[go: up one dir, main page]

CN116200354B - 一种热稳定性提高的磷酸甘油氧化酶突变体及应用 - Google Patents

一种热稳定性提高的磷酸甘油氧化酶突变体及应用 Download PDF

Info

Publication number
CN116200354B
CN116200354B CN202310177650.2A CN202310177650A CN116200354B CN 116200354 B CN116200354 B CN 116200354B CN 202310177650 A CN202310177650 A CN 202310177650A CN 116200354 B CN116200354 B CN 116200354B
Authority
CN
China
Prior art keywords
mutant
gpo
oxidase
phosphoglycerate
wild
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310177650.2A
Other languages
English (en)
Other versions
CN116200354A (zh
Inventor
尹春丽
马芝薇
李晓蕊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University
Original Assignee
Xian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University filed Critical Xian University
Priority to CN202310177650.2A priority Critical patent/CN116200354B/zh
Publication of CN116200354A publication Critical patent/CN116200354A/zh
Application granted granted Critical
Publication of CN116200354B publication Critical patent/CN116200354B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/61Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving triglycerides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/03021Glycerol-3-phosphate-oxidase (1.1.3.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/904Oxidoreductases (1.) acting on CHOH groups as donors, e.g. glucose oxidase, lactate dehydrogenase (1.1)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种热稳定性提高的磷酸甘油氧化酶突变体及应用,以氨基酸序列如SEQ ID NO.1序列为亲本,将亲本第249位或第451位发生突变。该一种热稳定性提高的磷酸甘油氧化酶突变体稳定性和催化活性同时提高。

Description

一种热稳定性提高的磷酸甘油氧化酶突变体及应用
技术领域
本发明属于基因工程技术领域,具体涉及一种热稳定性提高的磷酸甘油氧化酶突变体及应用。
背景技术
血清中甘油三酯的浓度是心脏病和高血脂的临床诊断中的重要指标之一,血清中甘油三酯的正常参考值为0.45~1.69mmol/L。目前临床分析和检测甘油三酯普遍使用的方法为磷酸甘油氧化酶法,该法具有高特异性、简便、微量和易于实现快速自动化检测等优点。磷酸甘油氧化酶(L-α-GlycerophosphateOxidase,GPO,EC1.1.3.21)是测定甘油三酯试剂盒所需要的关键酶之一,能专一性地催化α-磷酸甘油氧化生成磷酸二羟丙酮和过氧化氢。磷酸甘油氧化酶(GPO)可以从不同来源的生物中制备获得,目前用于体外诊断的GPO主要来源于微生物,如酵母菌(Saccharomyces sp.)、粪肠球菌(Enterococcus sp.)、片球菌(Pediococcus sp.)、链球菌(Streptococcus sp.)、乳酸杆菌(Lactobacillus sp.)和大肠杆菌(Escherichia coli)等。
磷酸甘油氧化酶(GPO)的制备方法主要是通过野生菌发酵和大肠杆菌重组表达,例如卢戌等发酵培养筛选的链球菌并纯化获得高纯度的GPO(四川大学学报(自然科学版),2006,43(6),1379-1383),包凌晟等发酵培养野生粪肠球菌并纯化得到表观分子量为67kDa的GPO,酶活力达到54.3U/mg(2008,11,15-18),Zheng等在大肠杆菌中重组表达了来源于粪肠球菌的GPO基因,纯化获得了重组GPO(proteinexpressionandpurification,2011,75(2):133-137)。然而,这些野生菌来源的GPO存在发酵纯化过程繁琐、表达量低、热稳定性差等不足。尽管将野生型GPO基因进行异源表达提高了重组蛋白的产量,简化了纯化工艺,但重组野生型GPO仍然存在酶热稳定性差的不足。
目前,我国体外诊断试剂生产企业使用的磷酸甘油氧化酶(GPO)基本全部依赖从罗氏、日本东洋纺等国外企业进口。尽管这些企业生产的GPO经过化学修饰和保护剂优化等措施一定程度上提高了酶的稳定性,但仍然存在酶热稳定性较低的问题,导致生产的甘油三酯诊断试剂长期保存稳定性不足。
发明内容
本发明的目的是提供一种热稳定性提高的磷酸甘油氧化酶突变体及应用,其稳定性和催化活性同时提高。
本发明采用以下技术方案:一种热稳定性提高的磷酸甘油氧化酶突变体,以氨基酸序列如SEQ ID NO.1序列为亲本,将亲本第249位或第451位发生突变。
上述的一种热稳定性提高的磷酸甘油氧化酶突变体,将亲本第249位的丝氨酸取代为脯氨酸;或将亲本451位的谷氨酸取代为甲硫氨酸。
本发明还公开了编码上述的一种热稳定性提高的磷酸甘油氧化酶突变体的基因,该基因的核苷酸序列如SEQ ID NO.3或SEQ ID NO.4所示。
本发明还公开了含有上述基因的重组质粒。
本发明还公开了表达上述的突变体,或含有上述重组质粒的宿主细胞。
本发明还公开了上述的一种热稳定性提高的磷酸甘油氧化酶突变体,或上述的基因,或上述的重组质粒,或上述的宿主细胞在生产甘油三酯检测剂中的应用。
本发明的有益效果是:本发明提供的磷酸氧化酶突变体的催化效率提高了1.4倍,在50℃下孵育30min,突变酶残余酶活为86%,比野生型酶残余酶活提高3.3倍;比罗氏(Roche)生产GPO的残余酶活提高了1.5倍。且磷酸甘油氧化酶的热稳定性和催化活性显著提高,解决了磷酸甘油氧化酶热稳定性较低的问题,为其在临床诊断试剂中的应用奠定了基础。
附图说明
图1为野生型磷酸甘油氧化酶纯化结果的SDS-PAGE电泳图。
图2为基于半理性设计的候选突变氨基酸残基分析及突变体筛选结果;
其中:A为候选氨基酸残基虚拟饱和突变后的最小自由能热图;B为野生型酶与阳性突变体在50℃下孵育30min后的残余酶活。
图3为纯化的磷酸甘油氧化酶突变体蛋白的SDS-PAGE电泳图;
其中M表示蛋白分子量标准;1表示纯化的磷酸甘油氧化酶突变体S249P;2表示纯化的磷酸甘油氧化酶突变体E451M。
图4为磷酸甘油氧化酶突变体S249P与野生型酶和罗氏(Roche)生产GPO的热稳定性比较图。
图5为磷酸甘油氧化酶突变体S249P与野生型酶的pH耐受性比较图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明公开了一种热稳定性提高的磷酸甘油氧化酶突变体,以氨基酸序列如SEQID NO.1序列为亲本,将亲本第249位或第451位发生突变。具体为将亲本第249位的丝氨酸取代为脯氨酸;或将亲本451位的谷氨酸取代为甲硫氨酸。
亲本的编码基因的核苷酸序列如SEQ ID NO.2所示。
本发明还公开了编码上述一种热稳定性提高的磷酸甘油氧化酶突变体的基因。基因的核苷酸序列如SEQ ID NO.3或SEQ ID NO.4所示。
本发明还公开了含有上述基因的重组质粒。
在一种实施方式中,所述重组质粒的表达载体包括但不限于pET系列、pACYC系列或pGEX系列等。在一种实施方式中,以pET-28a(+)为载体。
本发明还公开了上述的突变体,或上述重组质粒的宿主细胞。
在一种实施方式中,以大肠杆菌(Escherichia coli,E.coli)为宿主,表达所述磷酸甘油氧化酶突变体。
本发明还公开了上述的一种热稳定性提高的磷酸甘油氧化酶突变体,或上述的基因,或上述的重组质粒,或上述的宿主细胞在生产甘油三酯检测剂中的应用。
该一种热稳定性提高的磷酸甘油氧化酶突变体的制备方法如下:
利用来源于链球菌的磷酸甘油氧化酶晶体结构(PDB ID:2RGO),借助计算机辅助理性设计获得热稳定性提高的模拟突变体。
使用定点突变引物通过质粒扩增获得目标突变体。
具体为:将所述含有重组质粒的宿主细胞单克隆接种至5mL液体LB培养基中,37℃培养过夜得到种子液;
将种子液以1%接种量接种至LB培养基中,37℃培养至生物量OD600达到0.6-0.8,然后加入诱导剂在30℃下继续培养12-16h,离心收集菌体;
将离心收集的细胞进行超声破碎,破碎液于4℃15000rpm的条件下离心15min,得到粗酶液;
将粗酶液进行镍柱亲和层析和凝胶过滤柱脱盐,获得磷酸甘油氧化酶纯酶。
本发明通过对链球菌来源的磷酸甘油氧化酶进行理性分子改造,分别对其109、112、150、245、248、249、451、456等多个位点进行定点突变并筛选,最终获得热稳定性与催化活性均提高的磷酸氧化酶突变体。
具体的实验和验证过程如下:
实施例1
重组野生型磷酸甘油氧化酶GPO的表达纯化:
在大肠杆菌中重组表达来源于链球菌(Streptococcus sp.)的磷酸甘油氧化酶。所需细胞和试剂如下:表达质粒pET-28a(+)和大肠杆菌DH5α、BL21(DE3)均为自制,也可以购买得到;镍亲和层析填料(Ni Sepharose 6Fast Flow)和凝胶过滤填料(Sephadex G-25Medium)购自GE公司,蛋白质纯化时根据需要进行装柱;其余试剂均为国产或进口分析纯。
从在线数据库中获取来源于链球菌(Streptococcus sp.)的磷酸甘油氧化酶GPO的蛋白质序列(PDB ID:2RGO),氨基酸序列如SEQ ID NO.1序列所示。根据大肠杆菌密码子偏爱性获得GPO基因序列(核苷酸序列如SEQ ID NO.2序列所示)并进行人工合成。通过NdeⅠ和NotⅠ酶切位点将合成的GPO基因连接到大肠杆菌表达载体pET-28a(+),构建重组质粒pET-28a-GPO。将重组质粒转化至大肠杆菌BL21(DE3)获得表达野生型磷酸甘油氧化酶的重组菌。
将重组大肠杆菌划线于含有卡那霉素(35μg/mL)的固体LB平板上,37℃培养得到单克隆。然后挑取单克隆于5mL液体LB培养基中37℃震荡培养过夜。将过夜培养的种子液按照1%接种量接种于LB培养基中,37℃培养至生物量OD600达到0.6-0.8,然后加入终浓度为0.3mM的诱导剂异丙基-β-D-硫代半乳糖苷(IPTG)在30℃下诱导12-16h,4℃离心收集菌体。将收集的菌体加入破碎液(1g湿菌加入8mL破碎液悬浮)进行超声破碎(功率450W,超声8s,间隙15s)30min,然后15000rpm 4℃离心15min收集上清液。上清液经过滤膜(0.22μm)过滤后上镍亲和层析柱(Ni Sepharose 6Fast Flow),使用平衡缓冲液(PBS,含40mM咪唑)洗脱杂蛋白,然后使用洗脱缓冲液(含有400mM咪唑)洗脱目的蛋白。洗脱液再经凝胶过滤柱(Sephadex G-25Medium)脱盐后收集获得纯化的重组磷酸甘油氧化酶。SDS-PAGE检测纯化蛋白的纯度超过95%,结果如图1所示。其中,M表示蛋白分子量标准;1表示诱导后菌体总蛋白;2表示菌体破碎后上清液总蛋白;3表示菌体破碎后沉淀;4表示纯化后的野生型甘油磷酸氧化酶。
实施例2
磷酸甘油氧化酶突变体库构建:
基于来源于链球菌(Streptococcus sp.)的磷酸甘油氧化酶GPO的三维结构(PDBID:2RGO),利用蛋白质分析工具FoldX进行计算机辅助设计,将GPO三级结构中柔性位点的氨基酸进行虚拟饱和突变,计算突变后的去折叠自由能变化(ΔΔG),选择ΔΔG<-0.92kcal/mol的突变位点。候选氨基酸残基虚拟饱和突变后的最小自由能热图如附图2A所示。突变位点的虚拟筛选结果如下:Asp109Ile/Met、Ala112Gly、Glu150Arg、Thr245Gln/Leu、Val248Arg/Leu、Ser249Pro/Trp、Glu451Met、Thr456Leu/Phe。
使用定点突变引物以含有野生型磷酸甘油氧化酶基因的质粒pET-28a-GPO(质粒构建过程见实施例1)为模板PCR扩增获得目标突变体。PCR扩增程序如下:预变性98℃2min;变性98℃10s,退火56℃30s,延伸72℃90s,25个循环;延伸72℃5min。上述产物在37℃经DpnI酶切3h,酶切产物然后转化至大肠杆菌感受态DH5α获取阳性克隆,挑取单克隆测序正确后获得不同突变体,同时提取13个突变体的重组质粒备用。具体引物序列如表1:
表1定点突变所用引物
实施例3
磷酸甘油氧化酶突变体的表达和筛选:
将实施例2中获得的磷酸甘油氧化酶(GPO)突变体质粒转化至大肠杆菌BL21(DE3)中用于GPO突变体表达。具体操作步骤如下:
(1)表达GPO突变体的大肠杆菌菌种制备。将筛选的阳性菌株在LB固体培养基(35μg/mL卡那霉素)上划线培养至长出单克隆,挑取单克隆接种于液体LB培养基中,在摇床中37℃,200rpm条件下培养12-16h获得种子液。
(2)突变酶诱导表达和筛选。13种突变酶的诱导表达条件和野生型GPO的诱导表达条件一致,如实施例1所示。野生型GPO和突变体诱导表达结束后,4℃离心收集菌体。将收集的菌体加入破碎液(1g湿菌加入8mL破碎液悬浮)进行超声破碎(功率450W,超声8s,间隙15s)30min,然后15000rpm 4℃离心15min收集上清液备用。
分别取野生型GPO和13个突变体的菌体破碎上清液1mL加入1.5mL离心管中,测定每种上清液的GPO酶活性(酶活性测定方法见实施例5),设定未热处理的每种酶的活性为100%。同时,将野生型和13个突变体的上清液在50℃下处理30min,测定热处理后每种酶的残余活性。计算热处理后每种酶的残余活性与该酶未处理时的酶活性比值,即为该酶热处理后的酶活性残余率,结果如图2B所示。野生型GPO在50℃下处理30min后残余酶活仅为26%,与野生型酶相比,突变体D109I、E115R、S249P、S249W和E451M的热稳定性显著提高。选择50℃下处理30min后残余酶活大于50%的GPO突变体S249P和E451M。S249P和E451M突变体热处理后残余酶活分别为86%和67%。接下来,根据实施例1的野生型GPO表达纯化方法,纯化得到了S249P和E451M突变体蛋白,SDS-PAGE检测纯化蛋白的纯度超过95%,结果如图3所示。其中M表示蛋白分子量标准;1表示纯化的磷酸甘油氧化酶突变体S249P;2表示纯化的磷酸甘油氧化酶突变体E451M。
根据实施例5的GPO酶活性测定方法,测定了野生型GPO和S249P和E451M突变体的比活性。结果表明野生型GPO比活性为47.2U/mg,Km为2.17mM(pH6.5);突变体S249P的比活性为66.5U/mg,Km为2.24mM(pH 6.5);突变体E451M的比活性为41.5U/mg,Km为2.53mM(pH6.5)。结果表明与野生型GPO相比,突变体S249P的比活性提高了1.4倍,突变体E451M的比活性具有轻微的下降。和野生型GPO相比,两种突变体的Km值没有显著变化。由于突变体S249P比E451M具有更高的比活性和热稳定性,接下来对突变体S249P的酶学性质进行了进一步分析。
实施例4
突变体S249P酶学性质分析:
(1)突变体S249P热稳定性分析
将纯化后的野生型GPO和突变体S249P蛋白溶液使用凝胶过滤柱(Sephadex G-25Medium)进行缓冲液替换,脱盐缓冲液为100mM磷酸盐缓冲液(pH 6.5)。使用BCA法测定脱盐后蛋白浓度并调整蛋白浓度为1mg/mL。然后将蛋白溶液在不同温度下孵育30min,在96孔板上使用酶标仪测定反应液在500nm的吸光度变化,计算不同温度处理后残余酶活性,酶活性测定方法参见实施例5。以未处理的野生型和突变体S249P的活性分别作为100%,计算得到不同温度处理后酶残余活性,结果如图4所示。与野生型GPO相比,突变体S249P的热稳定性显著提高。尤其在超过45℃的高温条件下,突变体S249P的热稳定大幅度提高。45℃处理30min后突变体S249P活性不受影响,而野生型GPO活性仅残余65%;50℃处理30min后突变体S249P活性残余86%,而野生型GPO活性仅残余26%;55℃处理30min后突变体S249P活性残余57%,而野生型GPO则完全失活。以上研究结果表明与野生型GPO相比,突变体S249P的热稳定性得到大幅度提升。
另外,比较了突变体S249P和罗氏(Roche)生产GPO的热稳定性。将蛋白溶液(1mg/mL)在不同温度下孵育30min,测定不同温度处理后残余酶活性。以未处理的突变体S249P和罗氏GPO活性分别作为100%,计算得到不同温度处理后酶残余活性,结果如图4所示。与罗氏GPO相比,突变体S249P的热稳定性显著提高。50℃处理30min后突变体S249P活性残余86%,而罗氏GPO活性残余56%;55℃处理30min后突变体S249P活性残余57%,而罗氏生产GPO活性仅残余23%;以上结果表明与罗氏GPO相比,突变体S249P的热稳定性也得到大幅度提升。另外,测定罗氏GPO的比活性为58U/mg蛋白,突变体S249P的比活性(66.5U/mg蛋白)略高于罗氏GPO。
(2)突变体S249P蛋白的pH稳定性分析:
将纯化后的野生型GPO和突变体S249P蛋白溶液使用凝胶过滤柱(SephadexG-25Medium)进行缓冲液替换,脱盐缓冲液为20mM磷酸盐缓冲液(pH 7.4),使用BCA法测定脱盐后蛋白浓度并调整蛋白浓度为5mg/mL。然后配置不同pH的100mM缓冲液,不同pH范围选择的缓冲液如下:乙酸-乙酸钠缓冲液(pH4-6),磷酸盐缓冲液(pH6.5-7.4),Tris-HCl缓冲液(pH8-10)。使用不同pH的缓冲液将5mg/mL的野生型GPO和突变体S249P蛋白稀释成0.5mg/mL,然后在4℃下孵育12h,测定不同pH条件下孵育后野生型GPO和突变体S249P的活性。分别以野生型GPO和突变体S249P的最高酶活性为100%,计算不同pH条件孵育后的酶残余活性,结果如图5所示。结果表明突变体S249P在酸性和中性溶液中稳定性和野生型GPO没有显著差异。但是在碱性溶液中(pH>7.4)突变体S249P的稳定性显著提高,突变体S249P在pH 9的溶液中4℃下孵育12h后酶活性残余69%,但是野生型GPO仅残余49%。
实施例5
磷酸甘油氧化酶活性测定:
磷酸甘油氧化酶(GPO)活性测定原理如下:反应底物α-磷酸甘油钠在GPO的催化下生成过氧化氢(H2O2),然后H2O2和4-氨基安替比林在辣根过氧化物酶催化下生成有色醌亚胺,通过酶标仪在500nm测定有色醌亚胺吸光度变化,根据摩尔消光系数计算出有色醌亚胺的浓度变化,从而计算出GPO酶活性。在该检测条件下醌亚胺的消光系数为13.3mM-1cm-1。酶活性定义为在37℃下1min催化产生1μmol醌亚胺所需的酶量为1U。
具体操作步骤如下:
(1)试剂配制:
α-磷酸甘油钠母液(0.2M):称取5.1g的α-磷酸甘油钠(TCI,产品编码:G0096)溶解于100mL包含0.13% TritonX-100的磷酸盐缓冲液中(100mM,pH6.5);
4-氨基安替比林溶液(0.1%):20mg 4-氨基安替比林溶解于20mL纯水中,4℃棕色瓶保存;
苯酚溶液(0.1%):20mg苯酚溶解于20mL水中,4℃棕色瓶中保存;
辣根过氧化物酶溶液(25U/mL):10mg辣根过氧化物酶溶解于1mL水中,分装后-80℃保存;
牛血清白蛋白(0.2%):40mg牛血清白蛋白溶解于20mL纯水中,现用现配。
酶活性测定方法和步骤:
(1)反应溶液配制。按以下比例配制反应液10mL。包括:α-磷酸甘油钠母液5mL;4-氨基安替比林溶液1mL;苯酚溶液2mL;辣根过氧化物酶溶液2mL;使用牛血清白蛋白(0.2%)将酶稀释成20ug/mL。
(2)将上述反应液加入96孔板中,每孔200μL,37℃孵育5min。
(3)在96孔板每孔中加10μL的GPO稀释酶液(0.2μg/每孔),酶标仪中震荡15s后立即开始反应,在500nm波长下监测反应10min,根据反应产物醌亚胺的摩尔消光系数计算酶活性。
SEQ ID NO.1
MFSNKTRQDSIQKMQQEELDLLIIGGGITGAGVAVQAAASGIKTGLIEMQDFAE
GTSSRSTKLVHGGIRYLKTFDVEVVADTVGERAVVQGIAPHIPKPDPMLLPIYE
DEGATTFNMFSVKVAMDLYDKLANVTGTKYENYTLTPEEVLEREPFLKKEGL
KGAGVYLDFRNNDARLVIDNIKKAAEDGAYLVSKMKAVGFLYEGDQIVGVKA
RDLLTDEVIEIKAKLVINTSGPWVDKVRNLNFTRPVSPKMRPTKGIHLVVDAK
KLPVPQPTYFDTGKQDGRMVFAIPRENKTYFGTTDTDYQGDFTDPKVTQEDV
DYLLDVINHRYPEANITLADIEASWAGLRPLLIGNSGSDYNGGDNGSISDKSFN
KVVDTVSEYKENKVSRAEVEDVLNHLENSRDEKAPSTISRGSSLEREPDGLLT
LSGGKITDYRKMAEGALRLIRQLLKEEYGIETKEIDSKKYQISGGNFDPTKLEE
TVTELAKEGVAAGLEEEDATYIADFYGTNARRIFELAKEMAPYPGLSLAESAR
LRYGLEEEMVLAPGDYLIRRTNHLLFERDQLDEIKQPVIDAIAEYFGWTEEEKAQQTKRLEALIAESDLRELKGEK。
SEQ ID NO.2
ATGTTCTCCAACAAGACTCGCCAGGACTCTATTCAGAAGATGCAGCAGGAG
GAACTGGATCTGCTGATTATCGGTGGTGGTATCACTGGTGCAGGTGTAGCAG
TGCAGGCAGCTGCTAGCGGTATCAAAACCGGCCTGATTGAGATGCAGGATT
TCGCTGAAGGTACCTCCTCCCGTTCCACCAAACTGGTTCATGGTGGTATCCG
TTATCTGAAAACCTTCGACGTTGAGGTGGTTGCGGACACCGTTGGCGAACG
TGCTGTTGTACAGGGTATCGCTCCGCACATCCCGAAACCGGACCCGATGCT
GCTGCCGATCTACGAGGACGAAGGTGCGACGACCTTCAACATGTTCAGCGT
GAAGGTAGCTATGGATCTGTACGACAAACTGGCCAACGTAACTGGTACCAA
ATACGAAAACTACACCCTGACCCCTGAAGAAGTTCTGGAACGTGAACCGTT
TCTGAAGAAGGAAGGCCTGAAAGGTGCAGGTGTGTATCTGGATTTCCGCAA
CAACGATGCGCGTCTGGTGATTGACAACATCAAAAAAGCAGCGGAAGACG
GCGCTTACCTGGTCTCTAAAATGAAAGCAGTTGGTTTCCTGTACGAAGGTG
ACCAGATCGTGGGTGTGAAGGCACGTGACCTGCTGACGGATGAAGTGATC
GAGATCAAAGCCAAACTGGTCATCAACACTTCTGGCCCGTGGGTGGACAA
AGTTCGCAACCTGAATTTCACCCGTCCGGTGTCTCCGAAAATGCGTCCGAC
CAAAGGCATCCACCTGGTTGTTGACGCGAAAAAACTGCCGGTACCGCAGC
CGACCTACTTCGACACGGGCAAACAGGACGGCCGCATGGTGTTTGCAATCC
CGCGTGAAAACAAAACCTACTTCGGTACCACTGACACCGACTACCAGGGT
GATTTCACGGACCCGAAAGTTACTCAAGAGGACGTAGACTACCTGCTGGAT
GTTATCAATCATCGCTATCCGGAAGCTAACATCACTCTGGCTGACATCGAAG
CTTCTTGGGCTGGCCTGCGTCCGCTGCTGATTGGTAACTCCGGCTCTGACTA
CAACGGTGGTGATAATGGTTCTATTTCCGACAAATCTTTCAACAAAGTTGTG
GACACTGTGTCTGAATACAAAGAAAACAAAGTTTCCCGCGCGGAAGTGGA
AGATGTACTGAACCACCTGGAAAACAGCCGTGATGAAAAAGCCCCTAGCA
CGATCAGCCGCGGTAGCTCTCTGGAACGTGAACCGGATGGTCTGCTGACCC
TGTCCGGTGGTAAAATCACTGATTATCGTAAAATGGCGGAAGGTGCTCTGC
GCCTGATCCGTCAGCTGCTGAAAGAGGAATATGGTATCGAAACTAAAGAAA
TCGACTCCAAAAAATACCAGATCAGCGGTGGCAACTTTGACCCGACTAAAC
TGGAAGAAACTGTAACCGAGCTGGCGAAAGAAGGCGTTGCTGCGGGTCTG
GAAGAAGAAGACGCGACGTACATCGCTGATTTCTACGGTACTAACGCGCGC
CGCATCTTTGAACTGGCGAAGGAGATGGCTCCATATCCAGGCCTGAGCCTG
GCAGAAAGCGCTCGTCTGCGCTACGGCCTGGAGGAAGAAATGGTTCTGGC
TCCGGGCGACTACCTGATCCGTCGTACTAACCACCTGCTGTTTGAGCGTGA
CCAGCTGGACGAAATCAAACAGCCGGTTATCGATGCGATCGCAGAATACTT
CGGCTGGACTGAGGAGGAAAAAGCTCAGCAGACTAAACGTCTGGAGGCTCTGATCGCGGAGAGCGATCTGCGCGAACTGAAAGGTGAAAAA。
SEQ ID NO.3
ATGTTCTCCAACAAGACTCGCCAGGACTCTATTCAGAAGATGCAGCAGGAG
GAACTGGATCTGCTGATTATCGGTGGTGGTATCACTGGTGCAGGTGTAGCAG
TGCAGGCAGCTGCTAGCGGTATCAAAACCGGCCTGATTGAGATGCAGGATT
TCGCTGAAGGTACCTCCTCCCGTTCCACCAAACTGGTTCATGGTGGTATCCG
TTATCTGAAAACCTTCGACGTTGAGGTGGTTGCGGACACCGTTGGCGAACG
TGCTGTTGTACAGGGTATCGCTCCGCACATCCCGAAACCGGACCCGATGCT
GCTGCCGATCTACGAGGACGAAGGTGCGACGACCTTCAACATGTTCAGCGT
GAAGGTAGCTATGGATCTGTACGACAAACTGGCCAACGTAACTGGTACCAA
ATACGAAAACTACACCCTGACCCCTGAAGAAGTTCTGGAACGTGAACCGTT
TCTGAAGAAGGAAGGCCTGAAAGGTGCAGGTGTGTATCTGGATTTCCGCAA
CAACGATGCGCGTCTGGTGATTGACAACATCAAAAAAGCAGCGGAAGACG
GCGCTTACCTGGTCTCTAAAATGAAAGCAGTTGGTTTCCTGTACGAAGGTG
ACCAGATCGTGGGTGTGAAGGCACGTGACCTGCTGACGGATGAAGTGATC
GAGATCAAAGCCAAACTGGTCATCAACACTTCTGGCCCGTGGGTGGACAA
AGTTCGCAACCTGAATTTCACCCGTCCGGTGCCGCCGAAAATGCGTCCGAC
CAAAGGCATCCACCTGGTTGTTGACGCGAAAAAACTGCCGGTACCGCAGC
CGACCTACTTCGACACGGGCAAACAGGACGGCCGCATGGTGTTTGCAATCC
CGCGTGAAAACAAAACCTACTTCGGTACCACTGACACCGACTACCAGGGT
GATTTCACGGACCCGAAAGTTACTCAAGAGGACGTAGACTACCTGCTGGAT
GTTATCAATCATCGCTATCCGGAAGCTAACATCACTCTGGCTGACATCGAAG
CTTCTTGGGCTGGCCTGCGTCCGCTGCTGATTGGTAACTCCGGCTCTGACTA
CAACGGTGGTGATAATGGTTCTATTTCCGACAAATCTTTCAACAAAGTTGTG
GACACTGTGTCTGAATACAAAGAAAACAAAGTTTCCCGCGCGGAAGTGGA
AGATGTACTGAACCACCTGGAAAACAGCCGTGATGAAAAAGCCCCTAGCA
CGATCAGCCGCGGTAGCTCTCTGGAACGTGAACCGGATGGTCTGCTGACCC
TGTCCGGTGGTAAAATCACTGATTATCGTAAAATGGCGGAAGGTGCTCTGC
GCCTGATCCGTCAGCTGCTGAAAGAGGAATATGGTATCGAAACTAAAGAAA
TCGACTCCAAAAAATACCAGATCAGCGGTGGCAACTTTGACCCGACTAAAC
TGGAAGAAACTGTAACCGAGCTGGCGAAAGAAGGCGTTGCTGCGGGTCTG
GAAGAAGAAGACGCGACGTACATCGCTGATTTCTACGGTACTAACGCGCGC
CGCATCTTTGAACTGGCGAAGGAGATGGCTCCATATCCAGGCCTGAGCCTG
GCAGAAAGCGCTCGTCTGCGCTACGGCCTGGAGGAAGAAATGGTTCTGGC
TCCGGGCGACTACCTGATCCGTCGTACTAACCACCTGCTGTTTGAGCGTGA
CCAGCTGGACGAAATCAAACAGCCGGTTATCGATGCGATCGCAGAATACTT
CGGCTGGACTGAGGAGGAAAAAGCTCAGCAGACTAAACGTCTGGAGGCTCTGATCGCGGAGAGCGATCTGCGCGAACTGAAAGGTGAAAAA。
SEQ ID NO.4
ATGTTCTCCAACAAGACTCGCCAGGACTCTATTCAGAAGATGCAGCAGGAG
GAACTGGATCTGCTGATTATCGGTGGTGGTATCACTGGTGCAGGTGTAGCAG
TGCAGGCAGCTGCTAGCGGTATCAAAACCGGCCTGATTGAGATGCAGGATT
TCGCTGAAGGTACCTCCTCCCGTTCCACCAAACTGGTTCATGGTGGTATCCG
TTATCTGAAAACCTTCGACGTTGAGGTGGTTGCGGACACCGTTGGCGAACG
TGCTGTTGTACAGGGTATCGCTCCGCACATCCCGAAACCGGACCCGATGCT
GCTGCCGATCTACGAGGACGAAGGTGCGACGACCTTCAACATGTTCAGCGT
GAAGGTAGCTATGGATCTGTACGACAAACTGGCCAACGTAACTGGTACCAA
ATACGAAAACTACACCCTGACCCCTGAAGAAGTTCTGGAACGTGAACCGTT
TCTGAAGAAGGAAGGCCTGAAAGGTGCAGGTGTGTATCTGGATTTCCGCAA
CAACGATGCGCGTCTGGTGATTGACAACATCAAAAAAGCAGCGGAAGACG
GCGCTTACCTGGTCTCTAAAATGAAAGCAGTTGGTTTCCTGTACGAAGGTG
ACCAGATCGTGGGTGTGAAGGCACGTGACCTGCTGACGGATGAAGTGATC
GAGATCAAAGCCAAACTGGTCATCAACACTTCTGGCCCGTGGGTGGACAA
AGTTCGCAACCTGAATTTCACCCGTCCGGTGTCTCCGAAAATGCGTCCGAC
CAAAGGCATCCACCTGGTTGTTGACGCGAAAAAACTGCCGGTACCGCAGC
CGACCTACTTCGACACGGGCAAACAGGACGGCCGCATGGTGTTTGCAATCC
CGCGTGAAAACAAAACCTACTTCGGTACCACTGACACCGACTACCAGGGT
GATTTCACGGACCCGAAAGTTACTCAAGAGGACGTAGACTACCTGCTGGAT
GTTATCAATCATCGCTATCCGGAAGCTAACATCACTCTGGCTGACATCGAAG
CTTCTTGGGCTGGCCTGCGTCCGCTGCTGATTGGTAACTCCGGCTCTGACTA
CAACGGTGGTGATAATGGTTCTATTTCCGACAAATCTTTCAACAAAGTTGTG
GACACTGTGTCTGAATACAAAGAAAACAAAGTTTCCCGCGCGGAAGTGGA
AGATGTACTGAACCACCTGGAAAACAGCCGTGATGAAAAAGCCCCTAGCA
CGATCAGCCGCGGTAGCTCTCTGGAACGTGAACCGGATGGTCTGCTGACCC
TGTCCGGTGGTAAAATCACTGATTATCGTAAAATGGCGGAAGGTGCTCTGC
GCCTGATCCGTCAGCTGCTGAAAGAGATGTATGGTATCGAAACTAAAGAAA
TCGACTCCAAAAAATACCAGATCAGCGGTGGCAACTTTGACCCGACTAAAC
TGGAAGAAACTGTAACCGAGCTGGCGAAAGAAGGCGTTGCTGCGGGTCTG
GAAGAAGAAGACGCGACGTACATCGCTGATTTCTACGGTACTAACGCGCGC
CGCATCTTTGAACTGGCGAAGGAGATGGCTCCATATCCAGGCCTGAGCCTG
GCAGAAAGCGCTCGTCTGCGCTACGGCCTGGAGGAAGAAATGGTTCTGGC
TCCGGGCGACTACCTGATCCGTCGTACTAACCACCTGCTGTTTGAGCGTGA
CCAGCTGGACGAAATCAAACAGCCGGTTATCGATGCGATCGCAGAATACTT
CGGCTGGACTGAGGAGGAAAAAGCTCAGCAGACTAAACGTCTGGAGGCTC
TGATCGCGGAGAGCGATCTGCGCGAACTGAAAGGTGAAAAA。

Claims (5)

1.一种热稳定性提高的磷酸甘油氧化酶突变体,其特征在于,以氨基酸序列SEQ IDNO.1为亲本,将亲本第249位或第451位发生突变;
将亲本第249位的丝氨酸取代为脯氨酸;或将亲本451位的谷氨酸取代为甲硫氨酸。
2.编码权利要求1所述的一种热稳定性提高的磷酸甘油氧化酶突变体的基因,该基因的核苷酸序列如SEQ ID NO.3或SEQ ID NO.4所示。
3.含有权利要求2所述基因的重组质粒。
4.表达权利要求1所述的突变体,或含有权利要求3所述重组质粒的宿主细胞。
5.如权利要求1所述的一种热稳定性提高的磷酸甘油氧化酶突变体,或权利要求2所述的基因,或权利要求3所述的重组质粒,或权利要求4所述的宿主细胞在生产甘油三酯检测剂中的应用。
CN202310177650.2A 2023-02-28 2023-02-28 一种热稳定性提高的磷酸甘油氧化酶突变体及应用 Active CN116200354B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310177650.2A CN116200354B (zh) 2023-02-28 2023-02-28 一种热稳定性提高的磷酸甘油氧化酶突变体及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310177650.2A CN116200354B (zh) 2023-02-28 2023-02-28 一种热稳定性提高的磷酸甘油氧化酶突变体及应用

Publications (2)

Publication Number Publication Date
CN116200354A CN116200354A (zh) 2023-06-02
CN116200354B true CN116200354B (zh) 2024-12-13

Family

ID=86509222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310177650.2A Active CN116200354B (zh) 2023-02-28 2023-02-28 一种热稳定性提高的磷酸甘油氧化酶突变体及应用

Country Status (1)

Country Link
CN (1) CN116200354B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117737019B (zh) * 2023-12-15 2024-12-13 湖北擎科生物科技有限公司 甘油磷酸氧化酶突变体及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735511A (zh) * 2018-09-06 2019-05-10 西安文理学院 一种临床检测用黄嘌呤氧化酶的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4167763B2 (ja) * 1998-09-30 2008-10-22 天野エンザイム株式会社 L−α−グリセロフォスフェートオキシダーゼ遺伝子、新規な組み換え体DNA及び改変されたL−α−グリセロフォスフェートオキシダーゼの製造法
ME03003B (me) * 2015-11-20 2018-10-20 4D Pharma Res Ltd Kompozicije koje sadrže bakterijske sojeve
CN110184289B (zh) * 2019-05-29 2021-03-23 桐乡杜创三众生物技术有限公司 一种重组甘油磷酸氧化酶表达载体及其建立方法
CN110938607B (zh) * 2019-12-18 2023-03-28 美康生物科技股份有限公司 热稳定性好的甘油-3-磷酸氧化酶及其在试剂盒中的应用
US12116610B2 (en) * 2021-01-26 2024-10-15 The University Of North Carolina At Chapel Hill Glycerol 3-phosphate oxidase mutants, compositions, devices, kits and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735511A (zh) * 2018-09-06 2019-05-10 西安文理学院 一种临床检测用黄嘌呤氧化酶的制备方法

Also Published As

Publication number Publication date
CN116200354A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN108559735B (zh) 一种亮氨酸脱氢酶突变体的构建及其应用
CN109355276B (zh) 一种普鲁兰酶突变体及其应用
CN114250205B (zh) 一种具有高热稳定性的7α-羟基类固醇脱氢酶突变体及其应用
CN113862233A (zh) 提高葡萄糖氧化酶的酸稳定性的方法及突变体q241e/r499e、基因和应用
CN116200354B (zh) 一种热稳定性提高的磷酸甘油氧化酶突变体及应用
CN108865962B (zh) 一种可高效可溶性表达4-α-糖基转移酶的大肠杆菌工程菌
CN108588061A (zh) 一种比酶活及热稳定性提高的低温碱性果胶酶突变体
CN112391365B (zh) 一种催化活力提高的淀粉分支酶突变体及其应用
Eggen et al. The glutamate dehydrogenase-encoding gene of the hyperthermophilic archaeon Pyrococcus furiosus: sequence, transcription and analysis of the deduced amino acid sequence
CN117737038A (zh) 一种N-乙酰氨基葡萄糖苷酶突变体De254PΔ5及其制备与应用
CN116970067A (zh) 一种提高人血清白蛋白重组表达水平的策略
CN106754776B (zh) 一种催化木糖的比酶活提高的葡萄糖脱氢酶突变体
CN112980815B (zh) α-L-岩藻糖苷酶OUCJdch-16及其应用
CN110184289B (zh) 一种重组甘油磷酸氧化酶表达载体及其建立方法
CN116121215B (zh) 一种甘油磷酸氧化酶的突变体及其用途
CN116716280A (zh) 一种热稳定性提高的肌酸脒基水解酶突变体
CN110846289A (zh) 一种鲍氏不动杆菌黄嘌呤脱氢酶突变体及其应用
CN102220354B (zh) Microbacterium属细菌耐热尿酸氧化酶基因及其用途
CN111593038A (zh) 一种稳定性提高的谷氨酰胺酶突变体
CN111269899A (zh) 具有催化活性的人源尿酸氧化酶及其应用
CN113717954B (zh) 一种热稳定性提高的甲酸脱氢酶突变体及其应用
CN114231511B (zh) 热稳定性提高的双果糖酐水解酶突变体e160f
CN114231508B (zh) 一种7β-羟基类固醇脱氢酶突变体及其应用
CN111808836B (zh) 耐热的i型普鲁兰酶的突变体酶及其制备方法与应用
CN111676208B (zh) 一种定点突变改造的β-半乳糖苷酶及其构造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant