dN·m, the number of samples in which the connecting parts and grid lines form a contact connection accounts for more than 95% of the total number of samples, that is, the photovoltaic module is a qualified product (reference implementation Examples 1-8). When the ML value (ML1) of the first encapsulation layer is less than 0.4dN·m, the number of samples in which the connecting parts and grid lines form a contact connection accounts for less than 95% of the total number of samples, and the photovoltaic module is a substandard product (refer to Comparative Example 1 ~3). Therefore, setting the ML value of the first encapsulation layer to be greater than 0.4 dN·m is beneficial to improving the yield and efficiency of the photovoltaic module.
继续参考上述表格,当第一封装层的ML值(ML1)大于或等于0.4dN·m时,第二封装层的ML值(ML2)的变化已经无法对栅线与连接部件的连接状态造成影响(参考实施例2和实施例3,或者实施例6和实施例7),即流动较差的第一封装层对第二封装层实现了有效的隔离阻挡。当第一封装层的ML值(ML1)大于或等于0.4dN·m时,第三封装层的ML值(ML3)的变化也无法对栅线与连接部件的连接状态造成影响(参考实施例1和实施例5,或者实施例2和实施例6)。Continuing to refer to the above table, when the ML value (ML1) of the first encapsulation layer is greater than or equal to 0.4dN·m, the change of the ML value (ML2) of the second encapsulation layer can no longer affect the connection state of the gate line and the connecting parts (Refer to Embodiment 2 and Embodiment 3, or Embodiment 6 and Embodiment 7), that is, the first encapsulation layer with poor flow realizes an effective isolation barrier for the second encapsulation layer. When the ML value (ML1) of the first encapsulation layer is greater than or equal to 0.4dN·m, the change of the ML value (ML3) of the third encapsulation layer cannot affect the connection state of the gate line and the connecting member (refer to embodiment 1 and Example 5, or Example 2 and Example 6).
在一些实施例中,第二封装层132的ML值为0.3dN·m~0.4dN·m,例如,可以为0.32dN·m、0.35dN·m、0.36dN·m、0.38dN·m或者0.39dN·m等。第二封装层132的ML值过小,则第二封装层132的流动性过于接近第三封装层133的流动性,导致第二封装层132无法作为第一封装层131与第三封装层133之间良好的连接桥梁,即造成第一封装层131与第二封装层132之间的粘合强度降低。第二封装层132的ML过大,则第二封装层132的流动性过于接近第一封装层131的流动性,导致第二封装层132无法作为第一封装层131与第三封装层133之间良好的连接桥梁,即造成第三封装层133与第二封装层132之间的粘合强度降低。因此,将第二封装层132的ML值为0.3dN·m~0.4dN·m,有利于保证第一封装层131与第二封装层132之间具有较高的粘合强度,以及有利于保证第二封装层132与第三封装层133之间具有较高的粘合强度。In some embodiments, the ML value of the
在一些实施例中,第三封装层133的ML值为0.1dN·m~0.3dN·m,例如,可以为0.12dN·m、0.15dN·m、0.2dN·m、0.25dN·m或者0.3dN·m等。第三封装层的流动性过小,会导致层压后的光伏组件中,第三封装层的粘合固定能力过差。因此,将第三封装层的ML值设置为0.1dN·m~0.3dN·m,有利于保证第三封装层具有较高的粘合强度。In some embodiments, the ML value of the
图4为本申请一实施例所提供的一种层压前的光伏组件的局部剖面结构示意图。FIG. 4 is a partial cross-sectional structural schematic diagram of a photovoltaic module before lamination provided by an embodiment of the present application.
在一些实施例中,图4,沿电池片100指向封装层130的方向上,即沿图4所示的Z方向上,第一封装层131的厚度L2与连接部件120的最大厚度L1的比值为0.4~1。例如,可以为0.4、0.5、0.6、0.7或者0.9等。第一封装层131的厚度L2与连接部件120的最大厚度L1的比值过大,则会导致第一封装层131的厚度L2过大,厚度过大的第一封装层131会对电池片100的光吸收造成影响。第一封装层131的厚度L2与连接部件120的最大厚度L1的比值过小,则会导致第一封装层131的厚度L2过小,在层压过程中封装层的焦烧阶段,可能导致第一封装层131无法对第二封装层132进行良好的阻挡,使第二封装层132流至栅线110与连接部件120之间。因此,将第一封装层131的厚度L2与连接部件120的最大厚度L1的比值设置为0.4~1,一方面有利于避免过厚的第一封装层131对光照进行遮挡,即有利于保证电池片100对光照具有较高的利用率;另一方面,有利于保证第一封装层131对第二封装层132进行有效的阻挡,进而有利于保证栅线110与连接部件120之间形成良好的接触。In some embodiments, as shown in FIG. 4 , the ratio of the thickness L2 of the
在一些实施例中,参考图4,沿电池片100指向封装层130的方向上,即沿图4所示的Z方向上,第一封装层131的厚度L2与第二封装层132的厚度L3的比值为1~4。例如,可以为1、2、2.5或3等。在第一封装层131的厚度L2固定的情况下,若第一封装层131的厚度L2和第二封装层132的厚度L3的比值过大,则会导致第二封装层132的厚度L3过小,厚度过小的第二封装层132无法作为第一封装层131与第三封装层133之间良好的连接桥梁。并且,厚度过小的第二封装层132会导致封装层130的整体厚度过小,进而可能导致水汽进入电池片100而造成电池片100失效。在第一封装层131的厚度L2固定的情况下,若第一封装层131的厚度L2和第二封装层132的厚度L3的比值过小,则会导致第二封装层132的厚度L3过大,厚度过大的第二封装层132会对电池片100的光吸收造成影响。此外,厚度过大的第二封装层132会造成光伏组件制造成本的增加。因此,将第一封装层131的厚度L2和第二封装层132的厚度L3的比值设置为1~4,不仅有利于保证第二封装层132对电池片100进行良好的封装保护,还有利于增强电池片100对光照的利用率,以及使制备第二封装层132的材料用量合理,有利于实现光伏组件的轻量化,以及利于降低光伏组件的制备成本。In some embodiments, referring to FIG. 4 , along the direction from the
在一些实施例中,参考图4,沿电池片100指向封装层130的方向上,即沿图4所示的Z方向上,第二封装层132的厚度L3与第三封装层133的厚度L4的比值为0.2~0.7。例如,可以为0.3、0.4、0.5、0.6或者0.7等。在第二封装层132的厚度L3固定的情况下,若第二封装层132的厚度L3和第三封装层133的厚度L4的比值过大,则会导致第三封装层133的厚度L4过小,由于层压后的第三封装层133具有较高的粘合强度,厚度过小的第三封装层133则无法对电池片100进行良好的封装保护,可能导致盖板与电池片100分离。并且,厚度过小的第三封装层133会导致封装层130的整体厚度过小,进而可能导致水汽进入电池片100而造成电池片100失效。在第二封装层132的厚度L3固定的情况下,若第二封装层132的厚度L3和第三封装层133的厚度L4的比值过小,则会导致第三封装层133的厚度L4过大,厚度过大的第三封装层133会对电池片100的光吸收造成影响。此外,厚度过大的第三封装层133会造成光伏组件制造成本的增加。因此,将第二封装层132的厚度L3和第三封装层133的厚度L4的比值设置为0.2~0.7,不仅有利于保证第三封装层133对电池片100进行良好的封装保护,还有利于增强电池片100对光照的利用率,以及使制备第三封装层133的材料用量合理,有利于实现光伏组件的轻量化,以及利于降低光伏组件的制备成本。In some embodiments, referring to FIG. 4 , along the direction from the
需要说明的是,本申请实施例中涉及的连接部件120的最大厚度L1为连接部件120层压前的厚度,第一封装层131的厚度L2为第一封装层131层压前的厚度,第二封装层132的厚度L3为第二封装层132层压前的厚度,第三封装层133的厚度L4为第三封装层133层压前的厚度。It should be noted that the maximum thickness L1 of the
在一些实施例中,参考图4,沿电池片100指向封装层130的方向上,即沿图4所示的Z方向上,连接部件120的最大厚度L1为200μm~260μm,例如可以为:200μm、210μm、230μm、235μm或者250μm。连接部件120的最大厚度L1过大,会导致连接部件120用料过多,进而导致光伏组件成本的增加。连接部件120的最大厚度L1过小,会导致连接部件120的导电横截面积过小,进而导致电阻损失过大。因此,将连接部件120的最大厚度L1设置为200μm~260μm,有利于保证连接部件120的尺寸在合理的范围内,有利于避免增加光伏组件成本,以及有利于降低电阻损失,进而有利于提升光伏组件的效率。In some embodiments, referring to FIG. 4 , along the direction from the
在一些实施例中,参考图1和图4,沿电池片100指向封装层130的方向上,即沿图4所示的Z方向上,第一封装层131的厚度L2为110μm~200μm,例如可以为:120μm、130μm、150μm、165μm或者180μm。厚度过大的第一封装层131会对电池片100的光吸收造成影响。第一封装层131的厚度L2过小,在层压过程中封装层的焦烧阶段,可能导致第一封装层131无法对流动性较大的第二封装层132进行良好的阻挡,使第二封装层132流至栅线110与连接部件120之间。因此,将第一封装层131的厚度L2设置为110μm~200μm,一方面有利于避免过厚的第一封装层131对光照进行遮挡,即有利于保证电池片100对光照具有较高的利用率;另一方面,有利于保证第一封装层131对第二封装层132进行有效的阻挡,进而有利于保证栅线110与连接部件120之间形成良好的接触。In some embodiments, referring to FIG. 1 and FIG. 4 , along the direction from the
在一些实施例中,参考图1和图4,沿电池片100指向封装层130的方向上,即沿图4所示的Z方向上,第二封装层132的厚度L2为50μm~100μm,例如可以为:60μm、70μm、80μm或者90μm。厚度过小的第二封装层132无法作为第一封装层131与第三封装层133之间良好的连接桥梁。并且,厚度过小的第二封装层132会导致封装层130的整体厚度过小,进而可能导致水汽进入电池片100而造成电池片100失效。厚度过大的第二封装层132会对电池片100的光吸收造成影响。此外,厚度过大的第二封装层132会造成光伏组件制造成本的增加。因此,将第二封装层132的厚度L2设置为50μm~100μm,不仅有利于保证第二封装层132对电池片100进行良好的封装保护,还有利于增强电池片100对光照的利用率,以及使制备第二封装层132的材料用量合理,有利于实现光伏组件的轻量化,以及利于降低光伏组件的制备成本。In some embodiments, referring to FIG. 1 and FIG. 4 , along the direction from the
在一些实施例中,参考图1和图4,沿Z方向上,第三封装层133的厚度L4为140μm~260μm,例如可以为:150μm、165μm、170μm、200μm或者250μm。厚度过小的第三封装层无法对电池片100进行良好的封装保护,可能导致盖板与电池片100分离。并且,厚度过小的第三封装层133会导致封装层130的整体厚度过小,进而可能导致水汽进入电池片100而造成电池片100失效。厚度过大的第三封装层133会对电池片100的光吸收造成影响。此外,厚度过大的第三封装层133会造成光伏组件制造成本的增加。因此,将第三封装层133的厚度L4设置为140μm~260μm,不仅有利于保证第三封装层133对电池片100进行良好的封装保护,还有利于增强电池片100对光照的利用率,以及使制备第三封装层133的材料用量合理,不仅有利于实现光伏组件的轻量化,还有利于降低光伏组件的制备成本。In some embodiments, referring to FIG. 1 and FIG. 4 , along the Z direction, the thickness L4 of the
在一些实施例中,参考图1和图2,光伏组件还包括:胶点140,胶点140位于部分电池片100与连接部件120之间,且胶点140位于栅线110以外的电池片100的表面。胶点140用于在层压前对连接部件120进行固定,防止连接部件120在电池片100表面移动。In some embodiments, referring to FIG. 1 and FIG. 2 , the photovoltaic module further includes: a
在一些实施例中,参考图1,光伏组件还包括:盖板150,盖板150位于封装层130的远离电池片100的表面,盖板150可以为玻璃盖板或塑料盖板等用于保护电池串的盖板。In some embodiments, referring to FIG. 1 , the photovoltaic module further includes: a
上述实施例提供的光伏组件中,封装层130至少包括沿远离电池片100的方向依次排布第一封装层131、第二封装层132以及第三封装层133,且第三封装层133的流动性、第二封装层132的流动性以及第一封装层131的流动性依次减小,其中,第一封装层131的流动性、第二封装层132的流动性以及第三封装层133的流动性均为层压温度下的流动性,即光伏组件为层压过程中的光伏组件,在层压温度下,将邻近连接部件120与电池片100的第一封装层131设置为流动性较小的状态,即可避免第一封装层131流至连接部件120与栅线110之间,进而避免连接部件120与栅线110接触不良,有利于提升光伏组件的效率以及良率。此外,利用第一封装层131对流动性相对较大的第二封装层132以及第三封装层133进行隔离,利用第二封装层132作为第一封装层131与第三封装层133之间的桥梁,有利于增大第一封装层131与第三封装层133的粘合强度,流动性最大的第三封装层133有利于保证封装层130与盖板具有较强的粘接强度,进而有利于提升光伏组件寿命。In the photovoltaic module provided by the above embodiments, the
根据本申请一些实施例,本申请实施例另一方面还提供一种光伏组件的制备方法,光伏组件的制备方法可用于形成上述实施例涉及的光伏组件,下面将结合附图对本申请实施例提供的光伏组件的制备方法进行说明,需要说明的是,与前述实施例相同或者相应的部分,可参考前述实施例的详细说明,以下将不做赘述。According to some embodiments of the present application, on the other hand, the embodiments of the present application also provide a method for preparing a photovoltaic module. The method for preparing a photovoltaic module can be used to form the photovoltaic module involved in the above-mentioned embodiments. The preparation method of the photovoltaic module will be described. It should be noted that for the parts that are the same as or corresponding to the foregoing embodiments, reference may be made to the detailed descriptions of the foregoing embodiments, and details will not be repeated below.
图5为本申请一实施例提供的一种光伏组件的制备方法中提供电池片的步骤对应的结构示意图;图6为本申请一实施例提供的一种光伏组件的制备方法中形成胶点的步骤对应的结构示意图;图7为本申请一实施例提供的一种光伏组件的制备方法中利用胶点对连接部件进行固定的步骤对应的结构示意图;图8为本申请一实施例提供的一种光伏组件的制备方法中设置封装层的步骤对应的结构示意图;图9为本申请一实施例提供的一种光伏组件的制备方法中进行层压处理后的光伏组件的对应的结构示意图。需要说明的是,图5至图9对电池片的数量进行了省略,仅以一个电池片为例进行了图示。Fig. 5 is a schematic structural diagram corresponding to the step of providing cells in a method for preparing a photovoltaic module provided by an embodiment of the present application; Fig. 6 is a schematic diagram of forming glue dots in a method for preparing a photovoltaic module provided by an embodiment of the application Schematic diagram of the structure corresponding to the steps; FIG. 7 is a schematic diagram of the structure corresponding to the step of fixing the connecting parts with glue points in a method for preparing a photovoltaic module provided by an embodiment of the present application; FIG. 8 is a schematic diagram of a structure provided by an embodiment of the present application. A schematic structural diagram corresponding to the step of setting an encapsulation layer in a method for preparing a photovoltaic module; FIG. 9 is a schematic structural diagram corresponding to a photovoltaic module after lamination treatment in a method for preparing a photovoltaic module provided by an embodiment of the present application. It should be noted that the number of battery slices is omitted in FIGS. 5 to 9 , and only one battery slice is used as an example for illustration.
参考图5,光伏组件的制备方法包括:提供多个电池片100,每个电池片100的表面均具有多条栅线110。在一些实施例中,可以采用丝网印刷以及烧结工艺形成栅线110。Referring to FIG. 5 , the method for manufacturing a photovoltaic module includes: providing a plurality of
参考图6至图7,在电池片100的表面设置连接部件120。Referring to FIG. 6 to FIG. 7 , a
在一些实施例中,设置连接部件120还包括:形成胶点140。参考图6,可以在栅线110以外的电池片100的部分表面上形成未固化的胶点140;参考图7,在电池片100的表面上铺设连接部件120,并使胶点140位于部分电池片100与连接部件120之间,铺设连接部件120后,可以采用紫外光照射或者其他低温处理方式使胶点140固化,利用胶点140对连接部件120进行固定,防止连接部件120移动。In some embodiments, arranging the
参考图8,在电池片100的表面设置封装层130,且封装层130位于连接部件120远离电池片100的一侧,封装层130包括沿远离电池片100的方向依次排布第一封装层131、第二封装层132以及第三封装层133。Referring to FIG. 8 , an
继续参考图8,在一些实施例中,设置封装层130的同时,还在封装层130远离电池的表面上设置盖板150。Continuing to refer to FIG. 8 , in some embodiments, while the
参考图9,在预设温度下对电池片100、连接部件120以及封装层130进行层压处理,以使位于栅线110上方的部分连接部件120与相邻的部分栅线110接触连接,以及使得电池片100与封装层130相固定;其中,第三封装层133在预设温度下的流动性、第二封装层132在预设温度下的流动性以及第一封装层131在预设温度下的流动性依次减小。Referring to FIG. 9 , the
在一些实施例中,层压处理还使得封装层130与盖板150相固定。In some embodiments, the lamination process also secures the
将邻近连接部件120与电池片100的第一封装层131设置为流动性较小的状态,即可避免第一封装层131流至连接部件120与栅线110之间,进而避免连接部件120与栅线110接触不良,有利于提升光伏组件的效率以及良率。此外,利用第一封装层131对流动性相对较大的第二封装层132以及第三封装层133进行隔离,利用第二封装层132作为第一封装层131与第三封装层133之间的桥梁,有利于增大第一封装层131与第三封装层133的粘合强度,流动性最大的第三封装层133有利于保证封装层130与盖板具有较强的粘接强度,进而有利于提升光伏组件寿命。Setting the
需要说明的是,预设温度可以高于连接部件120与栅线110形成合金的温度,且低于封装层130发生交联反应的温度,以使连接部件120与栅线110在预设温度下形成合金,且在连接部件120与栅线110形成合金后,使封装层130发生交联反应。It should be noted that the preset temperature may be higher than the temperature at which the connecting
上述实施例提供的光伏组件的制备方法中,将邻近连接部件120与电池片100的第一封装层131设置为流动性较小的状态,避免了第一封装层131流至连接部件120与栅线110之间,造成连接部件120与栅线110的接触不良,有利于形成良率以及效率较高的光伏组件。并且,利用第一封装层131对流动性相对较大的第二封装层132以及第三封装层133进行隔离,利用第二封装层132作为第一封装层131与第三封装层133之间的桥梁,有利于增大第一封装层131与第三封装层133的粘合强度,流动性最大的第三封装层133有利于保证封装层130与盖板具有较强的粘接强度,从而有利于形成结构稳定性较高的光伏组件。In the manufacturing method of the photovoltaic module provided in the above-mentioned embodiment, the
需要说明的是,本实施例提供的附图中,光伏组件的结构以及光伏组件的形状并不构成本实施例对光伏组件的结构以及光伏组件的形状的限定,可以理解的是,光伏组件的结构以及光伏组件的形状可以根据需要配合的光伏组件进行相应的设计和修改。It should be noted that in the drawings provided in this embodiment, the structure of the photovoltaic module and the shape of the photovoltaic module do not constitute a limitation of the structure and shape of the photovoltaic module in this embodiment. It can be understood that the structure of the photovoltaic module The structure and the shape of the photovoltaic module can be designed and modified according to the photovoltaic module that needs to be matched.
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各自更动与修改,因此本申请的保护范围应当以权利要求限定的范围为准。Those of ordinary skill in the art can understand that the above-mentioned implementation modes are specific examples for realizing the present application, and in practical applications, various changes can be made to it in form and details without departing from the spirit and spirit of the present application. scope. Any person skilled in the art can make respective alterations and modifications without departing from the spirit and scope of the present application. Therefore, the protection scope of the present application should be determined by the scope defined in the claims.
Claims (13)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410414572.8A CN118315456A (en) | 2023-01-16 | 2023-01-16 | Photovoltaic module and preparation method thereof |
CN202310111863.5A CN116207172B (en) | 2023-01-16 | 2023-01-16 | Photovoltaic module and preparation method thereof |
US18/309,703 US20240243210A1 (en) | 2023-01-16 | 2023-04-28 | Photovoltaic module and method for manufacturing photovoltaic module |
AU2023202896A AU2023202896B1 (en) | 2023-01-16 | 2023-05-09 | Photovoltaic module and method for manufacturing photovoltaic module |
DE202023102519.6U DE202023102519U1 (en) | 2023-01-16 | 2023-05-09 | photovoltaic module |
NL2034791A NL2034791B1 (en) | 2023-01-16 | 2023-05-10 | Photovoltaic module and method for manufacturing photovoltaic module |
EP23172558.1A EP4401151B1 (en) | 2023-01-16 | 2023-05-10 | Method for manufacturing a photovoltaic module |
KR1020230093426A KR20230116750A (en) | 2023-01-16 | 2023-07-18 | Photovoltaic module and preparation method thereof |
JP2024079320A JP2024105554A (en) | 2023-01-16 | 2024-05-15 | Photovoltaic module and method of manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310111863.5A CN116207172B (en) | 2023-01-16 | 2023-01-16 | Photovoltaic module and preparation method thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410414572.8A Division CN118315456A (en) | 2023-01-16 | 2023-01-16 | Photovoltaic module and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116207172A true CN116207172A (en) | 2023-06-02 |
CN116207172B CN116207172B (en) | 2024-05-28 |
Family
ID=86507298
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410414572.8A Pending CN118315456A (en) | 2023-01-16 | 2023-01-16 | Photovoltaic module and preparation method thereof |
CN202310111863.5A Active CN116207172B (en) | 2023-01-16 | 2023-01-16 | Photovoltaic module and preparation method thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410414572.8A Pending CN118315456A (en) | 2023-01-16 | 2023-01-16 | Photovoltaic module and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN118315456A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108419433A (en) * | 2015-11-06 | 2018-08-17 | 梅耶博格瑞士股份公司 | Polymer conductor plate, solar cell and production method thereof |
CN112289879A (en) * | 2020-10-28 | 2021-01-29 | 东方日升(常州)新能源有限公司 | Photovoltaic packaging adhesive film, photovoltaic module and preparation method thereof |
CN114975660A (en) * | 2022-06-04 | 2022-08-30 | 骥志(江苏)新能源科技有限公司 | A lightweight shingled photovoltaic module based on ultra-thin tempered glass |
WO2022222628A1 (en) * | 2021-04-23 | 2022-10-27 | 通威太阳能(合肥)有限公司 | Single cell, packaging film, solar cell module and manufacturing method therefor |
-
2023
- 2023-01-16 CN CN202410414572.8A patent/CN118315456A/en active Pending
- 2023-01-16 CN CN202310111863.5A patent/CN116207172B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108419433A (en) * | 2015-11-06 | 2018-08-17 | 梅耶博格瑞士股份公司 | Polymer conductor plate, solar cell and production method thereof |
CN112289879A (en) * | 2020-10-28 | 2021-01-29 | 东方日升(常州)新能源有限公司 | Photovoltaic packaging adhesive film, photovoltaic module and preparation method thereof |
WO2022222628A1 (en) * | 2021-04-23 | 2022-10-27 | 通威太阳能(合肥)有限公司 | Single cell, packaging film, solar cell module and manufacturing method therefor |
CN114975660A (en) * | 2022-06-04 | 2022-08-30 | 骥志(江苏)新能源科技有限公司 | A lightweight shingled photovoltaic module based on ultra-thin tempered glass |
Also Published As
Publication number | Publication date |
---|---|
CN118315456A (en) | 2024-07-09 |
CN116207172B (en) | 2024-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111615752B (en) | Solar cell module | |
US8975506B2 (en) | Solar cell module and photovoltaic power generator using the same | |
CN101939847B (en) | Solar cell module and solar cell | |
CN106057923B (en) | Back contact solar cell and solar cell module | |
CN104576798B (en) | Solar cell module and manufacturing method thereof | |
CN104269453B (en) | Without main grid, high-level efficiency back contact solar cell backboard, assembly and preparation technology | |
CN104253169B (en) | Without main grid, high efficiency back contact solar cell module, assembly and preparation technology | |
JP5052154B2 (en) | Manufacturing method of solar cell module | |
CN219642849U (en) | Photovoltaic cell string and photovoltaic module | |
NL2033481B1 (en) | Photovoltaic module | |
KR102132940B1 (en) | Solar cell and manufacturing method thereof | |
US20240243210A1 (en) | Photovoltaic module and method for manufacturing photovoltaic module | |
CN104218102A (en) | Solar cell and module thereof | |
CN116207172B (en) | Photovoltaic module and preparation method thereof | |
CN114122179B (en) | Interdigitated back contact battery string, interdigitated back contact battery assembly and system | |
CN116230793A (en) | Photovoltaic module and its preparation method | |
CN113644145B (en) | Solar cell and photovoltaic module | |
CN109962121A (en) | A kind of anti-hot spot flexible crystalline silicon component and preparation method | |
JP2024105554A (en) | Photovoltaic module and method of manufacturing same | |
CN107851678B (en) | solar cell module | |
JP2015233096A (en) | Solar battery unit and method for manufacturing solar battery unit | |
CN106784104B (en) | A kind of back contact solar cell string and preparation method thereof and component, system | |
CN118476035A (en) | Solar cell device and solar cell module | |
CN118571977A (en) | Method for manufacturing solar cell string | |
CN120076423A (en) | Solar cell module, photovoltaic module and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |