CN116196482A - A kind of antibacterial bone cement modified by dimethylaminotriclosan methacrylate - Google Patents
A kind of antibacterial bone cement modified by dimethylaminotriclosan methacrylate Download PDFInfo
- Publication number
- CN116196482A CN116196482A CN202310237890.7A CN202310237890A CN116196482A CN 116196482 A CN116196482 A CN 116196482A CN 202310237890 A CN202310237890 A CN 202310237890A CN 116196482 A CN116196482 A CN 116196482A
- Authority
- CN
- China
- Prior art keywords
- methacrylate
- bone cement
- dimethylaminotriclosan
- antibacterial
- modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002639 bone cement Substances 0.000 title claims abstract description 134
- 230000000844 anti-bacterial effect Effects 0.000 title claims abstract description 132
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 title claims abstract description 60
- 239000007788 liquid Substances 0.000 claims abstract description 63
- 239000000843 powder Substances 0.000 claims abstract description 52
- 239000002994 raw material Substances 0.000 claims abstract description 46
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000004005 microsphere Substances 0.000 claims abstract description 31
- 239000003054 catalyst Substances 0.000 claims abstract description 25
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 22
- 239000004926 polymethyl methacrylate Substances 0.000 claims abstract description 22
- 239000003999 initiator Substances 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 50
- 238000006243 chemical reaction Methods 0.000 claims description 37
- 229960003500 triclosan Drugs 0.000 claims description 34
- XEFQLINVKFYRCS-UHFFFAOYSA-N Triclosan Chemical compound OC1=CC(Cl)=CC=C1OC1=CC=C(Cl)C=C1Cl XEFQLINVKFYRCS-UHFFFAOYSA-N 0.000 claims description 33
- 239000011259 mixed solution Substances 0.000 claims description 33
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 claims description 30
- 239000004342 Benzoyl peroxide Substances 0.000 claims description 20
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical group C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 claims description 20
- 235000019400 benzoyl peroxide Nutrition 0.000 claims description 20
- 238000002360 preparation method Methods 0.000 claims description 20
- 238000003760 magnetic stirring Methods 0.000 claims description 12
- 230000035484 reaction time Effects 0.000 claims description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 10
- GYVGXEWAOAAJEU-UHFFFAOYSA-N n,n,4-trimethylaniline Chemical group CN(C)C1=CC=C(C)C=C1 GYVGXEWAOAAJEU-UHFFFAOYSA-N 0.000 claims description 10
- 238000007789 sealing Methods 0.000 claims description 9
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims description 7
- 230000000845 anti-microbial effect Effects 0.000 claims description 4
- 239000004568 cement Substances 0.000 claims description 3
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 claims 4
- 241000305492 Gastrodia Species 0.000 claims 1
- 235000019441 ethanol Nutrition 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 241000894006 Bacteria Species 0.000 abstract description 11
- 125000001453 quaternary ammonium group Chemical group 0.000 abstract description 7
- 210000003127 knee Anatomy 0.000 abstract description 6
- 230000003385 bacteriostatic effect Effects 0.000 abstract description 4
- 238000011049 filling Methods 0.000 abstract description 4
- 241000233866 Fungi Species 0.000 abstract description 3
- 238000003756 stirring Methods 0.000 description 19
- 239000010931 gold Substances 0.000 description 17
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 15
- 229910052737 gold Inorganic materials 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 239000003242 anti bacterial agent Substances 0.000 description 13
- -1 methacrylic acid quaternary ammonium salt Chemical class 0.000 description 13
- 241000222122 Candida albicans Species 0.000 description 11
- 229940095731 candida albicans Drugs 0.000 description 11
- 241000588724 Escherichia coli Species 0.000 description 10
- 241000191967 Staphylococcus aureus Species 0.000 description 10
- 229940088710 antibiotic agent Drugs 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 210000000988 bone and bone Anatomy 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 229920001817 Agar Polymers 0.000 description 8
- 239000008272 agar Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 6
- 239000000284 extract Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 231100001083 no cytotoxicity Toxicity 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 210000001124 body fluid Anatomy 0.000 description 3
- 239000010839 body fluid Substances 0.000 description 3
- 230000003833 cell viability Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000002828 disc diffusion antibiotic sensitivity testing Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- 206010041541 Spinal compression fracture Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 238000005956 quaternization reaction Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- RDEIXVOBVLKYNT-VQBXQJRRSA-N (2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2r,3r,6s)-3-amino-6-(1-aminoethyl)oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol;(2r,3r,4r,5r)-2-[(1s,2s,3r,4s,6r)-4,6-diamino-3-[(2r,3r,6s)-3-amino-6-(aminomethyl)oxan-2-yl]o Chemical compound OS(O)(=O)=O.O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H](CC[C@@H](CN)O2)N)[C@@H](N)C[C@H]1N.O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H](CC[C@H](O2)C(C)N)N)[C@@H](N)C[C@H]1N.O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N RDEIXVOBVLKYNT-VQBXQJRRSA-N 0.000 description 1
- FFRBMBIXVSCUFS-UHFFFAOYSA-N 2,4-dinitro-1-naphthol Chemical compound C1=CC=C2C(O)=C([N+]([O-])=O)C=C([N+]([O-])=O)C2=C1 FFRBMBIXVSCUFS-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 208000033809 Suppuration Diseases 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 206010048038 Wound infection Diseases 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 238000002316 cosmetic surgery Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical group [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/16—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/204—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with nitrogen-containing functional groups, e.g. aminoxides, nitriles, guanidines
- A61L2300/208—Quaternary ammonium compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/24—Materials or treatment for tissue regeneration for joint reconstruction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/38—Materials or treatment for tissue regeneration for reconstruction of the spine, vertebrae or intervertebral discs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dermatology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明公开一种甲基丙烯酸二甲氨基三氯生酯改性的抗菌骨水泥,原材料包括粉剂、液体,粉剂包括如下质量百分比含量的组分:82.10%~94.30%的聚甲基丙烯酸甲酯微球、0.70%~2.90%的引发剂、5.00%~15.00%的显影剂,液体包括如下质量比百分比含量的组分:58.32%~94.62%的甲基丙烯酸甲酯、0.40%~2.00%的催化剂、4.98%~39.68%的甲基丙烯酸二甲氨基三氯生酯;本发明新型抗菌骨水泥通过甲基丙烯酸二甲氨基三氯生酯中的季铵基团获得抗菌能力,实现了对革兰氏阳性、阴性菌种以及真菌的有效抑菌杀菌,表现出良好的广谱抗菌性,适合作为椎体及椎体后凸成形、髋(膝)关节置换的替代性填充材料。The invention discloses an antibacterial bone cement modified by dimethylaminotriclosan methacrylate. The raw materials include powder and liquid, and the powder includes the following components in mass percentage: 82.10%-94.30% polymethyl methacrylate Microspheres, 0.70% to 2.90% of initiator, 5.00% to 15.00% of developer, the liquid includes the following components in mass ratio: 58.32% to 94.62% of methyl methacrylate, 0.40% to 2.00% of Catalyst, 4.98%~39.68% dimethylaminotriclosan methacrylate; the novel antibacterial bone cement of the present invention obtains antibacterial ability through the quaternary ammonium group in dimethylaminotriclosan methacrylate, and realizes antibacterial effect on Gram Positive and negative bacteria and fungi can be effectively bacteriostatic and sterilized, showing good broad-spectrum antibacterial properties, and are suitable as an alternative filling material for vertebral body and kyphoplasty, and hip (knee) joint replacement.
Description
技术领域technical field
本发明涉及生物医用高分子材料领域,尤其涉及一种经甲基丙烯酸季铵盐单体改性从而获得抗菌能力的新型甲基丙烯酸甲酯(PMMA)骨水泥。The invention relates to the field of biomedical polymer materials, in particular to a novel methyl methacrylate (PMMA) bone cement which is modified by methacrylic acid quaternary ammonium salt monomer to obtain antibacterial ability.
背景技术Background technique
抗菌型(Antimicrobial)聚甲基丙烯酸甲酯骨水泥(PMMA骨水泥)是在普通型(Plain)骨水泥基础上,通过向粉剂端额外添加硫酸庆大霉素、万古霉素等抗生素而构建的一种具有自固化特性的植入材料。抗菌型PMMA骨水泥固化前呈一定的流变性和可塑性,易填充于复杂手术部位;固化后能够起到支撑关节假体和传递载荷等作用。这些性质满足椎体及椎体后凸成形、髋(膝)关节置换对填充材料的要求,因而PMMA骨水泥被广泛用于治疗脊柱压缩性骨折和固定关节假体。Antimicrobial polymethyl methacrylate bone cement (PMMA bone cement) is constructed on the basis of plain bone cement by adding antibiotics such as gentamicin sulfate and vancomycin to the powder side An implant material with self-curing properties. Antibacterial PMMA bone cement has a certain rheology and plasticity before curing, and is easy to fill in complex surgical sites; after curing, it can support the joint prosthesis and transmit loads. These properties meet the requirements of vertebral body and kyphoplasty, hip (knee) joint replacement for filling materials, so PMMA bone cement is widely used to treat spinal compression fractures and fix joint prostheses.
经多年临床应用发现,抗菌型PMMA骨水泥的抗菌表现较差,会造成接受移植手术的患者出现菌性炎症、伤口感染及流脓等恶性症状。究其原因可总结为:(1)骨水泥固化后其内部结构致密,只有分布于表层的抗生素能够释放,而位于骨水泥内部的抗生素则因缺乏释放通道而丧失其抗菌作用;(2)植入后表层的抗生素释放过快,内部抗生素无法进一步释放,骨水泥因缺少“缓释”机制而无法实现中长期杀菌;(3)更为严重的是,MMA聚合放热使得骨水泥在植入时短期升温至80~120℃,造成抗生素部分甚至完全“失活”。总体来说,抗生素本身不适合PMMA/MMA骨水泥体系,寻找新型抗菌剂替代抗生素已成为抗菌型骨水泥亟待解决的问题。After years of clinical application, it has been found that antibacterial PMMA bone cement has poor antibacterial performance, which will cause malignant symptoms such as bacterial inflammation, wound infection and pus in patients undergoing transplantation. The reasons can be summarized as follows: (1) After the bone cement is solidified, its internal structure is dense, and only the antibiotics distributed on the surface can be released, while the antibiotics inside the bone cement lose their antibacterial effect due to the lack of release channels; (2) After implantation, the antibiotics on the surface are released too quickly, and the internal antibiotics cannot be further released, and the bone cement cannot achieve mid- and long-term sterilization due to the lack of a "slow release" mechanism; (3) What is more serious is that the heat generated by MMA polymerization makes the bone cement When the temperature is raised to 80-120°C for a short period of time, it will cause partial or even complete "inactivation" of antibiotics. Generally speaking, antibiotics themselves are not suitable for PMMA/MMA bone cement systems, and finding new antibacterial agents to replace antibiotics has become an urgent problem to be solved for antibacterial bone cements.
新型抗菌剂中的无机抗菌材料具有无耐药性、广谱性、长效抗菌以及安全性高等优点,典型的代表为银(Ag)、铜(Cu)、金(Au)氧化锌(ZnO)、(氧化钛)TiO2等。研究者将其添加至PMMA骨水泥中确实起到了明显的抗菌抑菌效果。例如,添加了Ag、Cu、AgCu、Ni纳米颗粒的改性骨水泥,在6个月后的细菌活力检测中都确认了改性骨水泥在与细菌直接接触时能够减少真核细胞的数量,但只有含有Ag、Cu的改性骨水泥没有发现细菌,而添加AgCu和Ni的改性骨水泥其表面则出现细菌聚集形成生物膜。装载1%纳米Au颗粒的改性骨水泥,其耐甲氧西林金黄色葡萄球菌及假单胞菌的活菌数量分别减少了54%和56%,生物膜厚度减少了74%,表现出优异的抗菌抑菌活性。但以无机抗菌材料为添加剂的改性骨水泥仍面临与抗生素一样的问题,受制于固化后PMMA骨水泥的紧密结构,内部抗菌纳米颗粒缺乏释放通道、中长期杀菌效果差等问题也同样暴露出来。Inorganic antibacterial materials in new antibacterial agents have the advantages of no drug resistance, broad spectrum, long-term antibacterial and high safety. Typical representatives are silver (Ag), copper (Cu), gold (Au) and zinc oxide (ZnO). , (titanium oxide) TiO 2 and so on. The researchers added it to PMMA bone cement and indeed played a significant antibacterial and antibacterial effect. For example, the modified bone cement added with Ag, Cu, AgCu, and Ni nanoparticles confirmed that the modified bone cement can reduce the number of eukaryotic cells in direct contact with bacteria in the test of bacterial viability after 6 months, But only the modified bone cement containing Ag and Cu had no bacteria, while the surface of the modified bone cement added with AgCu and Ni showed bacteria aggregated to form biofilm. The modified bone cement loaded with 1% nano-Au particles reduced the number of live bacteria of methicillin-resistant Staphylococcus aureus and Pseudomonas by 54% and 56%, respectively, and the biofilm thickness decreased by 74%, showing excellent performance. antibacterial activity. However, modified bone cements with inorganic antibacterial materials as additives still face the same problems as antibiotics. Due to the tight structure of PMMA bone cement after curing, the lack of release channels for internal antibacterial nanoparticles and poor mid- and long-term bactericidal effects are also exposed. .
发明目的purpose of invention
针对现有技术存在的问题,本发明提出从液体一端添加有机抗菌剂来解决上述问题,本发明从原料上选用了能与MMA互溶、遇到自由基可发生共聚的甲基丙烯酸二甲氨基乙酯(DMAEMA),以及具有抗菌性的三氯生(Triclosan)为原料,通过门斯特金反应将两者结合成既具有抗菌性季铵结构又具有不饱和C=C双键的甲基丙烯酸季铵盐单体,即甲基丙烯酸二甲氨基三氯生酯(DMAPPA),具有较好的抑菌灭菌作用和广谱抗菌活性;将其加入PMMA反应体系中,一方面利用自带的季铵基团实现骨水泥抗菌,另一方面利用不饱和C=C双键参与MMA聚合,避免添加材料对基体理化性质造成的负面影响,使抗菌后的骨水泥其性能指标满足椎体及椎体后凸成形、髋(膝)关节置换等手术的相关要求,可作为现行商业抗菌型PMMA骨水泥的替代。In view of the problems existing in the prior art, the present invention proposes to add an organic antibacterial agent from one end of the liquid to solve the above problems. The present invention selects dimethylaminoethyl methacrylate which can be miscible with MMA and can be copolymerized when encountering free radicals. Ester (DMAEMA), and antibacterial triclosan (Triclosan) are used as raw materials, and the two are combined into methacrylic acid with both antibacterial quaternary ammonium structure and unsaturated C=C double bond through Menster gold reaction Quaternary ammonium salt monomer, i.e. dimethylaminotriclosan methacrylate (DMAPPA), has good antibacterial and bactericidal effect and broad-spectrum antibacterial activity; The quaternary ammonium group realizes the antibacterial of the bone cement. On the other hand, the unsaturated C=C double bond is used to participate in the polymerization of MMA, so as to avoid the negative impact of the added materials on the physical and chemical properties of the matrix, so that the performance indicators of the antibacterial bone cement can meet the requirements of the vertebral body and posterior vertebral body. It can be used as a substitute for the current commercial antibacterial PMMA bone cement for the relevant requirements of surgery such as convex plastic surgery and hip (knee) replacement.
本发明提供一种甲基丙烯酸二甲氨基三氯生酯改性的抗菌骨水泥,该抗菌骨水泥在甲基丙烯酸二甲氨基三氯生酯(DMAPPA)中的季铵基团作用下获得广谱杀菌抑菌能力,并利用DMAPPA自身的不饱和C=C双键参与MMA聚合,来确保改性骨水泥的抗压强度、抗弯强度和抗弯弹性模量均高于国际标准ISO5833的下限要求;可通过调控DMAPPA的添加量使改性骨水泥表现出固化最高放热温度低和无细胞毒性等优点。适合作为椎体及椎体后凸成形、髋(膝)关节置换的填充材料,用于替代现行的商业抗菌型PMMA骨水泥,可用作椎体及椎体后凸成形、髋(膝)关节置换的替代性填充材料。The invention provides an antibacterial bone cement modified by dimethylaminotriclosan methacrylate (DMAPPA). Antibacterial ability, and use the unsaturated C=C double bond of DMAPPA to participate in MMA polymerization to ensure that the compressive strength, flexural strength and flexural elastic modulus of the modified bone cement are all higher than the lower limit requirements of the international standard ISO5833; By adjusting the amount of DMAPPA added, the modified bone cement has the advantages of low curing maximum exothermic temperature and no cytotoxicity. It is suitable as a filling material for vertebral body and kyphoplasty, hip (knee) joint replacement, used to replace the current commercial antibacterial PMMA bone cement, and can be used for vertebral body and kyphoplasty, hip (knee) joint replacement Alternative filler material for replacement.
本发明技术方案如下:Technical scheme of the present invention is as follows:
一种甲基丙烯酸二甲氨基三氯生酯改性的抗菌骨水泥,原材料包括粉剂、液体,粉剂包括如下质量百分比含量的组分:82.10%~94.30%的聚甲基丙烯酸甲酯(PMMA)微球、0.70%~2.90%的引发剂、5.00%~15.00%的显影剂,液体包括如下质量比百分比含量的组分:58.32%~94.62%的甲基丙烯酸甲酯(MMA)、0.40%~2.00%的催化剂、4.98%~39.68%的甲基丙烯酸二甲氨基三氯生酯(DMAPPA)。An antibacterial bone cement modified by dimethylaminotriclosan methacrylate, the raw materials include powder and liquid, and the powder includes the following components in mass percentage: 82.10% to 94.30% polymethylmethacrylate (PMMA) Microspheres, 0.70% to 2.90% of the initiator, 5.00% to 15.00% of the developer, and the liquid includes the following components by mass ratio: 58.32% to 94.62% of methyl methacrylate (MMA), 0.40% to 2.00% catalyst, 4.98%-39.68% dimethylaminotriclosan methacrylate (DMAPPA).
所述原料中的粉剂、液体,两者的质量比为1.0~3.0g/g。The mass ratio of powder and liquid in the raw materials is 1.0-3.0 g/g.
所述聚甲基丙烯酸甲酯微球的重均分子量Mw为50000~120000,数均分子量Mn为25000~96000,微球尺寸为7~38μm。The weight-average molecular weight Mw of the polymethyl methacrylate microsphere is 50000-120000, the number-average molecular weight Mn is 25000-96000, and the size of the microsphere is 7-38 μm.
所述引发剂为过氧化苯甲酰(BPO),催化剂为N,N-二甲基对甲苯胺(DmpT),显影剂为氧化锆(ZrO2)或硫酸钡(BaSO4)中的一种。The initiator is benzoyl peroxide (BPO), the catalyst is N,N-dimethyl-p-toluidine (DmpT), and the developer is one of zirconia (ZrO 2 ) or barium sulfate (BaSO 4 ). .
所述甲基丙烯酸二甲氨基三氯生酯(DMAPPA)为抗菌添加材料,其制备方法的具体步骤如下:Described dimethylaminotriclosan methacrylate (DMAPPA) is an antibacterial additive material, and the concrete steps of its preparation method are as follows:
(1)称取原料甲基丙烯酸二甲氨基乙酯(DMAEMA)和三氯生(Triclosan);(1) Weigh raw materials dimethylaminoethyl methacrylate (DMAEMA) and triclosan (Triclosan);
(2)将步骤(1)称好的两种原料加入无水乙醇,配制成混合溶液;(2) The two raw materials weighed in step (1) are added to absolute ethanol to be mixed with a mixed solution;
(3)将步骤(2)的混合溶液密封后,在磁力搅拌辅助下进行门斯特金反应;(3) After the mixed solution of step (2) is sealed, carry out the Mensterkin reaction under the assistance of magnetic stirring;
(4)将步骤(3)反应后的混合溶液转移至蒸发仪进行脱乙醇处理,待乙醇完全蒸发后,获得透明的粘性甲基丙烯酸二甲氨基三氯生酯(DMAPPA)液体;(4) Transfer the mixed solution after the reaction of step (3) to an evaporator for de-ethanol treatment. After the ethanol is completely evaporated, a transparent viscous dimethylaminotriclosan methacrylate (DMAPPA) liquid is obtained;
步骤(1)DMAEMA和Triclosan的摩尔比为1:1。The molar ratio of step (1) DMAEMA and Triclosan is 1:1.
步骤(2)混合溶液的浓度为3.2~3.5mol/L,即溶液中溶质的总浓度(甲基丙烯酸二甲氨基乙酯(DMAEMA)和三氯生之和的总浓度)。The concentration of the mixed solution in step (2) is 3.2-3.5 mol/L, that is, the total concentration of the solute in the solution (the total concentration of the sum of dimethylaminoethyl methacrylate (DMAEMA) and triclosan).
步骤(3)门斯特金反应温度为40~70℃,反应时间为4~24h,磁力搅拌磁子转速为800~1400rpm。Step (3) The temperature of the Misterkin reaction is 40-70° C., the reaction time is 4-24 hours, and the rotational speed of the magnetic stirring magnet is 800-1400 rpm.
本发明所述甲基丙烯酸二甲氨基三氯生酯改性的新型抗菌骨水泥,其制备方法如下:粉剂按原料按比例称取后,用调刀持续搅拌直至均匀;液体按原料按比例称取后,用磁子持续搅拌直至均匀,粉剂、液体混合后经搅拌、静置、塑形、固化得到新型抗菌骨水泥。The novel antibacterial bone cement modified by dimethylaminotriclosan methacrylate of the present invention, its preparation method is as follows: After the powder is weighed according to the proportion of the raw materials, it is continuously stirred with a spatula until it is uniform; the liquid is weighed according to the proportion of the raw materials. After taking it, keep stirring with a magnet until it is uniform, and after mixing the powder and liquid, stir, let stand, shape, and solidify to obtain a new type of antibacterial bone cement.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
1、本发明通过门斯特金法合成的甲基丙烯酸二甲氨基三氯生酯(DMAPPA)单体,其结构同时具有季铵基团和不饱和C=C双键,季铵基团对致病性细菌具有杀菌抑菌作用,能够赋予改性后的新型骨水泥抗菌能力;不饱和C=C双键能够在BPO/DmpT的引发/催化作用下参与MMA聚合反应,成为PMMA主链的一部分,进而避免添加物对基体理化性能的负面影响。1, the present invention is synthesized by the dimethylaminotriclosan methacrylate (DMAPPA) monomer of Munster gold method, and its structure has quaternary ammonium group and unsaturated C=C double bond simultaneously, and quaternary ammonium group is to pathogenic bacterium It has bactericidal and antibacterial effects, and can endow the modified new bone cement with antibacterial ability; the unsaturated C=C double bond can participate in the MMA polymerization reaction under the initiation/catalysis of BPO/DmpT, and become a part of the PMMA main chain, thereby avoiding The negative impact of additives on the physical and chemical properties of the matrix.
2、本发明通过调控混合溶液浓度、门斯特金反应温度、反应时间及搅拌转速来调控DMAPPA单体的产率、结构和粘度等,再通过调控粉剂和液体各组分的质量百分比、粉液混合比、PMMA微球分子量及颗粒尺寸等来调控新型抗菌骨水泥,使其表现出较好的广谱抗菌性和抗菌活性、能够满足ISO5833的下限要求的力学性能、较低的固化最高放热温度和无细胞毒性等优点。2. The present invention regulates the yield, structure and viscosity of the DMAPPA monomer by regulating the concentration of the mixed solution, the Munster gold reaction temperature, the reaction time and the stirring speed, and then regulates the mass percentage and the powder of each component of the powder and the liquid. The new type of antibacterial bone cement is regulated by liquid mixing ratio, PMMA microsphere molecular weight and particle size, so that it shows better broad-spectrum antibacterial and antibacterial activity, mechanical properties that can meet the lower limit requirements of ISO5833, and lower curing maximum radiation. Advantages such as thermal temperature and non-cytotoxicity.
3、本发明通过门斯特金法合成的DMAPPA单体,通过浸泡Φ6mm×1mm药敏片对金黄色葡萄球菌、大肠杆菌以及白色念珠菌进行抑菌圈测试,其抑菌圈直径均大于6mm,依次为35.01±0.11~40.27±0.23mm、30.21±0.43~36.13±0.57mm和25.64±0.35~34.85±0.45mm,在季铵基团作用下表现出较好的广谱抑菌能力。3. The DMAPPA monomer synthesized by the Munster Gold method in the present invention is tested for the inhibition zone of Staphylococcus aureus, Escherichia coli and Candida albicans by soaking the Φ6mm×1mm drug-sensitive tablet, and the diameter of the inhibition zone is greater than 6mm , followed by 35.01±0.11~40.27±0.23mm, 30.21±0.43~36.13±0.57mm and 25.64±0.35~34.85±0.45mm, showing a good broad-spectrum antibacterial ability under the action of quaternary ammonium groups.
4、本发明通过门斯特金法合成的DMAPPA单体,在季铵基团和氯离子的共同作用下呈水溶性;当作为改性成分加入骨水泥后,会成为PMMA主链的一部分而存在于骨水泥表面,使得抗菌改性骨水泥的接触角为51.5±2.7°~73.3±2.3°,表现出更优的亲水性,且随着DMAPPA单体含量的骨水泥,接触角进一步降低。4. The DMAPPA monomer synthesized by the Munster Gold method in the present invention is water-soluble under the joint action of quaternary ammonium groups and chloride ions; when added to bone cement as a modified component, it will become a part of the PMMA main chain and exist in the The surface of the bone cement makes the contact angle of the antibacterial modified bone cement range from 51.5±2.7° to 73.3±2.3°, showing better hydrophilicity, and the contact angle further decreases with the content of DMAPPA monomer in the bone cement.
5、本发明新型抗菌骨水泥抗压强度、抗弯强度以及抗弯弹性模量均能高于ISO5833所规定的平均抗压强度≥70MPa,平均抗弯强度≥50MPa,平均抗弯模量≥1.8GPa的下限指标;且在DMAPPA不饱和C=C双键参与MMA聚合的作用下,能够进一步提高PMMA骨水泥的力学性能。5. The compressive strength, flexural strength and flexural elastic modulus of the new antibacterial bone cement of the present invention can all be higher than the average compressive strength ≥ 70 MPa, the average flexural strength ≥ 50 MPa, and the average flexural modulus ≥ 1.8 specified in ISO5833 The lower limit index of GPa; and under the action of DMAPPA unsaturated C=C double bond participating in MMA polymerization, the mechanical properties of PMMA bone cement can be further improved.
6、本发明新型抗菌骨水泥固化时间和最高放热温度均满足国际标准ISO5833的要求,即:以面团形式使用时固化时间范围3~15min、固化最高放热温度≤90±5℃;且在DMAPPA部分取代MMA下,能够进一步降低固化最高放热温度。6. Both the curing time and the maximum exothermic temperature of the new antibacterial bone cement of the present invention meet the requirements of the international standard ISO5833, that is, when used in the form of dough, the curing time ranges from 3 to 15 minutes, and the maximum curing exothermic temperature is ≤90±5°C; DMAPPA partially replaces MMA, which can further reduce the maximum exothermic temperature of curing.
7、本发明新型抗菌骨水泥切割成10×10×1mm3的试样对金黄色葡萄球菌、大肠杆菌、白色念珠菌进行抑菌圈测试,其抑菌圈直径分别为30.94~40.76±3.82mm、20.34~30.44±3.07mm和10.33±0.57~14.35±0.38mm,表现出较好的广谱抑菌能力。7. The new antibacterial bone cement of the present invention is cut into 10×10×1mm 3 samples to test the antibacterial zone of Staphylococcus aureus, Escherichia coli, and Candida albicans, and the diameter of the antibacterial zone is 30.94~40.76±3.82mm respectively , 20.34~30.44±3.07mm and 10.33±0.57~14.35±0.38mm, showing good broad-spectrum antibacterial ability.
8、本发明新型抗菌骨水泥,小鼠胚胎成骨细胞前体细胞(MC3T3-E1细胞)在其浸提液中培养24h和72h后,其细胞相对增殖度(RGR)为72.3%~99.3%,根据ISO10993判定其毒性等级为0级和1级,新型抗菌骨水泥无细胞毒性。8. The new type of antibacterial bone cement of the present invention, mouse embryonic osteoblast precursor cells (MC3T3-E1 cells) are cultured in its extract for 24h and 72h, and its cell relative proliferation rate (RGR) is 72.3% to 99.3% According to ISO10993, its toxicity grades are
9、本发明新型抗菌骨水泥具有无细胞毒性、较好的力学性能和固化性能等优点,其抗菌活性能够降低植入体在人体内出现菌性炎症的几率,达到延长关节假体使用寿命、避免重复治疗的目的,适用于治疗治疗脊柱压缩性骨折和固定关节假体,可作为椎体及椎体后凸成形、髋(膝)关节置换的替代性填充材料。9. The new antibacterial bone cement of the present invention has the advantages of no cytotoxicity, good mechanical properties and curing performance, and its antibacterial activity can reduce the probability of bacterial inflammation of the implant in the human body, so as to prolong the service life of the joint prosthesis, The purpose of avoiding repeated treatment is suitable for the treatment of spinal compression fractures and fixed joint prosthesis, and can be used as an alternative filling material for vertebral body and kyphoplasty and hip (knee) joint replacement.
附图说明Description of drawings
图1为本发明实施例1原料DMAEMA和Triclosan、过程产物DMAPPA的核磁氢谱图(1HNMR)(a)及其门斯特金反应方程示意图(b);Fig. 1 is the proton nuclear magnetic spectrogram ( 1HNMR ) (a) of the raw material DMAEMA and Triclosan of the
图2为本发明实施例2骨水泥的核磁氢谱图(1HNMR);Fig. 2 is the hydrogen nuclear magnetic spectrum ( 1 HNMR) of the bone cement of Example 2 of the present invention;
图3为本发明实施例3制备的DMAPPA在圆盘扩散法下金黄色葡萄球菌、大肠杆菌和白色念珠菌3种菌种测试的抑菌圈光学照片;Fig. 3 is the optical photograph of the inhibition zone of Staphylococcus aureus, Escherichia coli and Candida albicans 3 kinds of bacteria tests of DMAPPA prepared in
图4为本发明实施例4骨水泥测试其接触角所拍摄的模拟人体体液(SBF)液滴落在骨水泥表面时的光学照片;Fig. 4 is the optical photograph when the simulated human body fluid (SBF) liquid droplet of
图5为本发明实施例5骨水泥的抗压应力-应变曲线(a)和抗弯应力-应变曲线(b);Fig. 5 is the compressive stress-strain curve (a) and the bending stress-strain curve (b) of the bone cement of Example 5 of the present invention;
图6为本发明实施例6骨水泥的固化温度-时间曲线;Fig. 6 is the curing temperature-time curve of the bone cement of Example 6 of the present invention;
图7为本发明实施例7新型抗菌骨水泥在圆盘扩散法下金黄色葡萄球菌、大肠杆菌和白色念珠菌抑菌圈光学照片;7 is an optical photo of the antibacterial zone of Staphylococcus aureus, Escherichia coli and Candida albicans under the disc diffusion method of the new antibacterial bone cement according to Example 7 of the present invention;
图8为MC3T3-E1细胞在实施例8新型抗菌骨水泥浸提液中培养24h以及72h后的细胞活性。Fig. 8 shows the cell activity of MC3T3-E1 cells cultured in the new antibacterial bone cement extract of Example 8 for 24 hours and 72 hours.
具体实施方式Detailed ways
以下实施例是针对本发明的材料特征和制备方法所展开的一系列详细描述,不能凭此理解为是对本发明权利要求的限制。还需指出的是,在不脱离本发明构思的前提下所做出的若干替换和改进,都属于本发明的保护范围。The following examples are a series of detailed descriptions aimed at the material characteristics and preparation methods of the present invention, which should not be construed as limiting the claims of the present invention. It should also be pointed out that several replacements and improvements made without departing from the concept of the present invention all belong to the protection scope of the present invention.
实施例1Example 1
一种甲基丙烯酸二甲氨基三氯生酯改性的抗菌骨水泥,原材料包括粉剂、液体,粉剂按质量百分比计,含有82.10%的聚甲基丙烯酸甲酯(PMMA)微球、2.90%的引发剂、15.00%的显影剂,液体按质量百分比计,含有58.80%的甲基丙烯酸甲酯(MMA)、2.00%的催化剂、39.20%的甲基丙烯酸二甲氨基三氯生酯(DMAPPA)。An antibacterial bone cement modified by dimethylaminotriclosan methacrylate, raw materials include powder and liquid, the powder contains 82.10% polymethyl methacrylate (PMMA) microspheres, 2.90% of Initiator, 15.00% developer, liquid contains 58.80% methyl methacrylate (MMA), 2.00% catalyst, 39.20% dimethylaminotriclosan methacrylate (DMAPPA) by mass percentage.
本实施例选用的聚甲基丙烯酸甲酯(PMMA)微球的重均分子量Mw范围为50000~120000、数均分子量Mn范围为25000~96000、微球尺寸范围为7~38μm。The polymethyl methacrylate (PMMA) microspheres used in this example have a weight-average molecular weight Mw in the range of 50000-120000, a number-average molecular weight Mn in the range of 25000-96000, and a microsphere size in the range of 7-38 μm.
本实施例选用的引发剂为过氧化苯甲酰(BPO),催化剂为N,N-二甲基对甲苯胺(DmpT),显影剂为氧化锆(ZrO2)。The initiator selected in this embodiment is benzoyl peroxide (BPO), the catalyst is N,N-dimethyl-p-toluidine (DmpT), and the developer is zirconia (ZrO 2 ).
本实施例中的甲基丙烯酸二甲氨基三氯生酯(DMAPPA)采用门斯特金法合成,其主要制备步骤如下:Dimethylaminotriclosan methacrylate (DMAPPA) in the present embodiment is synthesized by the Menster Gold method, and its main preparation steps are as follows:
(1)按摩尔比1:1称取甲基丙烯酸二甲氨基乙酯(DMAEMA)和三氯生(Triclosan)两种原料;(1) Weigh two raw materials of dimethylaminoethyl methacrylate (DMAEMA) and triclosan (Triclosan) in a molar ratio of 1:1;
(2)将步骤(1)称好的两种原料加入乙醇,按3.5mol/L的浓度配制成混合溶液;(2) Add the two raw materials weighed in step (1) to ethanol, and prepare a mixed solution at a concentration of 3.5mol/L;
(3)将步骤(2)混合溶液密封后,在磁力搅拌辅助下进行门斯特金反应,门斯特金反应温度为70℃,反应时间为4h,磁子转速为800rpm;(3) After sealing the mixed solution of step (2), carry out the Mönstergold reaction under the assistance of magnetic stirring, the Mönstergold reaction temperature is 70°C, the reaction time is 4h, and the magneton speed is 800rpm;
(4)将步骤(3)反应后的混合溶液转移至蒸发仪进行脱乙醇处理,蒸发24h以上待乙醇完全蒸发后,获得透明的粘性DMAPPA液体。(4) Transfer the mixed solution after the reaction in step (3) to an evaporator for de-ethanol treatment, and evaporate for more than 24 hours. After the ethanol is completely evaporated, a transparent viscous DMAPPA liquid is obtained.
本实施例甲基丙烯酸二甲氨基三氯生酯改性的新型抗菌骨水泥,其制备方法如下:粉剂按原料按比例称取后,用调刀持续搅拌直至均匀;按照粉剂与液体质量比为3.0g/g称取液体,用磁子持续搅拌直至均匀,粉剂、液体混合后经搅拌、静置、塑形、固化得到新型抗菌骨水泥。The preparation method of the novel antibacterial bone cement modified by dimethylaminotriclosan methacrylate in this example is as follows: after the powder is weighed according to the proportion of the raw materials, it is continuously stirred with a spatula until it is uniform; the mass ratio of the powder to the liquid is Weigh the liquid at 3.0g/g, stir continuously with a magnet until uniform, mix the powder and liquid, stir, let stand, shape, and solidify to obtain a new type of antibacterial bone cement.
本实施例制成甲基丙烯酸二甲氨基三氯生酯(DMAPPA)及其原料其DMAEMA、Triclosan的核磁氢谱(1HNMR)如见图1所示,由图1对比可知:6.5-7.5ppm间出现苯环信号,5.5ppm和6ppm处为碳碳双键的信号,3.7ppm出现连N的甲基信号,这说明DMAPPA与Triclosan发生了季铵化,使Triclosan中苯环缺失Cl成为吸电子基团,屏蔽作用减少,化学位移向低场移动,从而使得DMAEMA中的e位置氢位移到了DMAPPA中在a位置;根据图1(a)的结果可以得出两种原料间的门斯特金反应方程,其反应方程式的示意图如图1(b)所示,由图1(b)可知,反应发生在氮位,通过季铵化将DMAPPA与Triclosan连接并最终形成产物甲基丙烯酸二甲氨基三氯生酯(DMAPPA)。The hydrogen nuclear magnetic spectrum (1HNMR) of dimethylaminotriclosan methacrylate (DMAPPA) and its raw materials DMAEMA and Triclosan produced in this embodiment is shown in Figure 1 , as shown in Figure 1, as shown in Figure 1: 6.5-7.5ppm The signal of benzene ring appears between 5.5ppm and 6ppm, the signal of carbon-carbon double bond, and the signal of methyl group connected to N appears at 3.7ppm, which shows that DMAPPA and Triclosan have undergone quaternization, so that the benzene ring in Triclosan lacks Cl and becomes an electron-withdrawing group, the shielding effect is reduced, and the chemical shift moves to the lower field, so that the hydrogen at the e position in DMAEMA is shifted to the a position in DMAPPA; according to the results in Figure 1(a), it can be concluded that the Mensterkin between the two raw materials Reaction equation, the schematic diagram of its reaction equation is as shown in Figure 1 (b), as can be seen from Figure 1 (b), the reaction occurs at the nitrogen position, DMAPPA is connected with Triclosan by quaternization and finally forms the product dimethylaminomethacrylate Triclosan ester (DMAPPA).
实施例2Example 2
一种甲基丙烯酸二甲氨基三氯生酯改性的抗菌骨水泥,原材料包括粉剂、液体,粉剂按质量百分比计,含有94.30%的聚甲基丙烯酸甲酯(PMMA)微球、0.70%的引发剂、5.00%的显影剂,液体按质量百分比计,含有58.32%的甲基丙烯酸甲酯(MMA)、2.00%的催化剂、39.68%的甲基丙烯酸二甲氨基三氯生酯(DMAPPA)。An antibacterial bone cement modified by dimethylaminotriclosan methacrylate, raw materials include powder, liquid, powder contains 94.30% polymethylmethacrylate (PMMA) microspheres, 0.70% of Initiator, 5.00% developer, liquid contains 58.32% methyl methacrylate (MMA), 2.00% catalyst, 39.68% dimethylaminotriclosan methacrylate (DMAPPA) by mass percentage.
本实施例选用的聚甲基丙烯酸甲酯(PMMA)微球的重均分子量Mw范围为50000~120000、数均分子量Mn范围为25000~96000、微球尺寸范围为7~38μm。The polymethyl methacrylate (PMMA) microspheres used in this example have a weight-average molecular weight Mw in the range of 50000-120000, a number-average molecular weight Mn in the range of 25000-96000, and a microsphere size in the range of 7-38 μm.
本实施例选用的引发剂为过氧化苯甲酰(BPO),催化剂为N,N-二甲基对甲苯胺(DmpT),显影剂为硫酸钡(BaSO4)。The initiator selected in this embodiment is benzoyl peroxide (BPO), the catalyst is N,N-dimethyl-p-toluidine (DmpT), and the developer is barium sulfate (BaSO 4 ).
本实施例中的甲基丙烯酸二甲氨基三氯生酯(DMAPPA)采用门斯特金法合成,其主要制备步骤如下:Dimethylaminotriclosan methacrylate (DMAPPA) in the present embodiment is synthesized by the Menster Gold method, and its main preparation steps are as follows:
(1)按摩尔比1:1称取甲基丙烯酸二甲氨基乙酯(DMAEMA)和三氯生(Triclosan)两种原料;(1) Weigh two raw materials of dimethylaminoethyl methacrylate (DMAEMA) and triclosan (Triclosan) in a molar ratio of 1:1;
(2)将步骤(1)称好的两种原料加入乙醇,按3.2mol/L的浓度配制成混合溶液;(2) Add the two raw materials weighed in step (1) into ethanol, and prepare a mixed solution at a concentration of 3.2mol/L;
(3)将步骤(2)混合溶液密封后,在磁力搅拌辅助下进行门斯特金反应,门斯特金反应温度为40℃,反应时间为24h,磁子转速为1400rpm;(3) After sealing the mixed solution of step (2), carry out the Mönstergold reaction under the assistance of magnetic stirring, the Mönstergold reaction temperature is 40°C, the reaction time is 24h, and the magneton speed is 1400rpm;
(4)将步骤(3)反应后的混合溶液转移至蒸发仪进行脱乙醇处理,蒸发24h以上待乙醇完全蒸发后,获得透明的黏性DMAPPA液体。(4) Transfer the mixed solution after the reaction in step (3) to an evaporator for de-ethanol treatment, and evaporate for more than 24 hours. After the ethanol is completely evaporated, a transparent viscous DMAPPA liquid is obtained.
本实施例甲基丙烯酸二甲氨基三氯生酯改性的新型抗菌骨水泥,其制备方法如下:粉剂按原料按比例称取后,用调刀持续搅拌直至均匀;按照粉剂与液体质量比为1.0g/g称取液体,用磁子持续搅拌直至均匀,粉剂、液体混合后经搅拌、静置、塑形、固化得到新型抗菌骨水泥。The preparation method of the novel antibacterial bone cement modified by dimethylaminotriclosan methacrylate in this example is as follows: after the powder is weighed according to the proportion of the raw materials, it is continuously stirred with a spatula until it is uniform; the mass ratio of the powder to the liquid is Weigh the liquid at 1.0g/g, stir continuously with a magnet until uniform, mix the powder and liquid, stir, let stand, shape, and solidify to obtain a new type of antibacterial bone cement.
本实施例制成新型抗菌骨水泥、未添加DMAPPA的纯PMMA骨水泥的核磁氢谱(1HNMR)如图2所示,与纯PMMA骨水泥的核磁氢谱(1HNMR)对比,新型抗菌骨水泥在6.5-7.5ppm位置处出现典型苯环信号,在3.7ppm处出现连N位的甲基信号,同时,在2-3ppm之间出现产物属于原料甲基丙烯酸二甲氨基乙酯(DMAEMA)的信号,这些信号的出现说明产物DMAPPA成功参与了MMA的聚合反应,成为PMMA的主链的一部分,能够稳定存在于骨水泥中。The hydrogen nuclear magnetic spectrum ( 1HNMR ) of the new antibacterial bone cement made in this example and the pure PMMA bone cement without DMAPPA is shown in Figure 2. Compared with the hydrogen nuclear magnetic spectrum ( 1HNMR ) of the pure PMMA bone cement, the new antibacterial bone cement The typical benzene ring signal appears at the position of 6.5-7.5ppm in cement, and the methyl signal at the N position appears at 3.7ppm. At the same time, the product belongs to the raw material dimethylaminoethyl methacrylate (DMAEMA) at 2-3ppm. The appearance of these signals indicated that the product DMAPPA successfully participated in the polymerization reaction of MMA, became a part of the main chain of PMMA, and could stably exist in bone cement.
实施例3Example 3
一种甲基丙烯酸二甲氨基三氯生酯改性的抗菌骨水泥,原材料包括粉剂、液体,粉剂按质量百分比计,含有82.10%的聚甲基丙烯酸甲酯(PMMA)微球、2.90%的引发剂、15.00%的显影剂,液体按质量百分比计,含有94.62%的甲基丙烯酸甲酯(MMA)、0.40%的催化剂、4.98%的甲基丙烯酸二甲氨基三氯生酯(DMAPPA)。An antibacterial bone cement modified by dimethylaminotriclosan methacrylate, raw materials include powder and liquid, the powder contains 82.10% polymethyl methacrylate (PMMA) microspheres, 2.90% of Initiator, 15.00% developer, liquid contains 94.62% methyl methacrylate (MMA), 0.40% catalyst, 4.98% dimethylaminotriclosan methacrylate (DMAPPA) by mass percentage.
本实施例选用的聚甲基丙烯酸甲酯(PMMA)微球的重均分子量Mw范围为50000~120000、数均分子量Mn范围为25000~96000、微球尺寸范围为7~38μm。The polymethyl methacrylate (PMMA) microspheres used in this example have a weight-average molecular weight Mw in the range of 50000-120000, a number-average molecular weight Mn in the range of 25000-96000, and a microsphere size in the range of 7-38 μm.
本实施例选用的引发剂为过氧化苯甲酰(BPO),催化剂为N,N-二甲基对甲苯胺(DmpT),显影剂为硫酸钡(BaSO4)。The initiator selected in this embodiment is benzoyl peroxide (BPO), the catalyst is N,N-dimethyl-p-toluidine (DmpT), and the developer is barium sulfate (BaSO 4 ).
本实施例中的甲基丙烯酸二甲氨基三氯生酯(DMAPPA)采用门斯特金法合成,其主要制备步骤如下:Dimethylaminotriclosan methacrylate (DMAPPA) in the present embodiment is synthesized by the Menster Gold method, and its main preparation steps are as follows:
(1)按摩尔比1:1称取甲基丙烯酸二甲氨基乙酯(DMAEMA)和三氯生(Triclosan)两种原料;(1) Weigh two raw materials of dimethylaminoethyl methacrylate (DMAEMA) and triclosan (Triclosan) in a molar ratio of 1:1;
(2)将步骤(1)称好的两种原料加入乙醇,按3.3mol/L的浓度配制成混合溶液;(2) Add the two raw materials weighed in step (1) to ethanol, and prepare a mixed solution at a concentration of 3.3mol/L;
(3)将步骤(2)混合溶液密封后,在磁力搅拌辅助下进行门斯特金反应,门斯特金反应温度为55℃,反应时间为20h,磁子转速为1000rpm;(3) After sealing the mixed solution of step (2), carry out the Mönstergold reaction under the assistance of magnetic stirring, the Mönstergold reaction temperature is 55°C, the reaction time is 20h, and the magneton speed is 1000rpm;
(4)将步骤(3)反应后的混合溶液转移至蒸发仪进行脱乙醇处理,蒸发24h以上待乙醇完全蒸发后,获得透明的粘性DMAPPA液体。(4) Transfer the mixed solution after the reaction in step (3) to an evaporator for de-ethanol treatment, and evaporate for more than 24 hours. After the ethanol is completely evaporated, a transparent viscous DMAPPA liquid is obtained.
本实施例甲基丙烯酸二甲氨基三氯生酯改性的新型抗菌骨水泥,其制备方法如下:粉剂按原料按比例称取后,用调刀持续搅拌直至均匀;按照粉剂与液体质量比为2.5g/g称取液体,用磁子持续搅拌直至均匀,粉剂、液体混合后经搅拌、静置、塑形、固化得到新型抗菌骨水泥。The preparation method of the novel antibacterial bone cement modified by dimethylaminotriclosan methacrylate in this example is as follows: after the powder is weighed according to the proportion of the raw materials, it is continuously stirred with a spatula until it is uniform; the mass ratio of the powder to the liquid is Weigh the liquid at 2.5g/g, stir continuously with a magnet until uniform, mix the powder and liquid, stir, let stand, shape, and solidify to obtain a new type of antibacterial bone cement.
本实施例合成甲基丙烯酸二甲氨基三氯生酯(DMAPPA),采用圆盘扩散法测量其产生的抑菌环直径,进而评价其抑菌能力,测试时,以菌悬液浓度为1.5×108CFU/mL的金黄色葡萄球菌、大肠杆菌和大肠杆菌为3种目標菌株并分别涂满整个MH琼脂板,用φ6mm×1mm的药敏片蘸取DMAPPA,而后贴在涂满细菌的MH琼脂板上,将MH琼脂板置于37℃的恒温箱中培养24h,取出进行光学拍照,其抑菌环光学照片如图3所示,由图3可知,蘸有DMAPPA的药敏片,其周边均无上述3种目标细菌生长,出现了明显的抑菌环,再以药敏片中心为原点测量抑菌环并统计,对金黄色葡萄球菌、大肠杆菌和白色念珠菌产生的抑菌环直径分别为37.27±0.23mm、33.13±0.57mm和29.34±0.45mm,均明显高于6mm能够被判定为具有抑菌性的直径下限,说明DMAPPA对革兰氏阴性、阳性代表性菌株以及真菌表现出明显的广谱抑菌能力,且对3种菌种的抑菌效果表现为:金黄色葡萄球菌>大肠杆菌>白色念珠菌。This embodiment synthesizes dimethylaminotriclosan methacrylate (DMAPPA), and uses the disk diffusion method to measure the diameter of the antibacterial ring it produces, and then evaluates its antibacterial ability. During the test, the concentration of the bacterial suspension is 1.5× Staphylococcus aureus, Escherichia coli and Escherichia coli with 10 8 CFU/mL are the three target strains, and they are respectively coated on the entire MH agar plate, dipped in DMAPPA with a φ6mm×1mm drug-sensitive sheet, and then pasted on the MH agar plate covered with bacteria. On the agar plate, place the MH agar plate in a 37°C thermostat for 24 hours, take it out and take an optical photo. The optical photo of the antibacterial zone is shown in Figure 3. It can be seen from Figure 3 that the drug-sensitive sheet dipped with DMAPPA, its There was no growth of the above three kinds of target bacteria in the surrounding area, and an obvious bacteriostatic zone appeared. Then the bacteriostatic zone was measured and counted with the center of the drug-sensitive tablet as the origin, and the bacteriostatic zone produced by Staphylococcus aureus, E. The diameters were 37.27±0.23mm, 33.13±0.57mm, and 29.34±0.45mm, respectively, which were significantly higher than the lower limit of 6mm diameters that could be judged to have antibacterial properties, indicating that DMAPPA was effective against Gram-negative and positive representative strains and fungi. It showed obvious broad-spectrum antibacterial ability, and the antibacterial effect on three strains was as follows: Staphylococcus aureus > Escherichia coli > Candida albicans.
实施例4Example 4
一种甲基丙烯酸二甲氨基三氯生酯改性的抗菌骨水泥,原材料包括粉剂、液体,粉剂按质量百分比计,含有83.90%的聚甲基丙烯酸甲酯(PMMA)微球、2.60%的引发剂、13.50%的显影剂,液体按质量百分比计,含有1.60%的催化剂且量固定,第一种产品中甲基丙烯酸甲酯(MMA)含量为83.64%,甲基丙烯酸二甲氨基三氯生酯(DMAPPA)为14.76%;第二个产品中甲基丙烯酸甲酯(MMA)含量为73.80%,甲基丙烯酸二甲氨基三氯生酯(DMAPPA)为24.60%;第三个产品中甲基丙烯酸甲酯(MMA)含量为63.96%,甲基丙烯酸二甲氨基三氯生酯(DMAPPA)为34.44%。An antibacterial bone cement modified by dimethylaminotriclosan methacrylate, raw materials include powder and liquid, the powder contains 83.90% polymethylmethacrylate (PMMA) microspheres, 2.60% of Initiator, 13.50% developer, liquid by mass percent, containing 1.60% catalyst and fixed amount, methyl methacrylate (MMA) content is 83.64% in the first product, dimethylaminotrichloromethacrylate Raw ester (DMAPPA) is 14.76%; the content of methyl methacrylate (MMA) in the second product is 73.80%, and the content of dimethylaminotriclosan methacrylate (DMAPPA) is 24.60%; The content of methyl methacrylate (MMA) is 63.96%, and that of dimethylaminotriclosan methacrylate (DMAPPA) is 34.44%.
本实施例使用的聚甲基丙烯酸甲酯(PMMA)微球的重均分子量Mw范围为50000~120000、数均分子量Mn范围为25000~96000、微球尺寸范围为7~38μm。The polymethyl methacrylate (PMMA) microspheres used in this example have a weight-average molecular weight Mw in the range of 50000-120000, a number-average molecular weight Mn in the range of 25000-96000, and a microsphere size in the range of 7-38 μm.
本实施例使用的引发剂为过氧化苯甲酰(BPO),催化剂为N,N-二甲基对甲苯胺(DmpT),显影剂为氧化锆(ZrO2)。The initiator used in this embodiment is benzoyl peroxide (BPO), the catalyst is N,N-dimethyl-p-toluidine (DmpT), and the developer is zirconia (ZrO 2 ).
本实施例使用的甲基丙烯酸二甲氨基三氯生酯(DMAPPA)采用门斯特金法合成,其主要制备步骤如下:Dimethylaminotriclosan methacrylate (DMAPPA) used in this embodiment is synthesized by the Munster Gold method, and its main preparation steps are as follows:
(1)按摩尔比1:1称取甲基丙烯酸二甲氨基乙酯(DMAEMA)和三氯生(Triclosan)两种原料;(1) Weigh two raw materials of dimethylaminoethyl methacrylate (DMAEMA) and triclosan (Triclosan) in a molar ratio of 1:1;
(2)将步骤(1)称好的两种原料加入乙醇,按3.2mol/L的浓度配制成混合溶液;(2) Add the two raw materials weighed in step (1) into ethanol, and prepare a mixed solution at a concentration of 3.2mol/L;
(3)将步骤(2)混合溶液密封后,在磁力搅拌辅助下进行门斯特金反应,门斯特金反应温度为70℃,反应时间为6h,磁子转速为1300rpm;(3) After sealing the mixed solution in step (2), carry out the Mönstergold reaction under the assistance of magnetic stirring, the Mönstergold reaction temperature is 70°C, the reaction time is 6h, and the magneton speed is 1300rpm;
(4)将步骤(3)反应后的混合溶液转移至蒸发仪进行脱乙醇处理,蒸发24h以上待乙醇完全蒸发后,获得透明的黏性DMAPPA液体。(4) Transfer the mixed solution after the reaction in step (3) to an evaporator for de-ethanol treatment, and evaporate for more than 24 hours. After the ethanol is completely evaporated, a transparent viscous DMAPPA liquid is obtained.
本实施例甲基丙烯酸二甲氨基三氯生酯改性的新型抗菌骨水泥,其制备方法如下:粉剂按原料按比例称取后,用调刀持续搅拌直至均匀;按照粉剂与液体质量比为2.0g/g称取液体,用磁子持续搅拌直至均匀,粉剂、液体混合后经搅拌、静置、塑形、固化得到新型抗菌骨水泥。The preparation method of the novel antibacterial bone cement modified by dimethylaminotriclosan methacrylate in this example is as follows: after the powder is weighed according to the proportion of the raw materials, it is continuously stirred with a spatula until it is uniform; the mass ratio of the powder to the liquid is Weigh the liquid at 2.0g/g, stir continuously with a magnet until uniform, mix the powder and liquid, stir, let stand, shape, and solidify to obtain a new type of antibacterial bone cement.
按照实施例4的方式改变甲基丙烯酸二甲氨基三氯生酯(DMAPPA)的加入量为0%(即不加入DMAPPA,为纯PMMA骨水泥)、14.76%(新型抗菌骨水泥-1)、24.60%(新型抗菌骨水泥-2)、34.44%(新型抗菌骨水泥-3),同时调整甲基丙烯酸甲酯(MMA)的加入量,催化剂的量不变,进行实验,其他与上述相同,制成4种骨水泥,以模拟人体体液为媒介对其展开接触角测试,具体测试时,将新型抗菌骨水泥切割成15mm×10mm×1mm的试样,并用1200#砂纸打磨至表面平整,再置于样品台后;其上方的模拟人体体液(SBF)呈液滴状自由落体至骨水泥样品表面,待液滴稳定后对其进行光学拍照;根据照片上的液滴形状,采用量角法测量其大小并评判其亲水性,SBF液滴落在3种新型抗菌骨水泥以及作为对比的纯PMMA骨水泥表面时的照片如图4所示,由图4可知,SBF液滴在骨水泥表面形成的接触角大小均<90°,表现为亲水性,量角法得到的具体结果及统计如表1所示,由表1可知,DMAPPA含量分别为14.76%、24.60%和34.44%的3种新型抗菌骨水泥的接触大小依次是69.3±0.6°、68.6±2.1°和57.6±2.3°,对纯PMMA骨水泥对比可知,添加水溶性DMAPPA能够进一步降低骨水泥的接触角,且随着添加含量的增加,新型抗菌骨水泥的接触角进一步降低,亲水性能够继续改善。Change the addition amount of dimethylaminotriclosan methacrylate (DMAPPA) according to the mode of
表1Table 1
实施例5Example 5
一种甲基丙烯酸二甲氨基三氯生酯改性的抗菌骨水泥,原材料包括粉剂、液体,共有3种产品,粉剂按质量百分比计,含有87.50%的聚甲基丙烯酸甲酯(PMMA)微球、2.50%的引发剂、10.00%的显影剂,液体按质量百分比计,含有0.80%的催化剂且量固定,第一种产品中甲基丙烯酸甲酯(MMA)含量为91.26%,甲基丙烯酸二甲氨基三氯生酯(DMAPPA)为7.94%;第二个产品中甲基丙烯酸甲酯(MMA)含量为83.28%,甲基丙烯酸二甲氨基三氯生酯(DMAPPA)为15.92%;第三个产品中甲基丙烯酸甲酯(MMA)含量为75.39%,甲基丙烯酸二甲氨基三氯生酯(DMAPPA)为23.84%。An antibacterial bone cement modified by dimethylaminotriclosan methacrylate. The raw materials include powder and liquid. There are 3 products in total. The powder contains 87.50% polymethyl methacrylate (PMMA) Ball, 2.50% initiator, 10.00% developer, liquid by mass percentage, containing 0.80% catalyst and fixed amount, methyl methacrylate (MMA) content in the first product is 91.26%, methacrylic acid Dimethylaminotriclosan (DMAPPA) is 7.94%; the content of methyl methacrylate (MMA) in the second product is 83.28%, and dimethylaminotriclosan (DMAPPA) is 15.92%; The content of methyl methacrylate (MMA) in the three products is 75.39%, and that of dimethylaminotriclosan methacrylate (DMAPPA) is 23.84%.
本实施例选用的聚甲基丙烯酸甲酯(PMMA)微球的重均分子量Mw范围为50000~120000、数均分子量Mn范围为25000~96000、微球尺寸范围为7~38μm。The polymethyl methacrylate (PMMA) microspheres used in this example have a weight-average molecular weight Mw in the range of 50000-120000, a number-average molecular weight Mn in the range of 25000-96000, and a microsphere size in the range of 7-38 μm.
本实施例选用的引发剂为过氧化苯甲酰(BPO),催化剂为N,N-二甲基对甲苯胺(DmpT),显影剂为氧化锆(ZrO2)。The initiator selected in this embodiment is benzoyl peroxide (BPO), the catalyst is N,N-dimethyl-p-toluidine (DmpT), and the developer is zirconia (ZrO 2 ).
本实施例中的甲基丙烯酸二甲氨基三氯生酯(DMAPPA)采用门斯特金法合成,其主要制备步骤如下:Dimethylaminotriclosan methacrylate (DMAPPA) in the present embodiment is synthesized by the Menster Gold method, and its main preparation steps are as follows:
(1)按摩尔比1:1称取甲基丙烯酸二甲氨基乙酯(DMAEMA)和三氯生(Triclosan)两种原料;(1) Weigh two raw materials of dimethylaminoethyl methacrylate (DMAEMA) and triclosan (Triclosan) in a molar ratio of 1:1;
(2)将步骤(1)称好的两种原料加入乙醇,按3.25mol/L的浓度配制成混合溶液;(2) Add the two raw materials weighed in step (1) to ethanol, and prepare a mixed solution at a concentration of 3.25mol/L;
(3)将步骤(2)混合溶液密封后,在磁力搅拌辅助下进行门斯特金反应,门斯特金反应温度为65℃,反应时间为16h,磁子转速为900rpm;(3) After sealing the mixed solution of step (2), carry out the Mönstergold reaction under the assistance of magnetic stirring, the Mönstergold reaction temperature is 65°C, the reaction time is 16h, and the magneton speed is 900rpm;
(4)将步骤(3)反应后的混合溶液转移至蒸发仪进行脱乙醇处理,蒸发24h以上待乙醇完全蒸发后,获得透明的粘性DMAPPA液体。(4) Transfer the mixed solution after the reaction in step (3) to an evaporator for de-ethanol treatment, and evaporate for more than 24 hours. After the ethanol is completely evaporated, a transparent viscous DMAPPA liquid is obtained.
本实施例甲基丙烯酸二甲氨基三氯生酯改性的新型抗菌骨水泥,其制备方法如下:粉剂按原料按比例称取后,用调刀持续搅拌直至均匀;按照粉剂与液体质量比为2.0g/g称取液体,用磁子持续搅拌直至均匀,粉剂、液体混合后经搅拌、静置、塑形、固化得到新型抗菌骨水泥。The preparation method of the novel antibacterial bone cement modified by dimethylaminotriclosan methacrylate in this example is as follows: after the powder is weighed according to the proportion of the raw materials, it is continuously stirred with a spatula until it is uniform; the mass ratio of the powder to the liquid is Weigh the liquid at 2.0g/g, stir continuously with a magnet until uniform, mix the powder and liquid, stir, let stand, shape, and solidify to obtain a new type of antibacterial bone cement.
按照实施例5的方式改变甲基丙烯酸二甲氨基三氯生酯(DMAPPA)的加入量为0%(即不加入DMAPPA,为纯PMMA骨水泥)、7.94%(新型抗菌骨水泥-1)、15.92%(新型抗菌骨水泥-2)、23.84%(新型抗菌骨水泥-3),同时调整甲基丙烯酸甲酯(MMA)的加入量,催化剂的量不变,进行实验,其他与上述相同,制成4种骨水泥,按照国际标准ISO5833:2002(E)正文和附录A至F的规定测试其抗压强度、抗弯强度及抗弯弹性模量,抗压测试时,抗压测试时,试样尺寸为φ6mm×12mm,十字头下压位移速度为20mm/min,取应变-应力曲线上先出现的2%偏移强度或上屈服点强度作为其抗压强度,抗弯测试时,采用四点弯曲测量法,试样尺寸为75mm×10mm×3.3mm,十字头下压位移速度设定为5mm/min,取样品断裂时的强度作为其抗弯强度,该系列新型抗菌骨水泥的抗压应力-应变曲线和抗弯应力-应变曲线分别见图5(a)和(b),由图5(a)可知,添加了不同DMAPPA含量制成的3种新型抗菌骨水泥,在其对应的抗压应力-应变曲线上的线性区(双箭头范围)、断裂点应变基本不变,断裂点应力存在一定差别,由图5(b)可知,不同新型抗菌骨水泥在抗弯应力-应变曲线的线性区(双箭头范围)、断裂点应变及应力上都存在较大差别,由图5的抗压、抗弯应力-应变曲线总结出的力学性能见表2,由表2可知,3种新型抗菌骨水泥的抗压强度、抗弯强度及抗弯弹性模量其范围分别为107.7±3.6MPa~125.7±3.6MPa、87.8±7.4MPa~106.0±3.6MPa及2.2±0.1GPa~2.8±0.1GPa,均高于平均抗压强度≥70MPa,平均抗弯强度≥50MPa,平均抗弯模量≥1.8GPa的ISO5833使用规定下限,表现出较好的临床应用的可行性,与未添加DMAPPA的纯PMMA骨水泥相比,其上述力学性能更优,表明不饱和C=C双键参与MMA聚合后,添加DMAPPA能够进一步提高PMMA骨水泥的力学性能,且在本实施例列举的相对含量范围内,新型抗菌骨水泥力学性能并未随着DMAPPA含量的增加而发生明显恶化。Change the addition amount of dimethylaminotriclosan methacrylate (DMAPPA) according to the mode of
表2Table 2
实施例6Example 6
一种甲基丙烯酸二甲氨基三氯生酯改性的抗菌骨水泥,原材料包括粉剂、液体,粉剂按质量百分比计,含有89.10%的聚甲基丙烯酸甲酯(PMMA)微球、2.90%的引发剂、8.00%的显影剂,液体按质量百分比计,含有1.20%的催化剂且量固定,第一种产品中甲基丙烯酸甲酯(MMA)含量为89.91%,甲基丙烯酸二甲氨基三氯生酯(DMAPPA)为8.89%;第二个产品中甲基丙烯酸甲酯(MMA)含量为82.00%,甲基丙烯酸二甲氨基三氯生酯(DMAPPA)为16.80%。An antibacterial bone cement modified by dimethylaminotriclosan methacrylate, raw materials include powder, liquid, powder contains 89.10% polymethylmethacrylate (PMMA) microspheres, 2.90% of Initiator, 8.00% developer, liquid by mass percentage, containing 1.20% catalyst and fixed amount, methyl methacrylate (MMA) content is 89.91% in the first product, dimethylaminotrichloromethacrylate Raw ester (DMAPPA) is 8.89%; the content of methyl methacrylate (MMA) in the second product is 82.00%, and dimethylaminotriclosan methacrylate (DMAPPA) is 16.80%.
本实施例选用的聚甲基丙烯酸甲酯(PMMA)微球的重均分子量Mw范围为50000~120000、数均分子量Mn范围为25000~96000、微球尺寸范围为7~38μm。The polymethyl methacrylate (PMMA) microspheres used in this example have a weight-average molecular weight Mw in the range of 50000-120000, a number-average molecular weight Mn in the range of 25000-96000, and a microsphere size in the range of 7-38 μm.
本实施例选用的引发剂为过氧化苯甲酰(BPO),催化剂为N,N-二甲基对甲苯胺(DmpT),显影剂为硫酸钡(BaSO4)。The initiator selected in this embodiment is benzoyl peroxide (BPO), the catalyst is N,N-dimethyl-p-toluidine (DmpT), and the developer is barium sulfate (BaSO 4 ).
本实施例中的甲基丙烯酸二甲氨基三氯生酯(DMAPPA)采用门斯特金法合成,其主要制备步骤如下:Dimethylaminotriclosan methacrylate (DMAPPA) in the present embodiment is synthesized by the Menster Gold method, and its main preparation steps are as follows:
(1)按摩尔比1:1称取甲基丙烯酸二甲氨基乙酯(DMAEMA)和三氯生(Triclosan)两种原料;(1) Weigh two raw materials of dimethylaminoethyl methacrylate (DMAEMA) and triclosan (Triclosan) in a molar ratio of 1:1;
(2)将步骤(1)称好的两种原料加入乙醇,按3.4mol/L的浓度配制成混合溶液;(2) Add the two raw materials weighed in step (1) to ethanol, and prepare a mixed solution at a concentration of 3.4mol/L;
(3)将步骤(2)混合溶液密封后,在磁力搅拌辅助下进行门斯特金反应,门斯特金反应温度为60℃,反应时间为20h,磁子转速为1100rpm;(3) After sealing the mixed solution in step (2), carry out the Mönstergold reaction under the assistance of magnetic stirring, the Mönstergold reaction temperature is 60°C, the reaction time is 20h, and the magneton speed is 1100rpm;
(4)将步骤(3)反应后的混合溶液转移至蒸发仪进行脱乙醇处理,蒸发24h以上待乙醇完全蒸发后,获得透明的粘性DMAPPA液体。(4) Transfer the mixed solution after the reaction in step (3) to an evaporator for de-ethanol treatment, and evaporate for more than 24 hours. After the ethanol is completely evaporated, a transparent viscous DMAPPA liquid is obtained.
本实施例甲基丙烯酸二甲氨基三氯生酯改性的新型抗菌骨水泥,其制备方法如下:粉剂按原料按比例称取后,用调刀持续搅拌直至均匀;按照粉剂与液体质量比为2.2g/g称取液体,用磁子持续搅拌直至均匀,粉剂、液体混合后经搅拌、静置、塑形、固化得到新型抗菌骨水泥。The preparation method of the novel antibacterial bone cement modified by dimethylaminotriclosan methacrylate in this example is as follows: after the powder is weighed according to the proportion of the raw materials, it is continuously stirred with a spatula until it is uniform; the mass ratio of the powder to the liquid is Weigh the liquid at 2.2g/g, stir continuously with a magnet until uniform, mix the powder and liquid, stir, let stand, shape, and solidify to obtain a new type of antibacterial bone cement.
按照实施例5的方式改变甲基丙烯酸二甲氨基三氯生酯(DMAPPA)的加入量为0%(即不加入DMAPPA,为纯PMMA骨水泥)、8.89%(新型抗菌骨水泥-1)、16.80%(新型抗菌骨水泥-2),同时调整甲基丙烯酸甲酯(MMA)的加入量,催化剂的量不变,进行实验,其他与上述相同,制成3种骨水泥,按照国际标准ISO5833:2002(E)正文和附录A至F的规定测试其固化性能;具体是,将该新型抗菌骨水泥的非粘性面团嵌入φ60mm×5mm圆盘模具中,用测温热感探头接触底部圆截面,探头的另一端连接热温记录仪;从粉液混合时开始记录数据,直到面团完全固化并逐步降温后结束,利用记录数据画出时间-温度曲线,其结果见图6,根据图6曲线,选择放热最高峰值为骨水泥的最高放热温度,固化时间为固化温度在时间-温度曲线上的对应值,骨水泥的固化性能进一步总结于表3,由表3可知,2种新型抗菌骨水泥的固化时间落入3min~15min的范围,放热最高温度小于≤90±5℃,满足ISO5833所规定的骨水泥作为面团使用时的固化性能要求,表现出临床应用的可行性,与纯PMMA骨水泥相比,添加了DMAPPA的新型抗菌骨水泥最高放热温度进一步下降,有利于减少因固化放热造成的骨组织热坏以及后续假体无菌性松动,且随着DMAPPA相对含量的增加,放热最高温度进一步下降,这也说明DMAPPA参与聚合反应时,其放热量小于MMA,部分取代能够进一步降低放热所引起的升温。Change the addition amount of dimethylaminotriclosan methacrylate (DMAPPA) according to the mode of
表3table 3
实施例7Example 7
一种甲基丙烯酸二甲氨基三氯生酯改性的抗菌骨水泥,原材料包括粉剂、液体,粉剂按质量百分比计,含有84.90%的聚甲基丙烯酸甲酯(PMMA)微球、1.40%的引发剂、13.70%的显影剂,液体按质量百分比计,含有75.88%的甲基丙烯酸甲酯(MMA)、0.68%的催化剂以及23.44%的甲基丙烯酸二甲氨基三氯生酯(DMAPPA)。An antibacterial bone cement modified by dimethylaminotriclosan methacrylate, raw materials include powder, liquid, powder contains 84.90% polymethylmethacrylate (PMMA) microspheres, 1.40% of Initiator, 13.70% developer, liquid contains 75.88% methyl methacrylate (MMA), 0.68% catalyst and 23.44% dimethylaminotriclosan methacrylate (DMAPPA) by mass percentage.
本实施例选用的聚甲基丙烯酸甲酯(PMMA)微球的重均分子量Mw范围为50000~120000、数均分子量Mn范围为25000~96000、微球尺寸范围为7~38μm。The polymethyl methacrylate (PMMA) microspheres used in this example have a weight-average molecular weight Mw in the range of 50000-120000, a number-average molecular weight Mn in the range of 25000-96000, and a microsphere size in the range of 7-38 μm.
本实施例选用的引发剂为过氧化苯甲酰(BPO),催化剂为N,N-二甲基对甲苯胺(DmpT),显影剂为硫酸钡(BaSO4)。The initiator selected in this embodiment is benzoyl peroxide (BPO), the catalyst is N,N-dimethyl-p-toluidine (DmpT), and the developer is barium sulfate (BaSO 4 ).
本实施例中的甲基丙烯酸二甲氨基三氯生酯(DMAPPA)采用门斯特金法合成,其主要制备步骤如下:Dimethylaminotriclosan methacrylate (DMAPPA) in the present embodiment is synthesized by the Menster Gold method, and its main preparation steps are as follows:
(1)按摩尔比1:1称取甲基丙烯酸二甲氨基乙酯(DMAEMA)和三氯生(Triclosan)两种原料;(1) Weigh two raw materials of dimethylaminoethyl methacrylate (DMAEMA) and triclosan (Triclosan) in a molar ratio of 1:1;
(2)将步骤(1)称好的两种原料加入乙醇,按3.35mol/L的浓度配制成混合溶液;(2) The two raw materials weighed in step (1) are added to ethanol, and a mixed solution is prepared at a concentration of 3.35mol/L;
(3)将步骤(2)混合溶液密封后,在磁力搅拌辅助下进行门斯特金反应,门斯特金反应温度为68℃,反应时间为10h,磁子转速为1300rpm;(3) After sealing the mixed solution of step (2), carry out the Mönstergold reaction under the assistance of magnetic stirring, the Mönstergold reaction temperature is 68°C, the reaction time is 10h, and the magneton speed is 1300rpm;
(4)将步骤(3)反应后的混合溶液转移至蒸发仪进行脱乙醇处理,蒸发24h以上待乙醇完全蒸发后,获得透明的粘性DMAPPA液体;(4) Transfer the mixed solution after the reaction of step (3) to an evaporator for de-ethanol treatment, and evaporate for more than 24 hours to obtain a transparent viscous DMAPPA liquid after the ethanol is completely evaporated;
本实施例甲基丙烯酸二甲氨基三氯生酯改性的新型抗菌骨水泥,其制备方法如下:粉剂按原料按比例称取后,用调刀持续搅拌直至均匀;按照粉剂与液体质量比为1.8g/g称取液体,用磁子持续搅拌直至均匀,粉剂、液体混合后经搅拌、静置、塑形、固化得到新型抗菌骨水泥。The preparation method of the novel antibacterial bone cement modified by dimethylaminotriclosan methacrylate in this example is as follows: after the powder is weighed according to the proportion of the raw materials, it is continuously stirred with a spatula until it is uniform; the mass ratio of the powder to the liquid is Weigh the liquid at 1.8g/g, stir continuously with a magnet until uniform, mix the powder and liquid, stir, let stand, shape, and solidify to obtain a new type of antibacterial bone cement.
本实施例制成新型抗菌骨水泥,采用圆盘扩散法测量其产生的抑菌环直径,进而评价其抑菌能力,测试时,以菌悬液浓度为1.5×108CFU/mL的金黄色葡萄球菌、大肠杆菌和白色念珠菌为3种目标菌株并分别涂满整个MH琼脂板,将新型抗菌骨水泥切割成10mm×10mm×1mm的试样,而后贴在涂满细菌的MH琼脂板上,将MH琼脂板置于37℃的恒温箱中培养24h,取出进行光学拍照,其抑菌环光学照片如图6所示,由图6可知,在培养金黄色葡萄球菌、大肠杆菌的MH琼脂板上,新型抗菌骨水泥6片试样其周边均无上述目标细菌生长,出现了较为明显的抑菌环;而对于白色念珠菌,其琼脂板上的抗菌骨水泥片周边并未出现明显的抑菌环,但在揭开样品后发现,与白色念珠菌直接接触的方形区域无细菌生长,这也能说明抗菌骨水泥对白色念珠菌的抑菌作用。以骨水泥试样中心为原点测量抑菌环并统计,对金黄色葡萄球菌、大肠杆菌以及白色念珠菌产生的抑菌环直径分别为35.85±3.82mm、25.39±3.07mm和11.88±0.74mm,超出试样边长,即新型抗菌骨水泥对革兰氏阴性、阳性代表性菌株以及真菌均有明显的广谱抑菌能力,且对3种菌种的抑菌效果表现为:金黄色葡萄球菌>大肠杆菌>白色念珠菌,这与DMAPPA单体抑菌环测试的结果基本一致。In this example, a new type of antibacterial bone cement was made, and the diameter of the antibacterial ring produced by it was measured by the disc diffusion method, so as to evaluate its antibacterial ability. During the test, the golden yellow bone cement with a bacterial suspension concentration of 1.5×10 8 CFU/mL was used for the test. Staphylococcus, Escherichia coli and Candida albicans are the three target strains, and they are respectively coated on the entire MH agar plate, and the new antibacterial bone cement is cut into 10mm×10mm×1mm samples, and then pasted on the MH agar plate coated with bacteria , place the MH agar plate in a 37°C incubator for 24 hours, take it out and take an optical photo. The optical photo of the inhibition zone is shown in Figure 6. On the plate, there was no growth of the above-mentioned target bacteria around the 6 samples of the new antibacterial bone cement, and a relatively obvious antibacterial ring appeared; while for Candida albicans, there was no obvious growth around the antibacterial bone cement on the agar plate. However, after uncovering the sample, it was found that there was no bacterial growth in the square area in direct contact with Candida albicans, which can also explain the antibacterial effect of antibacterial bone cement on Candida albicans. The antibacterial rings were measured and counted with the center of the bone cement sample as the origin, and the diameters of the antibacterial rings for Staphylococcus aureus, Escherichia coli and Candida albicans were 35.85±3.82mm, 25.39±3.07mm and 11.88±0.74mm, respectively. Exceeding the side length of the sample, that is, the new antibacterial bone cement has obvious broad-spectrum antibacterial ability on Gram-negative and positive representative strains and fungi, and the antibacterial effect on three kinds of bacteria is as follows: Staphylococcus aureus > Escherichia coli > Candida albicans, which is basically consistent with the results of the DMAPPA monomer inhibition zone test.
实施例8Example 8
一种甲基丙烯酸二甲氨基三氯生酯改性的抗菌骨水泥,原材料包括粉剂、液体,粉剂按质量百分比计,含有85.72%的聚甲基丙烯酸甲酯(PMMA)微球、1.83%的引发剂、12.45%的显影剂,液体按质量百分比计,含有1.00%的催化剂且量固定,第一种产品中甲基丙烯酸甲酯(MMA)含量为79.16%,甲基丙烯酸二甲氨基三氯生酯(DMAPPA)为19.84%;第二个产品中甲基丙烯酸甲酯(MMA)含量为69.24%,甲基丙烯酸二甲氨基三氯生酯(DMAPPA)为29.76%;第三个产品中甲基丙烯酸甲酯(MMA)含量为59.32%,甲基丙烯酸二甲氨基三氯生酯(DMAPPA)为39.68%。An antibacterial bone cement modified by dimethylaminotriclosan methacrylate, raw materials include powder, liquid, powder contains 85.72% polymethylmethacrylate (PMMA) microspheres, 1.83% of Initiator, 12.45% developer, liquid by mass percentage, containing 1.00% catalyst and fixed amount, methyl methacrylate (MMA) content is 79.16% in the first product, dimethylaminotrichloromethacrylate Raw ester (DMAPPA) is 19.84%; the content of methyl methacrylate (MMA) in the second product is 69.24%, and the content of dimethylaminotriclosan methacrylate (DMAPPA) is 29.76%; The content of methyl methacrylate (MMA) is 59.32%, and that of dimethylaminotriclosan methacrylate (DMAPPA) is 39.68%.
本实施例选用的聚甲基丙烯酸甲酯(PMMA)微球的重均分子量Mw范围为50000~120000、数均分子量Mn范围为25000~96000、微球尺寸范围为7~38μm。The polymethyl methacrylate (PMMA) microspheres used in this example have a weight-average molecular weight Mw in the range of 50000-120000, a number-average molecular weight Mn in the range of 25000-96000, and a microsphere size in the range of 7-38 μm.
本实施例选用的引发剂为过氧化苯甲酰(BPO),催化剂为N,N-二甲基对甲苯胺(DmpT),显影剂为氧化锆(ZrO2)。The initiator selected in this embodiment is benzoyl peroxide (BPO), the catalyst is N,N-dimethyl-p-toluidine (DmpT), and the developer is zirconium oxide (ZrO 2 ).
本实施例中的甲基丙烯酸二甲氨基三氯生酯(DMAPPA)采用门斯特金法合成,其主要制备步骤如下:Dimethylaminotriclosan methacrylate (DMAPPA) in the present embodiment is synthesized by the Menster Gold method, and its main preparation steps are as follows:
(1)按摩尔比1:1称取甲基丙烯酸二甲氨基乙酯(DMAEMA)和三氯生(Triclosan)两种原料;(1) Weigh two raw materials of dimethylaminoethyl methacrylate (DMAEMA) and triclosan (Triclosan) in a molar ratio of 1:1;
(2)将步骤(1)称好的两种原料加入乙醇,按3.5mol/L的浓度配制成混合溶液;(2) Add the two raw materials weighed in step (1) to ethanol, and prepare a mixed solution at a concentration of 3.5mol/L;
(3)将步骤(2)混合溶液密封后,在磁力搅拌辅助下进行门斯特金反应,门斯特金反应温度为45℃,反应时间为22h,磁子转速为1200rpm;(3) After sealing the mixed solution in step (2), carry out the Mönstergold reaction under the assistance of magnetic stirring, the Mönstergold reaction temperature is 45°C, the reaction time is 22h, and the magneton speed is 1200rpm;
(4)将步骤(3)反应后的混合溶液转移至蒸发仪进行脱乙醇处理,蒸发24h以上待乙醇完全蒸发后,获得透明的黏性DMAPPA液体。(4) Transfer the mixed solution after the reaction in step (3) to an evaporator for de-ethanol treatment, and evaporate for more than 24 hours. After the ethanol is completely evaporated, a transparent viscous DMAPPA liquid is obtained.
本实施例甲基丙烯酸二甲氨基三氯生酯改性的新型抗菌骨水泥,其制备方法如下:粉剂按原料按比例称取后,用调刀持续搅拌直至均匀;按照粉剂与液体质量比为2.0g/g称取液体,用磁子持续搅拌直至均匀,粉剂、液体混合后经搅拌、静置、塑形、固化得到新型抗菌骨水泥。The preparation method of the novel antibacterial bone cement modified by dimethylaminotriclosan methacrylate in this example is as follows: after the powder is weighed according to the proportion of the raw materials, it is continuously stirred with a spatula until it is uniform; the mass ratio of the powder to the liquid is Weigh the liquid at 2.0g/g, stir continuously with a magnet until uniform, mix the powder and liquid, stir, let stand, shape, and solidify to obtain a new type of antibacterial bone cement.
按照实施例8的方式改变甲基丙烯酸二甲氨基三氯生酯(DMAPPA)的加入量为19.84%(即不加入)、39.68%,并同时调整甲基丙烯酸甲酯(MMA)的加入量,催化剂的量不变,进行实验,其他与实施例8相同,制成3种新型抗菌骨水泥,将本实施例制成新型抗菌骨水泥塑形为φ6mm×4mm的圆柱,再分别浸泡于质量分数75%的乙醇溶和磷酸盐缓冲液(PBS)各12h,按表面积与培养基体积比例3.4cm2/mL,将其投入0.43mL用于MC3T3-E1细胞培养的完全培养基(含有89%的DMEM、10%的胎牛血清以及1%的青霉素/链霉素双抗生素),而后于37℃静置24h并经过0.2μm无菌过滤后制成骨水泥浸提液,将第二代MC3T3-E1细胞按1×105cells/cm2的细胞密度加入含100μL完全培养基的96孔板的每个孔中,在37℃含5%CO2的湿化气氛下培养24h,随后用等量骨水泥浸提液替换完全培养基,再置于同样的环境下培养24h,依据国家标准GB/T16886.12-2005规定的方法检测新型抗菌骨水泥浸提液中细胞的相对增殖度(RGR),并按照ISO10993的标准判断对应的毒性等级,其细胞毒性检测结果如图8所示,由图8可知,DMAPPA添加量分别为19.84%、29.76%、39.68%的新型抗菌骨水泥,MC3T3-E1细胞与其浸提液共培养24h的细胞活力分别为92.9%±0.5%、87.3%±1.7%及93.6%±0.03%;共培养时间延长至72h后的细胞活力分别为90.7%±5.2%、85.3%±3.2%及74.2%±4.5%,根据ISO10993,3种抗菌骨水泥的细胞活性均大于70%,毒性反应等级为0级或1级,判定为无细胞毒性,表现出良好的体外生物相容性。Change the add-on of dimethylaminotriclosan methacrylate (DMAPPA) according to the mode of embodiment 8 to be 19.84% (i.e. do not add), 39.68%, and adjust the add-on of methyl methacrylate (MMA) simultaneously, The amount of the catalyst was not changed, and the experiment was carried out. Others were the same as in Example 8, and three kinds of new antibacterial bone cements were made. The new antibacterial bone cements made in this example were shaped into cylinders of φ6mm×4mm, and then soaked in the mass fraction 75% ethanol solution and phosphate buffered saline (PBS) each for 12 hours, according to the ratio of surface area to medium volume 3.4cm 2 /mL, put it into 0.43mL complete medium for MC3T3-E1 cell culture (containing 89% DMEM, 10% fetal bovine serum, and 1% penicillin/streptomycin dual antibiotics), then stood at 37°C for 24h and passed through 0.2μm sterile filtration to make bone cement extract, and the second generation MC3T3- E1 cells were added to each well of a 96-well plate containing 100 μL of complete medium at a cell density of 1×10 5 cells/cm 2 , cultured at 37°C for 24 h in a humidified atmosphere containing 5% CO 2 , and then treated with an equal amount of The bone cement extract was replaced with the complete medium, and cultured in the same environment for 24 hours, and the relative proliferation rate (RGR) of the cells in the new antibacterial bone cement extract was detected according to the method stipulated in the national standard GB/T16886.12-2005 , and according to the ISO10993 standard to judge the corresponding toxicity level, the cytotoxicity test results are shown in Figure 8. From Figure 8, it can be seen that the new antibacterial bone cement, MC3T3-E1, with 19.84%, 29.76%, and 39.68% of DMAPPA The cell viability of the cells and their extracts co-cultured for 24 hours was 92.9%±0.5%, 87.3%±1.7% and 93.6%±0.03%, respectively; the cell viability after the co-culture time was extended to 72h was 90.7%±5.2%, 85.3% % ± 3.2% and 74.2% ± 4.5%, according to ISO10993, the cell viability of the three kinds of antibacterial bone cement is greater than 70%, the toxicity reaction grade is 0 or 1, it is judged as no cytotoxicity, showing good in vitro biological phase Capacitance.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310237890.7A CN116196482B (en) | 2023-03-13 | 2023-03-13 | Dimethylamino triclosan methacrylate modified antibacterial bone cement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310237890.7A CN116196482B (en) | 2023-03-13 | 2023-03-13 | Dimethylamino triclosan methacrylate modified antibacterial bone cement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116196482A true CN116196482A (en) | 2023-06-02 |
CN116196482B CN116196482B (en) | 2024-07-16 |
Family
ID=86507710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310237890.7A Active CN116196482B (en) | 2023-03-13 | 2023-03-13 | Dimethylamino triclosan methacrylate modified antibacterial bone cement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116196482B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110098724A1 (en) * | 2009-10-28 | 2011-04-28 | Frank Cichocki | Antimicrobial Coatings with Preferred Microstructure for Medical Devices |
JP2014223260A (en) * | 2013-05-17 | 2014-12-04 | サンメディカル株式会社 | Bone formation material for bone defect part, and kit thereof |
US20190133125A1 (en) * | 2015-08-11 | 2019-05-09 | Basf Se | Antimicrobial polymer |
CN112135882A (en) * | 2018-05-18 | 2020-12-25 | 赢创加拿大公司 | Surfaces resistant to bacterial adhesion |
CN114452445A (en) * | 2022-03-23 | 2022-05-10 | 中山大学附属第八医院(深圳福田) | A kind of bone cement containing N-halamine antibacterial polymer and its preparation method and application |
CN114606767A (en) * | 2022-04-12 | 2022-06-10 | 福州大学 | Preparation method of broad-spectrum antibacterial polypropylene non-woven fabric |
CN115385816A (en) * | 2022-09-29 | 2022-11-25 | 上海应用技术大学 | A kind of fatty alkyl quaternary ammonium salt type antibacterial compound bone cement and its preparation and application |
-
2023
- 2023-03-13 CN CN202310237890.7A patent/CN116196482B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110098724A1 (en) * | 2009-10-28 | 2011-04-28 | Frank Cichocki | Antimicrobial Coatings with Preferred Microstructure for Medical Devices |
JP2014223260A (en) * | 2013-05-17 | 2014-12-04 | サンメディカル株式会社 | Bone formation material for bone defect part, and kit thereof |
US20190133125A1 (en) * | 2015-08-11 | 2019-05-09 | Basf Se | Antimicrobial polymer |
CN112135882A (en) * | 2018-05-18 | 2020-12-25 | 赢创加拿大公司 | Surfaces resistant to bacterial adhesion |
CN114452445A (en) * | 2022-03-23 | 2022-05-10 | 中山大学附属第八医院(深圳福田) | A kind of bone cement containing N-halamine antibacterial polymer and its preparation method and application |
CN114606767A (en) * | 2022-04-12 | 2022-06-10 | 福州大学 | Preparation method of broad-spectrum antibacterial polypropylene non-woven fabric |
CN115385816A (en) * | 2022-09-29 | 2022-11-25 | 上海应用技术大学 | A kind of fatty alkyl quaternary ammonium salt type antibacterial compound bone cement and its preparation and application |
Non-Patent Citations (3)
Title |
---|
LIU DONG等: "Preparation and characterizations of antibacterial poly(methyl methacrylate) bone cement via copolymerization with a quaternary ammonium monomer of dimethylaminotriclosan methacrylate", JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, vol. 151, 2 January 2024 (2024-01-02), pages 106367 * |
吕晓东等: "新型三氯生抗菌活性骨水泥体外药物释放研究", 军医进修学院学报, vol. 31, no. 3, 28 March 2010 (2010-03-28), pages 272 - 273 * |
徐杉: "抗菌型聚甲基丙烯酸甲酯(PMMA)骨水泥的制备与研究", 中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑, no. 04, 15 April 2024 (2024-04-15), pages 1 - 86 * |
Also Published As
Publication number | Publication date |
---|---|
CN116196482B (en) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Development of magnetic nanocomposite hydrogel with potential cartilage tissue engineering | |
Gan et al. | Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration | |
Sun et al. | Strong dual-crosslinked hydrogels for ultrasound-triggered drug delivery | |
Gyawali et al. | Citrate-based biodegradable injectable hydrogel composites for orthopedic applications | |
Guan et al. | Protein-reactive, thermoresponsive copolymers with high flexibility and biodegradability | |
CA2857944C (en) | Injectable thermoresponsive polyelectrolytes | |
Resmi et al. | Synthesis and characterization of silver nanoparticle incorporated gelatin‐hydroxypropyl methacrylate hydrogels for wound dressing applications | |
Talaat et al. | Nanoscale thermosensitive hydrogel scaffolds promote the chondrogenic differentiation of dental pulp stem and progenitor cells: a minimally invasive approach for cartilage regeneration | |
Mouriño et al. | Preparation and characterization of gallium releasing 3‐D alginate coated 45S5 Bioglass® based scaffolds for bone tissue engineering | |
Joshi Navare et al. | Needle-injectable microcomposite cryogel scaffolds with antimicrobial properties | |
Zhang et al. | A chitosan-based thermosensitive scaffold loaded with bone marrow-derived mesenchymal stem cells promotes motor function recovery in spinal cord injured mice | |
Overstreet et al. | In situ forming, resorbable graft copolymer hydrogels providing controlled drug release | |
Hassanzadeh et al. | Development and biocompatibility of the injectable collagen/nano-hydroxyapatite scaffolds as in situ forming hydrogel for the hard tissue engineering application | |
US9283299B2 (en) | Injectable hydrogels | |
Pang et al. | Gallic acid-grafted chitosan antibacterial hydrogel incorporated with polydopamine-modified hydroxyapatite for enhancing bone healing | |
CN115501339B (en) | Copper-based nano enzyme active material for repairing various wound surfaces difficult to heal, application of copper-based nano enzyme active material and wound repair gel | |
Tzouanas et al. | Mesenchymal stem cell and gelatin microparticle encapsulation in thermally and chemically gelling injectable hydrogels for tissue engineering | |
CN114540689B (en) | Antibacterial medical tantalum alloy with ultralow elastic modulus and preparation method thereof | |
Roy et al. | Biocompatible, stimuli‐responsive hydrogel of chemically crosslinked β‐cyclodextrin as amoxicillin carrier | |
Li et al. | High-strength, thermosensitive double network hydrogels with antibacterial functionality | |
Zhou et al. | An antibacterial chitosan-based hydrogel as a potential degradable bio-scaffold for alveolar ridge preservation | |
Wang et al. | Extrusion bioprinting of elastin‐containing bioactive double‐network tough hydrogels for complex elastic tissue regeneration | |
CN107625993A (en) | A kind of bone cement with antibacterial and biocompatibility and preparation method thereof | |
Zhang et al. | Polyphenol-mediated adhesive and anti-Inflammatory double-network hydrogels for repairing postoperative intervertebral disc defects | |
Jiang et al. | Tough and anisotropic Janus hydrogel for tendon injury repair with controlled release of bFGF in tendon microenvironment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |