CN116192120A - Level conversion circuit and driving circuit - Google Patents
Level conversion circuit and driving circuit Download PDFInfo
- Publication number
- CN116192120A CN116192120A CN202211485459.6A CN202211485459A CN116192120A CN 116192120 A CN116192120 A CN 116192120A CN 202211485459 A CN202211485459 A CN 202211485459A CN 116192120 A CN116192120 A CN 116192120A
- Authority
- CN
- China
- Prior art keywords
- identification
- unit
- latch
- subunit
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0175—Coupling arrangements; Interface arrangements
- H03K19/0185—Coupling arrangements; Interface arrangements using field effect transistors only
- H03K19/018507—Interface arrangements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/003—Modifications for increasing the reliability for protection
- H03K19/00346—Modifications for eliminating interference or parasitic voltages or currents
- H03K19/00361—Modifications for eliminating interference or parasitic voltages or currents in field effect transistor circuits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Logic Circuits (AREA)
Abstract
Description
技术领域technical field
本申请涉及通信技术领域,特别涉及一种电平转换电路和驱动电路。The present application relates to the field of communication technology, and in particular to a level conversion circuit and a driving circuit.
背景技术Background technique
随着电力普及,功率管应用场景越来越多。随着电源应用场景的增多,对功率管的控制需求在日渐在增加。为了让功率管有更好的表现(开关速度,可靠性等),用于驱动功率管的门级驱动芯片也越来越重要。门级驱动芯片通过一个低压的逻辑信号,转换为电压可浮动到高压的逻辑信号,控制外围高压功率管的开与关。With the popularity of electricity, there are more and more application scenarios for power tubes. With the increase of power supply application scenarios, the demand for power tube control is increasing day by day. In order to make the power tube have better performance (switching speed, reliability, etc.), the gate-level driver chip used to drive the power tube is becoming more and more important. The gate-level driver chip converts a low-voltage logic signal into a logic signal whose voltage can float to high voltage, and controls the on and off of the peripheral high-voltage power transistor.
由于传统的电平转换电路中的导通识别单元的漏端与地之间有寄生电容,所以与导通识别单元的漏端连接的器件需要给导通识别单元的漏端充电。当充电的速度不能弥补浮动阱的电源的抬升速度时,导通识别单元的漏端会出现异常低电平的现象,即出现共模干扰的现象,从而影响电平转换电路的电平转换效率。如何解决电平转换电路中的共模干扰对电路的影响是亟需解决的技术问题。Since there is parasitic capacitance between the drain terminal of the conduction identification unit and the ground in the conventional level conversion circuit, the device connected to the drain terminal of the conduction identification unit needs to charge the drain terminal of the conduction identification unit. When the charging speed cannot make up for the rising speed of the power supply of the floating well, the drain terminal of the conduction identification unit will appear abnormally low level, that is, common mode interference will appear, which will affect the level conversion efficiency of the level conversion circuit . How to solve the influence of common-mode interference in the level conversion circuit on the circuit is a technical problem that needs to be solved urgently.
发明内容Contents of the invention
有鉴于此,本发明旨在至少在一定程度上解决相关技术中的问题之一。为此,本申请的目的在于提供一种电平转换电路和驱动电路。In view of this, the present invention aims to solve one of the problems in the related art at least to a certain extent. Therefore, the purpose of the present application is to provide a level conversion circuit and a driving circuit.
本申请实施方式的电平转换电路。电平转换电路包括脉冲发生器、开关单元、导通识别单元、共模处理单元和触发单元。所述脉冲发生器用于根据控制信号的电平产生第一脉冲信号和第二脉冲信号的作用下实现通断控制;所述开关单元连接所述脉冲产生器,所述开关单元用于在所述第一脉冲信号和所述第二脉冲信号进行导通和截止;所述导通识别单元连接所述开关单元,所述导通识别单元用于根据所述开关单元的导通状态输出第一识别信号和第二识别信号;所述共模处理单元连接所述导通识别单元,所述共模处理单元用于处理所述第一识别信号和所述第二识别信号的共模干扰信号;所述触发单元连接所述共模处理单元,所述触发单元根据所述共模处理单元处理后的所述第一识别信号和所述第二识别信号生成输出信号;其中,所述共模处理单元包括锁存器子单元,所述锁存器子单元包括第一锁存器和第二锁存器,所述第一锁存器的输入端连接所述导通识别单元的第一识别信号端,所述第一锁存器的使能端连接所述导通识别单元的第二识别信号端,所述第一锁存器的输出端连接所述触发单元,所述第二锁存器的输入端连接所述导通识别单元的第二识别信号端,所述第二锁存器的使能端连接所述导通识别单元的第一识别信号端,所述第二锁存器的输出端连接所述触发单元。A level conversion circuit according to an embodiment of the present application. The level conversion circuit includes a pulse generator, a switch unit, a conduction identification unit, a common mode processing unit and a trigger unit. The pulse generator is used to generate the first pulse signal and the second pulse signal according to the level of the control signal to realize on-off control; the switch unit is connected to the pulse generator, and the switch unit is used for The first pulse signal and the second pulse signal are turned on and off; the conduction identification unit is connected to the switch unit, and the conduction identification unit is used to output the first identification according to the conduction state of the switch unit signal and a second identification signal; the common mode processing unit is connected to the conduction identification unit, and the common mode processing unit is used to process the common mode interference signal of the first identification signal and the second identification signal; The trigger unit is connected to the common-mode processing unit, and the trigger unit generates an output signal according to the first identification signal and the second identification signal processed by the common-mode processing unit; wherein, the common-mode processing unit Including a latch subunit, the latch subunit includes a first latch and a second latch, the input end of the first latch is connected to the first identification signal end of the conduction identification unit , the enable end of the first latch is connected to the second identification signal end of the conduction identification unit, the output end of the first latch is connected to the trigger unit, and the output end of the second latch is The input end is connected to the second identification signal end of the conduction identification unit, the enabling end of the second latch is connected to the first identification signal end of the conduction identification unit, and the output of the second latch is terminal connected to the trigger unit.
在某些实施方式中,所述开关单元包括第一负载、第一开关晶体管、第二负载和第二开关晶体管;其中,所述第一开关晶体管的栅极连接所述脉冲发生器的第一脉冲信号端,所述第一开关晶体管的第一极连接所述第一负载的第一端,所述第一开关晶体管的第二极连接第二电源,所述第二开关晶体管的栅极连接所述脉冲发生器的第二脉冲信号端,所述第二开关晶体管的第一极连接所述第二负载的第一端,所述第二开关晶体管的第二极连接所述第二电源;所述第一负载的第二端连接第一电源,所述第二负载的第二端连接所述第一电源。In some embodiments, the switch unit includes a first load, a first switch transistor, a second load, and a second switch transistor; wherein, the gate of the first switch transistor is connected to the first switch of the pulse generator. A pulse signal terminal, the first pole of the first switching transistor is connected to the first terminal of the first load, the second pole of the first switching transistor is connected to the second power supply, and the gate of the second switching transistor is connected to The second pulse signal terminal of the pulse generator, the first pole of the second switching transistor is connected to the first terminal of the second load, and the second pole of the second switching transistor is connected to the second power supply; The second end of the first load is connected to the first power supply, and the second end of the second load is connected to the first power supply.
在某些实施方式中,所述导通识别单元包括第一识别子单元和第二识别子单元,所述第一识别子单元连接所述第一开关晶体管的第一极和所述第一负载的第一端,所述第一识别子单元用于根据所述第一开关晶体管的导通状态输出所述第一识别信号,所述第二识别子单元连接所述第二开关晶体管的第一极和所述第二负载的第一端,所述第二识别子单元根据所述第二开关晶体管的导通状态输出所述第二识别信号。In some embodiments, the conduction identification unit includes a first identification subunit and a second identification subunit, and the first identification subunit is connected to the first pole of the first switching transistor and the first load The first identification subunit is used to output the first identification signal according to the conduction state of the first switch transistor, and the second identification subunit is connected to the first terminal of the second switch transistor. pole and the first terminal of the second load, the second identification subunit outputs the second identification signal according to the conduction state of the second switching transistor.
在某些实施方式中,所述第一识别子单元包括第一P型晶体管和第一N型晶体管,所述第一P型晶体管的栅极和所述第一N型晶体管的栅极连接所述第一开关晶体管的第一极和所述第一负载的第一端,所述第一P型晶体管的第一极连接第三电源,所述第一P型晶体管的第二极连接所述导通识别单元的第一识别信号端,所述第一N型晶体管的第一极连接所述导通识别单元的第一识别信号端,所述第一N型晶体管的第二极连接第四电源。In some embodiments, the first identification subunit includes a first P-type transistor and a first N-type transistor, and the gate of the first P-type transistor is connected to the gate of the first N-type transistor. The first pole of the first switching transistor and the first end of the first load, the first pole of the first P-type transistor is connected to the third power supply, and the second pole of the first P-type transistor is connected to the Turn on the first identification signal end of the identification unit, the first pole of the first N-type transistor is connected to the first identification signal end of the conduction identification unit, and the second pole of the first N-type transistor is connected to the fourth power supply.
在某些实施方式中,所述第二识别子单元包括第二P型晶体管和第二N型晶体管,所述第二P型晶体管的栅极和所述第二N型晶体管的栅极连接所述第二开关晶体管的第一极和所述第二负载的第一端,所述第二P型晶体管的第一极连接第三电源,所述第二P型晶体管的第二极连接所述导通识别单元的第二识别信号端,所述第二N型晶体管的第一极连接所述导通识别单元的第二识别信号端,所述第二N型晶体管的第二极连接第四电源。In some embodiments, the second identification subunit includes a second P-type transistor and a second N-type transistor, and the gate of the second P-type transistor is connected to the gate of the second N-type transistor. The first pole of the second switching transistor and the first terminal of the second load, the first pole of the second P-type transistor is connected to the third power supply, and the second pole of the second P-type transistor is connected to the Turn on the second identification signal end of the identification unit, the first pole of the second N-type transistor is connected to the second identification signal end of the conduction identification unit, and the second pole of the second N-type transistor is connected to the fourth power supply.
在某些实施方式中,所述触发单元包括RS触发器,所述RS触发器的复位端用于接收所述第一识别信号,所述RS触发器的置位端用于接收所述第二识别信号,所述RS触发器的输出端生成所述输出信号。In some embodiments, the trigger unit includes an RS flip-flop, the reset end of the RS flip-flop is used to receive the first identification signal, and the set end of the RS flip-flop is used to receive the second identification signal. identification signal, the output terminal of the RS flip-flop generates the output signal.
在某些实施方式中,所述电平转换电路包括滤波子单元,所述滤波子单元连接所述共模处理单元和所述触发单元,所述滤波子单元用于对所述第一识别信号和所述第二识别信号进行滤波处理。In some implementations, the level conversion circuit includes a filtering subunit, the filtering subunit is connected to the common mode processing unit and the triggering unit, and the filtering subunit is used to filter the first identification signal performing filtering processing with the second identification signal.
在某些实施方式中,所述滤波子单元包括第一滤波子单元和第二滤波子单元,所述第一锁存器的输出端通过所述第一滤波子单元连接所述RS触发器的复位端,所述第二锁存器的输出端通过所述第二滤波子单元连接所述RS触发器的置位端。In some implementations, the filtering subunit includes a first filtering subunit and a second filtering subunit, and the output end of the first latch is connected to the RS flip-flop through the first filtering subunit. A reset terminal, the output terminal of the second latch is connected to the set terminal of the RS flip-flop through the second filter subunit.
在某些实施方式中,所述第一滤波子单元包括第一电阻和第一电容,所述第一电阻连接所述第一锁存器的输出端和所述RS触发器的复位端,所述第一电容连接所述RS触发器的复位端和地;所述第二滤波子单元包括第二电阻和第二电容,所述第二电阻连接所述第二锁存器的输出端和所述RS触发器的置位端,所述第二电容连接所述RS触发器的置位端和地。In some embodiments, the first filtering subunit includes a first resistor and a first capacitor, and the first resistor is connected to the output terminal of the first latch and the reset terminal of the RS flip-flop, so The first capacitor is connected to the reset terminal of the RS flip-flop and ground; the second filtering subunit includes a second resistor and a second capacitor, and the second resistor is connected to the output terminal of the second latch and the The set end of the RS flip-flop, the second capacitor is connected to the set end of the RS flip-flop and ground.
本申请实施方式还提供一种驱动电路。所述驱动电路包括功率管和上述任意一项实施方式所述的电平转换电路;所述功率管的栅极连接所述触发单元的输出信号端。The embodiments of the present application also provide a driving circuit. The driving circuit includes a power transistor and the level shifting circuit described in any one of the above implementation manners; the gate of the power transistor is connected to the output signal terminal of the trigger unit.
本申请的电平转换电路和驱动电路通过新增共模处理单元,使得共模干扰信号不会传递到下一级,有效抑制了共模干扰对电路的影响。The level conversion circuit and the driving circuit of the present application add a common-mode processing unit, so that the common-mode interference signal will not be transmitted to the next stage, effectively suppressing the influence of the common-mode interference on the circuit.
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。Additional aspects and advantages of the application will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the application.
附图说明Description of drawings
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present application will become apparent and easy to understand from the following description of the embodiments in conjunction with the accompanying drawings, wherein:
图1是目前的采用浮动阱的方式驱动高压器件的传统拓扑结构的示意图;Figure 1 is a schematic diagram of the current traditional topological structure of driving high-voltage devices using floating wells;
图2是目前产生共模干扰的信号示意图;Figure 2 is a schematic diagram of signals currently generating common-mode interference;
图3是目前的采用浮动阱的方式驱动高压器件所产生的驱动波形的示意图;FIG. 3 is a schematic diagram of driving waveforms generated by driving high-voltage devices in the current floating well mode;
图4是本申请某些实施方式的电平转换电路的示意图;FIG. 4 is a schematic diagram of a level conversion circuit in some embodiments of the present application;
图5是本申请某些实施方式的电平转换电路中导通识别单元中的第一识别子单元或第二识别子单元的结构示意图;5 is a schematic structural diagram of the first identification subunit or the second identification subunit in the conduction identification unit in the level conversion circuit in some embodiments of the present application;
图6是本申请某些实施方式的驱动电路的示意图。FIG. 6 is a schematic diagram of a driving circuit in some embodiments of the present application.
具体实施方式Detailed ways
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。Embodiments of the present application are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals denote the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary, are only for explaining the present application, and should not be construed as limiting the present application.
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体地限定。In the description of the present application, it should be understood that the terms "first" and "second" are used for description purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as "first" or "second" may explicitly or implicitly include one or more of said features. In the description of the present application, "plurality" means two or more, unless otherwise clearly and specifically defined.
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。In the description of this application, it should be noted that unless otherwise specified and limited, the terms "installation", "connection", and "connection" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; may be mechanically connected, may be electrically connected or may communicate with each other; may be directly connected, or indirectly connected through an intermediary, may be internal communication between two components or interaction between two components relation. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。The following disclosure provides many different implementations or examples for implementing different structures of the present application. To simplify the disclosure of the present application, components and arrangements of specific examples are described below. Of course, they are examples only and are not intended to limit the application. Furthermore, the present application may repeat reference numerals and/or reference letters in various instances, such repetition is for simplicity and clarity and does not in itself indicate a relationship between the various embodiments and/or arrangements discussed.
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。Embodiments of the present application are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals denote the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary, are only for explaining the present application, and should not be construed as limiting the present application.
门级驱动芯片的工作原理为将低压的逻辑控制信号,转换为高压的逻辑控制信号,从而控制功率管。在从低压逻辑信号转换为高压逻辑信号过程中,要求其功率尽量低。一方面,低功率代表着高转化效率,另一方面,这种高压转换一般是在一个低压与浮动阱间的转换,而浮动阱的电源一般采用自举产生方式,自举的意思是指由自己产生电源,而无需外部电源。这种自举产生方式,通过不断刷新存储有限电荷的问题。The working principle of the gate-level driver chip is to convert the low-voltage logic control signal into a high-voltage logic control signal to control the power transistor. In the process of converting from low-voltage logic signals to high-voltage logic signals, its power is required to be as low as possible. On the one hand, low power represents high conversion efficiency. On the other hand, this high-voltage conversion is generally a conversion between a low voltage and a floating well, and the power supply of the floating well is generally generated by bootstrap. Generate your own power without the need for an external power source. This bootstrapping occurs by continually refreshing the stored finite charge of the matter.
利用浮动阱的方式驱动高压器件的传统拓扑结构如图1所示。其中虚框内的电路是浮动阱的电路。VB是浮动阱的电源,VS是浮动阱的地。GND是低压部分的地。整体电路包含:用于在输入信号HIN的上升沿和下降沿产生脉冲的脉冲发生器,发出SET和RST信号,如图2所示。SET端口驱动一个用于低压区域和悬空阱的高压器件HVMOS导通,该信号会通过高压阱电源连接的电阻(当然也可以是其他负载,譬如电流源等)。HVMOS导通识别单元,通过HVMOS导通与否导致的其接入端电压或者电流不同,而判断HVMOS是否导通,并把此信号经过滤波后传递给RS触发器。当SET端HVMOS导通时,RS触发器的置位端有效,RS触发器输出有效电位,使得HO端口输出有效电位;当RST端HVMOS导通时,RS触发器的复位端有效,RS触发器关闭有效电位,使得HO端口输出关闭。这样可以通过HVMOS的短暂导通,就可以将HIN的输入信号,准确传递到高压输出HO。该做法的优势是,节省功耗。波形举例如图3所示。The traditional topological structure of driving a high-voltage device by means of a floating well is shown in Fig. 1 . The circuit in the dotted frame is the circuit of the floating well. VB is the power supply of the floating well, and VS is the ground of the floating well. GND is the ground of the low voltage part. The overall circuit includes: a pulse generator for generating pulses on the rising and falling edges of the input signal HIN, and sends out SET and RST signals, as shown in Figure 2. The SET port drives a high-voltage device HVMOS for the low-voltage region and the floating well, and the signal passes through the resistor connected to the high-voltage well power supply (of course, it can also be other loads, such as current sources, etc.). The HVMOS conduction identification unit judges whether the HVMOS is conduction or not based on the difference in voltage or current at the access terminal caused by the conduction of the HVMOS, and passes the signal to the RS flip-flop after filtering. When the SET terminal HVMOS is turned on, the set terminal of the RS flip-flop is valid, and the RS flip-flop outputs a valid potential, so that the HO port outputs a valid potential; when the RST terminal HVMOS is turned on, the reset terminal of the RS flip-flop is valid, and the RS flip-flop Turn off the effective potential, so that the HO port output is turned off. In this way, the input signal of HIN can be accurately transmitted to the high voltage output HO through the short conduction of HVMOS. The advantage of this approach is to save power consumption. An example of the waveform is shown in Figure 3.
当HO端口输出高电平,将外围的功率管开启时,会将VS电压抬升至几百伏(譬如400V),这个时候,VB也会因为与VS间的电容被抬升至较高电压(譬如415V),这个时候,两个HVMOS的漏端被抬升至较高电压。HVMOS漏端从最开始的较低电压(3V或者15V)被抬升至较高电压(譬如403V或者415V),这个时候,因为HVMOS的漏端与地之间有寄生电容Cds,所以与HVMOS的漏端连接的器件需要给HVMOS的漏端充电。充电的速度不能弥补VB的抬升速度时,就会出现RST对应的HVMOS的漏端出现异常低电平,被称为共模干扰。如图2所示。其中,SET_HVD to VS信号是SET对应的HVMOS的漏端电压,减去悬空阱内的地信号VS。同理,RST_HVDto VS,是RST对应的波形。When the HO port outputs a high level and the peripheral power transistor is turned on, the VS voltage will be raised to several hundred volts (for example, 400V). At this time, VB will also be raised to a higher voltage due to the capacitance between VS (for example, 415V), at this time, the drain terminals of the two HVMOS are raised to a higher voltage. The HVMOS drain is raised from the initial lower voltage (3V or 15V) to a higher voltage (such as 403V or 415V). At this time, because there is a parasitic capacitance Cds between the HVMOS drain and the ground, it is connected to the HVMOS drain. A device connected to the terminal needs to charge the drain terminal of the HVMOS. When the charging speed cannot make up for the rising speed of VB, there will be an abnormally low level at the drain end of the HVMOS corresponding to RST, which is called common mode interference. as shown in picture 2. Wherein, the SET_HVD to VS signal is the drain terminal voltage of the HVMOS corresponding to SET, minus the ground signal VS in the floating well. Similarly, RST_HVDto VS is the waveform corresponding to RST.
有鉴于此,请参阅图4,本申请提供一种电平转换电路100。电平转换电路100包括脉冲发生器110、开关单元120、导通识别单元130、共模处理单元140和触发单元150。In view of this, referring to FIG. 4 , the present application provides a
脉冲发生器110用于根据控制信号的电平产生第一脉冲信号和第二脉冲信号。控制信号为低压逻辑控制信号。该控制信号即为低压的逻辑控制信号HIN,第一脉冲信号为SET信号,第二脉冲信号为RST信号。The
开关单元120连接脉冲产生器110,开关单元120用于在第一脉冲信号和第二脉冲信号的作用下实现通断控制。其中,开关单元120包括第一开关晶体管SET和第二开关晶体管RST。The
导通识别单元130连接开关单元120。导通识别单元130用于根据开关单元120的导通状态输出第一识别信号A1和第二识别信号A2。导通识别单元130例如可以为HVMOS导通识别单元。The
共模处理单元140连接导通识别单元130,共模处理单元140用于处理第一识别信号A1和第二识别信号A2的共模干扰信号。The common-
共模处理单元140包括锁存器子单元141,锁存器子单元141包括第一锁存器1411和第二锁存器1412。第一锁存器1411的输入端连接导通识别单元130的第一识别信号端131,第一锁存器1411的使能端连接导通识别单元130的第二识别信号端132,第一锁存器1411的输出端连接触发单元150,第二锁存器1412的输入端连接导通识别单元130的第二识别信号端132,第二锁存器1412的使能端连接导通识别单元130的第一识别信号端131,第二锁存器1412的输出端连接触发单元150。The common
触发单元150连接共模处理单元140,触发单元150根据共模处理单元140处理后的第一识别信号A1和第二识别信号A2生成输出信号。The
可以理解地,该本申请的电平转换路100的共模处理单元140的工作原理是,当第一开关晶体管SET的有效信号传递过来时,通过锁存器的方式,锁存住RST传递线的信号;当第二开关晶体管RST的有效信号传递过来时,通过锁存器的方式,锁存住SET传递线的信号。这样即使出现了共模干扰,也不会将共模干扰信号传递到下一级。其中,锁存指的是把信号暂存以维持某种电平状态。It can be understood that the working principle of the common-
其中,本申请的锁存器具备的特点是:SET传递线的A1信号,是SET传递线锁存器的输入A1,同时也是RST传递线锁存器的锁存使能信号CLK2;RST传递线的A2信号,是RST传递线锁存器的输入A2,同时也是SET传递线锁存器的锁存使能信号CLK1。假设代表SET有效的A1是高电平,那么第二锁存器1412的CLK也是高电平,此时第二锁存器2输出Y保持;当A1是低电平时,第二锁存器1412的CLK也是低电平,此时锁存器142的输出Y2=A2。Among them, the characteristics of the latch of the present application are: the A1 signal of the SET transfer line is the input A1 of the SET transfer line latch, and is also the latch enable signal CLK2 of the RST transfer line latch; the RST transfer line The A2 signal is the input A2 of the RST transfer line latch, and is also the latch enable signal CLK1 of the SET transfer line latch. Assuming that A1 which represents SET is valid is high level, then the CLK of the
如此,本申请的电平转换电路100新增共模处理单元140,通过共模处理单元140中的锁存器的作用,可以使共模干扰信号不会传递到下一级,有效抑制了共模干扰对该电平转换电路的影响。In this way, the
更具体地,请参阅图4,开关单元120包括第一负载R1、第一开关晶体管SET、第二负载R2和第二开关晶体管RST。其中,第一开关晶体管SET的栅极连接脉冲发生器110的第一脉冲信号端111,第一开关晶体管SET的第一极连接第一负载R1的第一端,第一开关晶体管SET的第二极连接第二电源GND,第二开关晶体管RST的栅极连接脉冲发生器110的第二脉冲信号端,第二开关晶体管RST的第一极连接第二负载R2的第一端,第二开关晶体管RST的第二极连接第二电源GND。第一负载R1的第二端连接第一电源VB,第二负载的第二端连接第一电源VB。More specifically, referring to FIG. 4 , the
导通识别单元130包括第一识别子单元1311的第二识别子单元1312。第一识别子单元1311连接第一开关晶体管SET的第一极和第一负载R1的第一极。第一识别子单元1311用于根据第一开关晶体管SET的导通状态输出第一识别信号A1。第二识别子单元1312连接第二开关晶体管RST的第一极和第二负载R2的第一极,第二识别子单元1312根据第二开关晶体管RST的导通状态输出第二识别信号A2。The
请结合图5,第一识别子单元1311包括第一P型晶体管MP1和第一N型晶体管MN1。第一P型晶体管的栅极和第一N型晶体管的栅极连接第一开关晶体管SET的第一极和第一负载R1的第一极。第一P型晶体管MP1的第一极连接第三电源VB1,第一P型晶体管MP1的第二极连接导通识别单元130的第一识别信号端131,第一N型晶体管MN1的第一极连接导通识别单元130的第一识别信号端131,第一N型晶体管MN1的第二极连接第四电源VB2。Please refer to FIG. 5 , the first identifying
同理,第二识别子单元1312也包括第二P型晶体管MP2和第二N型晶体管MN2,第二P型晶体管MP2的栅极和第二N型晶体管MN2的栅极连接第二开关晶体管RST的第一极和第二负载R2的第一极,第二P型晶体管MP2的第一极连接第三电源VB1,第二P型晶体管MN2的第二极连接导通识别单元130的第二识别信号端132,第二N型晶体管MN2的第一极连接导通识别单元130的第二识别信号端132,第二N型晶体管MN2的第二极连接第四电源VB2。Similarly, the
触发单元150包括RS触发器。RS触发器的复位端用于接收第一识别信号A1,RS触发器的置位端用于接收第二识别信号A2,RS触发器的输出端生成输出信号。可以理解地,当发生共模干扰的时候,RST传递线出现的错误的有效信号进入RS触发器,通过RC滤波可以减弱此共模干扰的传递。The
此外,请再次参阅图4,共模处理单元140还包括滤波子单元142。滤波子单元142连接锁存器子单元141和触发单元150。滤波子单元142用于对第一识别信号A1和第二识别信号A2进行滤波处理。可以理解地,滤波子单元142此时处理的第一识别信号A1和第二识别信号A2是经过锁存器共模处理后的没有共模干扰信号的识别信号。In addition, please refer to FIG. 4 again, the common-
滤波子单元142包括第一滤波子单元1421和第二滤波子单元1422。第一锁存器1411的输出端通过第一滤波子单元连接RS触发器的复位端,第二锁存器1412的输出端通过第二滤波子单元1422连接RS触发器的置位端。可以理解地,当发生共模干扰的时候,RST传递线会出现错误的有效信号进入RS触发器,通过RC滤波可以减弱此共模干扰的传递。The
更具体地,第一滤波子单元1421包括第一电阻R3和第一电容C1。第一电阻R3连接第一锁存器1411的输出端和RS触发器的复位端,第一电容C1连接RS触发器的复位端和地。More specifically, the
第二滤波子单元1422包括第二电阻R4和第二电容C2。第二电阻R4连接第二锁存器1412的输出端和RS触发器的置位端,第二电容C2连接RS触发器的置位端和地。The
请参阅图6,本申请还提供一种驱动电路1000。驱动电路1000包括上述实施例中所述的电平转换电路100和功率管200。功率管200的栅极PMG连接触发单元150的输出信号端。其中,电平转换电路100的结构如前文所述,在此不再赘述。Referring to FIG. 6 , the present application also provides a
功率管200的结构如图6所示。PMD端和PMS端的电压,有可能到0V以下,也可能到高功率管的耐压值,譬如600V,或者1200V。该功率管200的开关作用,通过控制其栅极PMG和源极PMS的电压差实现。其中,如图6所示,电平转换电路100输出的电压VPMG控制栅极PMG的电压,电平转换电路100输出的电压VPMS控制源极PMS的电压。当电平转换电路100输出的VPMG-VPMS电压等于0V时,该功率管关闭;当电平转换电路100输出的VPMG-VPMS电压等于15V时,该功率管200导通。The structure of the
驱动电路1000具备的特点是:VS电压可以浮动在较大的范围内浮动,譬如0~600V,其中,VS为源极电压,但是VGS电压在一个较小的范围内,譬如0~20V,VGS为栅极相对于源极的电压。驱动电路1000通过一个低压的逻辑信号,转换为电压可浮动到高压的逻辑信号,控制外围高压功率管的开与关。The characteristics of the
本申请的驱动电路1000中的电平转换电路100新增共模处理单元140,通过共模处理单元140中的锁存器的作用,可以使共模干扰信号不会传递到下一级,有效抑制了共模干扰对驱动电路的影响。The
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above examples only express several implementation modes of the present application, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present application. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the scope of protection of the patent application should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211485459.6A CN116192120A (en) | 2022-11-24 | 2022-11-24 | Level conversion circuit and driving circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211485459.6A CN116192120A (en) | 2022-11-24 | 2022-11-24 | Level conversion circuit and driving circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116192120A true CN116192120A (en) | 2023-05-30 |
Family
ID=86444938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211485459.6A Pending CN116192120A (en) | 2022-11-24 | 2022-11-24 | Level conversion circuit and driving circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116192120A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024263100A1 (en) * | 2023-06-20 | 2024-12-26 | Zerro Power Systems Pte Ltd | A level shifter and a method of shifting an input logic signal from a first supply domain to a second supply domain |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103797572A (en) * | 2011-09-16 | 2014-05-14 | 富士电机株式会社 | High-voltage semiconductor device |
US20190068192A1 (en) * | 2017-04-13 | 2019-02-28 | Shenzhen GOODIX Technology Co., Ltd. | Level shift circuit and fingerprint identification device |
CN109727617A (en) * | 2017-10-31 | 2019-05-07 | 戴洛格半导体(英国)有限公司 | storage element |
CN113965194A (en) * | 2021-09-24 | 2022-01-21 | 无锡安趋电子有限公司 | Low-delay high-voltage side driving circuit with noise detection function |
CN114744997A (en) * | 2022-06-08 | 2022-07-12 | 深圳芯能半导体技术有限公司 | Level shift circuit and integrated circuit |
-
2022
- 2022-11-24 CN CN202211485459.6A patent/CN116192120A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103797572A (en) * | 2011-09-16 | 2014-05-14 | 富士电机株式会社 | High-voltage semiconductor device |
US20190068192A1 (en) * | 2017-04-13 | 2019-02-28 | Shenzhen GOODIX Technology Co., Ltd. | Level shift circuit and fingerprint identification device |
CN109727617A (en) * | 2017-10-31 | 2019-05-07 | 戴洛格半导体(英国)有限公司 | storage element |
CN113965194A (en) * | 2021-09-24 | 2022-01-21 | 无锡安趋电子有限公司 | Low-delay high-voltage side driving circuit with noise detection function |
CN114744997A (en) * | 2022-06-08 | 2022-07-12 | 深圳芯能半导体技术有限公司 | Level shift circuit and integrated circuit |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024263100A1 (en) * | 2023-06-20 | 2024-12-26 | Zerro Power Systems Pte Ltd | A level shifter and a method of shifting an input logic signal from a first supply domain to a second supply domain |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10298211B2 (en) | Dynamic level shifter circuit | |
JP7429089B2 (en) | Level shifter unaffected by transient events | |
CN101420224A (en) | Output buffer circuit, low power bias circuit thereof, and input buffer circuit | |
CN215895935U (en) | Scanning circuit and display panel | |
US7274227B2 (en) | Power-on reset circuit | |
CN116192120A (en) | Level conversion circuit and driving circuit | |
US20080001628A1 (en) | Level conversion circuit | |
CN107993603B (en) | Shift register unit, shift register, gate driving circuit and display device | |
CN104952413A (en) | Low-power-consumption phase inverter, low-powder-consumption GOA circuit and liquid crystal display panel | |
US7295056B2 (en) | Level shift circuit | |
CN107909957A (en) | Gate drive circuit | |
CN103856204A (en) | Integrated circuit, integrated circuit starting method and voltage selection circuit | |
CN115498856B (en) | Driving circuit and chip | |
CN107017874B (en) | Semiconductor device and selection circuit | |
CN106656164A (en) | High-level selection circuit and electronic system | |
CN219304699U (en) | Spread spectrum clock generating circuit and DCDC switching power supply circuit | |
JPH10242810A (en) | Latch circuit | |
TWI543503B (en) | Switching circuit | |
CN114115411B (en) | Voltage modulation circuit and operation method thereof | |
CN112562574B (en) | A switch module and display device | |
TWI522981B (en) | Gate driving circuit of a display device | |
CN111654070B (en) | Method, switching circuit and light sensor for switching control voltage of light sensor unit | |
CN112992042B (en) | Light-emitting drive circuit, method and display drive circuit | |
CN115765720A (en) | Level shifting circuit and driving circuit | |
CN118100903A (en) | Level conversion circuit, driving chip, display module and display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |