[go: up one dir, main page]

CN1162001C - Motion picture coding apparatus and method for coding a plurality of moving pictures - Google Patents

Motion picture coding apparatus and method for coding a plurality of moving pictures Download PDF

Info

Publication number
CN1162001C
CN1162001C CNB971264694A CN97126469A CN1162001C CN 1162001 C CN1162001 C CN 1162001C CN B971264694 A CNB971264694 A CN B971264694A CN 97126469 A CN97126469 A CN 97126469A CN 1162001 C CN1162001 C CN 1162001C
Authority
CN
China
Prior art keywords
multiplexing
section
encoding
bits
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB971264694A
Other languages
Chinese (zh)
Other versions
CN1199990A (en
Inventor
�������ɭ
森敏昭
胜田升
黑崎敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP34728396A external-priority patent/JPH10191276A/en
Priority claimed from JP15628997A external-priority patent/JPH10191337A/en
Priority claimed from JP19671697A external-priority patent/JPH1141608A/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1199990A publication Critical patent/CN1199990A/en
Application granted granted Critical
Publication of CN1162001C publication Critical patent/CN1162001C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/115Selection of the code volume for a coding unit prior to coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/152Data rate or code amount at the encoder output by measuring the fullness of the transmission buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • H04N19/197Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters including determination of the initial value of an encoding parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/436Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation using parallelised computational arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
    • H04N21/23406Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving management of server-side video buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/2365Multiplexing of several video streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • H04N21/2401Monitoring of the client buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本发明的用来编码多个运动图象信号的运动图象装置包括有:用来编码多个运动图象信号的多个编码部分,该编码部分提供有用予置的量化宽度量化多个运动图象信号的的多个量化子部分;和一用来控制同时由量化部分所使用的量化宽度的量化控制部分。

The moving image device for encoding a plurality of moving image signals of the present invention includes: a plurality of encoding sections for encoding a plurality of moving image signals, and the encoding section provides quantization of a plurality of moving images with a preset quantization width. a plurality of quantized sub-sections of the image signal; and a quantization control section for controlling the quantization width simultaneously used by the quantization section.

Description

对多个运动图象编码的运动图象编码装置和方法Motion picture coding apparatus and method for coding a plurality of moving pictures

技术领域technical field

本发明涉及用来以下述方式对多个运动图象编码的运动图象编码装置/方法,在这种方式中在压缩/编码多个运动图象和多路复用被编码的信号以按一固定位速率产生运动图象编码信号以后由一译码装置所重现的运动图象的质量有所提高。The present invention relates to a moving picture encoding apparatus/method for encoding a plurality of moving pictures in such a manner that between compressing/encoding a plurality of moving pictures and multiplexing the encoded signals to The quality of the motion picture reproduced by a decoding device after the motion picture coded signal is generated at a fixed bit rate is improved.

本发明还涉及用来多路复用在压缩/编码多个运动图象的处理之后所获得的运动图象编码信号或由离出一高精度运动图象所获得的运动图象段的运动图象多路复用装置/方法。The present invention also relates to a moving picture for multiplexing a moving picture encoding signal obtained after a process of compressing/encoding a plurality of moving pictures or a moving picture segment obtained by separating a high-precision moving picture Like multiplexing means/methods.

本发明进一步涉及一图象传送装置,这种装置压缩/编码多个运动图象并以有限的位速率传送所得结果的运动图象编码信号用于卫星通信或例如一LAN之类的网络通信的运动图象传送。The invention further relates to an image transmission device which compresses/encodes a plurality of moving images and transmits the resulting encoded moving image signals at a limited bit rate for use in satellite communications or network communications such as a LAN. Motion picture transmission.

背景技术Background technique

在用来压缩/编码和多路复用多个运动图象以便以一固定位速率传送作为位流的结果运动图象的这些方法的一种方法中,对于每一运动图象指定有一予置的固定位速率从而使表示在压缩/编码之后多个运动图象的位数总和构成了一固定位速率。在这样一种方法中当输入高复杂性的图象时,所指定的位速率是不适当的,其结果使图象质量大为降低。反之,当输入低复杂性的图象时,塞入(stuffing)增加,结果浪费了该位速率的使用。结果,出现了二个对立的问题。也就是,当试图有效地使用该位速率时,图象质量下降。反之,当试图使图象高质量肘,该位速率则不能有效地被使用,减小了可被多路复用的运动图象的数目。In one of these methods for compressing/encoding and multiplexing a plurality of moving pictures to transmit the resulting moving pictures as a bit stream at a fixed bit rate, a preset The fixed bit rate so that the sum of the number of bits representing a plurality of moving pictures after compression/encoding constitutes a fixed bit rate. When an image of high complexity is input in such a method, the specified bit rate is not appropriate, with the result that the image quality is greatly degraded. Conversely, when inputting low-complexity images, stuffing increases, resulting in wasted use of the bit rate. As a result, two opposing problems arise. That is, when trying to use the bit rate efficiently, the picture quality degrades. Conversely, when trying to make the picture high quality, the bit rate cannot be effectively used, reducing the number of moving pictures that can be multiplexed.

为了解决上述问题日本专利申请JP8-23540披露了一种编码控制装置,其中可改变在各个运动图象信号的编码时的位速率以改善由一译码装置重现的运动图象的质量。在这种编码控制装置中从运动图象编码信号重现的运动图象与原始图象相比较。当一重现运动图象与原始图象相比有较大失真时该位速率增加,而当一重现运动图象与原始图象相比有较小失真时该位速率减小从而使该运动图象的质量变的均匀并且因此改善了整个图象的质量。In order to solve the above problems, Japanese Patent Application JP8-23540 discloses an encoding control device in which the bit rate at the time of encoding of each moving image signal can be changed to improve the quality of moving images reproduced by a decoding means. The moving picture reproduced from the moving picture coded signal is compared with the original picture in this encoding control device. The bit rate is increased when a reproduced moving picture is more distorted than the original picture, and the bit rate is decreased when a reproduced moving picture is less distorted than the original picture so that the The quality of moving pictures becomes uniform and thus improves the quality of the entire picture.

但是,根据上述方法,失真量被确定之后该位速率被改变。因此,在由于情景变化等而使该运动图象突然变得复杂的情况下,在情景变化之后该运动图象的质量立即变低。However, according to the method described above, the bit rate is changed after the amount of distortion is determined. Therefore, in the case where the moving image suddenly becomes complicated due to a scene change or the like, the quality of the moving image becomes lower immediately after the scene change.

此外,在这种运动图象编码时位速率可变的常规装置中,当诸如位速率的变化与在予定的时间间隔内所产生的位数成正比的,一简单的多路复用操作被实施时译码装置的输入缓冲器可导致上溢或下溢。In addition, in such a conventional apparatus in which the bit rate is variable when encoding a moving picture, when a variation such as the bit rate is proportional to the number of bits generated within a predetermined time interval, a simple multiplexing operation is performed. The input buffer of the decoding device may cause overflow or underflow during implementation.

在日本专利申请JP-6-6777中披露了一种其中编码运动图象具有不同分辨率的编码装置。图37示出了这种编码装置的构成,通过一帧综合分块部分1101将高质量HD叭/运动图象分成若干块,并将所分成的这些块送到一块分配部分11020当一信号开关1107响应于一操作模式信号工作而转接到与该块分配部分1102相连的一端时,该块分配部分1102将自帧综合分块部分1101所接收的各个块分配到运动图象编码部分1103至11060该运动图象编码部分1103至1106对各个块进行编码并输出被编码的结果信号。当该信号开关1107被转接到另一端时,具有一正常质量的h/运动图象通过该信号开关1107被提供给运动图象编码部分1103。该运动图象编码部分1103对该R/运动图象编码并输出生成的编码信号。In Japanese Patent Application JP-6-6777 there is disclosed an encoding apparatus in which encoded motion pictures have different resolutions. Fig. 37 has shown the composition of this encoding device, divides high-quality HD speaker/moving image into several blocks by a frame synthesis block part 1101, and sends these blocks that are divided into a distribution part 11020 as a signal switch When 1107 is switched to an end connected to the block allocation section 1102 in response to an operation mode signal operation, the block allocation section 1102 distributes each block received from the frame synthesis block section 1101 to the moving image coding section 1103 to 11060 The moving image encoding sections 1103 to 1106 encode the respective blocks and output encoded resultant signals. When the signal switch 1107 is switched to the other end, the h/moving picture with a normal quality is supplied to the moving picture coding section 1103 through the signal switch 1107. The moving image encoding section 1103 encodes the R/moving image and outputs the resulting encoded signal.

因此,在这个常规装置中,低分辨率运动图象信号和高分辨率运动图象信号可以通过转换该信号开关1107来编码。Therefore, in this conventional apparatus, a low-resolution moving picture signal and a high-resolution moving picture signal can be encoded by switching the signal switch 1107.

但是,具有上述构成的常规装置没有给出对带有不同分辨率的运动图象同时地进行编码和多路复用的概念。因此这种装置不适用于对在广播等场合所使用的带有不同分辨率的运动图象进行同时传送。However, the conventional apparatus having the above constitution does not give the concept of simultaneously encoding and multiplexing moving pictures with different resolutions. Therefore, this device is not suitable for simultaneous transmission of moving pictures with different resolutions used in broadcasting and the like.

在一种为了传送而多路复用多个运动图象的常规技术中,对于每一编码装置指定一个固定的位速率通过每一编码装置以所指定的位速率对运动图象进行编码并且多路复用所得结果的运动图象编码信号。但是,这种技术具有如下的问题。运动图象的复杂性随时间而变化。因此,为了使该编码和传送的运动图象的图象质量的下降总是难以查觉需要设置各个位速率,这样即使当具有最复杂的运动图象被编码肘,所重现的运动图象的图象质量的下降也难以查觉。这就使传送效率较低。In a conventional technique of multiplexing a plurality of moving pictures for transmission, a fixed bit rate is specified for each encoding device and the moving pictures are encoded at the specified bit rate by each encoding device and multiple The resulting motion picture coded signal is multiplexed. However, this technique has the following problems. The complexity of motion pictures varies over time. Therefore, it is necessary to set each bit rate in order to make the degradation of the image quality of the encoded and transmitted moving images imperceptible, so that even when the most complicated moving images are encoded, the reproduced moving images The degradation of image quality is also imperceptible. This makes the transfer less efficient.

为了解决上述问题,提出了一种使位速率依从于运动图象编码的复杂性而变化的方法。根据这种方法对于简单的运动图象,该位速率降低以获得有效的传送而使用多通道的多通道通信可以是相同的传送位速率。例如,在WO95/32565中披露了这种方法。In order to solve the above-mentioned problems, a method of varying the bit rate in accordance with the complexity of moving image coding has been proposed. According to this method for simple motion pictures, the bit rate is reduced to obtain efficient transmission while multi-channel communication using multiple channels can be the same transmission bit rate. Such a method is disclosed, for example, in WO95/32565.

图38示出了实施上述方法的一种装置。参见图38,运动图象编码部分2101、2102和2103根据由一多路复用部分2104所规定的各自的目标速率对输入运动图象编码。并向多路复用部分2104输出结果编码信号。该多路复用部分2104将所接收的编码信号进行多路转换并向一传送路线输出被多路复用的信号。该多路复用部分2104还根据用于编码信号的传送速率来调整该目标速率并将新的目标速率提供给运动图象编码部分2101至2103。Fig. 38 shows an apparatus for carrying out the method described above. Referring to FIG. 38, moving picture encoding sections 2101, 2102, and 2103 encode input moving pictures according to respective target rates specified by a multiplexing section 2104. And output the resulting coded signal to the multiplexing section 2104. The multiplexing section 2104 multiplexes the received coded signal and outputs the multiplexed signal to a transmission line. The multiplexing section 2104 also adjusts the target rate according to the transmission rate used for encoding the signal and supplies the new target rate to the moving picture encoding sections 2101 to 2103.

该目标速率被设置得使该目标速率的总和等于该传送速率。更详细地说,运动图象编码部分2101至2103的每一个在每一固定期间将在该编码时的编码失真的量传送到该多路复用部分21040该多路复用部分2104根据从运动图象编码部分2101至2103的每一个所传送的编码失真的量来调整该目标速率,同时该目标速率的总和等于该传送速率。也就是,对于发送大的失真量的运动图象编码部分,该目标速率增加,而对于发送小的失真量的运动图象编码部分,该目标速率减小。在这种方式中,通过运动图象编码部分2101至2103所编码的运动图象被根据该编码的复杂性来提供所指定的位速率。The target rate is set such that the sum of the target rates is equal to the transfer rate. In more detail, each of the moving picture encoding sections 2101 to 2103 transmits the amount of encoding distortion at the time of encoding to the multiplexing section 21040 every fixed period. The target rate is adjusted by the amount of coding distortion transmitted by each of the image coding sections 2101 to 2103, and the sum of the target rates is equal to the transmission rate. That is, the target rate is increased for a moving image encoding section that transmits a large amount of distortion, and is decreased for a moving image encoding section that transmits a small amount of distortion. In this manner, moving pictures encoded by the moving picture encoding sections 2101 to 2103 are provided with a designated bit rate according to the complexity of the encoding.

但是,在上述的常规方法中该目标速率被校正从而在产生失真之后使失真量降低。因此,例如在情景变化得对编码是困难的情景之后,图象质量立即趋向于降低。另外,在这种常规方法中,该多路复用部分根据在该运动图象编码部分中的编码失真量计算将被分配给该运动图象编码部分的目标速率。因此当连接到该多路换复用部分的运动图象编码部分数量大时,所需指定该目标速率的计算量增加。另外如果这些运动图象编码部分是分散在一网络中和运动图象在该网络中被传送则需要对来自各个运动图象编码部分的编码失真的收集信息的处理和指定各个运动图象编码部分的目标速率。要实现这些实时处理是困难的。However, in the conventional method described above, the target rate is corrected so that the amount of distortion is reduced after the distortion is generated. Therefore, image quality tends to decrease immediately after, for example, a scene change to a scene that is difficult for encoding. Also, in this conventional method, the multiplexing section calculates a target rate to be allocated to the moving image encoding section based on the amount of encoding distortion in the moving image encoding section. Therefore, when the number of moving picture coding sections connected to the multiplexing section is large, the amount of calculation required to specify the target rate increases. In addition, if these moving image encoding sections are dispersed in a network and moving images are transmitted in the network, processing of information collected from encoding distortion of each moving image encoding section and designation of each moving image encoding section are required. target rate. It is difficult to realize these real-time processing.

发明内容Contents of the invention

本发明的用来对多个运动图象信号编码的运动图象编码装置包括:用来编码多个运动图象信号的多个编码部分该编码部分提供有用来用予置的量化宽度来量化多个运动图象信号的多个量化子部分;和用来同时地控制由该量化子部分使用的该量化宽度的量化控制部分。A moving picture encoding apparatus for encoding a plurality of moving picture signals of the present invention includes: a plurality of encoding sections for encoding a plurality of moving picture signals. a plurality of quantization subsections of a moving image signal; and a quantization control section for simultaneously controlling the quantization width used by the quantization subsections.

利用上述构成,可使所输出运动图象的质量均匀。在本发明的一实施例中由该量化子部分所使用的量化宽度是相同的。With the above constitution, the quality of the output moving image can be made uniform. In one embodiment of the invention the quantization widths used by the quantization subsections are the same.

在本发明的另一个实施例中该运动图象编码装置进一步包括有用来暂时地累加从多个编码部分输出的多个运动图象编码信号的多个累加部分,其中该量化控制部分根据在该累加部分所累加的多个运动图象编码信号的位数之和来确定由该量化子部分所使用的量化宽度。In another embodiment of the present invention, the moving image coding apparatus further includes a plurality of accumulating sections for temporarily accumulating a plurality of moving image encoded signals output from a plurality of encoding sections, wherein the quantization control section is based on the The sum of the number of bits of a plurality of moving image coding signals accumulated by the accumulation section determines the quantization width used by the quantization subsection.

在本发明的再一个实施例中该运动图象编码装置进一步包括用来将一输入运动图象信号分离成多个运动图象信号的配置在多个编码部分上游的屏幕分离部分。In still another embodiment of the present invention, the moving picture coding apparatus further includes a screen separation section arranged upstream of the plurality of coding sections for separating an input moving picture signal into a plurality of moving picture signals.

根据本发明的另一方面提供有一用来多路复用由编码多个运动图象信号所得到的多个运动图象编码信号的运动图象多路复用装置。该装置包括:用来暂时地累加多个运动图象编码信号的多个累加部分;用来多路复用在该多个累加部分中所累加的多个运动图象编码信号并以固定位速率输出该多路复用信号的多路复用部分;用来计算从从多个运动图象编码信号的每一个的特定的位被输入到一译码装置直到该特定位由该译码装置译码为止的一时间周期的译码延迟时间计算部分;用来计算包括在多个累加部分中所累加的多个运动图象编码信号的每一个的特定位的一帧的位数的帧位数计算部分;和用来根据该译码延迟时间计算部分和帧位数计算部分的计算结果控制是从多个累加部分输入到多路复用部分的多个运动图象编码信号的位数的多个第一输入位数的多路复用控制部分。According to another aspect of the present invention, there is provided a moving picture multiplexing apparatus for multiplexing a plurality of moving picture encoded signals obtained by encoding a plurality of moving picture signals. The apparatus includes: a plurality of accumulation sections for temporarily accumulating a plurality of moving image coded signals; and for multiplexing the plurality of moving image coding signals accumulated in the plurality of accumulation sections and performing the operation at a fixed bit rate. Outputting the multiplexed portion of the multiplexed signal; used to calculate a specific bit from each of a plurality of moving image coded signals is input to a decoding device until the specific bit is decoded by the decoding device The decoding delay time calculation part of one time period until the code is coded; the frame number of bits for calculating the number of bits of one frame of a specific bit of each of a plurality of moving image coding signals accumulated in a plurality of accumulation parts Calculating section; and being used for controlling the number of bits of a plurality of moving image coded signals input from a plurality of accumulating sections to the multiplexing section according to the calculation result of the decoding delay time calculating section and the frame bit calculating section The multiplexing control part of the first input bit.

利用上述构成,所实施的多路复用是考虑到在该译码装置中的译码延迟时间。所以,在由该译码装置进行运动图象编码信号的译码时可避免上溢出和下溢出的出现。With the above constitution, multiplexing is carried out in consideration of the decoding delay time in the decoding means. Therefore, the occurrence of overflow and underflow can be avoided when decoding a moving image coded signal by the decoding apparatus.

在一实施例中,该多路复用控制部分包括:第一参数产生子部分,用来确定多个第一参数,其中该多个第一参数中的每一个参数是由帧位数计算部分所计算的位数与由译码延迟时间计算部分所计算的时间之比;第二参数产生子部分,用来确定第二参数,该第二参数是多个第一参数之和;第三参数产生子部分,用来确定多个第三参数,其中对于在多个累加部分中所累加的多个运动图象编码信号,这些多个第三参数中的每一个是多个第一参数中的每一个与的所述第二参数之比;和根据多个第三参数用来计算多个第一输入位数的多路复用位数计算部分。In one embodiment, the multiplexing control part includes: a first parameter generation subsection, used to determine a plurality of first parameters, wherein each parameter in the plurality of first parameters is determined by the frame number calculation part The ratio of the calculated bit number to the time calculated by the decoding delay time calculation part; the second parameter generation subsection is used to determine the second parameter, which is the sum of a plurality of first parameters; the third parameter generating a subsection for determining a plurality of third parameters, wherein each of the plurality of third parameters is one of the plurality of first parameters for a plurality of moving image encoded signals accumulated in a plurality of accumulation sections a ratio of each to said second parameter; and a multiplexing bit calculation section for calculating a plurality of first input bit numbers according to a plurality of third parameters.

在本发明的一实施例中该运动图象多路复用装置进一步包括:用来计算在多个累加部分所累加的多个运动图象编码信号的位数的累加位数计算部分;用来在多个运动图象编码信号的每一个的特定位被输入到该译码装置之前立即计算译码装置的输入缓冲器的未占用容量的未占用容量计算部分,其中该多路复用位数计算部分对于多个第二输入位数的每一个设置在(1)根据第三参数所确定的第一输入位数(2)由该累加位数计算部分所计算的运动图象编码信号的位数和(3)由该未占用容量计算部分所计算的译码装置的输入缓冲器的未占用容量之中的一最小值,并且该多路复用位数计算部分控制根据多个第二输入位数从该累加部分送到该多路复用部分的该运动图象编码信号的位数。In one embodiment of the present invention, the moving image multiplexing device further includes: an accumulation bit calculation section for calculating the number of bits of the plurality of moving image encoding signals accumulated in the plurality of accumulation sections; An unoccupied capacity calculation section of calculating an unoccupied capacity of an input buffer of the decoding means immediately before specific bits of each of a plurality of moving image coded signals are input to the decoding means, wherein the multiplexed number of bits The calculation section sets, for each of the plurality of second input bit numbers, at (1) the first input bit number determined based on the third parameter (2) the bit number of the moving image coded signal calculated by the accumulated number of bit number calculation section. and (3) a minimum value among the unoccupied capacities of the input buffers of the decoding device calculated by the unoccupied capacity calculation section, and the multiplexing bit calculation section controls The number of bits is the number of bits of the motion picture coded signal sent from the accumulating section to the multiplexing section.

在本发明的另一实施例中当由该多路复用位数计算部分所计算的多个第二输入位数与相应的第一输入位数不同时,该多路复用位数计算部分增加该第二输入位数。In another embodiment of the present invention, when the plurality of second input bit numbers calculated by the multiplex bit number calculation section is different from the corresponding first input bit number, the multiplex bit number calculation section Increment the second input bit.

根据本发明的再一个方面提供了一种用来同时编码多个运动图象信号的运动图象编码方法。该方法包括用相同的量化宽度编码所有的多个运动图象信号。According to still another aspect of the present invention, there is provided a moving picture coding method for simultaneously coding a plurality of moving picture signals. The method includes encoding all of the plurality of moving image signals with the same quantization width.

另外,本发明的用来同时编码多个运动图象信号的运动图象编码方法包括用根据由编码多个运动图象信号所产生的多个运动图象编码信号的位数之和与在暂时被累加之后输出的多个运动图象编码信号的输出位数之间的差值所得到的量化宽度编码多个运动图象信号。In addition, the moving picture coding method of the present invention for simultaneously coding a plurality of moving picture signals includes using the sum of the bits of a plurality of moving picture encoding signals generated by encoding a plurality of moving picture signals and the temporal The quantization width obtained by accumulating the difference between the output bits of the plurality of encoded moving image signals to be outputted encodes the plurality of moving image signals.

根据本发明的再一个方面提供有一种用来多路复用在被多个累加部分累加之后的多个运动图象编码信号的运动图象多路复用方法。该方法包括步骤:(1)计算从当多个运动图象编码信号的每一个的特定被输入到译码装置直到与该特定位被译码为止的时间周期;(2)计算包括在该多个累加部分所累加的多个运动图象编码信号的每一个的特定位的一帧的位数;(3)根据从步骤(1)和(2)的计算结果从多个运动图象编码信号中确定被多路复用的多个多路复用位数。According to still another aspect of the present invention, there is provided a moving picture multiplexing method for multiplexing a plurality of moving picture coded signals after being accumulated by a plurality of accumulation sections. The method comprises the steps of: (1) calculating the time period from when each specific bit of a plurality of moving image coded signals is input to the decoding device until the specific bit is decoded; (2) calculating the time period included in the multiple The number of digits of a frame of a specific bit of each of a plurality of moving image coded signals accumulated by the accumulation parts; (3) from the plurality of moving image coded signals according to the calculation results from steps (1) and (2) The number of multiplexing bits to be multiplexed is determined in .

在本发明的一个实施例中,步骤(3)包括:(4)确定多个第一参数,多个第一参数的每一个是在步骤(2)中所得的位数与在步骤(1)中所得的时间的比值;(5)确定是多个第一参数之和的一第二参数;(6)确定多个第三参数,多个第三参数的每一个是多个第一参数的每一个与用于多个运动图象编码信号的第二参数的比值;和(7)根据多个第三参数确定多个多路复用位数。In one embodiment of the present invention, step (3) comprises: (4) determine a plurality of first parameters, each of a plurality of first parameters is the number of digits obtained in step (2) and the number obtained in step (1) (5) determine a second parameter that is the sum of a plurality of first parameters; (6) determine a plurality of third parameters, each of a plurality of third parameters is a plurality of first parameters A ratio of each to the second parameter for the plurality of moving image coded signals; and (7) determining a plurality of multiplexing bits based on the plurality of third parameters.

在本发明的再一个实施例中,用于多路复用多个运动图象编码信号的每一个的输入多路复用位数被置为在(1)根据第三参数所确定的多路复用位数(2)在该累加部分所累加的该运动图象编码信号的位数和(3)该译码装置的输入缓冲器的一未占用容量之中的最小值,并且被多路复用的位数的每一个是使用该输入多路复用位数所控制的。In yet another embodiment of the present invention, the number of input multiplexing bits for multiplexing each of a plurality of motion picture coded signals is set to be multiplexed at (1) determined according to the third parameter The minimum value among the number of digits of the moving image coded signal accumulated in the accumulation part and (3) an unoccupied capacity of the input buffer of the decoding device by the multiplexing number of bits (2), and is multiplexed Each of the multiplexed bits is controlled using the input multiplexed bit.

在本发明的再一个实施例中,当至少一个输入多路复用位数与相应的多路复用位数不同时,该输入多路复用位数被增加。In yet another embodiment of the present invention, when at least one input multiplexing bit is different from the corresponding multiplexing bit, the input multiplexing bit is incremented.

另外,在本发明的用于多路复用多个运动图象编码信号的该运动图象多路复用方法中,相应于多个运动图象编码信号的多个多路复用位数被予置为零。该方法包括有步骤:(1)计算包括有多个运动图象编码信号的每一个的一特定位的一帧的帧位数;(2)计算直至多个运动图象编码信号的每一个均被译码为止的一时间周期;(3)选择其在步骤(2)中所得的时间周期短于一予置时间值的运动图象编码信号;(4)根据在步骤(3)中所选择的该运动图象编码信号的帧位数来确定多个主多路复用位数;(5)计算多个主多路复用位数的和;(6)将多个主多路复用位数附加到多个多路复用位数;和(7)更新予置的时间值,重复步骤(1)至(7),并且如果该多个主多路复用位数是大于一予置的位数,多个次多路复用位数被确定并附加到多个多路复用位数,以多路复用多个多路复用位数的运动图象编码信号。Also, in the moving picture multiplexing method for multiplexing a plurality of moving picture coded signals of the present invention, a plurality of multiplexing bit numbers corresponding to a plurality of moving picture coded signals are Preset to zero. The method includes the steps of: (1) calculating the number of frame bits of a frame comprising a specific bit of each of a plurality of moving image coding signals; (2) calculating until each of the plurality of moving image coding signals A time period until it is decoded; (3) select the moving image coded signal whose time period obtained in step (2) is shorter than a preset time value; (4) according to the time period selected in step (3) (5) calculate the sum of multiple main multiplexing bits; (6) combine multiple main multiplexing and (7) update the preset time value, repeating steps (1) to (7), and if the plurality of main multiplexing bits is greater than one The number of bits set, a plurality of sub-multiplexing bits are determined and added to the plurality of multiplexing bits to multiplex the motion picture coded signal of the plurality of multiplexing bits.

因此,因为是在较四被译码的该帧的编码信号被较早的多路复用的方式下多路复用该运动图象编码信号的,所以在通过译码装置进行运动图象编码信号的译码时防止了上溢出或下溢出的出现。Therefore, since the encoded moving image signal is multiplexed earlier than the encoded signal of the decoded frame, the encoding of the moving image by the decoding means The decoding of the signal prevents the occurrence of overflow or underflow.

另外,在本发明的用来多路复用多个运动图象编码信号的该运动图象多路复用方法包括有步骤:根据未被传送到译码装置的多个运动图象编码信号的帧的位数确定为了防止译码装置的多个输入缓冲器的下溢出所需的多个最小传送数和确定直至多个运动图象编码信号的帧均被译码为止所需的传送数;根据多个最小传送数确定多个传送位数较低限;和在多路复用多个运动图象编码信号之前多路复用多个传送位数的较低限。In addition, the moving picture multiplexing method for multiplexing a plurality of moving picture coded signals in the present invention includes the step of: The number of bits of the frame determines the number of minimum transfers required to prevent underflow of a plurality of input buffers of the decoding device and determines the number of transfers required until the frames of the plurality of motion image coded signals are decoded; determining a plurality of lower limits of the number of transfer bits based on the plurality of minimum transfer numbers; and multiplexing the plurality of lower limits of the number of transfer bits before multiplexing the plurality of moving image coded signals.

另外,本发明的用来编码多个运动图象信号的运动图象编码装置包括:用来编码多个运动图象信号的多个编码部分,该多个编码部分的每一个包括有一用来用一予置参数来量化该运动图象信号的量化子部分和用来用一予置的塞入量来塞入被人量化的运动图象信号的塞入子部分;用来控制由该量化子部分同时地使用的参数的量化控制部分;用来暂时地累加从该多个编码部分所输出的多个运动图象编码信号的多个累加部分;用来多路复用在该多个累加部分所累加的多个运动图象编码信号并以一固定位速率输出多路复用的信号的多路复用部分;用来控制由该塞入部分所使用的塞入量的塞入控制部分;和用来在一段予置时间周期之后当对于该予置时间周期该多个运动图象编码信号未输入到输入缓冲器时计算该译码装置的多个输入缓冲器的每一个的未占用容量的一虚拟未占用容量计算部分,其中该量化控制部分根据多个运动图象编码信号的位数之和确定由该量化子部分所使用的参数,和该塞入控制部分根据在多个累加部分中所累加的运动图象编码信号的位数之和,该固定位速率、和在该累加部分所累加的每个运动图象编码信号的位数和通过虚拟未占用容量计算部分所获得的输入缓冲器的未占用容量之间的差值来控制每个塞入部分。In addition, the moving picture coding apparatus for coding a plurality of moving picture signals of the present invention includes: a plurality of coding sections for coding a plurality of moving picture signals, each of which includes a A preset parameter quantizes the quantization sub-section of the moving picture signal and is used to stuff the stuffing sub-section of the quantized moving picture signal with a preset stuffing amount; A quantization control section of parameters used partially simultaneously; a plurality of accumulation sections for temporarily accumulating a plurality of moving image encoded signals output from the plurality of encoding sections; for multiplexing in the plurality of accumulation sections a multiplexing section that accumulates a plurality of moving image coded signals and outputs a multiplexed signal at a fixed bit rate; a stuffing control section for controlling a stuffing amount used by the stuffing section; and for calculating an unoccupied capacity of each of the plurality of input buffers of the decoding device after a predetermined time period when the plurality of moving image coded signals are not input to the input buffer for the predetermined time period A virtual unoccupied capacity calculation section, wherein the quantization control section determines the parameter used by the quantization subsection according to the sum of the number of bits of a plurality of moving image coding signals, and the stuffing control section determines the parameter used by the quantization subsection according to the sum of the bits in the plurality of accumulation sections The sum of the number of bits of the moving image coding signal accumulated in the fixed bit rate, and the number of bits of each moving image coding signal accumulated in the accumulation section and the input obtained by the virtual unoccupied capacity calculation section The difference between the unoccupied capacity of the buffer to control each stuffing portion.

另外,本发明的运动图象编码方法根据由编码多个运动图象信号所产生的多个运动图象编码信号的位数之和与在暂时累加之后多个运动图象编码信号的每一个所输出的一输出位数之间的差值利用予置的每个量化宽度来同时地编码多个运动图象信号,其中计算暂时地累加的该运动图象编码信号的多个编码缓冲器的占用,计算在一段予置时间之后当对该予置时间周期该运动图象编码信号未输入到输入缓冲器时译码装置的多个输入缓冲器的每一个的未占用容量;和对于通过从小于一予置值的被编码的缓冲器占用中减去该输入缓冲器的未占用容量而得到一缓冲器的差值的每个运动图象编码信号,通过将不影响编码的分布的大于该予置值的缓冲器差值附加到其中该缓冲器差值小于该予置值的运动图象编码信号所得的一位数的信号来实现塞入。In addition, the moving picture encoding method of the present invention is based on the sum of the bits of the plurality of moving picture encoding signals generated by encoding a plurality of moving picture signals and the sum of the bits of each of the plurality of moving image encoding signals after temporary accumulation. A difference between an output number of bits output is used to simultaneously encode a plurality of moving image signals using each preset quantization width, wherein occupancy of a plurality of encoding buffers of the moving image encoding signals temporarily accumulated is calculated , calculating the unoccupied capacity of each of a plurality of input buffers of the decoding device when the motion picture coded signal is not input to the input buffer for the preset time period after a preset time period; Subtracting the unoccupied capacity of the input buffer from the coded buffer occupancy of a preset value to obtain a buffer difference for each moving image coded signal, by applying a value larger than the preset value that does not affect the coded distribution Stuffing is performed by adding a buffer difference value of a set value to a one-digit signal obtained from a motion picture encoded signal in which the buffer difference value is smaller than the preset value.

在一实施例中,该予置的值为0。In one embodiment, the preset value is 0.

另外,本发明的用来编码多个运动图象信号的运动图象编码装置包括:用来编码多个运动图象信号的多个编码部分,多个编码部分的每一个包括一用来用一予置量化宽度量化该运动图象信号的量化子部分;一用来控制由该量化子部分同时地使用的参数的量化控制部分;用来暂时累加从多个编码部分输出的多个运动图象编码信号的多个累加部分;一用来多路复用在多个累加部分中所累加的多个运动图象编码信号并以一固定位速率输出该多路复用信号的多路复用部分;一用来在一段所予置时间周期之后当多个运动图象编码信号对于该予置时间未输入到该输入缓冲器内时计算译码装置的多个输入缓冲器的每一个的未占用容量的虚拟未占用容量计算部分,其中该量化控制部分根据在多个累加部分所累加的运动图象编码信号的位数之和、固定位速率、和在该累加部分所累加的运动图象编码信号的位数和由该虚拟占用容量计算部分所得到的输入缓冲器的未占用容量之间的差值来确定该量化子部分所使用的每个参数。In addition, the moving picture encoding apparatus for encoding a plurality of moving picture signals of the present invention includes: a plurality of encoding sections for encoding a plurality of moving image signals, each of the plurality of encoding sections includes a Preset quantization width quantization of the quantization subsection of the moving image signal; a quantization control section for controlling parameters simultaneously used by the quantization subsection; used for temporarily accumulating a plurality of moving images outputted from a plurality of encoding sections A plurality of accumulation sections of coded signals; a multiplexing section for multiplexing a plurality of motion image coded signals accumulated in the plurality of accumulation sections and outputting the multiplexed signal at a fixed bit rate ; One is used to calculate the non-occupancy of each of a plurality of input buffers of the decoding device when a plurality of moving image coded signals are not input into the input buffer for the preset time period after a predetermined period of time A virtual unoccupied capacity calculation section of capacity, wherein the quantization control section is based on the sum of the number of bits of the moving picture coded signal accumulated in a plurality of accumulation sections, the fixed bit rate, and the moving picture encoding accumulated in the accumulation section Each parameter used by the quantization subsection is determined by the difference between the number of bits of the signal and the unoccupied capacity of the input buffer obtained by the virtual occupied capacity calculation section.

另外,本发明的该运动图象编码方法根据由编码多个运动图象信号所产生的多个运动图象的位数之和在暂时累加之后输出的多个运动图象编码信号的每一个的输出位数之间的差值同时地使用每个予置的量化宽度来编码多个运动图象信号。该方法包括有步骤:计算暂时累加的运动图象编码信号的多个编码缓冲器的占用,计算在一段予置时间周期之后当对于该予置时间周期运动图象编码信号未被输入到输入缓冲器时译码装置的多个输入缓冲器的每一个的未占用容量;和编码该运动图象编码信号的每一个,这里从该编码缓冲器的占用减去该输入缓冲器的未占用容量所得到的一缓冲器差值是小于使用比相应的予置量化宽度要小的量化宽度的予置值。In addition, the moving image encoding method of the present invention is based on the sum of the bit numbers of the plurality of moving images generated by encoding the plurality of moving image signals and outputting each of the plurality of moving image encoding signals after temporary accumulation. The difference between the output bits simultaneously encodes a plurality of moving image signals using each preset quantization width. The method includes the steps of calculating occupancy of a plurality of encoding buffers of temporally accumulated moving image encoding signals, calculating when the moving image encoding signals are not input to the input buffer after a preset time period for the preset time period each of the unoccupied capacity of a plurality of input buffers of the decoder decoding device; A buffer difference is obtained that is less than the preset value using a quantization width smaller than the corresponding preset quantization width.

因此,即使由于一图象的一相应部分极为复杂而产生的运动图象信号的位数突然增加时,也能避免通过该译码装置在该运动图象编码信号译码时在该输入缓冲器中出现的下溢。Therefore, even when the number of bits of the moving image signal suddenly increases due to a corresponding portion of an image being extremely complex, it is possible to avoid the occurrence of a problem in the input buffer when the moving image coded signal is decoded by the decoding means. Underflow occurs in .

在本发明的一实施例中,该予置值为0。In an embodiment of the present invention, the preset value is 0.

另外,本发明的该运动图象编码方法根据由编码多个运动图象信号所产生的多个运动图象的位数之和在暂时累加之后输出的多个运动图象编码信号的每一个的输出位数之间的差值同时地使用每个予置的量化宽度来编码多个运动图象信号。该方法包括有步骤:计算暂时累加的运动图象编码信号的多个编码缓冲器的占用,计算在一段予置时间周期之后当于该予置时间周期运动图象编码信号未被输入到输入缓冲器时译码装置的多个输入缓冲器的每一个的未占用容量;和编码该运动图象编码信号的每一个,这里从该编码缓冲器的占用减去该输入缓冲器的未占用容量所得到的一缓冲器的差值是大于使用比相应的予置量化宽度要大的一量化宽度的一予置值。In addition, the moving image encoding method of the present invention is based on the sum of the bit numbers of the plurality of moving images generated by encoding the plurality of moving image signals and outputting each of the plurality of moving image encoding signals after temporary accumulation. The difference between the output bits simultaneously encodes a plurality of moving image signals using each preset quantization width. The method includes the steps of: calculating occupancy of a plurality of encoding buffers of temporally accumulated motion picture encoding signals, calculating after a preset time period when the motion picture encoding signals are not input to the input buffer during the preset time period each of the unoccupied capacity of a plurality of input buffers of the decoder decoding device; A buffer difference is obtained that is greater than a preset value using a quantization width that is larger than the corresponding preset quantization width.

在本发明的一实施例中,该予置值为0。In an embodiment of the present invention, the preset value is 0.

另外,本发明的该运动图象编码方法根据由编码多个运动图象信号所产生的多个运动图象的位数之和在暂时累加之后输出的多个运动图象编码信号的每一个的输出位数之间的差值同时地使用每个予置的量化宽度来编码多个运动图象信号,包括有步骤:计算暂时累加的运动图象编码信号的多个编码缓冲器的占用,计算在一段予置时间周期之后与对于该予置时间周期运动图象编码信号未被输入到输入缓冲器时译码装置的多个输入缓冲器的每一个的未占用容量;和计算从用于每一个运动图象编码信号的编码缓冲器的占用中减去该输入缓冲器的未占用容量所得到一缓冲器差值,并向该位数之和附加一大于一予置值的该缓冲器差值之和。In addition, the moving image encoding method of the present invention is based on the sum of the bit numbers of the plurality of moving images generated by encoding the plurality of moving image signals and outputting each of the plurality of moving image encoding signals after temporary accumulation. The difference between the output bits simultaneously uses each preset quantization width to encode a plurality of moving image signals, comprising the steps of: calculating the occupancy of a plurality of encoding buffers of temporarily accumulated moving image encoding signals, calculating The unoccupied capacity of each of the plurality of input buffers of the decoding device after a predetermined time period and when the motion picture coded signal is not input to the input buffer for the predetermined time period; A buffer difference obtained by subtracting the unoccupied capacity of the input buffer from the occupation of the coding buffer of a moving image coding signal, and adding a difference of the buffer greater than a preset value to the sum of the bits sum of values.

在本发明的一实施例中,该予置值为0。In an embodiment of the present invention, the preset value is 0.

根据本发明的再一个方面,提供了用来编码多个运动图象信号和多路复用编码信号的运动图象编码装置和多路复用装置。该装置包括:用来复用多个输入运动图象的一目标的运动图象开关部分;用来编码从该运动图象开关部分输出的多个输入运动图象的多个编码部分;用来多路复用从多个编码部分输出的编码信号的一多路复用部分;和用来转换该运动图象开关部分的状态、该编码部分的编码模式和该多路复用部分的多路复用模式的控制部分;其中该控制部分根据该运动图象开关部分的转换状态来转换该编码部分的编码模式和该多路复用部分的多路复用模式。According to still another aspect of the present invention, there are provided a moving picture coding device and a multiplexing device for coding a plurality of moving picture signals and multiplexing the coded signals. The device includes: a moving image switch section for multiplexing a target of a plurality of input moving images; a plurality of coding sections for encoding a plurality of input moving images output from the moving image switching section; a multiplexing section that multiplexes coded signals output from a plurality of coding sections; A control section for multiplexing mode; wherein the control section switches the encoding mode of the encoding section and the multiplexing mode of the multiplexing section according to the switching state of the moving picture switching section.

利用上述构成,具有不同精度的多个运动图象信号可被同时地编码、多路复用和输出。这时,各个精度电平的多个输入运动图象信号的结合不受限制。该同时编码和多路复用还可应用于所有的输入运动图象信号是相互独立的或所有输入运动图象信号是由屏幕分割所产生的情况中。另外,即使当该多路复用之后该输出位速率是固定的,它也可能同时编码、多路复用和输出多个单独的运动图象信号和通过屏幕分割从一运动图象信号产生的多个运动图象信号。With the above constitution, a plurality of moving picture signals having different precisions can be encoded, multiplexed and outputted simultaneously. At this time, the combination of a plurality of input moving picture signals of respective precision levels is not limited. This simultaneous encoding and multiplexing is also applicable in the case where all input moving picture signals are independent of each other or all input moving picture signals are generated by screen division. In addition, even when the output bit rate is fixed after the multiplexing, it is possible to simultaneously encode, multiplex and output a plurality of individual moving picture signals and Multiple motion picture signals.

在本发明的一实施例中,该控制部分包括:一用来转换该运动图象开关部分转换状态的开关控制子部分;用来转换该编码部分的编码模式的一编码控制子部分;和用来转换该多路复用部分的多路复用模式的一多路复用控制子部分,和该编码控制子部分根据该运动图象开关部分的转换状态来转换该编码模式,该多路复用控制子部分根据该运动图象开关部分的状态来转换该多路复用模式。In one embodiment of the present invention, the control section includes: a switch control subsection for switching the switching state of the moving image switch section; a coding control subsection for switching the coding mode of the coding section; and A multiplexing control subsection to switch the multiplexing mode of the multiplexing section, and the encoding control subsection switches the encoding mode according to the switching state of the moving picture switch section, the multiplexing The multiplexing mode is switched by the control subsection according to the state of the motion picture switching section.

在本发明的再一个实施例中,该运动图象编码和多路复用装置进一步包括在该运动图象开关部分的上游的一屏幕分割部分。In still another embodiment of the present invention, the moving picture encoding and multiplexing apparatus further includes a screen dividing section upstream of the moving picture switching section.

在本发明的再一个实施例中,该运动图象编码和多路复用装置进一步包括在该运动图象开关部分的上游的的一运动图象时分部分。In still another embodiment of the present invention, the moving picture encoding and multiplexing apparatus further includes a moving picture time division section upstream of the moving picture switching section.

在本发明的再一实施例中,该运动图象编码和多路复用装置进一步包括用来暂时累加从该编码部分输出的运动图象编码信号的累加部分,其中该编码控制部分根据在该累加部分所累加的该运动图象编码信号的位数之和来检测用来控制每一编码部分的一参数。In yet another embodiment of the present invention, the motion picture coding and multiplexing apparatus further includes an accumulating section for temporarily accumulating the motion picture coded signal output from the coding section, wherein the coding control section according to the A parameter for controlling each encoding section is detected by the sum of the bits of the motion picture encoded signal accumulated by the accumulating section.

在本发明的再一实施例中,该多路复用部分包括:用来多路复用运动图象编码信号并输出运动图象编码信号的一运动图象多路复用子部分;用来多路复用输入到该多路复用部分的多个输入信号和从该运动图象多路复用子部分输出的输出信号的一通路多路复用子部分;和用来转换输入到在该运动图象多路复用子部分和通路多路复用子部分之间的该多路复用部分的该运动图象编码信号的目标的一开关子部分。In yet another embodiment of the present invention, the multiplexing section includes: a motion picture multiplexing subsection for multiplexing the motion picture coded signal and outputting the motion picture coded signal; Multiplexing a plurality of input signals input to the multiplexing section and a path multiplexing subsection of output signals output from the moving image multiplexing subsection; A switching subsection of the object of the moving picture coded signal of the multiplexing section between the moving picture multiplexing subsection and the path multiplexing subsection.

根据本发明的再一个方面,提供了一图象传送装置。该装置包括有多个图象编码部分和一传送处理部分,其中该传送处理部分多路复用在每一多路复用定时通过该图象处理部分规定的编码数据,将该编码数据传送到一予置的路线,并向图象编码部分发送根据在该图象编码部分中的编码数据量所计算的该编码数据量并且可用于计算直到该编码数据被传送到一译码装置为止的一延迟量,和该多个图象编码部分根据从该传送处理部分所发送的多路复用信息确定在一图象编码处理中在量化中所使用的量化宽度,并且在每一多路复用定时向该传送处理部分传送该编码数据以规定该编码数据。According to still another aspect of the present invention, an image transmission device is provided. This apparatus includes a plurality of image encoding sections and a transmission processing section, wherein the transmission processing section multiplexes the encoded data specified by the image processing section at each multiplexing timing, and transmits the encoded data to a preset route, and send to the image encoding section the encoded data amount calculated based on the encoded data amount in the image encoding section and can be used to calculate a value until the encoded data is transmitted to a decoding device The amount of delay, and the plurality of image encoding sections determine the quantization width used in quantization in an image encoding process based on the multiplexing information sent from the transmission processing section, and in each multiplexing The coded data is transmitted to the transmission processing section at timing to specify the coded data.

在本发明的一实施例中,该传送处理部分包括一传送缓冲器,并且该传送处理部分每个多路复用定时接收在该传送缓冲器中由该图象编码部分所规定的编码数据,并按接收进的该编码数据的顺序以一予置的传送速率输出该编码数据,以及输出一在该传送缓冲器中作为多路复用信息的该编码数据的占用。In an embodiment of the present invention, the transmission processing section includes a transmission buffer, and the transmission processing section receives encoded data specified by the image encoding section in the transmission buffer every multiplexing timing, and outputting the encoded data at a preset transmission rate in the order in which the encoded data is received, and outputting an occupancy of the encoded data in the transmission buffer as multiplexed information.

在本发明的一实施例中,每一图象编码部分包括:一量化宽度确定子部分;和一用来编码由该量化宽度确定子部分所规定的量化宽度所量化的该图象的图象的基本编码处理子部分,该量化宽度确定子部分根据该多路复用信息计算通过该传送处理部分从每一图象编码部分接收所传送的编码数据的多个译码装置的每一个中的一缓冲器的占用,并根据所计算的在该译码装置中的缓冲器的占用和未被传送的编码数据的量来发送该量化宽度。In one embodiment of the present invention, each image encoding section includes: a quantization width determination subsection; and an image for encoding the image quantized by the quantization width specified by the quantization width determination subsection The basic encoding processing subsection of the quantization width determination subsection calculates, based on the multiplexing information, the number of each of the plurality of decoding devices that receive the transmitted encoded data from each image encoding section through the transmission processing section. a buffer occupancy, and transmit the quantization width based on the calculated buffer occupancy in the decoding device and the amount of coded data not transmitted.

在本发明的另一实施例中,每一图象编码部分进一步包括一用来暂时存贮该编码数据的编码数据存贮子部分,并且该编码数据存贮子部分暂时地存贮每一传送定时在该编码数据之中的未被传送到该传送处理部分的未被传送的数据,并且利用作为上限的由每个图象编码部分所予置的一值或通过从由该接收端所予示的该译码装置的一缓冲器尺寸中减去根据该多路复用信息所计算的在该译码装置中的缓冲器的占用所得到的值将该编码数据传送到该传送处理部分。In another embodiment of the present invention, each image coding section further includes a coded data storage subsection for temporarily storing the coded data, and the coded data storage subsection temporarily stores each transmitted Timing the non-transmitted data which is not transmitted to the transmission processing section among the encoded data, and using a value preset by each image encoding section as an upper limit or by The coded data is transferred to the transfer processing section from a value obtained by subtracting the occupancy of the buffer in the decoding device calculated based on the multiplexing information from a buffer size of the decoding device shown.

另外,本发明的该图象传送装置包括一用来接收来自多个图象编码部分的编码数据的传送处理部分,其中该传送处理部分包括一传送缓冲器,在每一多路复用定时时在该传送缓冲器中接收由该图象编码部分所规定的编码数据,并且以所接收进的该编码数据的次序以一予置的传送速率输出该编码数据以及输出作为多路复用信息的在该传送缓冲器中的该编码数据的占用。In addition, the image transmission apparatus of the present invention includes a transmission processing section for receiving encoded data from a plurality of image encoding sections, wherein the transmission processing section includes a transmission buffer, and at each multiplexing timing The coded data specified by the image coding section is received in the transfer buffer, and the coded data is output at a preset transfer rate in the order in which the coded data is received and output as multiplexed information occupancy of the encoded data in the transmit buffer.

另外,本发明的该图象编码装置包括一用来编码利用一由量化宽度确定部分所规定的一量化宽度所量化的图象的图象的一量化宽度确定部分和一基本编码处理部分,其中该量化宽度确定部分根据可使用直到编码数据被传送到一虚拟译码装置为止所得到的一延迟量、根据该多路复用信息所计算的在该虚拟译码装置中的一缓冲器的占用、和未被传送的编码数据的量的计算的多路复用信号来确定该量化宽度。In addition, the image encoding apparatus of the present invention includes a quantization width determining section and a basic encoding processing section for encoding an image of an image quantized using a quantization width specified by the quantization width determining section, wherein The quantization width determining section is based on an amount of delay available until encoded data is transferred to a virtual decoding device, occupancy of a buffer in the virtual decoding device calculated based on the multiplexing information , and the calculated multiplexed signal of the amount of coded data not transmitted to determine the quantization width.

在本发明的一实施例中,该图象编码装置进一步包括用来暂时地存贮该编码数据的编码数据存贮部分,其中该编码数据存贮部分暂时地存贮在每一传送定时该编码数据中未被传送的未传送数据,并且利用作为上限的由每个图象编码部分所予置的一值或从由接收端所予示的该译码装置的一缓冲器尺寸中减去根据该多路复用信息所计算的在该虚拟译码装置中所得到的一值来输出该编码数据。In an embodiment of the present invention, the image encoding device further includes an encoded data storage section for temporarily storing the encoded data, wherein the encoded data storage section temporarily stores the encoded data at each transmission timing. The untransmitted data that is not transmitted in the data, and use as an upper limit a value preset by each picture encoding part or subtract from a buffer size of the decoding device indicated by the receiving end according to A value obtained in the virtual decoding means calculated by the multiplexing information is output to output the coded data.

另外,本发明的该图象传送装置包括有用来管理在一传送线上的一位速率的位速率管理部分和一个或多个图象编码部分;其中该位速率管理部分确定表示在该传送路线上的一个或多个图象编码部分中的传送速率的总和的一位速率,供在每一传送定时时通过任何的图象编码部分来传送所需的编码数据的传送之用,和发送与随在该传送路线上的另一个所允许的图象编码部分而变化的一传送延迟有关的传送信息,并且该一个或多个图象编码部分编码通过利用根据该传送信息、未被传送的编码数据和在接收端的一所予示的缓冲器尺寸所确定的一量化宽度所量化的图象的图象。In addition, the image transmission device of the present invention includes a bit rate management section and one or more image encoding sections for managing a bit rate on a transmission line; wherein the bit rate management section determines the The bit rate of the sum of the transfer rates in one or more image coding sections on the above, for the transmission of the required coded data to be transmitted by any image coding section at each transmission timing, and the transmission and Transmission information about a transmission delay as a function of another allowed image coding portion on the transmission route, and the one or more image coding portions are coded by using untransmitted codes according to the transmission information The data and the image of the image quantized by a quantization width determined by a given buffer size at the receiving end.

利用上述构成,在一网络上所传送的图象信号的质量可基本上一致。With the above constitution, the quality of image signals transmitted over a network can be substantially uniform.

另外,本发明的该图象传送装置包括一用来管理多个图象编码部分的传送速率的一位速率管理部分,其中该位速率管理部分确定表示在一传送路线上所有图象编码部分的一传送速率总和的一位速率,供在每一传送定时时通过任何图象编码部分被传送所需的编码数据的传送之用,并发送与随在该传送路线上的另一个所允许的图象编码部分而变化的与传送延迟有关的传送信息。In addition, the image transmission apparatus of the present invention includes a bit rate management section for managing the transmission rates of a plurality of image coding sections, wherein the bit rate management section determines the A bit rate of the sum of transmission rates for the transmission of the coded data required to be transmitted by any picture coding part at each transmission timing, and sent with another allowed picture on the transmission line Transmission information related to transmission delay as a part of encoding.

另外,本发明的该图象编码装置根据与随一允许的传送量而变化的一传送延迟有关的传送信息、未被传送的编码数据和在接收端所予示的一缓冲器尺寸设置一用于量化的量化宽度。In addition, the image coding apparatus of the present invention sets a user on the basis of transmission information related to a transmission delay varying with an allowable transmission amount, untransmitted coded data, and a buffer size indicated at the receiving end. Quantization width for quantization.

另外,本发明的该图象编码方法包括有步骤:(1)确定一量化宽度;和(2)编码利用由(1)步骤所规定的量化宽度所量化的图象的图象,其中在步骤(1)中的该量化宽度是根据可以用来计算直至编码数据被传送到一虚拟译码装置为止所得到的一延迟量的多路复用信息来设置的,在该虚拟译码装置中的一缓冲器的占用是根据该多路复用信息和一未被传送的编码数据量来计算的。In addition, the image encoding method of the present invention includes the steps of: (1) determining a quantization width; and (2) encoding an image using the image quantized by the quantization width specified in the step (1), wherein in the step The quantization width in (1) is set based on multiplexing information that can be used to calculate an amount of delay obtained until encoded data is transferred to a virtual decoding device in which A buffer occupancy is calculated based on the multiplexing information and an untransmitted coded data amount.

在本发明的一实施例中在该编码数据中未被传送的未传送数据在每一传送定时时被暂时存贮起来,并且该编码数据利用作为上限的由每一图象编码部分予置的一值或通过从由该接收端所予示的译码装置的缓冲器尺寸中减去根据该多路复用信息所计算的在该译码装置中的缓冲器的占用所得到的一值被输出。In one embodiment of the present invention, untransmitted data that is not transmitted in the coded data is temporarily stored at each transmission timing, and the coded data utilizes a value preset by each image coding section as an upper limit. A value or a value obtained by subtracting occupancy of the buffer in the decoding device calculated from the multiplexing information from the buffer size of the decoding device indicated by the receiving end is used output.

另外,本发明的该图象编码方法包括根据与随一允许的传送量的变化的一传送延迟有关的传送信息、未传送的编码数据和在接收端的一予示的缓冲器尺寸通过设置一用于量化的一量化宽度来编码图象。In addition, the image coding method of the present invention includes the step of setting a user by setting a transmission delay based on transmission information related to a transmission delay with a variation of an allowable transmission amount, untransmitted coded data, and a predicted buffer size at the receiving end. A picture is coded at a quantization width of quantization.

因此,本发明具有的优点:(1)提供的运动图象编码装置,方法能输出具有均匀质量的运动图象并且能够即使在图象突然变得复杂时的一情景变化之后也能防止该图象质量有较大地下降;(2)所提供的运动图象多路复用装置/方法能够多路复用运动图象信号和输出其结果从而使一译码装置的每一输入缓冲器不出现上溢或下溢;(3)所提供的运动图象编码和多路复用装置/方法能同时地编码具有不同分辨率的运动图象信号,多路复用该所编码的信号,并输出其结果;和(4)所提供的图象传送装置能够即使在一情景变化时通过编码部分所编码的信号的质量也能保持均匀,并且,在一网络中分布有编码器的应用中对于编码器是根据在所允许的整个位速率的范围内的输入图象来分配速率并得到一均匀的图象质量。Therefore, the present invention has the advantages: (1) Provides a moving picture encoding device, method capable of outputting a moving picture with uniform quality and capable of preventing the picture even after a scene change when the picture suddenly becomes complicated. (2) provided moving image multiplexing device/method can multiplex moving image signals and output its result so that each input buffer of a decoding device does not appear Overflow or underflow; (3) provided moving image coding and multiplexing device/method can simultaneously encode moving image signals with different resolutions, multiplex the coded signals, and output As a result; and (4) the provided image transmission device can maintain uniformity in the quality of the encoded signal by the encoding section even when a scene changes, and, in an application where encoders are distributed in a network, The processor distributes the rate and obtains a uniform image quality according to the input image over the entire allowed bit rate range.

附图说明Description of drawings

对于本技术领域的普通技术人员来说在阅读和理解了如下结合附图所作的详细说明之后将会对本发明的这些和其它的优点有更清楚的了解。These and other advantages of the present invention will be more clearly understood to those of ordinary skill in the art after reading and understanding the following detailed description in conjunction with the accompanying drawings.

图1是根据本发明的例1的一运动图象编码和多路复用装置的一框图。Fig. 1 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 1 of the present invention.

图2是图1装置的一编码部分的框图。FIG. 2 is a block diagram of an encoding portion of the apparatus of FIG. 1. FIG.

图3是图1装置的一多路复用控制部分的框图。FIG. 3 is a block diagram of a multiplex control portion of the apparatus of FIG. 1. FIG.

图4示出了相对于在累加部分中的位数的量化宽度。Figure 4 shows the quantization width with respect to the number of bits in the accumulation section.

图5是根据本发明的例2的一运动图象编码和多路复用装置的一框图。Fig. 5 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 2 of the present invention.

图6是图5装置的一多路复用部分的框图。FIG. 6 is a block diagram of a multiplexing portion of the apparatus of FIG. 5. FIG.

图7是图5装置的操作的流程图。FIG. 7 is a flowchart of the operation of the apparatus of FIG. 5. FIG.

图8是在图7中的步骤204处的流程图。FIG. 8 is a flowchart at step 204 in FIG. 7 .

图9是在图7中的步骤208处的流程图。FIG. 9 is a flowchart at step 208 in FIG. 7 .

图10是根据本发明的例3的一运动图象编码和多路复用装置的操作的流程图。Fig. 10 is a flow chart showing the operation of a moving picture encoding and multiplexing apparatus according to Example 3 of the present invention.

图11A至11C示出了在图10中的步骤502处的处理过程,这里计算了该传送量的较低极限。11A to 11C show the processing at step 502 in FIG. 10, where the lower limit of the transfer amount is calculated.

图12是根据本发明的例4的一运动图象编码和多路复用装置的框图。Fig. 12 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 4 of the present invention.

图13是图12的编码部分的框图。FIG. 13 is a block diagram of the encoding portion of FIG. 12 .

图14A和14B示出了由图12装置的译码器缓部器未占用容量计算部分所作的计算。14A and 14B show calculations performed by the decoder buffer unoccupied capacity calculation section of the apparatus of FIG. 12. FIG.

图15是图12装置的一塞入控制部分的操作的流程图。FIG. 15 is a flowchart of the operation of a stuffing control portion of the apparatus of FIG. 12. FIG.

图16是根据本发明的例5的一运动图象编码和多路复用装置的框图。Fig. 16 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 5 of the present invention.

图17是根据本发明的例7的一运动图象编码和多路复用装置的框图。Fig. 17 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 7 of the present invention.

图18是根据本发明的例8的一运动图象编码和多路复用装置的框图。Fig. 18 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 8 of the present invention.

图19示出了由图18装置所使用的一屏幕分割方法。FIG. 19 shows a screen splitting method used by the apparatus of FIG. 18. FIG.

图20是根据本发明的例9的一运动图象编码和多路复用装置的框图。Fig. 20 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 9 of the present invention.

图21是图20装置的一多路复用部分的框图。FIG. 21 is a block diagram of a multiplexing portion of the apparatus of FIG. 20. FIG.

图22是根据本发明的例10的一运动图象编码和多路复用装置的框图。Fig. 22 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 10 of the present invention.

图23是根据本发明的例11的一运动图象编码和多路复用装置的框图。Fig. 23 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 11 of the present invention.

图24是根据本发明的例12的一运动图象编码和多路复用装置的框图。Fig. 24 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 12 of the present invention.

图25是根据本发明的例13的一图象传送装置的框图。Fig. 25 is a block diagram of an image transmission apparatus according to Example 13 of the present invention.

图26是图25装置的一图象编码部分的一编码子部分的框图。FIG. 26 is a block diagram of an encoding subsection of an image encoding section of the apparatus of FIG. 25. FIG.

图27是图26的该编码子部分的操作的流程图。FIG. 27 is a flowchart of the operation of the encoding subsection of FIG. 26 .

图28是根据本发明的例14的一图象传送装置的框图。Fig. 28 is a block diagram of an image transmission apparatus according to Example 14 of the present invention.

图29示出了在图28装置中使用的一信息包的标头格式。Fig. 29 shows a header format of a packet used in the Fig. 28 device.

图30示出了在图28装置的两个节点之间的一通信方法。FIG. 30 shows a communication method between two nodes of the apparatus of FIG. 28 .

图31示出了在图28装置中使用的用来通知信息包数的一信息包的传送。FIG. 31 shows the transmission of a packet used in the apparatus of FIG. 28 for notifying the number of packets.

图32示出了在图28装置中使用的用于图象传送的一信息包的传送。Fig. 32 shows the transfer of a packet for image transfer used in the Fig. 28 device.

图33示出了通过图28装置的一位速率管理节点所产生的信息包的传送。FIG. 33 shows the transmission of packets generated by the bit rate management node of the apparatus of FIG. 28. FIG.

图34是图28装置的节点的框图。FIG. 34 is a block diagram of a node of the apparatus of FIG. 28 .

图35A和35B是对一常规装置和图28装置之间使用的位速率的比较的图。35A and 35B are graphs comparing bit rates used between a conventional device and the device of FIG. 28. FIG.

图36是使用一般计算机的本发明的一实施例的示图。Figure 36 is a diagram of an embodiment of the present invention using a general computer.

图37是常规的运动图象编码装置的框图。Fig. 37 is a block diagram of a conventional moving picture encoding device.

图38是常规的图象传送装置的框图。Fig. 38 is a block diagram of a conventional image transmission device.

具体实施方式Detailed ways

将借助于参考附图的下面例子来说明本发明。The invention will be illustrated by means of the following examples with reference to the accompanying drawings.

(例1)(example 1)

图1是根据本发明例1的一运动图象编码和多路复用装置的框图。Fig. 1 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 1 of the present invention.

本例的运动图象编码和多路复用装置包括:压缩/编码由信号变换和量化的输入运动图象的编码部分1-1A至1-NA(其中N为一整数);累加从该编码部分1-1A至1-NA输出的运动图象编码信号的累加部分2-1至2-N;以一固定位速率多路复用该运动图象编码信号并输出所得结果的多路复用信号的多路复用部分3;控制在由该编码部分1-1A至1-NA量化时所使用的一量化宽度的量化控制部分4;计算从该运动图象编码信号的每一位输入到译码装置至直该位被译码为止的时间周期(译码延迟时间)的译码延迟时间计算部分5;计算在由在该累加部分2-1至2-N中所累加的运动图象编码信号所组成的每一帧内的位数的帧位数计算部分6;控制该多路复用部分3的多路复用控制部分7A;和将在该累加部分2-1至2-N中所累加的运动图象编码信号的位数的数相加的加法器8。The motion picture encoding and multiplexing device of this example comprises: compression/encoding is transformed by signal and quantized coding part 1-1A to 1-NA of the input motion picture (wherein N is an integer); Accumulation sections 2-1 to 2-N of moving picture coded signals output from parts 1-1A to 1-NA; multiplex the moving picture coded signals at a fixed bit rate and output the multiplexed result Multiplex section 3 of signal; Control the quantization control section 4 of a quantization width used when being quantized by this coding section 1-1A to 1-NA; The decoding delay time calculation section 5 of the time period (decoding delay time) until this bit is decoded by the decoding device; The frame number calculation section 6 of the number of bits in each frame that the coded signal is composed of; the multiplexing control section 7A that controls the multiplexing section 3; An adder 8 that adds the number of bits of the motion picture coded signal accumulated in it.

图2是图1所示的编码部分1-1A的放大图。当表示运动图象的运动图象信号输入到该编码部分1-1A时,差分器101-1计算该输入运动图象和一帧存贮器108-1的被累加的一帧的运动图象之间的差,并输出一差分运动图象。该差分运动图象随后被由一DCT子部分102-1变换成-DCT(离散余弦变换)系数。该DCT系数随后由一量化子部分103-1用由量化控制部分4所规定的量人宽度而被量化并由一可变长度编码子部分104-1变换成运动图象编码信号。从编码部分1-1A输出所得结果的运动图象编码信号。从量化子部分103-1输出的信号还被送到逆量化子部分105-1,在这里该输入信号被逆量化。该被逆量化的信号由逆DCT子部分106-1变换为一译码差分运动图象。该译码差分运动信号与在帧存贮器108-1中累加的一帧的运动图象相加,被变换成由该译码装置译码的一运动图象。其所得结果的运动图象在帧存贮器108-1中被累加。FIG. 2 is an enlarged view of the encoding section 1-1A shown in FIG. 1. Referring to FIG. When a moving picture signal representing a moving picture is input to the encoding section 1-1A, the differentiator 101-1 calculates the input moving picture and the accumulated moving picture of one frame of a frame memory 108-1 The difference between them, and output a difference motion picture. The differential motion picture is then transformed into -DCT (Discrete Cosine Transform) coefficients by a DCT subsection 102-1. The DCT coefficients are then quantized by a quantization subsection 103-1 with a quantization width specified by the quantization control section 4 and converted into a motion picture coded signal by a variable length coding subsection 104-1. The resulting motion picture encoded signal is output from the encoding section 1-1A. The output signal from the quantization subsection 103-1 is also sent to the inverse quantization subsection 105-1, where the input signal is dequantized. The inverse quantized signal is transformed into a decoded differential motion picture by the inverse DCT subsection 106-1. The decoded differential motion signal is added to the motion image of one frame accumulated in the frame memory 108-1, and is converted into a motion image decoded by the decoding means. The resulting moving pictures are accumulated in the frame memory 108-1.

译码延时时间计算部分5计算被初始地设置到该多路复用部分3的在累加部分2-1至2-N的每一个中所累加的该运动编码信号的位的延迟。从编码部分1-1A至1-NA的每一中初始地输出的位的译码延迟时间被作为初始值使用。这是根据该译码装置的一输入缓冲器的尺寸、在该多路复用部分的输出位速率等而被予置的。在此之后,该值根据在译码装置中的译码过程而被更新。The decoding delay time calculation section 5 calculates the delay of the bit of the motion coded signal accumulated in each of the accumulation sections 2 - 1 to 2 -N which is initially set to the multiplexing section 3 . The decoding delay time of the bit initially output from each of the encoding sections 1-1A to 1-NA is used as an initial value. This is preset according to the size of an input buffer of the decoding device, the output bit rate at the multiplexing section, and the like. After that, the value is updated according to the decoding process in the decoding means.

帧位数计算部分6计算包括在初始地被设置到该多路复用部分3的累加部分2-1至2-N的每一个中所累加的运动编码信号的位的一帧的位数。The frame bit number calculating section 6 calculates the bit number of one frame including the bits of the motion coded signal accumulated in each of the adding sections 2 - 1 to 2 -N initially set to the multiplexing section 3 .

多路复用控制部分7A重复在一予置期间从累加部分2-1至2-N的每一个向多路复用部分3输出的运动图象编码信号的位数的计算。The multiplexing control section 7A repeats the calculation of the number of bits of the moving image coded signal output from each of the accumulation sections 2-1 to 2-N to the multiplexing section 3 during a predetermined period.

多路复用部分3根据由多路复用控制部分7A所计算的位数来多路复用该运动图象编码信号,并以一固定位速率输出该被多路复用的信号。The multiplexing section 3 multiplexes the moving image encoded signal according to the number of bits calculated by the multiplexing control section 7A, and outputs the multiplexed signal at a fixed bit rate.

图3是图1中多路复用控制部分7A构成的放大图。第一参数产生子部分71接收一帧的位数,该一帧的位数包括有用于累加部分2-1至2-N的每一个的带有译码延迟时间的初始地设置到该多路复用部分3的所累加的位,并且由该译码延迟时间分出该帧的位数。第二参数产生子部分72将用于累加部分2-1至2-N的由第一参数产生子部分71所得到的值相加。第三参数子部分73分对于累加部分2-1至2-N用由第二参数产生子部分72所得到的值除以第一参数产生子部分71所得到的各个值。当从该累加部分2-1至2-N输出到该多路复用部分3的位数已被计算时,多路复用位数计算子部分74接收在该期间由多路复用部分3输出的运动图象编码信号的位数,用由第三参数产生子部分73所得到的值乘以所接收的位数,并通知多路复用部分3其结果值作为从累加部分2-1至2-N的每一个输出到多路复用部分3的位数。FIG. 3 is an enlarged view showing the configuration of the multiplexing control section 7A in FIG. 1. Referring to FIG. The first parameter generation subsection 71 receives a frame of bits including an initial setting to the multiplex with a decoding delay time for each of the accumulation sections 2-1 to 2-N. The accumulated bits of section 3 are multiplexed, and the number of bits of the frame is divided by the decoding delay time. The second parameter generation subsection 72 adds the values obtained by the first parameter generation subsection 71 for the accumulation sections 2-1 to 2-N. The third parameter subsection 73 divides the values obtained by the second parameter generation subsection 72 by the respective values obtained by the first parameter generation subsection 71 for the accumulation sections 2-1 to 2-N. When the number of bits output from the accumulation sections 2-1 to 2-N to the multiplexing section 3 has been calculated, the multiplexing number of bits calculation subsection 74 receives The bit number of the moving image coded signal of output multiplies the bit number received by the value obtained by the third parameter generation subsection 73, and notifies its result value of the multiplexing section 3 as the value from the accumulating section 2-1. Each of to 2-N is output to the number of bits of the multiplexing section 3.

上述例1的该装置的操作如下所述。从编码部分1-1A至1-NA输出的运动图象编码信号在累加部分2-1至2-N中被暂时地累加。在该累加部分2-1至2-N中被累加的该运动图象编码信号的位数由加法器8相加,并且所得的结果值被送到量化控制部分4。该量化控制部分4根据所接收的值,即运动图象编码信号的位数之和来计算量化宽度,并且根据该量化宽度该运动图象被量化。多路复用控制部分7A利用由译码延迟时间计算部分5和帧位数计算部分6所得到的值来计算从累加部分2-1至2-N输出到多路复用部分3的位数。多路复用部分3利用由多路复用控制部分7A所得到的位数多路复用该运动图象编码信号,并以一固定位速率输出结果的运动图象编码信号。The operation of the apparatus of Example 1 above was as follows. The moving image encoded signals output from the encoding sections 1-1A to 1-NA are temporarily accumulated in the accumulation sections 2-1 to 2-N. The number of bits of the moving image encoded signal accumulated in the accumulation sections 2-1 to 2-N is added by an adder 8, and the resulting value is sent to a quantization control section 4. The quantization control section 4 calculates a quantization width based on the received value, ie, the sum of the number of bits of the moving image coded signal, and the moving image is quantized based on the quantization width. The multiplexing control section 7A calculates the number of bits output from the accumulation sections 2-1 to 2-N to the multiplexing section 3 using the values obtained by the decoding delay time calculation section 5 and the frame bit number calculation section 6 . The multiplexing section 3 multiplexes the moving image encoded signal using the number of bits obtained by the multiplexing control section 7A, and outputs the resulting moving image encoded signal at a fixed bit rate.

在上述操作中,量化控制部分4将该运动图象编码信号的位数之和变换为量化宽度。图4是示出了这种变换的一个例子的图。该图的X轴表示在累加部分2-1至2-N中所累加的运动图象编码信号的位数之和,它等于由编码所产生的运动图象编码信号的位数之和与从计算该位速的累加部分2-1至2-N输出的运动图象编码信号的位数之间的差值。该图的Y轴表示量化宽度。在这个例子中,该量化宽度随该位数大而被设置的较大,随该位数小而被设置的较小。In the above operation, the quantization control section 4 converts the sum of the bits of the moving image coded signal into a quantization width. FIG. 4 is a diagram showing an example of such conversion. The X-axis of this figure represents the sum of the bits of the moving image coded signals accumulated in the accumulation sections 2-1 to 2-N, which is equal to the sum of the bits of the moving image coded signals produced by encoding The difference between the number of bits of the moving image coded signals output from the accumulating sections 2-1 to 2-N of the bit rate is calculated. The Y-axis of the graph represents the quantization width. In this example, the quantization width is set larger as the number of bits is larger, and is set smaller as the number of bits is smaller.

该量化控制部分4根据在图4的图中所示的特性而计算该量化宽度,并向所有的编码部分1-1A至1-NA提供该量化宽度。换句话说,所有编码部分1-1A至1-NA具有相同值的量化宽度并根据这个宽度实施该量化。The quantization control section 4 calculates the quantization width based on the characteristics shown in the graph of FIG. 4, and supplies the quantization width to all the coding sections 1-1A to 1-NA. In other words, all encoding sections 1-1A to 1-NA have the same value of quantization width and carry out the quantization according to this width.

如上述的例1,因为利用相同的量化宽度对多个输入运动图象进行压缩/编码,则多个输出运动图象的质量可均匀。另外,因为是根据在累加部分2-1至2-N中所累加的运动图象编码信号的位数之和来实施该量化控制的,所以可有效地使用该位速率。As in Example 1 above, since a plurality of input moving pictures are compressed/encoded using the same quantization width, the quality of a plurality of output moving pictures can be made uniform. In addition, since the quantization control is performed based on the sum of the bits of the moving image coded signals accumulated in the accumulation sections 2-1 to 2-N, the bit rate can be effectively used.

输入到该编码部分1-1A至1-NA的每一运动图象可构成一个独立的运动图象或通过分离一运动图象所得到的各部分所组成的一组。在后面情况中,每一组是作为一帧单元来考虑的。Each moving picture input to the encoding sections 1-1A to 1-NA may constitute an independent moving picture or a group of parts obtained by separating a moving picture. In the latter case, each group is considered as a frame unit.

在例1中,所有编码部分1-1A至1-NA是由相同的量化宽度所控制的。另外,不同的量化宽度可通过提供一限制而被利用,例如对从累加部分2-1至2-N输出的运动图象编码信号设置用于编码部分1-1A至1-NA的优先权和对于输出位速率设置一上限。In Example 1, all coding sections 1-1A to 1-NA are controlled by the same quantization width. In addition, different quantization widths can be utilized by providing a limitation such as setting the priority and An upper limit is set on the output bit rate.

(例2)(Example 2)

图5是根据本发明的例2的一运动图象编码和多路复用装置的一框图。Fig. 5 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 2 of the present invention.

在图2中,有两部分被附加地提供给图1所示的例1的装置:即,一确定译码装置的输入缓冲器的译码器缓冲器未占用容量的译码器缓冲器未占用容量计算部分9,和一计算在累加部分2-1至2-N中所累加的各个位数的累加位数计算部分12。In Fig. 2, there are two parts to be additionally provided to the device of example 1 shown in Fig. 1: that is, a decoder buffer that determines the unoccupied capacity of the decoder buffer of the input buffer of the decoding device. An occupied capacity calculation section 9, and an accumulation bit calculation section 12 which calculates the respective number of bits accumulated in the accumulation sections 2-1 to 2-N.

该译码器缓冲器未占用容量计算部分9包括一定时器,并接收来自多路复用控制部分7B的从每一个累加部分2-1至2-N输出到多路复用部分3的位数,将所接收的位数加到在用于每一累加部分2-1至2-N的一虚拟译码装置的输入缓冲器的该占用量中。该译码器缓冲器未占用容量计算部分9还接收在每一帧中从帧位数计算部分6输入到该译码器装置的输入缓冲器中的位数和接收来自译码延时时间计算部分5的每帧的译码延迟时间。根据用于该帧的译码延迟时间来确定在该帧开始译码的时间。当该定时器指明译码时间是增加时,该译码器缓冲器未占用容量计算部分9从在该译码装置的输入缓冲器中的占用量中减去被译码的该帧的位数,从该输入缓冲器的容量中减去在该输入缓冲器中所得结果的占用量,并且向该多路复用控制部分7B输出该结果值作为该译码装置的输入缓冲器的当前未占用容量。The decoder buffer unoccupied capacity calculation section 9 includes a timer, and receives bits output from each of the accumulation sections 2-1 to 2-N to the multiplexing section 3 from the multiplexing control section 7B. The received number of bits is added to the occupancy in the input buffer of a virtual decoding device for each accumulation section 2-1 to 2-N. This decoder buffer unoccupied capacity calculation section 9 also receives the number of bits input from the frame bit calculation section 6 into the input buffer of the decoder device in each frame and receives the information from the decoding delay time calculation Decoding delay time per frame of part 5. The time at which decoding begins for a frame is determined based on the decoding delay time for that frame. When the timer indicated that the decoding time was increasing, the decoder buffer unoccupied capacity calculation section 9 subtracted the number of bits of the frame decoded from the occupied amount in the input buffer of the decoding device , subtract the occupancy of the result obtained in the input buffer from the capacity of the input buffer, and output the result value to the multiplexing control section 7B as the current unoccupied input buffer of the decoding device capacity.

图6示出了该多路复用控制部分7B的例示性构成。一最小值选择子部分75被附加地提供到图3所示例1的多路复用控制部分7A的多路复用位数计算子部分74的下游。该最小值选择子部分75选择在由多路复用位数计算部分74所得到的乘积、由译码器缓冲器未占用容量计算部分9所得到的当前译码器缓冲器未占用容量、和由累加位数计算部分12所得到的在每一累加部分中的累加位数之中的最小值,并且向多路复用部分2发送该结果值作为从该累加部分输出到多路复用部分3的位数(后面,将这种位数称之为多路复用位数)。FIG. 6 shows an exemplary configuration of the multiplexing control section 7B. A minimum value selection subsection 75 is additionally provided downstream of the multiplex bit number calculation subsection 74 of the multiplex control section 7A of Example 1 shown in FIG. The minimum value selection subsection 75 selects the current decoder buffer unoccupied capacity obtained from the product obtained by the multiplexing bit calculation section 74, the decoder buffer unoccupied capacity calculation section 9, and The minimum value among the accumulation number of bits in each accumulation section obtained by the accumulation number of bits calculation section 12, and the resultant value is sent to the multiplexing section 2 as output from the accumulation section to the multiplexing section 3 (hereinafter, such a number of bits is referred to as a multiplexed number of bits).

图7是用来确定从累加部分2-1至2-N的每一个向多路复用部分3输出的运动图象编码信号的位数的该多路复用控制部分7B的操作的流程图。FIG. 7 is a flow chart of the operation of the multiplexing control section 7B for determining the number of bits of the moving picture coded signal output from each of the accumulation sections 2-1 to 2-N to the multiplexing section 3. .

首先,该多路复用控制部分7B根据在多路复用部分3中的一予置输出位速率来计算在该多路复用控制部分7B的每一计算期间从该多路复用部分3输出的运动图象编码信号的位数(步骤201)。然后,从该译码延迟时间计算部分5接收用于每一个累加部分2-1至2-N的译码延迟时间(步骤202)。从帧位数计算部分6得到对于每一个累加部分2-1至2-N的每一帧中的位数(步骤203)。在后面所述程序中计算对于每一个累加部分2-1至2-N的一最好的多路复用位数(步骤204)。然后,从累加位数计算部分12得到在每一个累加部分2-1至2-N中所累加的运动图象编码信号的位数(步骤205)。之后,对于每一个累加部分2-1至2-N通过从由译码器缓冲器未占用容量计算部分9所得到的输出缓冲器的容量中减去在该译码装置的输入缓冲器中所累加的位数而计算输入缓冲器未占用容量(步骤206)。接下来,在由步骤204中所得到的最初多路复用位数、由步骤205所得到的位数、和由步骤206所得到的输入缓冲器中未占用容量之中选择作为第二多路复用位数的最小值(步骤207)。最后,在后面所述的步骤中计算从每一个累加部分2-1至2-N输出到多路复用部分3的运动图象编码信号的位数(步骤208)。上述处理被重复进行。First, the multiplexing control section 7B calculates the output bit rate from the multiplexing section 3 during each calculation of the multiplexing control section 7B based on a preset output bit rate in the multiplexing section 3. The number of bits of the output video coded signal (step 201). Then, the decoding delay time for each of the accumulation sections 2-1 to 2-N is received from the decoding delay time calculation section 5 (step 202). The number of bits in each frame for each of the accumulation sections 2-1 to 2-N is obtained from the frame bit number calculation section 6 (step 203). A best multiplexed number of bits for each accumulation section 2-1 to 2-N is calculated in the procedure described later (step 204). Then, the number of bits of the moving image coded signal accumulated in each of the accumulation sections 2-1 to 2-N is obtained from the accumulation bit calculation section 12 (step 205). Afterwards, for each accumulation section 2-1 to 2-N by subtracting the capacity of the output buffer in the input buffer of the decoding device from the capacity of the output buffer obtained by the decoder buffer unoccupied capacity calculation section 9 The unoccupied capacity of the input buffer is calculated by accumulating the number of bits (step 206). Next, select as the second multiplexing number among the initial multiplexing bit number obtained in step 204, the number of bits obtained in step 205, and the unoccupied capacity in the input buffer obtained in step 206 The minimum value of multiplexing bits (step 207). Finally, the number of bits of the moving image coded signal output from each accumulation section 2-1 to 2-N to the multiplexing section 3 is calculated in a step described later (step 208). The above processing is repeated.

图8的流程图详细示出了图7所示用来计算最初多路复用位数的步骤204的过程。The flowchart of FIG. 8 shows in detail the procedure of step 204 shown in FIG. 7 for calculating the number of initial multiplexed bits.

首先,用译码延迟时间除以在每个累加部分2-1至2-N中所累加的一帧的运动编码信号的位数,并将所得结果值用Ri(i=1至N)来标注(步骤301)。然后,计算值R1至RN的和(步骤302)。然后由下式(1)计算对于每一运动编码信号的主多路复用位数P1i(步骤(303)First, the decoding delay time is divided by the number of bits of the motion coded signal of one frame accumulated in each accumulation section 2-1 to 2-N, and the resulting value is expressed by R i (i=1 to N) To label (step 301). Then, the sum of the values R 1 to RN is calculated (step 302 ). Calculate the main multiplexing number of bits P1 i for each motion coded signal by the following formula (1) (step (303)

Figure C9712646900341
Figure C9712646900341

之后,在最初多路复用位数P1i、由步骤205所得的位数、和由步骤206所得的输入缓冲器未占用容量之中选择用于每一个累加部分2-1至2-N的最小值作为第二多路复用位数P2iAfterwards, among the initial multiplexed number of bits P1 i , the number of bits obtained in step 205, and the unoccupied capacity of the input buffer obtained in step 206, the one for each accumulation section 2-1 to 2-N is selected. The minimum value is used as the second multiplexing bit number P2 i .

图9的流程图详细示出了在图7中用来计算从每一个累加部分2-1至2-N向多路复用部分3输出的位数的步骤208的处理过程。9 is a flow chart showing in detail the processing of step 208 in FIG. 7 for calculating the number of bits output from each accumulation section 2-1 to 2-N to the multiplexing section 3.

首先,如果对于在累加部分2-1至2-N中所累加的所有运动图象编码信号来说如果该主多路复用位数P1i和次多路复用位数P2i是相同的,则处理被中止(步骤401)。否则,确定对于每一个运动图象编码信号该位数P11和P2i是否相同(步骤402)。如果它们相同,则除了在步骤207所得到的次多路复用位数P2i之外,用下式(2)来计算一多路复用位数P3i(步骤403)。First, if the main multiplex number of bits P1 i and the sub-multiplex number of bits P2 i are the same for all moving picture coded signals accumulated in the accumulation sections 2-1 to 2-N , the processing is terminated (step 401). Otherwise, it is determined whether the number of bits P1 1 and P2 i are the same for each motion picture coded signal (step 402). If they are the same, in addition to the sub-multiplexed number of bits P2 i obtained in step 207, a multiplexed number of bits P3 i is calculated using the following equation (2) (step 403).

        P3i=最小(编码器缓冲器占用,编码器缓冲器来占用容量)-P3 i = minimum (encoder buffer occupation, encoder buffer to occupy capacity) -

             P2i                                       (2)P2 i (2)

这里,“最小”表示在由步骤205所得的位数和由步骤206所得到输入缓冲器未占用容量之间所使用的较小的值。Here, "minimum" means a smaller value used between the number of bits obtained in step 205 and the unoccupied capacity of the input buffer obtained in step 206 .

如果位数P1i和P2i不相同时,将位数P3i置为0(步骤404)。然后,将在步骤207中所得到的用于累加部分2-1至2-N的第二多路复用位数P2i的总和的一短位数D与由下式(3)所计算的(步骤405的自该多路复用部分3输出的位数相比较)。If the number of bits P1 i and P2 i are different, set the number of bits P3 i to 0 (step 404). Then, a short number of bits D obtained in step 207 for the sum of the second multiplexed bits P2 i of the accumulation parts 2-1 to 2-N is calculated by the following formula (3) (Comparison of the number of bits output from the multiplexing section 3 at step 405).

         D=输出位数-∑P2i                             (3)D=Output digits-∑P2 i (3)

之后,计算在步骤403和404中所得到的位数P3i的总和S(步骤406)。判断总和S是否大于该短位数D(步骤407)。如果是,放置为由下式(4)所得的运动编码信号的多路复用位数(步骤408)。如果不是,则置为由下式(5)所得的运动编码信号的多路复用位数(步骤409)。After that, the sum S of the number of bits P3 i obtained in steps 403 and 404 is calculated (step 406). Determine whether the sum S is greater than the short number of digits D (step 407). If yes, place as the number of multiplexed bits of the motion coded signal obtained by the following equation (4) (step 408). If not, it is set to the multiplexed number of bits of the motion coded signal obtained by the following formula (5) (step 409).

        多路复用位数=P2i+P3i Number of multiplexing bits = P2 i + P3 i

因此,在例2中,根据在每一帧中的位数和每一帧被输入进相应译码装置的时间来控制在累加部分2-1至2-N中所累加的该运动图象编码信号的多路复用。因此,防止了在该译码装置的输入缓冲器中的下溢。另外,在每一译码装置的输入缓冲器中所累加的位数被计算以控制多路复用,这样就使超过该输入缓冲器未占用容量的位数不被传送。因此,防止了在该输入缓冲器中的上溢。Therefore, in Example 2, the moving picture codes accumulated in the accumulation sections 2-1 to 2-N are controlled according to the number of bits in each frame and the time at which each frame is input to the corresponding decoding means. Multiplexing of signals. Therefore, underflow in the input buffer of the decoding device is prevented. In addition, the number of bits accumulated in the input buffer of each decoding means is counted to control multiplexing so that bits exceeding the unoccupied capacity of the input buffer are not transmitted. Thus, overflow in the input buffer is prevented.

(例3)(Example 3)

图10示出了说明根据本发明的例3的一运动图象编码和多路复用装置的操作的流程图。例3装置的构成与图1中所示的例1装置的构成是相同的,但是,与例1装置的处理是不同的。Fig. 10 shows a flowchart illustrating the operation of a moving picture encoding and multiplexing apparatus according to Example 3 of the present invention. The configuration of the apparatus of Example 3 is the same as that of the apparatus of Example 1 shown in FIG. 1, but the processing of the apparatus of Example 1 is different.

图10的流程图示出了该多路复用控制部分7A确定该多路复用位数,即从每个累加部分2-1至2-N输出到该多路复用部分3的运动图象编码信号的位数的操作过程。The flowchart of FIG. 10 shows the motion diagram of the multiplexing control section 7A determining the multiplexing bit number, that is, output to the multiplexing section 3 from each accumulation section 2-1 to 2-N. Like the operation of encoding the number of bits in a signal.

首先,该多路复用控制部分7A根据在多路复用部分3的一予置的输出位速率来计算多路复用控制部分7A的每一计算期间从多路复用部分3输出的运动图象编码信号的总的位数(步骤501)。然后,计算在后面所述步骤中的用于每一个累加部分2-1至2-N的该运动图象编码信号的传送量的较低限,并且将该较低限位数的运动图象编码信号从每一个累加部分2-1至2-N输出到多路复用部分3。为了比较在每个累加部分2-1至2-N中以具有较小译码延迟时间的帧较早地被选择的方式而顺序被使用的各帧,设置用于一参考时间的一初始值(步骤503)。从帧位数计算部分6读取在每一累加部分2-1至2-N中的一开头帧中的位数(步骤504)。从译码延迟时间计算部分5读取在每一累加部分2-1至2-N中该开头帧的译码延迟时间(步骤505)。将所接收的每一帧的译码延迟时间和该参考时间进行比较(步骤506)。对于具有译码延迟时间短于该参考时间的所累加的帧的累加部分,首先计算相应译码装置的输入缓冲器的未占用容量(步骤507)。然后,选择在由步骤504中所得到的帧的位数、由步骤507所得到的输入缓冲器未占用容量、和由运动图象编码信号的最大输出位速率所确定的最大传送位数之中的最小值来作为最初多路复用位数。对于具有译码延迟时间大于该参考时间的所累加帧的累加部分,该主多路复用位数被置为0(步骤508)。然后,计算对用每一累加部分2-1至2-N的所得结果主多路复用位数之和。如果该和为0,则确定该多路复用位数计算的期间(步骤509)。如果该和小于在从由步骤501所得到的总的位数减去由步骤502所得到的较低限之后所保留的位数时,则在步骤508中所得到的该最初多路复用位数被加到用于每一个累加部分2-1至2-N的多路复用位数(步骤511)。并且,例如通过将该帧周期时间加到参考时间来更新该参考时间(步骤512)。这时,主多路复用位数的运动图象编码信号从每一个累加部分2-1至2-N输出到多路复用部分3。如果如果多路复用位数的和大于该保留的位数,则通过依据主多路复用位数而成比例分配所得到的值被用作为次多路复用位数(步骤513),并且这些次多路复用位数被加到该多路复用位数(步骤514),从而终止该多路复用位数计算的周期。这时该次多路复用位数的运动图象编码信号从每一个累加部分2-1至2-N输出到多路复用部分3。上述过程被顺序地重复。First, the multiplexing control section 7A calculates the motion output from the multiplexing section 3 during each calculation period of the multiplexing control section 7A based on a preset output bit rate at the multiplexing section 3. The total number of bits of the image coded signal (step 501). Then, the lower limit of the transmission amount of the moving picture coded signal for each accumulation section 2-1 to 2-N in the step described later is calculated, and the lower limit bit of the moving picture The coded signal is output to the multiplexing section 3 from each of the accumulation sections 2 - 1 to 2 -N. In order to compare the frames sequentially used in each accumulation section 2-1 to 2-N in such a manner that the frame with the smaller decoding delay time is selected earlier, an initial value for a reference time is set (step 503). The number of bits in a head frame in each of the accumulation sections 2-1 to 2-N is read from the frame bit number calculation section 6 (step 504). The decoding delay time of the head frame in each accumulation section 2-1 to 2-N is read from the decoding delay time calculation section 5 (step 505). The received decoding delay time of each frame is compared with the reference time (step 506). For the accumulation part of the accumulated frames with decoding delay time shorter than the reference time, first calculate the unoccupied capacity of the input buffer of the corresponding decoding device (step 507). Then, select among the maximum number of transmission bits determined by the number of bits of the frame obtained in step 504, the unoccupied capacity of the input buffer obtained by step 507, and the maximum output bit rate of the moving image coded signal The minimum value of is used as the initial number of multiplexed bits. For the accumulated portion of the accumulated frame having a decoding delay time greater than the reference time, the main multiplex bit is set to 0 (step 508). Then, the sum of the number of main multiplexing bits obtained for each of the accumulation sections 2-1 to 2-N is calculated. If the sum is 0, the period for calculating the number of multiplexed bits is determined (step 509). If the sum is less than the number of bits remaining after subtracting the lower limit obtained by step 502 from the total number of bits obtained by step 501, then the initial multiplexed bits obtained in step 508 The number is added to the number of multiplexing bits for each accumulation section 2-1 to 2-N (step 511). And, the reference time is updated, for example by adding the frame period time to the reference time (step 512). At this time, the moving picture coded signal of the main multiplexed number of bits is output to the multiplexing section 3 from each of the accumulation sections 2-1 to 2-N. If the sum of the number of multiplexing bits is greater than the reserved number of bits, the value obtained by proportionally allocating according to the main multiplexing number of bits is used as the secondary multiplexing number of bits (step 513), And the sub-multiplexed bits are added to the multiplexed bit (step 514), thereby terminating the cycle of the multiplexed bit calculation. At this time, the moving picture coded signal of the sub-multiplexed number of bits is output to the multiplexing section 3 from each of the accumulation sections 2-1 to 2-N. The above-mentioned processes are sequentially repeated.

将参考图11A至11C来说明在图10中所示的用来计算该传送量的较低限。图11C是图11B的放大来看的图。The lower limit used to calculate the transfer amount shown in FIG. 10 will be described with reference to FIGS. 11A to 11C. FIG. 11C is an enlarged view of FIG. 11B .

图11A至11C中的图是根据在一定的时间在该缓冲器(该累加部分位于编码部分或译码装置的缓冲器的下游)中所累加的每一帧的位数而绘制的。这些图中的X轴是时间轴,表示在该缓冲器中为了对一帧译码所需的时间周期。参数X的每一平坦部分表示一帧周期。Y轴表示位数:0以下的值表示在该译码装置的缓冲器中所累加的运动图象编码信号的位数,而等于或大于0的值表示在该编码装置的缓冲器中所累加的运动图象编码信号的位数。The graphs in FIGS. 11A to 11C are plotted according to the number of bits per frame accumulated in the buffer (the accumulation section is located downstream of the buffer of the encoding section or decoding means) at a certain time. The x-axis in these figures is the time axis, representing the time period required for decoding one frame in the buffer. Each flat portion of the parameter X represents a frame period. The Y-axis represents the number of bits: a value below 0 indicates the number of bits of the moving image coding signal accumulated in the buffer of the decoding device, and a value equal to or greater than 0 indicates the number of bits accumulated in the buffer of the encoding device The number of bits of the motion picture coding signal.

现在来说明图11A和11B中参数X的折线。首先,确定直至一最早被译码的帧被译码为止所需的时间周期并从原点0开始以X座标绘制,和确定在该译码装置的缓冲器中所累加的总的位数并以位于原点0以下的Y座标绘制,这样就得到点A。利用点A作为起始点,沿Y轴向上绘制相应于该帧的位数的长度的一直线。然后,沿X轴绘制相应于一帧周期的长度的一直线。此后,沿X轴绘制具有相应于次于最早被译码的一帧的位数的一长度的直线,跟着绘制相应于一帧周期长度的一直线。以较早被译码的帧被较早绘制的方式重复在该缓冲器中的帧的绘制。对于当前被编码的帧,根据被编码的位数绘制一直线。这个折线的终点由点B来标记。Now, the broken line of the parameter X in Figs. 11A and 11B will be described. First, the time period required until an earliest decoded frame is decoded is determined and plotted at the X coordinate from origin 0, and the total number of bits accumulated in the buffer of the decoding device is determined and Draw with a Y coordinate below the origin 0, so you get point A. Using point A as a starting point, draw a line up the Y-axis with a length corresponding to the number of bits of the frame. Then, a straight line corresponding to the length of one frame period is drawn along the X-axis. Thereafter, a straight line having a length corresponding to the number of bits of a frame next to the earliest decoded frame is drawn along the X-axis, followed by a line corresponding to the period length of a frame. The rendering of frames in the buffer is repeated in such a way that earlier decoded frames are rendered earlier. For the currently encoded frame, draw a line according to the number of bits encoded. The endpoint of this polyline is marked by point B.

现在说明参数Y的折线。由表明产生的位数是当前被编码帧的位数的B点开始绘制这条线,这样它总是位于参数X的上面和原点0的上面,并且最大的仰角不超过用于运动图象编码和多路复用装置的最大位速率。参数Y表示在一予置时间周期内被传送到译码装置并避免在该译码装置出现上溢所需的最小位数。在这个例子中,X轴的时间被假定为是从当前时间所经过的时间。在每一计算周期由步骤502得到相应于该传送量的较低限的最小传送位数。The polyline of the parameter Y is now described. Draw the line starting from point B indicating that the number of bits produced is the number of bits of the currently encoded frame, so that it is always above the parameter X and above the origin 0, and the maximum elevation angle does not exceed that used for motion picture coding and the maximum bit rate of the multiplexing device. The parameter Y represents the minimum number of bits required to be transmitted to the decoding device within a predetermined time period and avoid overflow at the decoding device. In this example, the time on the x-axis is assumed to be the elapsed time from the current time. The minimum number of transfer bits corresponding to the lower limit of the transfer amount is obtained by step 502 in each calculation cycle.

对于在图11A中的参数Y,在下一个计算周期中的最小传送量的较低限为0,同时对于在图11B中的参数Y是L(L>0)。The lower limit of the minimum transfer amount in the next calculation cycle is 0 for the parameter Y in FIG. 11A, while it is L (L>0) for the parameter Y in FIG. 11B.

如上所述,在例3中,译码延迟时间较短的一帧被较早的输出,并且为避免上溢所需的位数被优先地输出。因此,可防止该译码装置的输入缓冲器中位数的上溢。As described above, in Example 3, one frame whose decoding delay time is shorter is output earlier, and the number of bits necessary for avoiding overflow is preferentially output. Therefore, the overflow of the number of bits in the input buffer of the decoding device can be prevented.

(例4)(Example 4)

当最小输出位速率和译码装置的输入缓冲器的容量是未被限制时上述例1的装置是有效的。但是,当它们是被限制时,因为运动图象编码信号的传送延迟,所以在该译码装置的输入缓冲器中可出现上溢。例如,假设因为一输入图象部分非常复杂而在一编码部分中产生突然增加的位数。在这种情况下,在增加译码位数的译码装置中,为了译码输入到输入缓冲器的帧的位数变得大于从该输入缓冲器中读出的帧的位数,其结果该输入缓冲器被装满。因此,在相应于位数突然增加的该编码部分的下游的累加部分中的位数未被减少。为了补偿,增另从位于位数未增加的其它编码部分的下游的累加部分输出的位数,其结果在这些累加部分中的位数减少。结果,在所有累加部分中的有效位数减少,导致在多路复用部分3中的输出位速率变短。因为该量化控制是在该多路复用部分3的输出位速率总是固定的前提下被实施的,所以由于传送量的减少而在译码装置的输入缓冲器中出现上溢。为了克服这个问题,它予先要求塞入具有不影响该译码的位的信号。The arrangement of Example 1 above is effective when the minimum output bit rate and the capacity of the input buffer of the decoding device are not restricted. However, when they are limited, an overflow may occur in the input buffer of the decoding device because of the transmission delay of the motion picture coded signal. For example, assume that a sudden increase in the number of bits occurs in an encoding section because an input image section is very complex. In this case, in the decoding device that increases the number of decoding bits, the number of bits of the frame input to the input buffer for decoding becomes larger than the number of bits of the frame read from the input buffer, and as a result The input buffer is filled. Therefore, the number of bits in the accumulation section downstream of the encoding section corresponding to the sudden increase in the number of bits is not reduced. To compensate, the number of bits output from the accumulation sections located downstream of other encoding sections whose number of bits has not been increased is increased, with the result that the number of bits in these accumulation sections is reduced. As a result, the effective number of bits in all accumulation sections decreases, resulting in a shorter output bit rate in the multiplexing section 3 . Since the quantization control is carried out on the premise that the output bit rate of the multiplexing section 3 is always fixed, an overflow occurs in the input buffer of the decoding device due to a decrease in the amount of transfer. To overcome this problem, it is pre-required to stuff the signal with bits that do not affect the decoding.

图12是根据本发明的例4的一运动图象编码和多路复用装置的方框图。例4的装置提供了如下附加到图1中所示的例1装置的部分:即,用来计算在该译码装置的输入缓冲器中所累加的位数以确定该输入缓冲器的未占用容量的一译码器缓冲器未占用容量计算部分9;一位数差计算部分10,对于每一累加部分2-1至2-N计算在该累加部分中的位数和相应在于由该译码器缓冲器未占用容量计算部分9所得到的该累加部分的译码装置的缓冲器未占用容量之间的差;和一塞入控制部分11,根据由位数差计算部分10所得到的差值控制由每一编码部分1-1B至1-NB所产生的一塞入位数。Fig. 12 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 4 of the present invention. The device of Example 4 provides the following addition to the part of the Example 1 device shown in Figure 1: that is, for calculating the number of bits accumulated in the input buffer of the decoding device to determine the unoccupied A decoder buffer of capacity unoccupied capacity calculation section 9; One-digit difference calculation section 10, for each accumulation section 2-1 to 2-N, calculates the number of bits in the accumulation section and correspondingly lies in the result of the translation The difference between the unoccupied capacity of the buffer of the decoding device of the accumulation section obtained by the coder buffer unoccupied capacity calculation section 9; The difference controls a number of stuffing bits generated by each encoding section 1-1B to 1-NB.

图13是图12中的编码部分1-1B至1-NB的一示例构成。这个构成与图2的构成的不同之处是在该可变长度编码子部分104-1的下游提供有一塞入子部分109-1。FIG. 13 is an example configuration of encoding sections 1-1B to 1-NB in FIG. 12 . This configuration differs from that of Fig. 2 in that a stuffing sub-section 109-1 is provided downstream of the variable-length coding sub-section 104-1.

该塞入子部分109-1将由塞入控制部分11所规定的一塞入量的塞入位插入由可变长度编码子部分输出的信号中,并输出所得的结果信号。The stuffing subsection 109-1 inserts stuffing bits of a stuffing amount specified by the stuffing control section 11 into the signal output by the variable-length coding subsection, and outputs the resulting signal.

在具有上述构成的这个例子的装置中,该译码延迟时间计算部分5计算初始送到该多路复用部分3的用于每一个累加部分2-1至2-N中存贮的运动图象编码信号的位的译码延迟时间,如在例中所述那样,并且将结果输出到译码器缓冲器未占用容量计算部分9。该帧位数计算部分6计算初始送到该多路复用部分3的包括在每一个累加部分2-1至2-N中所累加的运动图象编码信号的位的一帧的位数,如在例中所述那样,并且将结果输出到该译码器中缓冲器未占用容量计算部分9。加法器8对在该累加部分2-1至2-N中所累加的运动图象编码信号的位数相加,并将结果输出到译码器缓冲器未占用容量计算部分9。In the apparatus of this example having the above-mentioned constitution, the decoding delay time calculation section 5 calculates the motion map initially sent to the multiplexing section 3 for storage in each of the accumulation sections 2-1 to 2-N The decoding delay time of the bits of the coded signal is as described in the example, and the result is output to the decoder buffer unoccupied capacity calculation section 9. The frame number calculation section 6 calculates the number of bits of a frame including the bits of the moving image coded signal accumulated in each of the accumulation sections 2-1 to 2-N initially supplied to the multiplexing section 3, As described in the example, and the result is output to the buffer unoccupied capacity calculation section 9 in the decoder. The adder 8 adds the number of bits of the moving image coded signals accumulated in the accumulation sections 2-1 to 2-N, and outputs the result to the decoder buffer unoccupied capacity calculation section 9.

该译码器缓冲器未占用容量计算部分9提供有一计时器,并且保留一运动图象输出位速率作为在分配该运动图象编码信号的多路复用部分3中的输出位速率的一部分。The decoder buffer unoccupied capacity calculating section 9 is provided with a timer, and reserves a moving picture output bit rate as a part of the output bit rate in the multiplexing section 3 which distributes the moving picture coded signal.

更详细地说,该译码器缓冲器未占用容量计算部分9根据用于每一累加部分2-1至2-N的该译码延迟时间和在累加部分的一帧的位数以及由该计时间所指明的值来计算该译码装置的输入缓冲器的当前未占用容量。此后,根据在每一个累加部分2-1至2-N中所累加的运动图象信号的位数之和以及从多路复用部分3输出的用于运动图象编码信号的输出位速率,在每一个累加部分2-1至2-N中所累加的所有运动图象编码信号中的时间T以由下式(6)所计算的输出位速率传送。In more detail, the decoder buffer unoccupied capacity calculation section 9 is based on the decoding delay time for each accumulation section 2-1 to 2-N and the number of bits in one frame in the accumulation section and by the Calculate the current unoccupied capacity of the input buffer of the decoding device by counting the value specified by the time. Thereafter, according to the sum of the bits of the moving image signals accumulated in each accumulation section 2-1 to 2-N and the output bit rate for the moving image encoding signal output from the multiplexing section 3, The time T in all the moving picture coded signals accumulated in each of the accumulation sections 2-1 to 2-N is transmitted at the output bit rate calculated by the following equation (6).

Figure C9712646900391
Figure C9712646900391

之后,在假定从当前时间直至时间T没有运动图象编码信号被输入到该译码器的输入缓冲器的情况下计算在经过时间T之后该译码装置的输入缓冲器的未占用容量。Thereafter, the unoccupied capacity of the input buffer of the decoding device after time T has elapsed is calculated on the assumption that no motion picture coded signal is input to the input buffer of the decoder from the current time until time T.

下面将参照图14A和14B来说明由该译码器缓冲器未占用计算部分9的计算。图14A示出了累加部分和译码装置的输入缓冲器的目前状态,其中A1表明在该累加部分中的当前位数和B1表示由译码器缓冲器未占用容量计算部分9所得到的该译码装置的输入缓冲器的目前未占用容量。假定在从当前时间直至时间T期间内由该译码装置译码的帧为三帧。然后,如图14B所示,该译码器缓冲器未占用容量计算部分9输出一相应于值B1和在输入缓冲器中前三帧的位数的总和的值B2。The calculation by the decoder buffer unoccupied calculation section 9 will be described below with reference to Figs. 14A and 14B. Fig. 14A has shown the present state of the input buffer of accumulation part and decoding device, and wherein A1 shows the current number of bits in this accumulation part and B1 represents the unoccupied capacity calculation part 9 by the decoder buffer. The currently unoccupied capacity of the input buffer of the decoding device. Assume that the frames decoded by the decoding means during the period from the current time up to time T are three frames. Then, as shown in FIG. 14B, the decoder buffer unoccupied capacity calculation section 9 outputs a value B2 corresponding to the sum of the value B1 and the number of bits of the previous three frames in the input buffer.

该位数差计算部分10对于每一个累加部分2-1至2-N计算在该累加部分的位数和相应于由译码器缓冲器未占用容量计算部分9所得到的累加部分的译码装置的输入缓冲器的未占用容量之间的差,并向该塞入控制部分11输出所得结果的N差值。The bit difference calculation section 10 calculates, for each of the accumulation sections 2-1 to 2-N, the number of bits in the accumulation section and the decoding corresponding to the accumulation section obtained by the decoder buffer unoccupied capacity calculation section 9. The device inputs the difference between the unoccupied capacities of the buffers and outputs the resulting N difference to the stuffing control section 11.

图15示出了该塞入控制部分11的流程。FIG. 15 shows the flow of the stuffing control section 11. As shown in FIG.

首先,由该位数差计算部分10所得到的N差值由Gi(i=1到N)来标注,并且为了计算该差值i和将Sp和Sm置为0(步骤601)。然后,判断每一个差值G1至Gi是否为0(步骤602)。如果该差值等于或大于0,则该差值被加到Sp(步骤603)。如果该差值小于0,则该绝对值被加到Sm(步骤604)。然后,判断Sp是否大于0。如果Sp大于0,则处理在步骤605至611中进行该塞入位数的计算。如果Sp为0,则处理中止而没有塞入(步骤612)。然后,判断Sm是否大于Sp(步骤605)。如果Sm等于或大于Sp,则判断每一个差值G1至GN是否小于0(步骤606)。如果是,则由下式(7)来计算用于相应于该差值Gi的运动图象编码信号的塞入位数(步骤607)。如果不是,则置该塞入位数为0(步骤608)。First, the N difference obtained by the bit difference calculation section 10 is denoted by G i (i=1 to N), and S p and S m are set to 0 for calculating the difference i and S m (step 601) . Then, it is judged whether each of the differences G 1 to G i is 0 (step 602 ). If the difference is equal to or greater than 0, the difference is added to Sp (step 603). If the difference is less than 0, then the absolute value is added to Sm (step 604). Then, it is judged whether S p is greater than 0. If S p is greater than 0, then processing proceeds to the calculation of the number of stuffing bits in steps 605-611. If Sp is 0, processing aborts without stuffing (step 612). Then, it is judged whether S m is greater than S p (step 605). If S m is equal to or greater than S p , it is judged whether each difference G 1 to G N is less than 0 (step 606 ). If yes, the number of stuffing bits used for the motion picture coding signal corresponding to the difference G i is calculated by the following equation (7) (step 607). If not, then set the stuffing bit to 0 (step 608).

Figure C9712646900392
Figure C9712646900392

如果Sm小于Sp,则判断每一个差值G1至GN是否小于0(步骤809)。如果是,则将用于相应于差值Gi的运动图象编码信号的塞入位数置为Gi的绝对值(步骤610)。如果不是,则将该塞入位数置为0(步骤611)。If S m is less than S p , it is judged whether each of the differences G 1 to G N is less than 0 (step 809 ). If so, the number of stuffing bits used for the motion picture coded signal corresponding to the difference value G i is set as the absolute value of G i (step 610). If not, then the stuffing bit is set to 0 (step 611).

在得到如上所述的塞入位数之后,塞入控制部分11将该塞入位数提供给该编码部分的塞入子部分109-1。该塞入子部分109-1然后塞入具有所提供的塞入位数的塞入位的输出信号。After obtaining the number of stuffing bits as described above, the stuffing control section 11 supplies the number of stuffing bits to the stuffing subsection 109-1 of the encoding section. The stuffing subsection 109-1 then stuffs the output signal with the number of stuffing bits provided.

因此,在具有塞入特性的例4的装置中,与所产生的该运动图象编码信号的部分的位数突然增加时,防止了当未实施塞入时可能出现的上溢。Therefore, in the apparatus of Example 4 having the stuffing characteristic, when the number of bits of the portion of the moving picture coded signal generated is suddenly increased, overflow that may occur when stuffing is not performed is prevented.

上述塞入位数的计算方法仅是一个例子。还可使用其它的方法。例如,对于与运动图象编码信号列成一行的字节可以增加或减少该塞入位数等。通过用一系列乘以Sp可以增加或减少总的塞入位数。另外,Sp可以等于分配到其中Sm是小于0的运动图象编码信号。The calculation method of the number of stuffing bits described above is just an example. Other methods can also be used. For example, the number of stuffing bits etc. can be increased or decreased for bytes aligned with the moving picture coded signal. The total number of stuffing bits can be increased or decreased by multiplying Sp by a series. Alternatively, S p may be equal to a moving image coded signal allocated to which S m is less than 0.

在这个例子中,通过由位数差分计算部分10所得到的值是否等于或大于0来确定是否实施该塞入。除0之外的任何值都可使用。In this example, whether or not the stuffing is performed is determined by whether or not the value obtained by the bit difference calculation section 10 is equal to or greater than 0. Any value other than 0 can be used.

(例5)(Example 5)

图16是根据本发明的例5的一运动图象编码和多路复用装置的框图。Fig. 16 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 5 of the present invention.

除了位数差计算部分10向量化控制部分4输出缓冲器差值之外,这个例子的装置与图12中所示例4的装置是相同的。The apparatus of this example is the same as that of Example 4 shown in FIG.

现在说明具有上述构成的这个例子的装置的操作。当用于塞入的条件满足时,量化控制部分4向编码部分1-1B至1-NB之中已实施塞入的编码部分输出一减小的量化宽度。更详细地说,当根据自加法器8输出的位数由量化控制部分4所计量的量化宽度是Q时,则向其中已实施塞入的编码部分提供一量化宽度[K×Q],其中K是一小于1的正数和[K×Q]是在不超出K×Q范围内的最大整数。量化控制部分4接收来自位数差计算部分10的缓冲器差值并且实施一类似于图15中所示操作的操作。但是,在这种情况中,在步骤607和610中该量化宽度被减小,同时在步骤608和611中该量化宽度保持不变。The operation of the apparatus of this example having the above-mentioned constitution will now be described. When the conditions for stuffing are satisfied, the quantization control section 4 outputs a reduced quantization width to the encoding section on which stuffing has been performed among the encoding sections 1-1B to 1-NB. In more detail, when the quantization width measured by the quantization control section 4 based on the number of bits output from the adder 8 is Q, a quantization width [K×Q] is provided to the coding section in which stuffing has been performed, where K is a positive number less than 1 and [K×Q] is the largest integer within the range not exceeding K×Q. The quantization control section 4 receives the buffer difference value from the bit difference calculation section 10 and performs an operation similar to that shown in FIG. 15 . However, in this case, the quantization width is reduced in steps 607 and 610, while the quantization width is kept unchanged in steps 608 and 611.

因此,在例5中通过降低用于编码的量化宽度以增加位数而不是在例4中的塞入可防止在该译码装置中的上溢。Therefore, overflow in the decoding apparatus can be prevented by reducing the quantization width used for encoding in Example 5 to increase the number of bits instead of stuffing in Example 4.

(例6)(Example 6)

现在说明根据本发明的例6的一运动图象编码和多路复用装置。除了该量化控制部分4向在编码部分1-1B至1-NB中不满足塞入条件的编码部分提供一增大的量化宽度之外,例6的装置与例5的装置是相同的。更详细地说,当根据从加法器8输出的位数由量化控制部分4所计算的量化宽度为Q时,一量化宽度[K×Q]被提供给未实施塞入的编码部分,其中K是一大于1的正数和[K×Q]是在不超出K×Q范围内的最大整数。A moving picture encoding and multiplexing apparatus according to Example 6 of the present invention will now be described. The apparatus of Example 6 is the same as that of Example 5 except that the quantization control section 4 provides an increased quantization width to the encoding sections that do not satisfy the stuffing condition among the encoding sections 1-1B to 1-NB. In more detail, when the quantization width calculated by the quantization control section 4 is Q based on the number of bits output from the adder 8, a quantization width [K*Q] is supplied to the coding section where the stuffing is not performed, where K is a positive number greater than 1 and [K×Q] is the largest integer within the range of K×Q.

量化控制部分4自位数差计算部分10接收缓冲器差值并实施一类似于图15所示操作的操作。但是,在这种情况下,在步骤607和610中量化宽度被增加,同时在步骤608和611中该量化宽度保持不变。The quantization control section 4 receives the buffer difference value from the bit difference calculation section 10 and performs an operation similar to that shown in FIG. 15 . In this case, however, the quantization width is increased in steps 607 and 610, while it remains unchanged in steps 608 and 611.

因此,在例6中,与例5的情况相反,对于其中未实施塞入的编码部分量化宽度增加以降低位数,这样得到与例4所述相同的效果。可以组合例5和6的操作从而使得其中位数增加的编码部分的量化宽度增加而其它编码部分的量化宽度减小。Therefore, in Example 6, contrary to the case of Example 5, the quantization width is increased to reduce the number of bits for the coding portion in which stuffing is not performed, thus obtaining the same effect as described in Example 4. The operations of Examples 5 and 6 can be combined so that the quantization width of the encoded part whose median is increased is increased while the quantization width of the other encoded parts is decreased.

(例7)(Example 7)

图17是根据本发明例7的一运动图象编码和多路复用装置的一框图。除了未提供未提供有塞入控制部分11并且该多路复用控制部分7A实施对于多路复用部分3的所需的塞入位数的控制以及向该量化控制部分4输出该塞入控制部分11指示多路复用部分3插入的塞入位数之外,图17的装置与图16的装置是相同的。Fig. 17 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 7 of the present invention. Except that the stuffing control section 11 is not provided and the multiplexing control section 7A performs control of the required number of stuffing bits for the multiplexing section 3 and outputs the stuffing control to the quantization control section 4 The apparatus of FIG. 17 is the same as that of FIG. 16 except that part 11 indicates the number of stuffing bits inserted by the multiplexing section 3.

在具有上述构成的本例的装置中,根据由加法器8共同相加的在累加部分2-1至2-N中的位数和由位数差计算部分10的计算结果,量化控制部分4计算量化宽度。在本例中,量化控制部分4执行在图15中为计算Sp而在步骤601至604中的处理,并且将所得结果Sp加到在累加部分2-1至2-N中的位数之和。换句话说,在例4中的编码部分所插入的所控制的塞入位数之和被加到实际上所产生的运动图象编码信号的位数之和。然后,如在例1中那样确定该量化宽度。在多路复用控制部分7A的控制下由多路复用部分3实施所需的塞入。当由于防止了在译码装置的缓冲器中的上溢或在累加部分2-1至2-N中所累加的位数的不是而使总的多路复用位数之和短于从多路复用部分3输出的位数时,该塞入导致了对一短位数的补偿。In the apparatus of this example having the above-mentioned constitution, based on the number of bits in the accumulation sections 2-1 to 2-N commonly added by the adder 8 and the calculation result by the number of bits difference calculation section 10, the quantization control section 4 Computes the quantization width. In this example, the quantization control section 4 executes the processing in steps 601 to 604 for calculating Sp in FIG. 15, and adds the obtained result Sp to the number of bits in the accumulation sections 2-1 to 2-N Sum. In other words, the sum of the controlled stuffing bits inserted in the coding section in Example 4 is added to the sum of the bits of the actually generated motion picture coded signal. Then, the quantization width is determined as in Example 1. The required stuffing is carried out by the multiplexing section 3 under the control of the multiplexing control section 7A. When the sum of the total number of multiplexed bits is shorter than the sum of the number of bits accumulated in the accumulation parts 2-1 to 2-N due to preventing overflow in the buffer of the decoding device or the number of bits accumulated in the accumulation parts 2-1 to 2-N This stuffing results in compensation for a short number of bits when the number of bits output by section 3 is multiplexed.

在这个例子中,多路复用控制部分7A执行所需位数的塞入。量化控制部分4判定该塞入位数并调整量化尺寸使得在译码装置中的下溢得以避免。在所判断的塞入位数和实际位数之间产生一误差,并且因此调整所判断的位数。为了调整所判断的位数,量化控制部分4接收来自多路复用控制部分7A的塞入位数,将它与Sp相比较。然后,Sp被调整使得Sp的累加值和塞入位数的累加值之间的误差是在一予置范围内。In this example, the multiplexing control section 7A performs stuffing of the required number of bits. The quantization control section 4 determines the number of stuffing bits and adjusts the quantization size so that underflow in the decoding device is avoided. An error is generated between the judged number of stuffing bits and the actual number of bits, and the judged number of bits is adjusted accordingly. In order to adjust the judged number of bits, the quantization control section 4 receives the number of stuffing bits from the multiplexing control section 7A, and compares it with Sp . Then, S p is adjusted so that the error between the accumulated value of S p and the accumulated value of the number of stuffing bits is within a predetermined range.

因此,在例7的装置中,通过与例4的装置相比的一较简单的构成就可获得相同效果。Therefore, in the apparatus of Example 7, the same effect can be obtained by a simpler constitution than that of the apparatus of Example 4.

(例8)(Example 8)

当构成一输入运动图象的象素数大时,一编码装置的处理速率可能不合适。屏蔽分割编码是用来编码这种由大量象素所组成的运动图象的运动图象信号的一种方法。When the number of pixels constituting an input moving image is large, the processing rate of an encoding device may not be appropriate. Mask division coding is a method for coding such a moving picture signal of a moving picture composed of a large number of pixels.

在例1至6中,各个编码部分主要编码单独的运动图象。本发明还可适用于屏幕分割编码。In Examples 1 to 6, each encoding section mainly encodes a single moving image. The invention is also applicable to screen split coding.

图18是根据本发明的例8的一运动图象编码和多路复用装置的一框图。本例的装置是在图1所示例1的装置的编码部分1-1A至1-NA的上游提供了一屏幕分割部分12。Fig. 18 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 8 of the present invention. The apparatus of this example is provided with a screen dividing section 12 upstream of the encoding sections 1-1A to 1-NA of the apparatus of Example 1 shown in FIG.

该屏幕分割部分12将一输入运动图象分成如图19所示的多个段屏幕,并将表示各个段屏幕的运动图象信号指定到编码部分1-1A至1-NA。编码部分1-1A至1-NA根据从量化控制部分4所提供的量化宽度来编码所接收的运动图象信号。相同的量化宽度被提供给编码部分1-1A至1-NA。从编码部分1-1A至1-NA输出的结果运动图象编码信号在累加部分2-1至2-N中被暂时地累加。每一个累加部分2-1至2-N中的位数由加法器8共同地相加,并将相加的位数输出到量化控制部分4。量化控制部分4根据从加法器8所接收的位数计算量化宽度。The screen dividing section 12 divides an input moving picture into a plurality of segment screens as shown in FIG. 19, and assigns moving picture signals representing the respective segment screens to the encoding sections 1-1A to 1-NA. The encoding sections 1-1A to 1-NA encode the received moving image signal according to the quantization width supplied from the quantization control section 4. The same quantization width is provided to the encoding sections 1-1A to 1-NA. The resulting motion picture encoded signals output from the encoding sections 1-1A to 1-NA are temporarily accumulated in the accumulation sections 2-1 to 2-N. The number of bits in each of the accumulation sections 2 - 1 to 2 -N is collectively added by the adder 8 , and the added number of bits is output to the quantization control section 4 . The quantization control section 4 calculates a quantization width from the number of bits received from the adder 8 .

帧位数计算部分6计算包括有最初被传送到多路复用部分3的在每一个累加部分2-1至2-N中所累加的运动图象编码信号的位的一帧的位数。多路复用控制部分7A控制多路复用部分3,使得由帧位数计算部分6所计算的位数的运动图象编码信号以相应于所采用屏幕分割方法的顺序从每一个累加部分2-1至2-N传送到多路复用部分3。多路复用部分3根据由多路复用控制部分7A的控制来多路复用运动图象编码信号,这样该编码信号构成一屏幕,并且以一固定位速率输出多路复用信号。The frame bit number calculation section 6 calculates the number of bits of a frame including the bits of the moving image coded signal accumulated in each of the accumulation sections 2-1 to 2-N which are initially sent to the multiplexing section 3. The multiplexing control section 7A controls the multiplexing section 3 so that the moving image coded signal of the number of bits calculated by the frame bit number calculation section 6 is transferred from each accumulation section 2 in an order corresponding to the adopted screen division method. -1 to 2-N are sent to the multiplexing section 3. The multiplexing section 3 multiplexes the moving picture coded signal according to the control by the multiplexing control section 7A so that the coded signal constitutes a screen, and outputs the multiplexed signal at a fixed bit rate.

因此,在本例中,对于所有的在该屏幕分割编码时的段屏幕,运动图象以相同的量化宽度被编码。这就抑制了在一屏幕中图象质量的变化。Therefore, in this example, moving pictures are encoded with the same quantization width for all segment screens at the time of this screen division encoding. This suppresses variations in image quality within a screen.

在本例中,一屏幕在水平方向上被分成四段。另外,该屏幕在垂直方向或在水平和垂直方向的组合上可分成若干段。再有,段的数量并不限于四,可以是任何自然数。In this example, a screen is divided into four horizontally. In addition, the screen can be divided into several segments vertically or in a combination of horizontal and vertical directions. Also, the number of segments is not limited to four, and may be any natural number.

(例9)(Example 9)

图20是根据本发明的例9的一运动图象编码和多路复用装置的框图。Fig. 20 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 9 of the present invention.

参见图20,该装置包括:一运动图象开关部分1001,用来从多个输入运动图象信号中选择一个运动图象信号并转接所选择的运动图象信号的目标;编码部分1002-1至1002-N(N是大于或等于1的整数),用来编码输入运动图象信号;多路复用部分1003;和一控制部分1004,用来转换该运动图象开关部分1001的开关状态、编码部分1002-1至1002-N的编码方法,和多路复用部分1003的多路复用方法。Referring to Fig. 20, this device comprises: a motion picture switch part 1001, is used for selecting a motion picture signal from a plurality of input motion picture signals and switches the target of the selected motion picture signal; Coding part 1002- 1 to 1002-N (N is an integer greater than or equal to 1), which is used to encode an input moving image signal; a multiplexing section 1003; and a control section 1004, which is used to switch the switch of the moving image switching section 1001 The state, the encoding method of the encoding sections 1002-1 to 1002-N, and the multiplexing method of the multiplexing section 1003.

在上述构成的该装置中,该运动图象开关部分1001接收通过分割一高精度运动图象的一屏幕所得到表示多个段屏幕的运动图象信号或部分运动图象信号。控制部分1004确定输入到运动图象开关部分1001的每一个运动图象信号是否被输出,如果被输出,则确定哪个编码部分该运动图象信号将被输出,并根据这个判断来控制该运动图象开关部分1001。当部分运动图象信号输入时,来自相同运动图象信号的所有部分运动图象信号被选择和输出。根据由运动图象开关部分1001所控制的转换该控制部分1004确定对于每一个编码部分1002-1至1002-N该运动图象信号或部分运动图象信号中的哪一个信号被编码。该编码部分1002-1至1002-N编码输入运动图象信号或部分运动图象信号并向多路复用部分1003输出所得结果的编码信号。根据由运动图象开关部分1001所控制的转接该控制部分1004控制多路复用部分1003,以多路复用该输入运动图象信号。在该屏幕分割编码的情况下,该多路复用部分1003多路复用来自相同运动图象信号的部分运动图象信号,然后随同其它多个运动图象信号一起多路复用所得结果的被多路复用的信号,并且输出该结果信号。In the apparatus constructed as described above, the moving picture switching section 1001 receives moving picture signals or partial moving picture signals representing a plurality of segment screens obtained by dividing a screen of a high-precision moving picture. The control section 1004 determines whether each moving image signal input to the moving image switching section 1001 is output, and if outputted, determines which coding section the moving image signal will be output, and controls the moving image signal according to this judgment. Like switch part 1001. When a partial moving picture signal is input, all partial moving picture signals from the same moving picture signal are selected and output. The control section 1004 determines which of the moving image signal or partial moving image signal is to be encoded for each of the encoding sections 1002-1 to 1002-N in accordance with switching controlled by the moving image switching section 1001. The encoding sections 1002-1 to 1002-N encode the input moving image signal or part of the moving image signal and output the resulting encoded signal to the multiplexing section 1003. The control section 1004 controls the multiplexing section 1003 according to switching controlled by the moving picture switching section 1001 to multiplex the input moving picture signal. In the case of the screen division encoding, the multiplexing section 1003 multiplexes a part of the moving picture signal from the same moving picture signal, and then multiplexes the resultant part together with other multiple moving picture signals. The signal is multiplexed, and the resulting signal is output.

图21是图20中所示的本例的装置的多路复用部分1003的框图。FIG. 21 is a block diagram of the multiplexing section 1003 of the apparatus of this example shown in FIG. 20 .

参见图21,该多路复用部分1003包括:一运动图象多路复用子部分1021,用来多路复用由编码该部分运动图象信号所得到的部分运动图象编码信号;一通道多路复用子部分1022,用来多路复用多个运动图象编码信号;和开关1023-1至1023-N(N是大于或等于1的整数),用来将该运动图象编码信号的目标输入到该多路复用部分1003。Referring to Fig. 21, this multiplexing part 1003 comprises: a moving image multiplexing subsection 1021, which is used for multiplexing the partial moving image coding signal obtained by encoding the moving image signal; The channel multiplexing subsection 1022 is used to multiplex a plurality of moving picture encoded signals; and switches 1023-1 to 1023-N (N is an integer greater than or equal to 1) are used to put The object of the coded signal is input to this multiplexing section 1003 .

根据由运动图象开关部分1001所控制的转接该控制部分1004转接开关1023-1至1023-N。即,接收部分运动图象信号的开关1023被转接到运动图象多路复用子部分1021,同时其它的开关1023被转接到通道多路复用子部分1022。运动图象多路复用子部分1021多路复用由编码来自相同运动图象信号的部分运动图象信号所得到部分运动图象编码信号,并输出其结果。该通道多路复用子部分1022多路转从运动图象多路复用子部分1021和从开关1023输出的运动图象编码信号,并输出其结果。The control section 1004 switches over the switches 1023-1 to 1023-N according to switching controlled by the moving picture switching section 1001. That is, the switch 1023 receiving part of the moving picture signal is switched to the moving picture multiplexing subsection 1021, while the other switches 1023 are switched to the channel multiplexing subsection 1022. The moving picture multiplexing subsection 1021 multiplexes a partial moving picture encoded signal obtained by encoding a partial moving picture signal from the same moving picture signal, and outputs the result. The channel multiplexing subsection 1022 multiplexes the moving picture coded signal output from the moving picture multiplexing subsection 1021 and from the switch 1023, and outputs the result thereof.

因此,在本例中,多个不同运动图象信号和由分割一高精度运动图象信号所产生的多个部分运动图象信号被立即编码和多路复用。在本例的装置中,即使当所有的输入信号是单独的运动图象信号或它们是由屏幕分割所产生的部分运动图象信号时也可实施编码和多路复用。Therefore, in this example, a plurality of different moving picture signals and a plurality of partial moving picture signals generated by dividing a high-precision moving picture signal are encoded and multiplexed at once. In the apparatus of this example, coding and multiplexing can be performed even when all input signals are individual moving picture signals or they are partial moving picture signals generated by screen division.

在本例中,多个运动图象信号被单独地分割和编码,并且运动图象多路复用子部分1021多路复用相应于所有运动图象信号的一个运动图象信号的部分运动图象编码信号。另外,可提供多个运动图象多路复用子部分,这样每一运动图象多路复用子部分多路复用一组部分运动图象编码信号。In this example, a plurality of moving picture signals are separately divided and encoded, and the moving picture multiplexing subsection 1021 multiplexes a partial moving picture corresponding to one moving picture signal of all moving picture signals. like coded signals. In addition, a plurality of moving picture multiplexing subsections may be provided so that each moving picture multiplexing subsection multiplexes a set of partial moving picture coded signals.

(例10)(Example 10)

图22是根据本发明例10的一运动图象编码和多路复用装置的方框图。在图10的该装置中,在图20中所示的例9中的控制部分1004被分割成一开关控制部分1041、一编码控制部分1042、和一多路复用控制部分1043。Fig. 22 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 10 of the present invention. In the apparatus of FIG. 10, the control section 1004 in Example 9 shown in FIG. 20 is divided into a switch control section 1041, an encoding control section 1042, and a multiplexing control section 1043.

开关控制部分1041确定输入到运动图象开关部分1001的每一个运动图象信号是否被输出,如果输出,则确定哪个编码部分该运动图象信号被输出,从而控制该运动图象开关部分1001。该开关控制部分1041同时输出一表明开关状态的信号给编码控制部分1042和多路复用控制部分1043。The switch control section 1041 determines whether each moving image signal input to the moving image switching section 1001 is output, and if output, determines which encoding section the moving image signal is output, thereby controlling the moving image switching section 1001. The switch control section 1041 outputs a signal indicating the switch state to the encoding control section 1042 and the multiplexing control section 1043 at the same time.

根据从开关控制部分1041所提供的信号,如例9一样,该编码控制部分1042确定用于每个编码部分1002-1至1002-N的运动图象信号或是部分运动图象信号中的哪个信号被编码。如例9一样,根据从该开关控制部分1041所提供的信号该多路复用控制部分1043控制多路复用部分1003去多路复用该输入运动图象信号。Based on the signal supplied from the switch control section 1041, as in Example 9, the encoding control section 1042 determines which of the moving image signal or partial moving image signal is used for each encoding section 1002-1 to 1002-N. The signal is encoded. As in Example 9, the multiplexing control section 1043 controls the multiplexing section 1003 to multiplex the input moving image signal based on the signal supplied from the switch control section 1041.

(例11)(Example 11)

图23是根据本发明的例11的一运动图象编码和多路复用装置的框图。Fig. 23 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 11 of the present invention.

在例11的装置中,在图22所示的运动图象开关部分1001的上游提供有一屏幕分割部分1005。该屏幕分割部分1005将一输入运动图象信号分成多个段屏幕,产生相应于这些段屏幕的部分运动图象信号,并向运动图象开关部分1001输出该部分运动图象信号。因此,在这个例子中,一高精度运动图象可以直接地输入到该运动图象编码和多路复用装置中而无须前面的屏幕分割处理。In the apparatus of Example 11, a screen dividing section 1005 is provided upstream of the moving picture switching section 1001 shown in FIG. The screen dividing section 1005 divides an input moving image signal into a plurality of segment screens, generates partial moving image signals corresponding to the segment screens, and outputs the partial moving image signal to the moving image switching section 1001. Therefore, in this example, a high-precision moving picture can be directly input into the moving picture encoding and multiplexing device without the preceding screen division process.

因此,在这个例子中,多个单独的运动图象信号和由分割一高精度运动图象信号所产生的多个部分运动图象信号被同时地编码和多路复用。在这个例子的装置中,即使当所有的输入信号是单独的运动图象信号或它们是由屏幕分割所产生的部分运动图象信号时也可实施编码和多路复用。Therefore, in this example, a plurality of individual moving picture signals and a plurality of partial moving picture signals generated by dividing a high-precision moving picture signal are simultaneously encoded and multiplexed. In the apparatus of this example, encoding and multiplexing can be performed even when all input signals are individual moving image signals or they are partial moving image signals generated by screen division.

在这个例子中,提供了一屏幕分割部分。另外,可以并行地提供多个屏幕分割部分,同时地接收用于屏幕分割的多个运动图象信号。另外,用每几帧分割一运动图象信号并向运动图象开关部分输出其结果的一运动图象时分部出来替代对于输入运动图象实施屏幕分割的所提供的屏幕分割部分。In this example, a screen split is provided. In addition, it is possible to provide a plurality of screen division sections in parallel, and simultaneously receive a plurality of moving image signals for screen division. In addition, instead of providing a screen division for performing screen division on an input moving picture, a moving picture time division is used which divides a moving picture signal every several frames and outputs the result to the moving picture switching part.

(例12)(Example 12)

图24是根据本发明的例12的一运动图象编码和多路复用装置的框图。Fig. 24 is a block diagram of a moving picture encoding and multiplexing apparatus according to Example 12 of the present invention.

在例12的装置中,在图23所示的例11的装置中附加提供有多个累加部分1006-1至1006-N、一加法器1007、和一帧位数计算部分1008。In the apparatus of Example 12, a plurality of accumulation sections 1006-1 to 1006-N, an adder 1007, and a frame number calculation section 1008 are additionally provided in the apparatus of Example 11 shown in FIG.

累加部分1006-1至1006-N累加从编码部分1002-1至1002-N输出的运动图象信号。加法器1007将在每个累加部分1006-1至1006-N中所累加的运动图编码信号的位数进行相加。帧位数计算部分1008计算在累加部分1006-1至1006-N中所累加的运动图象编码信号的每帧的位数。The accumulation sections 1006-1 to 1006-N accumulate the moving image signals output from the encoding sections 1002-1 to 1002-N. The adder 1007 adds the number of bits of the motion picture encoded signal accumulated in each of the accumulation sections 1006-1 to 1006-N. Frame bit number calculation section 1008 calculates the number of bits per frame of the moving image coded signals accumulated in accumulation sections 1006-1 to 1006-N.

在具有上述构成的该装置中,在累加部分1006-1至1006-N中暂时地累加从编码部分1002-1至1002-N输出的运动图象编码信号。由加法器1007对每一个累加部分1006-1至1006-N中的运动编码信号的位数进行相加,并向编码控制部分1042输出相加的位数。根据从加法器1007接收的位数该编码控制部分1042计算量化宽度。In the apparatus having the above-mentioned constitution, the moving image encoded signals output from the encoding sections 1002-1 to 1002-N are temporarily accumulated in the accumulation sections 1006-1 to 1006-N. The number of bits of the motion code signal in each of the accumulation sections 1006 - 1 to 1006 -N is added by the adder 1007 , and the added number of bits is output to the code control section 1042 . The encoding control section 1042 calculates a quantization width based on the number of bits received from the adder 1007 .

在这个例子中,根据在该多路复用部分1003中的固定输出位速率,该位数大则该量化宽度就设置得大,位数小则量化宽度设置得小。编码控制部分1042向每一个编码部分1002-1至1002-N输出一个以这种方式所得到的量化宽度。编码部分1002-1至1002-N根据该量化宽度编码所接收的运动图象信号。In this example, according to the fixed output bit rate in the multiplexing section 1003, the quantization width is set large when the number of bits is large, and small when the number of bits is small. The encoding control section 1042 outputs a quantization width obtained in this way to each of the encoding sections 1002-1 to 1002-N. Encoding sections 1002-1 to 1002-N encode the received moving image signal according to the quantization width.

因此,在这个例子中,根据在多路复用部分中的输出位速率,虽然该输出位速率是固定的,可以编码该输出信号。另外,因为相同的量化宽度可用于具有不同精度的输入运动图象的压缩/编码,所以多个输出运动图象的量质可以总是保持均匀。另外,因为是根据在每一个累加部分1006-1至1006-N中所累加的运动图象编码信号的位数之和来实施该量化控制,所以可以有效地使用该输出位速率。Therefore, in this example, according to the output bit rate in the multiplexing section, although the output bit rate is fixed, the output signal can be encoded. In addition, since the same quantization width can be used for compression/encoding of input moving pictures with different precisions, the quality of a plurality of output moving pictures can always be kept uniform. In addition, since the quantization control is carried out based on the sum of the bits of the moving picture coded signals accumulated in each accumulation section 1006-1 to 1006-N, the output bit rate can be effectively used.

在这个例子中,设置了用于编码部分1002-1至1002-N的该量化宽度。另外,也可设置诸如位速率之类的其它值。In this example, the quantization widths for encoding sections 1002-1 to 1002-N are set. In addition, other values such as bit rate may also be set.

因此,在这个例子中,通过屏幕分割由分割一运动图象所得到的多个部分运动图象信号可同时地被编码和多路复用。Therefore, in this example, a plurality of partial moving picture signals obtained by dividing a moving picture by screen division can be encoded and multiplexed simultaneously.

在例9至12中,在该编码部分的上游提供有一运动图象开关部分。另外,还可并联地提供两个或多个运动图象开关部分。再有,在这些例子中仅仅运动图象信号被编码和被多路复用。另外,该装置可被构成使得诸如音频信号之类的其它信号也被多路复用。In Examples 9 to 12, a moving picture switching section is provided upstream of the encoding section. In addition, two or more moving picture switching sections may also be provided in parallel. Also, only moving picture signals are coded and multiplexed in these examples. In addition, the device may be configured such that other signals such as audio signals are also multiplexed.

(例13)(Example 13)

参照图25至27来说明根据本发明的例13的一图象传送装置。An image transmission apparatus according to Example 13 of the present invention will be described with reference to FIGS. 25 to 27. FIG.

图25是例3的装置的一图象传送的框图。参见图25,该图象传送装置包括有图象编码部分2001,2002,2003,…和一多路复用部分2010。该图象编码部分2001,2002,2003,…分别包括有编码子部分2004,2005,2006,…和中间缓冲器2007,2008,2009,…。该多路复用部分2010包括有一输入/输出控制子部分2010a和一输出缓冲器2010b。FIG. 25 is a block diagram of an image transmission of the apparatus of Example 3. FIG. Referring to FIG. 25, the image transmission apparatus includes image encoding sections 2001, 2002, 2003, . . . and a multiplexing section 2010. The image encoding sections 2001, 2002, 2003, ... respectively include encoding subsections 2004, 2005, 2006, ... and intermediate buffers 2007, 2008, 2009, .... The multiplexing section 2010 includes an input/output control subsection 2010a and an output buffer 2010b.

现在将说明具有上述构成的该装置的操作。The operation of the apparatus having the above-mentioned constitution will now be described.

该图象编码部分2001,2002,2003,…压缩/编码各个输入图象信号。该图象编码部分2001,2002,2003,…的编码子部分2004,2005,2006,…使用MPEG2编码,也就是将该输入图象信号编码成符合ISO/IEC 13818-2(通常称之为MPEG2视频)MP@ML的图象信号,并且,每一予置的固定多路复用周期,向各个中间缓冲器2007,2008,2009,…输出一在下一多路复用周期内所希望多路复用的编码数据的数。根据该输入/输出控制子部分2010a的控制,该多路复用部分2010接收和占用在该输出缓冲器2010b每一多路复用周期在该图象编码部分2001,2002,2003,…的中间缓冲器2007,2008,2009,…中所累加的所有编码数据。然后,根据所接收的编码数据的次序,该编码数据以该传送路线的一传送速率向一传送路线依次输出该编码数据。就在该接收周期内在输出缓冲器中可被获取的编码数据而言,来自该图象编码部分的中间缓冲器的编码数据的接收次序不受限制。因此,该多路复用部分2010确定在完成该接收时在输出缓冲器2010b中的编码数据的一缓冲器占有Bmux_OC,并且将其结果输出到图象编码部分2001,2002,2003,…。利用计算的Bmux_OC/R,其中R表示在该传送路线中的传送速率,编码子部分2004,2005,2006,…可以相对地估算当从多路复用部分2010中输出该编码数据时的每一编码数据的传送延迟时间。利用该估算值图象编码部分2001,2002,2003,…编码该输入图象。The image encoding sections 2001, 2002, 2003, ... compress/encode respective input image signals. The encoding subsections 2004, 2005, 2006, ... of the image encoding part 2001, 2002, 2003, ... use MPEG2 encoding, that is, the input image signal is encoded to conform to ISO/IEC 13818-2 (commonly referred to as MPEG2 video) MP@ML image signal, and, each preset fixed multiplexing cycle, to each intermediate buffer 2007, 2008, 2009, ... output a desired multiplexing cycle in the next multiplexing cycle The number of encoded data to multiplex. According to the control of the input/output control subsection 2010a, the multiplexing section 2010 receives and occupies the output buffer 2010b every multiplexing cycle in the middle of the image coding section 2001, 2002, 2003, ... All coded data accumulated in buffers 2007, 2008, 2009, . . . Then, according to the order of the received coded data, the coded data is sequentially output to a transmission line at a transmission rate of the transmission line. As far as encoded data can be acquired in the output buffer during the receiving period, the reception order of encoded data from the intermediate buffer of the image encoding section is not limited. Therefore, the multiplexing section 2010 determines that a buffer of encoded data in the output buffer 2010b occupies Bmux_OC when the reception is completed, and outputs the result thereof to the image encoding sections 2001, 2002, 2003, . . . Utilize calculated Bmux_OC/R, where R represents the transfer rate in the transfer route, the encoding subsections 2004, 2005, 2006, ... can relatively estimate each Transmission delay time of encoded data. The input image is encoded using the estimated value image encoding section 2001, 2002, 2003, . . .

该图象编码部分2001,2002,2003,…将输入图象压缩/编码成MPEG2视频数据。在该MPEG2编码中,实施用于该图象信号的帧间予测编码,并且由该予测编码产生的一予测误差分量由DCT编码。通过增加或减少在一DCT系数的量化中所使用的量化宽度来确定该编码数据的位数。与该量化宽度小时,所产生的位数就大,但该图象被压缩和被编码以得到一接近于原始图象的图象。反之,当量化宽度大时,所产生的位数就小,但由于由一量化误差所引起的失真使得所得结果图象变差。因此,为了编码该图象信号以使得到具有接近于原始图象的一均匀质量的图象,该量化宽度需要被控制以使尽可能的小,尽可能的固定,并具有一尽可能小的变化。在这个例子中,根据该量化宽度来控制图象质量和所产生的位数。除了用量化宽度控制之外该编码部分的操作是基于已知技术进行的(例如,见“Latest MPEG Textbook”,Ascii publishing,1995,PP103-105)。因此,在下面将详细说明该量化宽度的控制。The image encoding sections 2001, 2002, 2003, ... compress/encode input images into MPEG2 video data. In the MPEG2 encoding, interframe predictive encoding for the image signal is carried out, and a predictive error component resulting from the predictive encoding is encoded by DCT. The number of bits of the encoded data is determined by increasing or decreasing the quantization width used in quantization of a DCT coefficient. When the quantization width is small, the number of generated bits is large, but the image is compressed and encoded to obtain an image close to the original image. Conversely, when the quantization width is large, the number of generated bits is small, but the resulting image is deteriorated due to distortion caused by a quantization error. Therefore, in order to encode the image signal so as to obtain an image with a uniform quality close to the original image, the quantization width needs to be controlled to be as small as possible, fixed as much as possible, and have an as small as possible Variety. In this example, the image quality and the number of generated bits are controlled according to the quantization width. The operation of this encoding part is based on known techniques except for quantization width control (see, for example, "Latest MPEG Textbook", Ascii publishing, 1995, PP103-105). Therefore, the control of the quantization width will be described in detail below.

图26示出了图象编码部分的编码子部分的一构成。参见图26,该编码子部分包括一基本编码部分2011,一位计数器2012,一用来暂时存贮被编码数据的缓冲器2013,和一控制部分2014。该基本编码部分包括一差分处理器2011a,一DCT处理器2011b,一量化处理器2011c,一可变长度编码器2011d,和一帧间予测器2011e。Fig. 26 shows a configuration of an encoding subsection of the image encoding section. Referring to FIG. 26, the encoding subsection includes a basic encoding section 2011, a one-bit counter 2012, a buffer 2013 for temporarily storing encoded data, and a control section 2014. The basic coding section includes a difference processor 2011a, a DCT processor 2011b, a quantization processor 2011c, a variable length coder 2011d, and an inter-frame predictor 2011e.

该基本编码部分2011将一图象信号编码为MPEG2视频格式。更详细地说,帧间予测器2011e确定一予测值,差分处理器2011a计算该予测值的一予测该差,DCT处理器2011b利用DCT处理该予测误差,量化处理器2011c量化被DCT处理的值,和可变长度编码器2011d编码该量化值。量化处理器2011c接收一来自控制部分2014的量化值。根据该量化宽度该输入图象信号被量化和被编码。所得结果的编码数据被传送到缓冲器2013。位计数器2012对该编码数据的位数计数,并且每一多路复用周期将所产生的位数传送到控制部分2014。该控制部分2014根据在输出缓冲器2010b中的从多路复用部分2010传送来的该缓冲器占有Bmux_OC和从位计数器2012传送的所产生的位数来确定该量化宽度,并将该量化宽度提供给基本编码部分2011。该控制部分还计算被传送到图象编码部分的相应中间缓冲器的位数,并向该缓冲器2013提供该位数。根据由该控制部分2014所规定的位数该缓冲器2013向相应的中间缓冲器输出从基本编码部分2011所传送的编码数据。The basic encoding section 2011 encodes an image signal into the MPEG2 video format. In more detail, the inter-frame predictor 2011e determines a predicted value, the difference processor 2011a calculates a predicted difference of the predicted value, the DCT processor 2011b processes the predicted error using DCT, and the quantization processor 2011c quantizes The value processed by DCT, and the variable length encoder 2011d encodes the quantized value. The quantization processor 2011c receives a quantization value from the control section 2014 . The input image signal is quantized and encoded according to the quantization width. The resulting encoded data is transferred to the buffer 2013 . The bit counter 2012 counts the number of bits of the encoded data, and transmits the generated number of bits to the control section 2014 every multiplexing cycle. The control section 2014 determines the quantization width according to the buffer occupancy Bmux_OC transmitted from the multiplexing section 2010 in the output buffer 2010b and the generated number of bits transmitted from the bit counter 2012, and the quantization width Provided to the basic encoding part 2011. The control section also calculates the number of bits to be transferred to the corresponding intermediate buffer of the image coding section, and supplies the number of bits to the buffer 2013. The buffer 2013 outputs the encoded data transferred from the basic encoding section 2011 to the corresponding intermediate buffer according to the number of bits specified by the control section 2014.

图27示出了通过编码子部分的控制部分2014计算量化宽度的流程图。参见图27,在步骤2201开始该处理。在步骤2202中对参考量化宽度q_st、编码子部分缓冲器占有Bei_oc、中间缓冲器占有Bmi_oc和参量Di进行初始化。在步骤2203中判断是否该编码已完成。如果已完成,在步骤2204中中止该处理。如果没有,则在步骤2205中计算该量化宽度。在步骤2206中检测所产生的位数。在步骤2207中输出所计算的位数。在步骤2208中接收该输出缓冲器占有Bmux_oc,和在步骤2209中计算参量Di。然后,进行为了防止在输出缓冲器中的上溢的处理(步骤2210)和该编码跳越(步骤2211)。FIG. 27 shows a flowchart for calculating the quantization width by the control section 2014 of the encoding subsection. Referring to FIG. 27, at step 2201 the process begins. In step 2202, the reference quantization width q_st, the code subpart buffer occupation Bei_oc, the intermediate buffer occupation Bmi_oc and the parameter Di are initialized. In step 2203, it is judged whether the encoding has been completed. If completed, in step 2204 the process is aborted. If not, the quantization width is calculated in step 2205 . In step 2206 the resulting number of bits is checked. In step 2207 the calculated number of bits is output. In step 2208 the output buffer occupancy Bmux_oc is received, and in step 2209 the parameter Di is calculated. Then, processing to prevent overflow in the output buffer (step 2210) and the encoding skip (step 2211) are performed.

上述操作是对图25中所示的所有编码子部分而实施的。在下面,作为一个例子将详细说明第1个编码子部分的操作。The above operations are carried out for all encoding subsections shown in FIG. 25 . In the following, the operation of the first encoding subsection will be described in detail as an example.

在初始化之后(步骤2202),该控制部分2104利用在重现由第i个编码子部分编码的数据的接收侧所设置的一假设译码装置的缓冲器尺寸Bdec_Size利用下式(8)来计算每一多路复用周期的量化宽度(步骤2205),直至该编码被完成为止(步骤2203)。After initialization (step 2202), the control section 2104 uses the buffer size Bdec_Size of a hypothetical decoding device set at the receiving side to reproduce the data encoded by the i-th encoding subsection using the following equation (8) to calculate Quantization width for each multiplexing cycle (step 2205) until the encoding is completed (step 2203).

qi=(Bdec_size/(Bdec_size-Di))·q_st  (8)qi=(Bdec_size/(Bdec_size-Di))·q_st (8)

其中q_st表示在初始化时被予量的参考量化宽度以便可获得一所希望的图象质量。Di表示每一多路复用周期变化的变量。下面将说明这个变量的计算。每一多路复用周期该编码子部分向在该图象编码部分的中间缓冲器输出编码数据。更详细地说,该控制部分2014在多路复用周期检测自该位计数器2012所产生的位数。当所产生的位数和一未输出剩余位数REMi之和小于中间缓冲器的尺寸时,控制部分2014向缓冲器2013发送一指令输出量Bmi,指明所有的编码数据(即,REMi和所产生的位数之和)在不超出在一标准中所规定的上限的范围内(即,在MP@ML之下的15Mbps)将被输到中间缓冲器。当该和大于中间缓冲器的尺寸时,控制部分2014向缓冲器2013发送一指令输出量Bmi,指明将输出等于中间缓冲器的容量的一量,同时在缓冲器2013中保持该剩余部分作为未输出剩余数据(步骤2206和2207)。Wherein q_st represents the reference quantization width to be quantized at the time of initialization so that a desired image quality can be obtained. Di represents a variable that changes every multiplexing cycle. The calculation of this variable will be described below. The encoding subsection outputs encoded data to the intermediate buffer in the image encoding section every multiplexing cycle. In more detail, the control section 2014 detects the number of bits generated from the bit counter 2012 in a multiplexing cycle. When the sum of the generated number of bits and a non-output remaining number of bits REMi is less than the size of the intermediate buffer, the control part 2014 sends an instruction output Bmi to the buffer 2013, indicating all encoded data (that is, REMi and the generated The sum of the number of bits) will be output to the intermediate buffer within the range not exceeding the upper limit specified in a standard (ie, 15 Mbps below MP@ML). When the sum is greater than the size of the intermediate buffer, the control section 2014 sends an instruction output amount Bmi to the buffer 2013, specifying that an amount equal to the capacity of the intermediate buffer will be output, while keeping the remainder in the buffer 2013 as an unfinished Output the remaining data (steps 2206 and 2207).

在能够计算输出缓冲器占有Bmux_oc和在接收器侧被接收的一多路复用周期编码数据被多路复用之后,当由编码子部分编码但未被重现的编码数据的量大于译码装置的缓冲器尺寸Bdec_size时,确定该指令输出量Bmi使得通过从未被重现的编码数据量中减去该缓冲器尺寸Bdec_size后所得到的值等于剩余的未输出数据位数REMi。换句话说,通过保持到连接收器侧的数据量等于缓冲器尺寸Bdec-size而使该译码装置的缓冲器阻止了上溢。更详细地说,该编码数据量的上限被置为由从译码装置的缓冲器尺寸中减去该缓冲器占有后所得到的一值。例如,上述未被重现编码数据量被如下所述地被确定。在这种情况中,即被指定的译码装置的重量时间是利用被加到编码数据的一时间戳记以使当在输出缓冲器2010b中的缓冲器占有Bmux_oc变为等于缓冲器尺寸Bmux_size时该编码数据在○的延迟时间由译码装置重现的情况中,在时间(Bmux_size-Bmux_oc)/R期间在各个编码子部分中所产生的位数bT被计算和被总计。然后,利用(9)式来计算未输出数据的位数:After the output buffer occupancy Bmux_oc can be calculated and the encoded data is multiplexed for one multiplexing cycle received at the receiver side, when the amount of encoded data encoded by the encoding subsection but not reproduced is greater than that of the decoding For the buffer size Bdec_size of the device, the command output amount Bmi is determined such that the value obtained by subtracting the buffer size Bdec_size from the amount of coded data that has not been reproduced is equal to the remaining number of unoutput data bits REMi. In other words, the buffer of the decoding device is prevented from overflowing by keeping the amount of data to the receiver side equal to the buffer size Bdec-size. More specifically, the upper limit of the amount of encoded data is set to a value obtained by subtracting the buffer occupancy from the buffer size of the decoding device. For example, the above-mentioned amount of non-reproduced encoded data is determined as follows. In this case, the weight time of the designated decoding device is to use a time stamp added to the encoded data so that when the buffer occupancy Bmux_oc in the output buffer 2010b becomes equal to the buffer size Bmux_size In the case where the encoded data is reproduced by the decoding means at a delay time of ○, the number of bits bT generated in each encoding subsection during the time (Bmux_size-Bmux_oc)/R is calculated and totaled. Then, use formula (9) to calculate the number of bits of unoutput data:

REMi=REMi+bT-Bmi                         (9)REMi=REMi+bT-Bmi (9)

其中bT是在一多路复用周期内所产生的位数。where bT is the number of bits generated in one multiplexing cycle.

之后,控制部分2104接收多路复用部分2010的输出缓冲器2010b的当前数据占有Bmux_oc,并在(11)式作为前提的情况下用(10)式计算参量Di(步骤2208和2209)。Afterwards, the control section 2104 receives the current data possession Bmux_oc of the output buffer 2010b of the multiplexing section 2010, and calculates the parameter Di with the formula (10) on the premise of the formula (11) (steps 2208 and 2209).

Di=Bdec_size*Bmux_oc/Bmux_size+f(REMi)       (10)Di=Bdec_size*Bmux_oc/Bmux_size+f(REMi) (10)

         f(REMi)=REMi                        (11)f(REMi)=REMi (11)

利用(8)式从这样所得到的参重Di计算该量化宽度。The quantization width is calculated from the parameter weight Di thus obtained using equation (8).

为了防止由从译码器缓冲器尺寸(Bdec_size-Di)减去Di的值变为0,当(Bdec_size-Di)等于或小于阈值K时该控制部分2014指示基本编码部分2011去实施跳越(步骤2210和2211)。In order to prevent the value of subtracting Di from the decoder buffer size (Bdec_size-Di) from becoming 0, the control section 2014 instructs the basic encoding section 2011 to perform skipping when (Bdec_size-Di) is equal to or smaller than the threshold K ( Steps 2210 and 2211).

该多路复用部分2010在每一多路复用周期接收在每个图象编码部分的中间缓冲器中存贮的编码数据,根据ISO/IEC 13818-1(通常称之为MPEG2 TS流)将该编码数据多路复用到一数据包中,并向传送线路输出该数据包。这时,根据该输出缓冲器2010b的缓冲器占有Bmux_oc确定由用来向该编码装置指定每个图象的重现计时的时间戳记所指明的重现时间。也就是,当输出缓冲器2010b变满时在延迟时间0处开始该编码数据的重现。利用这个时间作为参考,确定该重现时间并将指明这个重现时间的该时间戳记加到每个被传送的数据包。The multiplexing section 2010 receives the encoded data stored in the intermediate buffer of each image encoding section in each multiplexing cycle, according to ISO/IEC 13818-1 (commonly referred to as MPEG2 TS stream) The encoded data is multiplexed into a data packet, and the data packet is output to the transmission line. At this time, the reproduction time indicated by the time stamp for specifying the reproduction timing of each picture to the encoding apparatus is determined from the buffer occupancy Bmux_oc of the output buffer 2010b. That is, reproduction of the encoded data starts at delay time 0 when the output buffer 2010b becomes full. Using this time as a reference, the recurring time is determined and the time stamp designating the recurring time is added to each transmitted data packet.

利用上述构成,在多路复用部分2010中的初始传送开始时间、该多路复用部分2010的输出缓冲器尺寸Bmux_size等实际上依据与多路复用部分2010相连的图象编码部分N的数目、传送速率等而变化。但是,在这个例子中,当设置Bmux_size=N×Bdec_size时,假定与编码之后该编码数据立即被多路复用和当输出缓冲占有Bmux_oc是0时到达该译码装置并且假定在X幅图象(即,存在有一可能性,即这个数据相应于在该译码器中所累加的最大X幅图象)之后重现这个编码数据。使用输出缓冲器占有Bmux_oc为0作为参考的情况,当输出缓冲器占有Bmux_oc是一任意值时,被多路复用的该编码数据的相对延迟时间按照Bmux_oc/R而被计算。因此,当该数据到达该译码装置时,保持在该译码装置中的图象的数据量是X·(Bmux_size-Bmux_oc(t))/Bmux_size(当未输入数据量为0时)。在这种情况下,由接收器侧所接收的编码数据没有下溢。With the above configuration, the initial transfer start time in the multiplexing section 2010, the output buffer size Bmux_size of the multiplexing section 2010, etc. actually depend on the image coding section N connected to the multiplexing section 2010. The number, transmission rate, etc. vary. However, in this example, when Bmux_size=N×Bdec_size is set, it is assumed that the encoded data is multiplexed immediately after encoding and arrives at the decoding device when the output buffer occupancy Bmux_oc is 0 and it is assumed that X images (ie, there is a possibility that this data corresponds to the maximum X images accumulated in the decoder) to reproduce the coded data afterwards. Using the case where the output buffer occupancy Bmux_oc is 0 as a reference, when the output buffer occupancy Bmux_oc is an arbitrary value, the relative delay time of the multiplexed encoded data is calculated according to Bmux_oc/R. Therefore, when the data arrives at the decoding device, the data size of the image held in the decoding device is X·(Bmux_size-Bmux_oc(t))/Bmux_size (when the non-input data size is 0). In this case, the encoded data received by the receiver side does not underflow.

更详细地说,首先,当REMi=0时,由式(8)和(9)得到下式(12)。More specifically, first, when REMi=0, the following formula (12) is obtained from formulas (8) and (9).

qi=(Bmux_size/(Bmux_Size-Bmux_oc))·q_st    (12)qi=(Bmux_size/(Bmux_Size-Bmux_oc))·q_st (12)

从式(12)可显见,输出缓冲器占有Bmux_oc越接近输出缓冲器尺寸Bmux_size,该量化宽度就越大。因此,所产生的位数被压缩以防止下溢的出现。即使输出一极复杂的图象,通过在图27中的步骤2211的跳越使Bmux_oc总是被控制得小于Bmux_size。这就防止了下溢的出现。It can be seen from equation (12) that the closer the output buffer occupation Bmux_oc is to the output buffer size Bmux_size, the larger the quantization width will be. Therefore, the number of bits generated is compressed to prevent underflow from occurring. Even if an extremely complex image is output, Bmux_oc is always controlled to be smaller than Bmux_size by skipping step 2211 in FIG. 27 . This prevents underflow from occurring.

当REMi≠0时,得到下面的式(13)。When REMi≠0, the following formula (13) is obtained.

qi=q_st/(1-(Bmux_oc/Bmux_size)-REMi/Bdec-Size)    (13)qi=q_st/(1-(Bmux_oc/Bmux_size)-REMi/Bdec-Size) (13)

从式(13)可显见,控制该图象编码部分从而使REMi小于Bdec_size×(Bmux_size-Bmux_oc)/Bmux_size。即使输出一极复杂的图象,通过在图27中的步骤2211中的跳越而减小所产生的位数来控制图象编码部分使得REMi小于Bdec_size×(Bmux_size-Bmux_oc)/Bmux-Size。即使所有其它图象编码部分需要多路复用最大位数的编码数据,该编码数据可至少以通过由图象编码部分的数分割该传送速率所得到的平均速率而被多路复用。因为相应于编码数据的位数的Bdec_Size×(Bmux_size-Bmux_oc)/Bmux_size可以时间(Bmux_size-Bmux-OC)/R之内以平均速率被传送,所以在接收器侧不会出现下溢。It can be seen from equation (13) that the image coding part is controlled so that REMi is smaller than Bdec_size*(Bmux_size-Bmux_oc)/Bmux_size. Even if an extremely complex image is output, the image encoding part is controlled by reducing the number of generated bits by skipping in step 2211 in FIG. 27 so that REMi is smaller than Bdec_size*(Bmux_size-Bmux_oc)/Bmux-Size. Even if all other image coding sections need to multiplex coded data of the maximum number of bits, the coded data can be multiplexed at least at an average rate obtained by dividing the transfer rate by the number of image coding sections. Since Bdec_Size×(Bmux_size−Bmux_oc)/Bmux_size corresponding to the number of bits of encoded data can be transmitted at an average rate within time (Bmux_size−Bmux−OC)/R, underflow does not occur on the receiver side.

因为超过译码装置的缓冲器容量的编码数据作为未输出数据而被留下,所以不会出现上溢并且因此所有由该图象编码部分编码的编码数据仍保持重复性。Since coded data exceeding the buffer capacity of the decoding device is left as non-output data, overflow does not occur and therefore all coded data coded by the image coding section still maintains repetition.

利用上述构成,该图象编码部分根据相同的标准来确定该量化宽度。因此,在所有图象编码部分中使用的量化宽度同样与该输入图象无关,并且因此该输入图象可被编码从而基本上给予了相同的图象质量。即使在一连续的输入图象中包括有一情景变化,因为该量化宽度是根据在所有的图象编码部分中所产生的位数而被控制的,所以依据其复杂性的增大而指定位数而不会使该情景变化处的图象质量大幅度下降,同时该位增加的影响和图象质量的变化保持很小。每一个图象编码部分控制所产生的位数和被多路复用的编码数据的位数从而使得在接收机侧编码数据不会上溢和下溢。因此,该多路复用部分2010仅适用于多路复用所接收的有规律的编码数据,不需要如常规要求那样对整个图象进行信息处理。因此,因为该处理是分散的,所以该装置易于构成。With the above constitution, the image encoding section determines the quantization width according to the same standard. Therefore, the quantization width used in all picture coding sections is also independent of the input picture, and thus the input picture can be coded giving substantially the same picture quality. Even if a scene change is included in a continuous input image, since the quantization width is controlled according to the number of bits generated in all image coding sections, the number of bits is specified according to the increase in its complexity The image quality at the scene change will not be greatly reduced, while the impact of the bit increase and the change in image quality remain small. Each image coding section controls the number of bits generated and the number of bits of coded data to be multiplexed so that the coded data does not overflow and underflow on the receiver side. Therefore, the multiplexing section 2010 is only suitable for multiplexing the received regular coded data, and does not need to perform information processing on the entire image as conventionally required. Therefore, since the processing is distributed, the device is easy to construct.

在这个例子中,该量化宽度由式(8)来计算。就保持Bdec_size-Di>0而言可利用另外的公式。In this example, the quantization width is calculated by equation (8). Additional formulas can be utilized in terms of maintaining Bdec_size-Di>0.

对于式(11)的f(REMi)=REMi可使用另外的公式。对于一指定的图象编部分的用来确定量化宽度的判定特征和f(REMi)可有意的变化,以便保持一特定图象信号的高的图象值量。例如,例如当第j个编码部分的中间缓冲器的容量做成大于其它中间缓冲器的容量的M倍时,f(REMi)可以为REMi/M。为了做到这一点,未输出编码数据的量可增大到接近于在这个例子中所允许的REMi的M倍的一个量。正常情况下,当一图象比输入的所有图象的平均更为复杂时,当在Bmux_oc时间到达译码装置的编码数据被多路复用时相应于被编码的X·(Bmux_size-Bmux_oc(t))/Bmux_size图象的数据的尺寸被限为Bdec_size+REMi。因此,对于一编码困难的复杂图象,具有更多未输出数据会可能分配相对更多的位。Another formula can be used for f(REMi)=REMi of equation (11). The decision characteristic used to determine the quantization width and f(REMi) for a given picture code portion can be intentionally varied in order to maintain a high picture value level for a particular picture signal. For example, f(REMi) may be REMi/M when the capacity of the intermediate buffer of the j-th encoding section is made larger than M times the capacity of other intermediate buffers. In order to do this, the amount of non-output coded data can be increased to an amount close to M times the allowed REMi in this example. Under normal circumstances, when an image is more complex than the average of all input images, when the encoded data arriving at the decoding device at the Bmux_oc time is multiplexed, it corresponds to the encoded X (Bmux_size-Bmux_oc( t))/Bmux_size The data size of the image is limited to Bdec_size+REMi. Therefore, for a complex image that is difficult to encode, having more unoutput data may allocate relatively more bits.

在这个例子中,多路复用周期越短,该控制就越精确。但是,对于多路复用周期,MPEG2的几个微组或几个部分(图象信号的几条线)是适当的。也可以使用一图象等的一长周期。In this example, the shorter the multiplexing period, the more precise the control. However, for the multiplexing period, several microgroups or several parts (several lines of the image signal) of MPEG2 are suitable. A long period of one image or the like may also be used.

在这个例子中,对于所有图象编码部分该编码方法的数据传送方法是相同的。但是在与标准图象质量控制不同的一图象质量控制下,可以处理一特定的基本编码部分。例如,就随Di增加该量化宽度增加的函数而言,对于式(8)中的量化宽度,任何值都可用作判断函数。通过减小该量化宽度的变化速率可使该图象质量保持均匀。另外,当所有的图象编码部分以如上所述的方式操作时,在一特定的图象编码部分中,该量化宽度可以固定以使该图象质量均匀,或者在该图象编码部分中该数据可以一固定速率被编码以生成比特位。在这种情况下,总的来说,所生成的位数趋向于随Di的增加而减少。因此,整个位速率可以是在该传送线路上的位速率范围之内。In this example, the data transfer method of the encoding method is the same for all image encoding sections. However, under a picture quality control different from the standard picture quality control, a specific basic coding part can be processed. For example, in terms of the function that the quantization width increases as Di increases, any value can be used as the judgment function for the quantization width in equation (8). The image quality can be kept uniform by reducing the rate of change of the quantization width. Also, when all the picture coding sections operate as described above, in a specific picture coding section, the quantization width can be fixed to make the picture quality uniform, or in the picture coding section the quantization width can be fixed. Data can be encoded at a fixed rate to generate bits. In this case, overall, the number of bits generated tends to decrease as Di increases. Therefore, the overall bit rate can be within the bit rate range on the transmission line.

(例14)(Example 14)

下面将参考图28至34来说明根据本发明的例14的一图象传送装置。An image transmission apparatus according to Example 14 of the present invention will be described below with reference to FIGS. 28 to 34. FIG.

图28概要地示出了例14的该图象传送装置。参见图28,该图象传送装置包括有用于控制在一LAN(局部区域网)上的位速率的一位速率管理结点2015,和连接到具有图象编码部分的该LAN的结点2016至2019。结点2016至2019的每一个包括有一图象重现部分以及图象编码部分。该图象编码部分编码图象考虑到缓冲器尺寸Bdec-size和一目标结点的图象重现部分的译码装置的缓冲器占有。Fig. 28 schematically shows the image transmission apparatus of Example 14. Referring to FIG. 28, the image transmission apparatus includes a bit rate management node 2015 for controlling the bit rate on a LAN (Local Area Network), and nodes 2016 to 2016 connected to the LAN having an image encoding section. 2019. Each of the nodes 2016 to 2019 includes an image reproduction section and an image encoding section. The picture coding part codes the picture taking into account the buffer size Bdec-size and the buffer occupancy of the decoding means of the picture reproduction part of an object node.

利用上述构成,被配置在与另一个相连接的结点上的每一个图象编码部分通过LAN将编码数据传送到在该LAN的另一个图象编码部分作为一信息包。该信息包包括有一用于传送所需的标头信息和编码数据。With the above constitution, each image encoding section disposed on a node connected to another transmits encoded data to another image encoding section on the LAN as a packet via the LAN. The packet includes a header information and encoded data required for transmission.

图29示出了一标头格式。该标头信息包括用于该编码数据正确传送所需的信息,即在该LAN上所需的可推测的已知信息。在这个例子中,省略了对这种信息的说明,而仅仅说明一发送器地址、一接收器地址、一图象信息包标记和一传送周期数。在该网络中,在每个相邻结点之间延伸一传送线路的路径,形成了一环路。该位速率管理结节2015控制信息包的产生。也就是,该位速率管理结点2015根据来自结点的要求和所产生用于传送的信息来获取该位速率。Fig. 29 shows a header format. The header information includes information required for the correct transfer of the encoded data, ie, presumably known information required on the LAN. In this example, description of such information is omitted, and only a sender address, a receiver address, a picture packet flag, and a transfer cycle number are described. In this network, the path of a transmission line is extended between each adjacent node, forming a loop. The bit rate management node 2015 controls the generation of packets. That is, the bit rate management node 2015 acquires the bit rate based on the request from the node and the information generated for transmission.

图30说明了在结点之间的通信方法。例如,在结点2016和2019之间的通信中,该位速率管理结点2015产生一具有1的发送器地址和4的接收器地址的一信息包,并向该网络的空着的信息包中定时输出该信息包。每一结点通过一并不涉及其本身的信息包,将该信息包传送到相邻结点。在接收具有1的发送器地址信息包中,结点2016将结点2016所希望传送的编码数据放在该信息包中,并将该信息包传送到下一结点2017。结点2017和2018将这个信息包送到下一结点。结点2019检测它自己的地址,即地址4,作为在该信息包中该接收器地址,接收在该信息包中的编码数据,并然后释放该信息包。Fig. 30 illustrates the communication method between nodes. For example, in communication between nodes 2016 and 2019, the bit rate management node 2015 generates a packet with a sender address of 1 and a receiver address of 4, and sends an empty packet to the network Output the packet regularly. Each node transmits the packet to neighboring nodes via a packet that does not refer to itself. In receiving the sender address packet with 1, the node 2016 puts the encoded data that the node 2016 wishes to transmit in the packet, and transmits the packet to the next node 2017. Nodes 2017 and 2018 send this information packet to the next node. Node 2019 detects its own address, address 4, as the receiver address in the packet, receives the encoded data in the packet, and then releases the packet.

下面将参考图31至36来说明表示图象的编码数据的传送。Transmission of encoded data representing images will be described below with reference to FIGS. 31 to 36. FIG.

该位速率管理结点2015得到在该网络中用于所传送的编码数据的完整位速率。例如,假定在该网络中传送编码数据的结点数为4并且用于每一结点的平均位速率大约为3Mbps。在这种情况中,该位速率管理结点2015给出12Mbps位速率并输出用于相应于12Mpbs的图象传送的信息包。用于图象传送的每个各自的信息包提供有每个多路复用周期被更新的一多路复用周期数。每一结点识别每个所接收的信息包的多路复用周期数并在由该多路复用周期数所指明的多路复用期间输出该信息包。在该信息包输出之前,在每一多路复用周期,每一结点通知被输出的信息包的数。The bit rate management node 2015 obtains the complete bit rate for transmitted encoded data in the network. For example, assume that the number of nodes transmitting encoded data in the network is 4 and that the average bit rate for each node is approximately 3 Mbps. In this case, the bit rate management node 2015 gives a bit rate of 12 Mbps and outputs packets for image transmission corresponding to 12 Mbps. Each respective packet for image transmission is provided with a multiplex cycle number which is updated every multiplex cycle. Each node recognizes the multiplexing cycle number of each received packet and outputs the packet during the multiplexing period indicated by the multiplexing cycle number. Before the packet is output, each node notifies the number of output packets at each multiplexing cycle.

图31是用于通知信息包数的该信息包的传送的一个例子。在这个信息包中,两个发送器和接收器地址是ff和图象信息包特征位是1,这样每一结点识别用于通知信息包的数的信息包。在接收这样一个信息包时,在相应于所指出的多路复用周期数的该多路复用期间每一结点写入通过该结点的被传送的信息包的数。该位速率管理结点2015读取通过该网络被循环的用于通知信息包的数的该信息包,并且输出用于该数等于被通知的信息包的点数的具有相同多路复用周期数的图象传送的信息包。Fig. 31 is an example of the transfer of the packet for notifying the number of packets. In this packet, the two sender and receiver addresses are ff and the image packet flag is 1, so that each node recognizes the packet for notifying the number of packets. Upon receiving such a packet, each node writes the number of packets transmitted through the node during the multiplexing period corresponding to the indicated number of multiplexing cycles. The bit rate management node 2015 reads the packet that is circulated through the network for notifying the number of packets, and outputs the same multiplexing cycle number for the number equal to the number of points of the notified packet The packet of image transmission.

图32是利用用于图象传送的该信息包的编码数据的传送的一个例子。该位速率管理结点2015产生一具有1的信息标记位和一定的多路复用周期数的用于图象传送的信息包,并在该网络上输出该信息包。这个信息包对于任何具有图象传送通知的结点是可用的。因此,任何在所指定的多路复用周期希望传送它的编码数据的结点将它自己的地址和接收器地址写在该信息包的标头中,在该信息包中置入编码数据,并且向该器的结点传送该信息包。在图32所示的例子中,示出了从结点2016至结点2019的传送。结点2019接收这个信息包,复位在该信息包中的数据,并在该网络中输出该信息包。当在该所指明的多路复用周期之间,位于最接近于该位速率管理结点2015的结点2016传送了结点2016所欲传送的所有信息之后,后面的具有相同多路复用周期数的信息包通过结点2016到达下一结点。如像上面对结点2015所说明的那样,在所指定的多路复用周期之间,位于较接近于该位速率管理结点2015的结点2017将它的所传送的编码数据置入该信息包中并传送该信息包。Fig. 32 is an example of transmission of coded data using the packet for image transmission. The bit rate management node 2015 generates a packet for image transmission having an information flag bit of 1 and a certain number of multiplexing cycles, and outputs the packet on the network. This packet is available to any node that has image transfer notifications. Therefore, any node wishing to transmit its coded data in the specified multiplexing cycle writes its own address and receiver address in the header of the information packet, puts the coded data in the information packet, And transmit the information packet to the node of the device. In the example shown in FIG. 32, transmission from node 2016 to node 2019 is shown. Node 2019 receives the packet, resets the data in the packet, and outputs the packet in the network. When the node 2016 located closest to the bit rate management node 2015 has transmitted all the information that the node 2016 intends to transmit between the specified multiplexing cycles, the following multiplexing cycles have the same Number of information packets arrive at the next node through node 2016. As explained above for node 2015, between specified multiplexing periods, node 2017 located closer to the bit rate management node 2015 places its transmitted encoded data in in the packet and transmit the packet.

在这种方式中,每一结点接收的信息包的数等于由该结点所通知的信息包的数,将在该所指定的多路复用周期之间在该信息包内置入它的被传送的编码数据,并且以较接近于该位速率管理结点2015的结点较早的进行这种操作的方式在该网络中输出该信息包。因为该位速率管理结点2015产生的具有相同多路复用周期的信息包的数等于由这些结点所通知的信息包的总数,所以这些信息包即不短也不过长。因此,用于下一个多路复用周期的信息包是根据由这些结点的通知而产生的。In this way, each node receives a number of packets equal to the number of packets advertised by the node, within which its The encoded data is transmitted and the packet is output in the network in such a manner that the node closer to the bit rate management node 2015 does so earlier. Since the number of packets having the same multiplexing cycle generated by the bit rate management node 2015 is equal to the total number of packets notified by these nodes, the packets are neither short nor long. Therefore, packets for the next multiplexing cycle are generated based on the notification by these nodes.

在这个例子中使用的多路复用周期相应于在例11中所述的多路复用周期,并且实际上是通过计算直至该位速率管理结点2015根据所通知的信息包的总数所产生具有相同多路复用数为止所需要的延迟时间所确定的。The multiplexing cycle used in this example corresponds to the multiplexing cycle described in Example 11, and is actually generated by calculating until the bit rate management node 2015 according to the total number of notified packets Determined by the delay time required to have the same multiplex number.

例如,假设该多路复用周期为T和TXK之后的延迟数据量为DD(KT),则在TX(K+1)之后的延迟数据量,即DD((K+1)T)是由下式(14)计算的。For example, assuming that the multiplexing period is T and the amount of delayed data after TXK is DD(KT), the amount of delayed data after TX(K+1), that is, DD((K+1)T) is given by Calculated by the following formula (14).

DD((K+1)T)=DD(KT)+Pn·P_DATA-RT         (14)DD((K+1)T)=DD(KT)+Pn P_DATA-RT (14)

其中Pn表示在这个时间被通知的信息包的总数,P_DATA表示每一信息包的数据量,和R是由该位速率管理结点2015所给出的用于图象传送的位速率。Where Pn represents the total number of packets notified at this time, P_DATA represents the data amount of each packet, and R is the bit rate for image transmission given by the bit rate management node 2015.

然后,根据下面的式(15)来计算所有编码部分的虚拟输出缓冲器尺寸(下面称之为多路复用虚拟缓冲器尺寸)Bmux_size,和由下面的式(16)来计算相对延迟能量delay_mux。根据图29中所示的格式所得结果的多路复用虚拟缓冲器尺寸和相对延迟能量被置入用于图象传送的该信息包中。Then, calculate the virtual output buffer size (hereinafter referred to as the multiplexing virtual buffer size) Bmux_size of all encoding parts according to the following formula (15), and calculate the relative delay energy delay_mux by the following formula (16) . The resulting multiplexed virtual buffer size and relative delay energy according to the format shown in Fig. 29 is put into the packet for image transfer.

Bmux_Size=N×Bdec_size                        (15)Bmux_Size=N×Bdec_size (15)

delay_mux=Bmux_size-(delay_init×R)+DD    (16)delay_mux=Bmux_size-(delay_init×R)+DD (16)

其中delay-init表示从与延迟数据量DD为0时所传送的数据的到达直至该数据重现为止的延迟时间,这个延迟时间是由在该网络中的结点所共享的。该计算值被置入在该计算之后立即产生的该信息包的标头中,并被传送。Among them, delay-init represents the delay time from the arrival of the transmitted data when the delay data amount DD is 0 until the data is reproduced, and this delay time is shared by the nodes in the network. The calculated value is put into the header of the packet generated immediately after the calculation, and transmitted.

图33示出了由该位速率管理结点2015所产生的信息包的传送。FIG. 33 shows the transfer of packets generated by the bit rate management node 2015.

每一予置周期产生用于通知信息包数的信息包。根据为了传送所有表示图象的编码数据而由位速率管理结点2015所给出的速率R,由在该信息包中为了通知信息包数而通知的数产生用于图象传送的信息包。但是,与当在一多路复用周期期间该延迟数据量增加至等于delay_init×R的情况中,在这个多路复用周期该信息包的产生被中止并且即使所产生的信包的数短于所通知的信息包的数该多路复用周期数也被更新。在当在一多路复用周期之内完成了该通知数的信息包的产生的情况中,在下一多路复用周期产生具有被更新的多路复用周期数的信息包。因此,由这些结点通知的信息包数的编码数据被传送,这样多路复用延迟数DD不会超过delay_init×R。A packet for notifying the number of packets is generated every predetermined period. Packets for image transmission are generated from the number notified for notifying the number of packets in the packet according to the rate R given by the bit rate management node 2015 for transmitting all encoded data representing images. However, unlike the case when the delay data amount increases to equal to delay_init×R during a multiplexing cycle, the generation of the packet is suspended during this multiplexing cycle and even if the number of generated packets is short The number of multiplexing cycles is also updated according to the number of notified packets. In the case when the generation of the notified number of packets is completed within one multiplexing cycle, packets with the updated number of multiplexing cycles are generated in the next multiplexing cycle. Therefore, coded data of the number of packets notified by these nodes is transmitted so that the multiplexing delay number DD does not exceed delay_init×R.

图34示出了每一结点的构成。参见图34,该结点包括一用来处理信息包的输入/输出的信息包处理部分2020、一控制部分2021、一中间缓冲器2022、和一编码部分2023、和一图象重现部分2024。Fig. 34 shows the configuration of each node. Referring to Fig. 34, this node comprises a packet processing section 2020, a control section 2021, an intermediate buffer 2022, and an encoding section 2023, and an image reproduction section 2024 for processing the input/output of the packet .

该信息包处理部分2020通过一网络接收一所传送的信息包并检测该信息包的标头。当该标头的接收器地址是它自己的地址时,信息包处理部分2020将该信息包的内容传递到控制部分2021并在复位该信息包的发送器地址和接收器地址之后立即输出该信息包。当在该信息包中的所传递数据是表示图象的编码数据时,控制部分2021将该编码数据传递到用来重视该图象和图象重现部分2024。The packet processing section 2020 receives a transmitted packet through a network and detects the header of the packet. When the receiver address of the header is its own address, the packet processing section 2020 passes the contents of the packet to the control section 2021 and outputs the information immediately after resetting the sender address and receiver address of the packet Bag. When the transferred data in the packet is encoded data representing an image, the control section 2021 transfers the encoded data to the image and image reproduction section 2024 for attaching the image.

当所接收的信息包的发送器的地址是它自己的地址时,该信息包处理部分2020根据来自控制部分2021和中间缓冲器2022的信息在该信息包中写入编码数据,并且输出所得结果的信息包。When the address of the sender of the received packet is its own address, the packet processing section 2020 writes encoded data in the packet according to the information from the control section 2021 and the intermediate buffer 2022, and outputs the resultant information package.

与该标头信息指明该信息包是用于通知信息包数时,与在该信息包中的多路复用周期数一起,该信息包处理部分2020向控制部分2021发送一个指明该信息包是用于通知信息包数的检测信号。该控制部分2021向该信息包处理部分2020发送用来指明多路复用周期的被通知的信息包数。用于这个多路复用周期的被通知的信息包数相应于与该所指明的多路复用周期期间从编码部分2023发送到中间缓冲器2022的数据数。这个数据数是由中间缓冲器2022来计算的,并且该计算值是作为由控制部分2021所通知的值所确定的。该信息包处理部分2020在该信息包中写入所通知的值并将所得结果的信息包输出到该网络中。When the header information indicates that the packet is for notifying the number of packets, together with the number of multiplexing cycles in the packet, the packet processing section 2020 transmits to the control section 2021 a message indicating that the packet is Heartbeat to notify the number of packets. The control section 2021 transmits to the packet processing section 2020 a notified packet number indicating a multiplexing cycle. The notified packet number for this multiplexing period corresponds to the number of data transmitted from the encoding section 2023 to the intermediate buffer 2022 during the specified multiplexing period. This number of data is calculated by the intermediate buffer 2022, and the calculated value is determined as a value notified from the control section 2021. The packet processing section 2020 writes the notified value in the packet and outputs the resulting packet to the network.

当该信息包的标头信息指明该信息包是用于图象传送时,该信息包处理部分2020向控制部分2021发送一指明该信息包是用于图象传送的检测信号。控制部分2021随后读取该信息包的多路复用周期数。如果在所指明的多路复用周期期间已经输出的信息包数是短于所通知的信息包数,则控制部分2021指示该信息包处理部分2020随同接收器地址一起写入表示图象的编码数据。该信息包处理部分2020写入它自己的地址作为发送器地址并且指定接收器地址作为目标地址,该取相应于来自中间缓冲器2022的一信息色的编码数据,在该信息包中写入该编码数据,并将结果的信息包输出到该网络中。在这个多路复用周期期间输出通知信息包数之后,该控制部分2021更新该多路复用周期数。该控制部分2021还向信息包处理部分2020发送一输出指令信号以允许在更新之前输出一后面具有旧的多路复用周期数的信息包而无需任何处理。When the header information of the packet indicates that the packet is for image transmission, the packet processing section 2020 sends to the control section 2021 a detection signal indicating that the packet is for image transmission. The control section 2021 then reads the number of multiplexing cycles of the packet. If the number of packets that have been output during the indicated multiplexing cycle is shorter than the notified number of packets, the control section 2021 instructs the packet processing section 2020 to write the code representing the image along with the receiver address. data. The packet processing section 2020 writes its own address as the sender address and specifies the receiver address as the target address, which fetches coded data corresponding to a message from the intermediate buffer 2022, writes the Encodes the data and outputs the resulting packets into the network. After outputting the notification packet number during this multiplexing cycle, the control section 2021 updates the multiplexing cycle number. The control section 2021 also sends an output instruction signal to the packet processing section 2020 to allow output of a packet followed by the old number of multiplexing cycles without any processing before updating.

在接收用于图象传送的信息包时,该控制部分2021接收多路复用虚拟缓冲器尺寸Bmux_size和来自信息包处理部分2020的该信息包的相对延迟参量delay_mux,并将这些值传送到编码部分2023。这些值总是与传送计时无关地被检测。When receiving a packet for image transmission, the control section 2021 receives the multiplexing virtual buffer size Bmux_size and the relative delay parameter delay_mux of the packet from the packet processing section 2020, and transmits these values to the encoder Section 2023. These values are always checked independently of the transfer timing.

下面将说明编码部分2023的操作。该编码部分2023的操作与图26中所示的例13中的编码子部分的操作是基本相同的。The operation of the encoding section 2023 will be described below. The operation of this encoding section 2023 is basically the same as that of the encoding subsection in Example 13 shown in FIG. 26 .

在这个例子中,在图26中所示的控制部分2014接收来自图34中的控制部分2021的多路复用虚拟缓冲器尺寸Bmux_size和相对延迟参量delay_max,并实施与例13所述相同的操作,使用这些值来替换在图13中的多路复用部分2010的缓冲器尺寸Bmux_size和缓冲器占有Bmux_oc(见图25)。在这个例子中,因为由该位速率管理结点2015所置的传送速率R是等效于在例13中在多路复用部分2010中的传送速率,所以在结点的编码部分之间被传送和接收的编码数据是以该编码数据可被重现而不会在接收器侧出现上溢或下溢的计时来传送的。In this example, the control section 2014 shown in FIG. 26 receives the multiplexed virtual buffer size Bmux_size and the relative delay parameter delay_max from the control section 2021 in FIG. 34, and performs the same operation as described in Example 13. , use these values to replace the buffer size Bmux_size and buffer occupancy Bmux_oc of the multiplexing section 2010 in FIG. 13 (see FIG. 25 ). In this example, since the transfer rate R set by the bit rate management node 2015 is equivalent to the transfer rate in the multiplexing section 2010 in Example 13, it is divided between the encoding sections of the node. The coded data transmitted and received is transmitted with a timing at which the coded data can be reproduced without overflow or underflow on the receiver side.

因此,根据这个例子,图象可以在一保持该图象质量基本均匀的网络上被传送。图35A和35B示在一网络上具有可变位速率的编码数据的常规传送和在这个例子中以所使用的位速率的编码数据的传送之间的比较。在常规情况下,用于依据该图象的复杂性而编码的编码数据的位速率在该传送线路上被获取。在这种情况中,如图35A所示,例如当三块编码数据被传送时,在传送线路上的所有位速率未被有效使用。但是,在这个例子中,如图35B所示,因为在该传送线路上的所有位速率总是用于编码,所以该位速率被有效使用。因为使用大位数对数据编码,所以可以重现高质量图象。当图象质量不高时,在该网络上可传送更多的图象。Therefore, according to this example, images can be transmitted over a network that keeps the image quality substantially uniform. 35A and 35B show a comparison between conventional transmission of encoded data with a variable bit rate over a network and transmission of encoded data at the bit rate used in this example. Conventionally, the bit rate for the coded data coded according to the complexity of the picture is acquired on the transmission line. In this case, as shown in FIG. 35A, for example, when three blocks of coded data are transmitted, all bit rates on the transmission line are not effectively used. However, in this example, as shown in FIG. 35B, since all bit rates on the transmission line are always used for encoding, the bit rates are effectively used. Because data is encoded using a large number of bits, high-quality images can be reproduced. When the image quality is not high, more images can be transmitted on the network.

在这个例子中,如所述那样以一环形形状该网络连接这些结点。本发明还可用于其它形状的网络或具有不同传送协议的网络直至在该传送线路上所指定用于一图象的位速率被获取,在该传送中的延迟量被提供给每一结点,并且由编码部分所产生的编码数据可被传送。In this example, the network connects the nodes in a ring shape as described. The present invention can also be used for networks of other shapes or networks with different transmission protocols until the bit rate specified for an image on the transmission line is obtained, the amount of delay in the transmission is provided to each node, And the encoded data generated by the encoding section can be transmitted.

在Bmux_size-(delay-initxR)≥0范围之内可任意设置由delay_init所表示的延迟时间。特别是,当满足Bmux_size-(delay_init=R)=0时,更有效的可变长度编码是可能的。如在例13中,通过改变一特定编码部分的设置仅仅一个特定固定可被编码以得到高质量。另外,在这个例子中,通过多路复用可允许的最大数据量每个多路复用周期至少可以获得通过分割输入数的整个位速率所得到的平均位速,因此,它可能传送以平均速率被编码的图象信号。The delay time represented by delay_init can be set arbitrarily within the range of Bmux_size-(delay-initxR)≥0. In particular, when Bmux_size-(delay_init=R)=0 is satisfied, more efficient variable-length encoding is possible. As in Example 13, only a specific fix can be encoded to obtain high quality by changing the setting of a specific encoding section. Also, in this example, at least the average bit rate obtained by dividing the entire bit rate of the input data can be obtained per multiplexing cycle by multiplexing the maximum allowable data volume, so it is possible to transmit at an average rate coded video signal.

在这个例子中,说明了被传送的图象数不变的情况。另外,在该传送期间图象数可以变化。在这种情况中,Bmux_xize和delay_mux将被更新。在该传送期间由于图象数的变化而使相对延迟参量delay_mux变为页的情况中,在附加一新的图象之前delay_mux将被更新为一小于由式(16)所得到的值的一值,通过附加一新的图象将delay_mux减小到delay_mux将不会变页的这样一个程度。In this example, the case where the number of images to be transferred is not changed is described. Additionally, the number of images may vary during this transfer. In this case, Bmux_xize and delay_mux will be updated. In the case where the relative delay parameter delay_mux becomes pages due to changes in the number of pictures during the transfer, delay_mux will be updated to a value smaller than the value obtained by equation (16) before appending a new picture , reduce the delay_mux to such an extent that the delay_mux will not be paged by appending a new image.

如像图36所示,在这个例子中的结点可通过插入在这个例子中作为一软件所述的算法而由一普通计算机来实施。本发明可应用于从摄象机或在诸如普通计算机的硬盘之类的存贮器中的一图象信号所得到的图象信号的编码。As shown in Fig. 36, the nodes in this example can be implemented by an ordinary computer by inserting the algorithm described as a software in this example. The present invention is applicable to encoding of an image signal obtained from a video camera or an image signal in a memory such as a hard disk of an ordinary computer.

公式1

Figure C9712646900581
Formula 1
Figure C9712646900581

公式2  P3i=min(编码器缓冲器占用,解码器缓冲器的空闲容量)-P2iFormula 2 P3i=min (occupancy of the encoder buffer, free capacity of the decoder buffer)-P2i

公式3  D=输出位数-∑P2iFormula 3 D = output digits - ∑P2i

公式4  复用位数=P2i+P3iFormula 4 Number of multiplexed bits = P2i+P3i

公式5

Figure C9712646900582
Formula 5
Figure C9712646900582

公式6

Figure C9712646900583
Formula 6
Figure C9712646900583

公式7

Figure C9712646900584
Formula 7
Figure C9712646900584

公式8  qi=(Bdec_size/(Bdec_size-Di))·q_stFormula 8 qi=(Bdec_size/(Bdec_size-Di))·q_st

公式9  REMi=REMi+bT-BmiFormula 9 REMi=REMi+bT-Bmi

公式10 Di=Bdec_size*Bmux_oc/Bmux_size+f(REMi)Formula 10 Di=Bdec_size*Bmux_oc/Bmux_size+f(REMi)

公式11 f(REMi)=REMiFormula 11 f(REMi)=REMi

公式12 qi=(Bmux_size/(Bmux_size-Bmux_oc))·q_stFormula 12 qi=(Bmux_size/(Bmux_size-Bmux_oc))·q_st

公式13 qi=q_st/(1-(Bmux_oc/Bmux_size)-REMi/Bdec_size)Formula 13 qi=q_st/(1-(Bmux_oc/Bmux_size)-REMi/Bdec_size)

公式14 DD((k+t)T)=DD(kT)+Pn·P_DATA-RTFormula 14 DD((k+t)T)=DD(kT)+Pn·P_DATA-RT

公式15 Bmux_size=N×Bdec_sizeFormula 15 Bmux_size=N×Bdec_size

公式16 delay_mux=Bmux_size-(delay_init×R)+DDFormula 16 delay_mux=Bmux_size-(delay_init×R)+DD

Claims (40)

1、一种用来编码多个运动图象信号的运动图象编码装置,包括:1. A moving image encoding device for encoding a plurality of moving image signals, comprising: 用来编码多个运动图象信号的多个编码部分,其中每个编码部分装备有一个量化子部分,用来由予置的量化宽度量化多个运动图象信号;和a plurality of encoding sections for encoding a plurality of moving image signals, wherein each encoding section is provided with a quantization subsection for quantizing the plurality of moving image signals by a preset quantization width; and 一量化控制部分,用来同时地控制由量化子部分所使用的量化宽度;a quantization control section for simultaneously controlling the quantization widths used by the quantization subsections; 以及进一步包括多个累加部分,用来暂时地累加从该多个编码部分输出的多个运动图象编码信号,and further comprising a plurality of accumulation sections for temporarily accumulating a plurality of moving image encoded signals output from the plurality of encoding sections, 其中,该量化控制部分根据在该累加部分中所累加的多个运动图象编码信号的位数之和确定由量化子部分所使用的量化宽度。Wherein, the quantization control section determines the quantization width used by the quantization sub-section based on the sum of the bits of the plurality of moving image coded signals accumulated in the accumulation section. 2、根据权利要求1的运动图象编码装置,其中由量化子部分所使用的量化宽度是相同的。2. The moving picture coding apparatus according to claim 1, wherein the quantization widths used by the quantization subsections are the same. 3、根据权利要求1的运动图象编码装置,进一步包括有被配置在多个编码部分的上游的一屏幕分离部分,用来将一输入运动图象信号分离成多个运动图象信号。3. The moving picture coding apparatus according to claim 1, further comprising a screen separating section arranged upstream of the plurality of encoding sections for separating an input moving picture signal into a plurality of moving picture signals. 4、一种用来多路复用由编码多个运动图象信号所得到的多个运动图象编码信号的运动图象多路复用装置,包括:4. A moving image multiplexing device for multiplexing a plurality of encoded moving image signals obtained by encoding a plurality of moving image signals, comprising: 多个累加部分,用来暂时地累加多个运动图象编码信号;a plurality of accumulating parts for temporarily accumulating a plurality of moving image coding signals; 一多路复用部分,用来多路复用在多个累加部分中所累加的多个运动图象编码信号并以一固定位速率输出该多路复用信号;a multiplexing section for multiplexing a plurality of motion picture coded signals accumulated in a plurality of accumulation sections and outputting the multiplexed signal at a fixed bit rate; 一译码延迟时间计算部分,用来计算从当多个运动图象编码信号的每一个的特定位被输入直至当该特定位由译码装置译码为止的一时间周期;a decoding delay time calculation section for calculating a period of time from when a specific bit of each of the plurality of moving image coded signals is input until when the specific bit is decoded by the decoding means; 一帧位数计算部分,用来计算包括在多个累加部分中所累加的多个运动图象编码信号的每一个的特定位的一帧的位数;和a frame bit number calculation section for calculating the bit number of a frame including a specific bit of each of the plurality of moving image encoded signals accumulated in the plurality of accumulation sections; and 一多路复用控制部分,用来根据该译码延迟时间计算部分和帧位数计算部分的计算结果来计算多个第一输入位数,所述多个第一输入位数是从多个累加部分输入到该多路复用部分的多个运动图象编码信号的位数。A multiplexing control section, used for calculating a plurality of first input bit numbers according to the calculation results of the decoding delay time calculation section and the frame bit number calculation section, and the plurality of first input bit numbers are obtained from a plurality of The accumulating section inputs the number of bits of a plurality of moving picture coded signals input to the multiplexing section. 5、根据权利要求4的运动图象多路复用装置,其中该多路复用控制部分包括:5. The moving picture multiplexing apparatus according to claim 4, wherein the multiplexing control section comprises: 一第一参数产生子部分,用来确定多个第一参数,其中该多个第一参数中的每一个参数是由帧位数计算部分所计算的位数与由译码延迟时间计算部分所计算的时间之比;A first parameter generation subsection is used to determine a plurality of first parameters, wherein each parameter in the plurality of first parameters is the number of bits calculated by the frame bit calculation part and the number calculated by the decoding delay time calculation part The ratio of time to calculate; 一第二参数产生子部分,用来确定第二参数,该第二参数是多个第一参数之和;a second parameter generating subsection for determining a second parameter that is the sum of a plurality of first parameters; 一第三参数产生子部分,用来确定多个第三参数,其中对于在多个累加部分中所累加的多个运动图象编码信号,这些多个第三参数中的每一个是多个第一参数中的每一个与所述第二参数之比;和a third parameter generating subsection for determining a plurality of third parameters, wherein each of the plurality of third parameters is a plurality of first a ratio of each of a parameter to said second parameter; and 一多路复用位数计算部分,用来根据多个第三参数计算多个第一输入位数。A multiplexing bit calculation part, used to calculate a plurality of first input bit numbers according to a plurality of third parameters. 6、根据权利要求5的运动图象多路复用装置,进一步包括;6. The motion picture multiplexing device according to claim 5, further comprising; 一累加位数计算部分,用来计算在多个累加部分中累加的多个运动图象编码信号的位数;和an accumulation bit calculation section for calculating the number of bits of the plurality of moving image coding signals accumulated in the plurality of accumulation sections; and 一未占用容量计算部分,用来在多个运动图象编码信号的每一个的特定位被输入到该译码装置之前立即计算一译码装置的输入缓冲器的一未占用容量,an unoccupied capacity calculation section for calculating an unoccupied capacity of an input buffer of a decoding device immediately before specific bits of each of a plurality of moving image coded signals are input to the decoding device, 其中该多路复用位数计算部分将多个第二输入位数的每一个为如下的设置:Wherein the multiplexing number of digits calculation part sets each of the plurality of second input digits as follows: (1)根据第三参数确定的第一输入位数,(1) The first input digit determined according to the third parameter, (2)由累加位数计算部分所计算的运动图象编码信号的位数,和(2) the number of bits of the moving image coded signal calculated by the accumulated number of bits calculation section, and (3)由未占用容量计算部分所计算的译码装置的输入缓冲器的未占用容量,(3) the unoccupied capacity of the input buffer of the decoding device calculated by the unoccupied capacity calculation section, 之中的一个最小值,和a minimum value among , and 该多路复用位数计算部分根据多个第二输入位数控制从累加部分发送到多路复用部分的运动图象编码信号的位数。The multiplexing bit number calculation section controls the number of bits of the moving picture coded signal sent from the accumulation section to the multiplexing section based on the plurality of second input bit numbers. 7、根据权利要求6的运动图象多路复用装置,其中当由多路复用位数计算部分所计算的多个第二输入位数与相应的第一输入位数不同时,该多路复用位数计算部分增加第二输入位数。7. The moving picture multiplexing apparatus according to claim 6, wherein when the plurality of second input bit numbers calculated by the multiplex bit number calculation section are different from the corresponding first input bit numbers, the plurality of second input bit numbers The multiplexing bit calculation section increases the second input bit. 8、一种用来在多个累加部分中被累加之后多路复用多个运动图象编码信号的运动图象多路复用方法,包括有步骤:8. A moving image multiplexing method for multiplexing a plurality of moving image coded signals after being accumulated in a plurality of accumulation parts, comprising the steps of: (1)计算从当多个运动图象编码信号的每一个的一特定位被输入到具有一输入缓冲器的译码装置直至当该特定位被译码为止的一时间周期,(1) calculating a period of time from when a specific bit of each of a plurality of moving image coded signals is input to a decoding device having an input buffer until when the specific bit is decoded, (2)计算包括在多个累加部分中所累加的多个运动图象编码信号的每一个的特定位的一帧的位数;和(2) calculating the number of bits of one frame including a specific bit of each of the plurality of moving image coded signals accumulated in the plurality of accumulation sections; and (3)根据从步骤(1)和(2)中所计算的结果确定来自多个运动图象编码信号的被多路复用的多个位数。(3) A plurality of bits to be multiplexed from a plurality of moving image coded signals is determined based on the results calculated from steps (1) and (2). 9、根据权利要求8的运动图象多路复用方法,其中步骤(3)包括有步骤:9. The moving image multiplexing method according to claim 8, wherein step (3) comprises the steps of: (4)确定多个第一参数,该多个第一参数的每-个是在步骤(2)中得到的位数与在步骤(1)中得到的时间之比;(4) determine a plurality of first parameters, each of the plurality of first parameters is the ratio of the number of digits obtained in step (2) to the time obtained in step (1); (5)确定第二参数,第二参数是多个第一参数之和;(5) determine the second parameter, the second parameter is the sum of multiple first parameters; (6)确定多个第三参数,该多个第三参数的每一个是用于多个运动图象编码信号的多个第一参数的每一个与第二参数的比;(6) determining a plurality of third parameters, each of which is a ratio of each of the plurality of first parameters for the plurality of motion image encoding signals to the second parameter; (7)根据多个第三参数确定多个多路复用位数。(7) A plurality of multiplexing bit numbers are determined according to a plurality of third parameters. 10、根据权利要求9的运动图象多路复用方法,其中用于多路复用多个运动图象编码信号的每一个的一输入多路复用位数被置为:10. The motion picture multiplexing method according to claim 9, wherein an input multiplexing bit number for multiplexing each of a plurality of motion picture coded signals is set as: (1)根据第三参数所确定的多路复用位数,(1) according to the number of multiplexing bits determined by the third parameter, (2)在该累加部分中所累加的运动图象编码信号的位数,和(2) the number of bits of the moving picture coded signal accumulated in the accumulation section, and (3)译码装置的输入缓冲器的一未占用容量,(3) an unoccupied capacity of the input buffer of the decoding device, 之中的一个最小值,和a minimum value among , and 利用输入多路复用位数来控制被多路复用的每一个位数。Each bit that is multiplexed is controlled by the number of input multiplexing bits. 11、根据权利要求10的运动图象多路复用方法,其中当至少一个输入多路复用位数与相应的多路复用位数不同时,则增加该输入多路复用位数。11. The moving picture multiplexing method according to claim 10, wherein when at least one input multiplexing bit is different from the corresponding multiplexing bit, the input multiplexing bit is increased. 12、一种用来多路复用多个运动图象编码信号的运动图象多路复用方法,多个多路复用位数相应于被予置为零的多个运动图象编码信号,该方法包括有步骤:12. A moving picture multiplexing method for multiplexing a plurality of moving picture coded signals, a plurality of multiplexing bits corresponding to a plurality of moving picture coded signals which are preset to zero , the method includes the steps: (1)计算包括有多个运动图象编码信号的每一个的特定位的一帧的帧位数;(1) calculating the number of frame bits of a frame including a specific bit of each of a plurality of moving image coded signals; (2)计算直至多个运动图象编码信号的每一个均为译码为止的一时间周期;(2) calculating a period of time until each of the plurality of moving image coded signals is decoded; (3)选择在步骤(2)中所得到的时间周期稍短于一予置时间值处的运动图象编码信号;(3) Select the moving image coded signal whose time period obtained in step (2) is slightly shorter than a preset time value; (4)根据在步骤(3)中所选择的运动图象编码信号的帧位数来确定多个主多路复用位数;(4) determine a plurality of main multiplexed bit numbers according to the frame bit numbers of the motion picture coded signal selected in step (3); (5)计算多个第一多路复用位数之和;(5) calculating the sum of a plurality of first multiplexing digits; (6)将多个第一多路复用位数加到多个多路复用位数;和(6) adding the plurality of first multiplexing bits to the plurality of multiplexing bits; and (7)更新该予置的时间值,(7) update the preset time value, 其中步骤(1)至(7)被重复,并且,多个第一多路复用位数之和大于一予置的位数时,则确定多个次多路复用位数并加到多个多路复用位数,以多路复用多个多路复用位数的运动图象编码信号。Wherein steps (1) to (7) are repeated, and, when the sum of a plurality of first multiplexed digits is greater than a preset digit number, then determine a plurality of times multiplexed digits and add to multiple multiplexing bits to multiplex the moving image coded signal of a plurality of multiplexing bits. 13、一种用来多路复用多个运动图象编码信号的运动图象多路复用方法,包括有步骤:13. A motion picture multiplexing method for multiplexing a plurality of motion picture coded signals, comprising the steps of: 根据未被传送到译码装置的多个运动图象编码信号的帧的位数确定为了防止译码装置的多个输入缓冲器的下溢所需的多个最小传送量和确定直至多个运动图象编码信号的帧被译码为止所需的时间;A plurality of minimum transfer amounts required for preventing underflow of a plurality of input buffers of the decoding device and determining up to a plurality of motions are determined based on the number of bits of frames of a plurality of moving image coded signals not transferred to the decoding device. The time required until a frame of an image coded signal is decoded; 根据多个最小传送量来确定多个传送位数的较低限;和determining a lower limit of the plurality of transfer bits based on a plurality of minimum transfer amounts; and 在多路复用多个运动图象编码信号之前多路复用多个传送位数的较低限。The lower limit of the plurality of transmission bit numbers is multiplexed before multiplexing the plurality of motion picture coded signals. 14、一种用来编码多个运动图象信号的运动图象编码装置,包括:14. A moving image encoding device for encoding a plurality of moving image signals, comprising: 用来编码多个运动图象信号的多个编码部分,多个编码部分的每一个包括有一用来用一予置参数来量化该运动图象信号的量化子部分和一用来用一予置的填入量来塞入量化运动图象信号的塞入子部分,A plurality of encoding sections for encoding a plurality of moving image signals, each of the plurality of encoding sections includes a quantization subsection for quantizing the moving image signal with a preset parameter and a quantization subsection for quantizing the moving image signal with a preset parameter. The amount of padding is used to stuff the stuffing sub-section of the quantized motion picture signal, 一量化控制部分,用来控制同时由量化子部分所使用的参数;a quantization control section for controlling parameters also used by the quantization subsection; 多个累加部分,用来暂时累加从多个编码部分输出的多个运动图象编码信号;a plurality of accumulating sections for temporarily accumulating a plurality of moving image encoded signals output from the plurality of encoding sections; 一多路复用部分,用来多路复用在多个累加部分中所累加的多个运动图象编码信号并以一固定位速率输出该多路复用信号;a multiplexing section for multiplexing a plurality of motion picture coded signals accumulated in a plurality of accumulation sections and outputting the multiplexed signal at a fixed bit rate; 一塞入控制部分,用来控制由该塞入子部分所使用的填入量;和a stuffing control section for controlling the filling volume used by the stuffing subsection; and 一虚拟未占用容量计算部分,用来对于予置的时间周期当多个运动图象编码信号未输入到输入缓冲器时计算在跳过该予置时间周期之后多个译码装置的输入缓冲器的每一个的一未占用容量,a virtual unoccupied capacity calculation section for calculating the input buffers of the plurality of decoding devices after skipping the preset time period when the plurality of motion picture coded signals are not input to the input buffer for the preset time period an unoccupied capacity of each of the 其中根据多个运动图象编码信号的位数之和该量化控制部分确定由量化子部分所使用的参数,和wherein the quantization control section determines parameters used by the quantization subsection based on the sum of the number of bits of a plurality of moving image coded signals, and 根据在多个累加部分中所累加的运动图象编码信号的位数之和、该固定位速率、和在该累加部分中所累加的每个运动图象编码信号的位数和由虚拟未占用容量计算部分所得到的输入缓冲器的未占用容量之间的差来控制每一塞入子部分。According to the sum of the number of bits of the moving picture coded signal accumulated in a plurality of accumulation parts, the fixed bit rate, and the number of bits of each moving picture coded signal accumulated in the accumulation part and the virtual unoccupied Each stuffing subsection is controlled by the difference between the unoccupied capacities of the input buffers obtained by the capacity calculation section. 15、一种运动图象编码方法,用于利用予置的量化宽度同时地编码多个运动图象信号,其中这些预置的量化宽度是基于由编码多个运动图象信号所产生的多个运动图象编码信号的位数之和与在暂时累加之后输出的多个运动图象编码信号的每一个的输出位数之间的差,15. A moving picture coding method for simultaneously coding a plurality of moving picture signals using preset quantization widths based on a plurality of moving picture signals generated by encoding a plurality of moving picture signals the difference between the sum of the number of bits of the motion picture coded signal and the output number of bits of each of the plurality of motion picture coded signals output after temporal accumulation, 其中计算暂时累加的运动图象编码信号的多个编码缓冲器占有,wherein a plurality of coded buffer occupations of temporally accumulated motion picture coded signals are calculated, 计算对于予置的时间周期,在运动图象编码信号未输入到该输入缓冲器时在跳过一予置时间周期之后多个译码装置的输入缓冲器的每个的未占用容量;和calculating, for a preset time period, an unoccupied capacity of each of the input buffers of the plurality of decoding means after skipping a preset time period when the motion picture coded signal is not input to the input buffer; and 对于由从编码缓冲器占用中减去输入缓冲器的未占用容量所得到的缓冲器差值是小于一予置值的运动图象编码信号将通过加上一不影响编码的大于一予置值的缓冲器差值所得到的一位数的信号分配到该缓冲器差值小于予置值的运动图象编码信号以实现塞入。For motion picture coded signals whose buffer difference obtained by subtracting the unoccupied capacity of the input buffer from the coded buffer occupancy is less than a preset value, it will be added by adding a value greater than a preset value that does not affect the encoding. The one-digit signal obtained by the buffer difference value is distributed to the motion image coding signal whose buffer difference value is smaller than a preset value to realize stuffing. 16、根据权利要求15的运动图象编码方法,其中该予置值为0。16. The moving picture coding method according to claim 15, wherein the preset value is zero. 17、一种用来编码多个运动图象信号的运动图象编码装置,包括:17. A moving picture encoding device for encoding a plurality of moving picture signals, comprising: 多个用来编码多个运动图象信号的编码部分,该多个编码部分的每一个包括一个用来用一予置参数来量化运动图象信号的量化子部分和一用来以一预置的填入量来塞入该量化运动图象信号的塞入子部分;a plurality of encoding sections for encoding a plurality of moving image signals, each of the plurality of encoding sections includes a quantization subsection for quantizing the moving image signal with a preset parameter and a quantization subsection for quantizing the moving image signal with a preset parameter The stuffing amount to stuff the stuffing sub-part of the quantized motion picture signal; 一量化控制部分,用来控制由量化子部分同时地使用的参数;a quantization control section for controlling parameters simultaneously used by the quantization subsections; 多个累加部分,用来暂时累加从多个编码部分输出的多个运动图象编码信号;a plurality of accumulating sections for temporarily accumulating a plurality of moving image encoded signals output from the plurality of encoding sections; 一多路复用部分,用来多路复用在多个累加部分中累加的多个运动图象编码信号并以一固定位速率输出该多路复用信号。A multiplexing section for multiplexing the plurality of motion picture coded signals accumulated in the plurality of accumulation sections and outputting the multiplexed signal at a fixed bit rate. 一虚拟未占用容量计算部分,用来计算对于予置时间周期,在多个运动图象编码信号未输入到该输入缓冲器时跳过该予置的时间周期之后的多个译码装置的输入缓冲器的每一个的未占用容量,a virtual unoccupied capacity calculation section for calculating, for a preset time period, inputs of a plurality of decoding devices after a preset time period is skipped when a plurality of moving image coded signals are not input to the input buffer the unoccupied capacity of each of the buffers, 其中该量化控制部分根据在多个累加部分中累加该运动图象编码信号的位数之和、该固定位速率、和在该累加部分所累加的运动图象编码信号的位数和由虚拟未占用容量计算部分所得到的输入缓冲器的未占用容量之间的差来确定由该量化子部分所使用的每一参数。Wherein the quantization control part is based on the sum of the number of bits of the moving picture coded signal accumulated in a plurality of accumulation parts, the fixed bit rate, and the number of bits of the moving picture coded signal accumulated in the accumulation part The difference between the unoccupied capacity of the input buffer obtained by the occupied capacity calculation section determines each parameter used by the quantization subsection. 18、一种运动图象编码方法,用于利用予置的量化宽度同时地编码多个运动图象信号,其中这些预置的量化宽度是基于由编码多个运动图象信号所产生的多个运动图象编码信号的位数之和与在暂时累加之后输出的多个运动图象编码信号的每一个的输出位数之间的差,包括有步骤:18. A moving picture coding method for simultaneously coding a plurality of moving picture signals using preset quantization widths based on a plurality of moving picture signals generated by encoding a plurality of moving picture signals The difference between the sum of the number of bits of the motion picture coded signal and the output number of each of the plurality of motion picture coded signals output after the temporary accumulation comprises the steps of: 计算暂时地累加的运动图象编码信号的多个编码缓冲器占用,Computing multiple coded buffer occupancy of temporally accumulated motion picture coded signals, 对于予置的时间周期,当该运动图象编码信号未输入到输入缓冲器时在跳过该予置时间周期之后,计算多个译码装置的输入缓冲器的每-个的未占用容量;和For a preset time period, calculating the unoccupied capacity of each of the input buffers of the plurality of decoding devices after skipping the preset time period when the motion picture coded signal is not input to the input buffer; and 利用小于相应的予置量化宽度的一量化宽度来编码每一运动图象编码信号,在那里从编码缓冲器占用中减去该输入缓冲器的未占用容量所得到的一缓冲器差值是小于一予置值。Each motion picture encoded signal is encoded using a quantization width smaller than the corresponding preset quantization width, where a buffer difference obtained by subtracting the unoccupied capacity of the input buffer from the encoding buffer occupancy is less than A preset value. 19、根据权利要求18的运动图象编码方法,其中该予置值为0。19. The moving picture coding method according to claim 18, wherein the preset value is zero. 20、一种运动图象编码方法,用于利用予置的量化宽度用来同时地编码多个运动图象信号,其中这些预置的量化宽度是基于由编码多个运动图象信号所产生的多个运动图象编码信号的位数之和与在暂时累加之后输出的多个运动图象编码信号的每一个的输出位数之间的差,包括有步骤:20. A moving image encoding method for simultaneously encoding a plurality of moving image signals using preset quantization widths, wherein the preset quantization widths are based on the encoding of the plurality of moving image signals The difference between the sum of the number of bits of a plurality of moving image coded signals and the output number of each of the plurality of moving image coded signals output after temporarily accumulating comprises the steps of: 计算暂时累加的该运动图象编码信号的多个编码缓冲器占用,A plurality of encoding buffers of the temporarily accumulated motion picture encoding signal are calculated and occupied, 对于予置的时间周期,当该运动图象编码信号未输入到输入缓冲器时在跳过该予置的时间周期之后,计算多个译码装置的输入缓冲器的每一个的未占用容量;和For a preset time period, calculating the unoccupied capacity of each of the input buffers of the plurality of decoding devices after skipping the preset time period when the motion picture coded signal is not input to the input buffer; and 利用大于相应的予置量化宽度的一量化宽度来编码每一运动图象编码信号,在那里从编码缓冲器占用中减去该输入缓冲器的未占用容量所得到的一缓冲器差值是大于一予置值。Each motion picture encoded signal is encoded using a quantization width greater than the corresponding preset quantization width, where a buffer difference obtained by subtracting the unoccupied capacity of the input buffer from the encoding buffer occupancy is greater than A preset value. 21、根据权利要求20的运动图象编码方法,其中该予置值为0。21. The moving picture coding method according to claim 20, wherein the preset value is zero. 22、一种运动图象编码方法,用于利用予置的量化宽度同时地编码多个运动图象信号,其中这些预置的量化宽度是基于由编码多个运动图象信号所产生的多个运动图象编码信号的位数之和与在暂时累加之后输出的多个运动图象编码信号的每一个的输出位数之间的差,包括有步骤:22. A moving picture coding method for simultaneously coding a plurality of moving picture signals using preset quantization widths based on a plurality of moving picture signals generated by encoding a plurality of moving picture signals The difference between the sum of the number of bits of the motion picture coded signal and the output number of each of the plurality of motion picture coded signals output after the temporary accumulation comprises the steps of: 计算暂时累加的该运动图象编码信号的多个编码缓冲器占用,A plurality of encoding buffers of the temporarily accumulated motion picture encoding signal are calculated and occupied, 对于予置的时间周期,当该运动图象编码信号未输入到输入缓冲器时在跳过该予置的时间周期之后,计算多个译码装置的输入缓冲器的每一个的未占用容量,For a preset time period, calculating an unoccupied capacity of each of the input buffers of the plurality of decoding devices after skipping the preset time period when the motion picture coded signal is not input to the input buffer, 计算由从用于每个运动图象编码信号的编码缓冲器占用中减去该输入缓冲器的未占用容量所得到的一缓冲器差值,并将大于一予置值的缓冲器差值之和加到该位数之和。calculating a buffer difference obtained by subtracting the unoccupied capacity of the input buffer from the coding buffer occupancy for each motion picture encoded signal, and dividing the difference between the buffer differences greater than a preset value and added to the sum of digits. 23、根据权利要求22的运动图象编码方法,其中该予置值为0。23. The moving picture coding method according to claim 22, wherein the preset value is zero. 24、一种用来编码多个运动图象信号和多路复用编码信号的运动图象编码和多路复用装置,包括:24. A moving picture encoding and multiplexing apparatus for encoding a plurality of moving picture signals and multiplexing the encoded signals, comprising: 一运动图象开关部分,用来转换多个输入运动图象的一目标;a moving image switching section for switching an object of a plurality of input moving images; 多个编码部分,用来编码从运动图象开关部分输出的多个输入运动图象;a plurality of encoding sections for encoding a plurality of input moving images output from the moving image switching section; 一多路复用部分,用来多路复用从多个编码部分输出的编码信号;和a multiplexing section for multiplexing encoded signals output from a plurality of encoding sections; and 一控制部分,用来转换运动图象开关部分的开关状态、编码部分的一编码模式、和多路复用部分的一多路复用模式;a control section for switching the switching state of the moving picture switching section, a coding mode of the coding section, and a multiplexing mode of the multiplexing section; 其中该控制部分根据运动图象开关部分的开关状态转换编码部分的编码模式和多路复用部分的多路复用模式。Wherein the control part switches the coding mode of the coding part and the multiplexing mode of the multiplexing part according to the switching state of the moving picture switching part. 25、根据权利要求24的运动图象编码和多路复用装置,其中该控制部分包括:一开关控制子部分,用来转换该运动图象开关部分的开关状态;一编码控制子部分,用来转换编码部分的编码状态;和一多路复用子部分,用来转接多路复用部分的多路复用模式,和25. The motion picture encoding and multiplexing device according to claim 24, wherein the control section comprises: a switch control subsection for switching the switch state of the motion picture switch section; an encoding control subsection for to switch the encoding state of the encoding part; and a multiplexing subsection for switching the multiplexing mode of the multiplexing part, and 该编码控制子部分根据运动图象开关部分的开关状态转接该编码模式,和多路复用控制子部分根据运动图象开关部分的开关状态转接该多路复用模式。The encoding control subsection switches the encoding mode according to the switching state of the moving picture switching part, and the multiplexing control subsection switches the multiplexing mode according to the switching state of the moving picture switching part. 26、根据权利要求24的运动图象编码和多路复用装置,进一步包括一在运动图象开关部分的上游的屏幕分离部分。26. The moving picture encoding and multiplexing apparatus according to claim 24, further comprising a screen separation section upstream of the moving picture switching section. 27、根据权利要求24的运动图象编码和多路复用装置,进一步包括一在运动图象开关部分的上游的一运动图象时分部分。27. The moving picture encoding and multiplexing apparatus according to claim 24, further comprising a moving picture time division section upstream of the moving picture switching section. 28、根据权利要求25的运动图象编码和多路复用装置,进一步包括用来暂时累加从该编码部分输出的运动图象编码信号的累加部分,28. The moving picture coding and multiplexing apparatus according to claim 25, further comprising an accumulation section for temporarily accumulating the moving picture coding signal output from the coding section, 其中该编码控制子部分根据在累加部分所累加的运动图象编码信号的位数之和确定一用来控制每个编码部分的参数。Wherein the encoding control subsection determines a parameter for controlling each encoding section according to the sum of the bits of the moving image encoding signal accumulated in the accumulating section. 29、根据权利要求24的运动图象编码和多路复用装置,其中该多路复用部分包括:一运动图象多路复用子部分,用来多路复用多个运动图象编码信号并输出一运动图象编码信号;一通道多路复用子部分,用来多路复用多个输入到多路复用部分的输入信号和输出从运动图象多路复用子部分输出的信号;和一开关子部分,用来转接输入到在运动图象多路复用子部分和通道多路复用子部分之间的多路复用部分的运动图象编码信号的目标。29. The motion picture coding and multiplexing device according to claim 24, wherein the multiplexing section comprises: a motion picture multiplexing subsection for multiplexing a plurality of motion picture codes signal and output a moving image coded signal; a channel multiplexing subsection for multiplexing a plurality of input signals input to the multiplexing section and outputting from the moving image multiplexing subsection and a switch subsection for switching objects of moving picture coded signals input to the multiplexing section between the moving picture multiplexing subsection and the channel multiplexing subsection. 30、一种包括有多个图象编码部分和一传送处理部分的图象传送装置,其中30. An image transmission device comprising a plurality of image coding sections and a transmission processing section, wherein 该传送处理部分多路复用由每一多路复用计时的图象编码部分所规定的编码数据,向一予置线路传送该编码数据,并发送图象编码部分的多路复用信息,该多路复用信息是根据在该图象编码部分中的编码数据量和直至该编码数据被传送到一译码装置为止可用的延迟量的计算来计算的,和The transmission processing section multiplexes coded data specified by the image coding section for each multiplexing timing, transmits the coded data to a predetermined line, and transmits multiplexed information of the image coding section, The multiplexing information is calculated based on the amount of encoded data in the image encoding section and the amount of delay available until the encoded data is transmitted to a decoding device, and 多个图象编码部分根据自该传送处理部分发送的多路复用信息确定在一图象处理中在量化中所使用的量化宽度,编码该图象,并在每一多路复用计时向该传送处理部分传送该编码数据以指定该编码数据。A plurality of picture encoding sections determine a quantization width used in quantization in an image process based on the multiplexing information sent from the transfer processing section, encode the picture, and send to The transmission processing section transmits the coded data to specify the coded data. 31、根据权利要求30的图象传送装置,其中该传送处理部分包括一传送缓冲器,和31. The image transmission apparatus according to claim 30, wherein the transmission processing section includes a transmission buffer, and 该传送处理部分在该传送缓冲器每一多路复用计时接收的由图象编码部分所规定的编码数据,并且以一予置的传送速率以该编码数据被接收进入的顺序输出该编码数据,以及输出在该传送缓冲器中的编码数据的占用作为多路复用信息。The transmission processing section receives the coded data specified by the image coding section at each multiplexing timing of the transmission buffer, and outputs the coded data in the order in which the coded data is received at a preset transmission rate , and the occupancy of encoded data in the transmission buffer is output as multiplex information. 32、根据权利要求30的图象传送装置,其中每一个图象编码部分包括:一量化宽度确定子部分;和一基本编码处理子部分,用来通过量化具有由量化宽度确定子部分所规定的一量化宽度的图象来编码图象,和32. The image transmission apparatus according to claim 30, wherein each image coding section comprises: a quantization width determination subsection; a quantized width image to encode the image, and 该量化宽度确定子部分计算在多个译码装置的每一个中的一缓冲器占用,这些译码装置根据多路复用信息通过该传送处理部分从每一个图象编码部分接收所传送的该编码数据,并且根据所计算的在该译码装置中的缓冲器占用和未被传送的编码数据的数来设置该量化宽度。The quantization width determining subsection calculates a buffer occupancy in each of a plurality of decoding devices that receive the transmitted from each image encoding section through the transmission processing section based on multiplexing information. encoding data, and setting the quantization width according to the calculated buffer occupancy in the decoding means and the number of encoded data not transmitted. 33、根据权利要求30的图象传送装置,其中每一个图象编码部分进一步包括有用来暂时存储该编码数据的一编码数据存贮器子部分,和33. The image transmission device according to claim 30, wherein each image encoding section further includes an encoding data memory subsection for temporarily storing the encoded data, and 该编码数据存贮器子部分暂时存贮未被传送的数据,未被传送的数据是在编码数据每一传送定时中未被传送到该传送处理部分的数据并且使用作为上限的由该图象编码部分的每个所予置的一值或由从该接收侧预测的该译码装置的缓冲器尺寸减去根据该多路复用信息所计算的在该译码装置中的缓冲器占用所得到的一值将该编码数据传送到传送处理部分。The coded data memory subsection temporarily stores untransmitted data, which is data that is not transmitted to the transmission processing section at each transmission timing of coded data and uses as an upper limit by the image Each preset value of the encoding part is determined by subtracting the buffer occupancy in the decoding device calculated from the multiplexing information from the buffer size of the decoding device predicted from the receiving side. A value obtained transfers the coded data to the transfer processing section. 34、一种包括有用来从多个图象编码部分接收编码数据的一传送处理部分的图象传送装置,34. An image transmission device comprising a transmission processing section for receiving encoded data from a plurality of image encoding sections, 其中该传送处理部分包括一传送缓冲器,在该传送缓冲器每一多路复用计时接收由图象编码部分所规定的编码数据,并且以一予置的传送速率以该编码数据接收进来的顺序输出该编码数据以及输出在该传送缓冲器中的编码数据的占用作为多路复用信息。Wherein the transmission processing section includes a transmission buffer, receives the coded data specified by the image coding section at each multiplexing timing of the transmission buffer, and receives the coded data at a preset transmission rate The coded data and the occupancy of the coded data in the transmission buffer are sequentially output as multiplexed information. 35、一种图象编码装置,包括有一量化宽度确定部分和用来通过以量化宽度确定部分所规定的一量化宽度来量化该图象来编码图象的一基本编码处理部分,35. An image encoding apparatus comprising a quantization width determination section and a basic encoding processing section for encoding an image by quantizing the image with a quantization width specified by the quantization width determination section, 其中该量化宽度确定部分根据可用来计算直至编码数据被传送到一虚拟译码装置所得到的一延迟数的多路复用信息,根据该多路复用信息所计算的在该虚拟译码装置中的一缓冲器占用、和未被传送的编码数据的一数来确定该量化宽度。Wherein the quantization width determination part is based on multiplexing information that can be used to calculate a delay number obtained until the coded data is transmitted to a virtual decoding device, the virtual decoding device calculated based on the multiplexing information The quantization width is determined by a buffer occupancy in , and a number of coded data not transmitted. 36、根据权利要求35的图象编码装置,进一步包括用来暂时存贮该编码数据的一编码数据存贮器部分,36. The image coding apparatus according to claim 35, further comprising a coded data memory section for temporarily storing the coded data, 其中该编码数据存贮器部分暂时存贮编码数据每一传送计时未被传送的未被传送数据,并且使用作为一上限的由每个图象编码部分所予置的一值或通过从接收器侧所预测的译码装置的一缓冲器尺寸中减去根据多路复用信息所计算的在该虚拟译码装置中的缓冲器占用所得到的一值输出该编码数据。Wherein the encoded data memory section temporarily stores untransmitted data that is not transmitted per transmission timing of the encoded data, and uses a value preset by each image encoding section as an upper limit or passed from the receiver A value obtained by subtracting a buffer occupancy in the virtual decoding device calculated from the multiplexing information from a buffer size of the decoding device predicted by the side outputs the coded data. 37、一种包括有一用来管理传送线路上的位速率的位速率管理部分和一个或多个图象编码部分的图象传送装置,37. An image transmission apparatus comprising a bit rate management section for managing a bit rate on a transmission line and one or more image encoding sections, 其中该位速率管理部分确定表示在该传送线路上的在一个或多个图象编码部分的传送速率总和的一位速率允许传送由任何的图象编码部分的每一传送计时所请求传送的编码数据,并且发送与随在该传送线路上的所允许的另一个图象编码部分而变化的传送延迟有关的传送信息,和wherein the bit rate management section determines the bit rate representing the sum of the transfer rates in one or more image coding sections on the transmission line to allow transmission of the code requested to be transmitted by any of the image coding sections at each transmission timing data, and transmits transmission information related to the transmission delay as a function of another picture coding portion allowed on the transmission line, and 该一个或多个图象编码部分通过利用根据该传送信息、未被传送的编码数据、和在接收侧的一被预测的缓冲器尺寸所确定的量化宽度来量化该图象而编码图象。The one or more image encoding sections encode images by quantizing the images with a quantization width determined based on the transmission information, untransmitted encoded data, and a predicted buffer size on the receiving side. 38、一种包括有一用来管理多个图象编码部分的传送速率的位速率管理部分的图象传送装置,38. An image transmission apparatus comprising a bit rate management section for managing the transmission rates of a plurality of image coding sections, 其中该位速率管理部分确定表示在一传送线路上的所有图象编码部分中的传送速率的总和,允许传送由任何的图象编码部分的每一传送计时所请求传送的编码数据,并且发送与随在该传送线路上的所允许的另一个图象编码部分而变化的传送延迟有关的传送信息。wherein the bit rate management section determines the sum representing the transfer rates in all image coding sections on a transmission line, permits the transmission of coded data requested to be transmitted by each transfer timing of any image coding section, and transmits the Transmission information related to the transmission delay as a function of another picture coding portion allowed on the transmission line. 39、一种图象编码方法,包括有步骤:39. An image encoding method, comprising the steps of: (1)确定一量化宽度;和(1) determining a quantization width; and (2)通过用在步骤(1)所规定的量化宽度来量化该图象来编码图象,(2) encoding the picture by quantizing the picture with the quantization width specified in step (1), 其中在步骤(1)该量化宽度是根据可用于计算直至编码数据被传送到一虚拟译码装置所得到的一延迟数的多路复用信息、根据该多路复用信息所计算的在该虚拟译码装置中的一缓冲器占用、和未被传送的一编码数据的量来设置的。Wherein in step (1) the quantization width is calculated based on the multiplexing information that can be used to calculate a delay number obtained until the coded data is transmitted to a virtual decoding device, based on the multiplexing information in the It is set according to a buffer occupancy in the virtual decoding device, and an amount of encoded data not transmitted. 40、根据权利要求39的图象编码方法,其中在编码数据之中未被传送的未传送数据在每一传送计时被暂时存贮并且使用作为一上限的由图象编码部分的每一部分所予置的一值和从由接收器侧所预测的译码装置的缓冲器尺寸中减去根据多路复用信息所计算的在该译码装置中的缓冲器占用所得到一值输出该编码数据。40. The image encoding method according to claim 39, wherein untransmitted data which is not transmitted among the encoded data is temporarily stored at each transmission timing and used as an upper limit given by each part of the image encoding section. A value obtained by subtracting the buffer occupancy in the decoding device calculated from the multiplexing information from the buffer size of the decoding device predicted by the receiver side and outputting the coded data .
CNB971264694A 1996-11-08 1997-11-07 Motion picture coding apparatus and method for coding a plurality of moving pictures Expired - Fee Related CN1162001C (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP296102/96 1996-11-08
JP29610296 1996-11-08
JP296102/1996 1996-11-08
JP347283/1996 1996-12-26
JP347283/96 1996-12-26
JP34728396A JPH10191276A (en) 1996-12-26 1996-12-26 Animation encoding/multiplex device
JP156289/97 1997-06-13
JP156289/1997 1997-06-13
JP15628997A JPH10191337A (en) 1996-11-08 1997-06-13 Moving image encoder and method and moving image multiplexer and method
JP19671697A JPH1141608A (en) 1997-07-23 1997-07-23 Image transmitter, image coding method and image coder
JP196716/1997 1997-07-23
JP196716/97 1997-07-23

Publications (2)

Publication Number Publication Date
CN1199990A CN1199990A (en) 1998-11-25
CN1162001C true CN1162001C (en) 2004-08-11

Family

ID=27473401

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB971264694A Expired - Fee Related CN1162001C (en) 1996-11-08 1997-11-07 Motion picture coding apparatus and method for coding a plurality of moving pictures

Country Status (3)

Country Link
US (1) US6381254B1 (en)
EP (1) EP0841820A3 (en)
CN (1) CN1162001C (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100563754B1 (en) * 1997-07-18 2006-03-24 소니 가부시끼 가이샤 Method and system for multiplexing image signal, Method and system for demultiplexing image signal, and transmission medium
JPH11331248A (en) * 1998-05-08 1999-11-30 Sony Corp Transmission device and transmission method, reception device and reception method, and providing medium
GB2341745A (en) * 1998-09-10 2000-03-22 Snell & Wilcox Ltd Image encoding
JP2000181448A (en) * 1998-12-15 2000-06-30 Sony Corp Device and method for transmission, device and method for reception, and provision medium
US6625322B1 (en) * 1999-06-08 2003-09-23 Matsushita Electric Industrial Co., Ltd. Image coding apparatus
GB2356999B (en) * 1999-12-02 2004-05-05 Sony Uk Ltd Video signal processing
JP2001346201A (en) * 2000-03-27 2001-12-14 Sony Corp Image coder and its method, image decoder and its method, image recorder, image transmitter
JP4612171B2 (en) * 2000-10-27 2011-01-12 株式会社東芝 Video decoding / playback module, playback time management program, and multimedia information receiving apparatus
KR20030009669A (en) * 2001-07-23 2003-02-05 삼성전자주식회사 multi channel image encoding apparatus and encording method thereof
JP4492777B2 (en) * 2001-08-28 2010-06-30 日本電気株式会社 Video encoding device
US20030101407A1 (en) * 2001-11-09 2003-05-29 Cute Ltd. Selectable complexity turbo coding system
KR101001232B1 (en) * 2002-11-29 2010-12-17 소니 주식회사 Coding device and method
JP3800170B2 (en) 2002-12-11 2006-07-26 ソニー株式会社 Encoding transmission apparatus and encoding transmission method
US7266147B2 (en) * 2003-03-31 2007-09-04 Sharp Laboratories Of America, Inc. Hypothetical reference decoder
JP4179178B2 (en) * 2004-02-03 2008-11-12 ソニー株式会社 Transmission / reception system, transmission apparatus, reception apparatus, and information processing method
WO2005104551A2 (en) * 2004-04-16 2005-11-03 Modulus Video, Inc. High definition scalable array encoding system and method
KR100665102B1 (en) * 2004-12-03 2007-01-04 한국전자통신연구원 A video coding rate control method considering the length of a transport packet and a video encoding apparatus using the same
JP4909779B2 (en) * 2006-04-17 2012-04-04 パナソニック株式会社 Image data transfer method, image processing apparatus, and imaging system
JP5052220B2 (en) * 2007-06-19 2012-10-17 パナソニック株式会社 Video encoding device
JP4582141B2 (en) * 2007-11-27 2010-11-17 カシオ計算機株式会社 Code amount control device, code amount control method, code amount control program, moving image recording device
EP2101503A1 (en) * 2008-03-11 2009-09-16 British Telecommunications Public Limited Company Video coding
JP5316543B2 (en) * 2008-10-21 2013-10-16 富士通株式会社 Data transmission device and data reception device
EP2200319A1 (en) * 2008-12-10 2010-06-23 BRITISH TELECOMMUNICATIONS public limited company Multiplexed video streaming
US8474001B2 (en) * 2009-02-10 2013-06-25 Cisco Technology, Inc. Near real time delivery of variable bit rate media streams
EP2219342A1 (en) 2009-02-12 2010-08-18 BRITISH TELECOMMUNICATIONS public limited company Bandwidth allocation control in multiple video streaming
RU2525751C2 (en) * 2009-03-30 2014-08-20 Панасоник Корпорэйшн Recording medium, playback device and integrated circuit
US8559503B2 (en) * 2009-06-23 2013-10-15 Panasonic Corporation Moving image coding method, moving image coding apparatus, program, and integrated circuit
JP2013005204A (en) * 2011-06-16 2013-01-07 Sony Corp Video transmitting apparatus, video receiving apparatus, and video transmitting method
JP6300576B2 (en) * 2013-05-02 2018-03-28 キヤノン株式会社 Image processing apparatus and image processing method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960010392B1 (en) * 1990-09-29 1996-07-31 니뽕 빅터 가부시끼가이샤 Image signal coding and decoding apparatus using adaptive quantization
US5216503A (en) * 1991-12-24 1993-06-01 General Instrument Corporation Statistical multiplexer for a multichannel image compression system
JPH066777A (en) 1992-06-23 1994-01-14 Hitachi Ltd Picture encoding device
JPH0686253A (en) 1992-08-31 1994-03-25 Kodo Eizo Gijutsu Kenkyusho:Kk Moving image data transmitter
US5478119A (en) * 1993-09-16 1995-12-26 The Kendall Company Polarized manifold connection device
JP3167863B2 (en) 1994-07-08 2001-05-21 株式会社ディーディーアイ Video encoder control unit
US5566208A (en) * 1994-03-17 1996-10-15 Philips Electronics North America Corp. Encoder buffer having an effective size which varies automatically with the channel bit-rate
DE69431072T2 (en) * 1994-04-20 2003-01-02 Thomson Consumer Electronics, Inc. DEVICE FOR DETERMINING COMPLEXITY TO CONTROL THE ENCODING OF A VIDEO SIGNAL
US5506844A (en) 1994-05-20 1996-04-09 Compression Labs, Inc. Method for configuring a statistical multiplexer to dynamically allocate communication channel bandwidth
JP3050047B2 (en) * 1994-06-24 2000-06-05 日本ビクター株式会社 Moving picture coding apparatus and moving picture coding method
US5517250A (en) * 1995-02-28 1996-05-14 General Instrument Corporation Of Delaware Acquisition of desired data from a packetized data stream and synchronization thereto
US5650825A (en) * 1995-03-31 1997-07-22 Matsushita Electric Corporation Of America Method and apparatus for sending private data instead of stuffing bits in an MPEG bit stream
US5691986A (en) * 1995-06-07 1997-11-25 Hitachi America, Ltd. Methods and apparatus for the editing and insertion of data into an encoded bitstream
US5598415A (en) * 1995-08-04 1997-01-28 General Instrument Corporation Of Delaware Transmission of high rate isochronous data in MPEG-2 data streams
JPH09130346A (en) * 1995-10-30 1997-05-16 Sony Corp Av data reception equipment, av data transmission equipment, and broadcasting system
US5835493A (en) * 1996-01-02 1998-11-10 Divicom, Inc. MPEG transport stream remultiplexer

Also Published As

Publication number Publication date
EP0841820A2 (en) 1998-05-13
EP0841820A3 (en) 2005-11-09
CN1199990A (en) 1998-11-25
US6381254B1 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
CN1162001C (en) Motion picture coding apparatus and method for coding a plurality of moving pictures
CN1269360C (en) Rate control system of MPEG code converter under condition that picture type is not understood in advance
CN1190081C (en) Method and apparatus for processing, transmitting and receiving dynamic image data
CN1714577A (en) video transmission
CN1178516C (en) Transcoding system using encoding history information
CN1297148C (en) Moving picture encoding/transmission system, moving picture encoding/transmission method, and encoding device, decoding device, encoding method, decoding method, and program suitable for use in the system and method
CN1056716C (en) Motion video encoding/decoding method, apparatus and storage medium therefor
CN1504051A (en) Statistical remultiplexing with bandwidth allocation among different transcoding channels
CN1114887C (en) Picture synthesis method and apparatus, and data recording medium
CN1159916C (en) Moving image coding apparatus and method thereof
CN1155886C (en) Reusing method for multiple medium data code, device and its program recording medium
CN1251515C (en) Image code processing device and image code processing program
CN1478355A (en) video encoding
CN1653822A (en) Method and apparatus for transcoding compressed video bitstreams
CN1319996A (en) Image code/decode equipment and method, image recording and transmitting equipment
CN1146121A (en) image transmission system
CN101039421A (en) Method and apparatus for realizing quantization in coding/decoding process
CN1314762A (en) Data transmission method and data transmission system
CN1152242A (en) Image encoding device and transmission system and its quantization control method and average throughput algorithm
CN1537384A (en) Method for sub-pixel valve interpolation
CN1110893A (en) Rational input buffer arrangements for auxiliary information in video and audio signal procesing systems
CN1617540A (en) Techniques for Compressing Header Fields in Data Packets
CN1943246A (en) Image decoding method
CN1243636A (en) Method for converting digital signal and apparatus for converting digital signal
CN1216425A (en) Image signal data structure, image encoding method and decoding method

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee