CN116188543B - 基于深度学习无监督的点云配准方法及系统 - Google Patents
基于深度学习无监督的点云配准方法及系统 Download PDFInfo
- Publication number
- CN116188543B CN116188543B CN202211685566.3A CN202211685566A CN116188543B CN 116188543 B CN116188543 B CN 116188543B CN 202211685566 A CN202211685566 A CN 202211685566A CN 116188543 B CN116188543 B CN 116188543B
- Authority
- CN
- China
- Prior art keywords
- point cloud
- registration
- source
- network
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
- G06T7/337—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
- G06V10/7753—Incorporation of unlabelled data, e.g. multiple instance learning [MIL]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211685566.3A CN116188543B (zh) | 2022-12-27 | 2022-12-27 | 基于深度学习无监督的点云配准方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211685566.3A CN116188543B (zh) | 2022-12-27 | 2022-12-27 | 基于深度学习无监督的点云配准方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116188543A CN116188543A (zh) | 2023-05-30 |
CN116188543B true CN116188543B (zh) | 2024-03-12 |
Family
ID=86443421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211685566.3A Active CN116188543B (zh) | 2022-12-27 | 2022-12-27 | 基于深度学习无监督的点云配准方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116188543B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116452757B (zh) * | 2023-06-15 | 2023-09-15 | 武汉纺织大学 | 一种复杂场景下的人体表面重建方法和系统 |
CN117095061B (zh) * | 2023-10-20 | 2024-02-09 | 山东大学 | 基于点云强度显著点的机器人位姿优化方法及系统 |
CN117934725B (zh) * | 2024-02-01 | 2024-07-26 | 西安中核核仪器股份有限公司 | 一种测试建筑物室内三维点云配准准确度的仿真方法 |
CN118038085B (zh) * | 2024-04-09 | 2024-06-07 | 无锡学院 | 一种基于孪生网络的点云关键点检测方法及装置 |
CN118036732B (zh) * | 2024-04-11 | 2024-08-16 | 神思电子技术股份有限公司 | 基于临界对抗学习的社会事件图谱关系补全方法及系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019226686A2 (en) * | 2018-05-23 | 2019-11-28 | Movidius Ltd. | Deep learning system |
WO2020036742A1 (en) * | 2018-08-17 | 2020-02-20 | Nec Laboratories America, Inc. | Dense three-dimensional correspondence estimation with multi-level metric learning and hierarchical matching |
WO2020154964A1 (en) * | 2019-01-30 | 2020-08-06 | Baidu.Com Times Technology (Beijing) Co., Ltd. | A point clouds registration system for autonomous vehicles |
CN113077501A (zh) * | 2021-04-02 | 2021-07-06 | 浙江大学计算机创新技术研究院 | 一种基于特征学习的端到端点云配准方法 |
CN113706710A (zh) * | 2021-08-11 | 2021-11-26 | 武汉大学 | 基于fpfh特征差异的虚拟点多源点云融合方法及系统 |
CN113780389A (zh) * | 2021-08-31 | 2021-12-10 | 中国人民解放军战略支援部队信息工程大学 | 基于一致性约束的深度学习半监督密集匹配方法及系统 |
CN114332175A (zh) * | 2021-12-16 | 2022-04-12 | 广东工业大学 | 一种基于注意力机制的低重叠3d动态点云配准方法和系统 |
CN114937066A (zh) * | 2022-06-09 | 2022-08-23 | 重庆理工大学 | 基于交叉偏移特征与空间一致性的点云配准系统及方法 |
CN115170626A (zh) * | 2022-07-07 | 2022-10-11 | 广西师范大学 | 一种基于深度特征进行鲁棒点云配准的无监督方法 |
CN115471423A (zh) * | 2022-09-28 | 2022-12-13 | 吉林大学 | 一种基于生成对抗网络及自注意力机制的点云去噪方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4016392A1 (en) * | 2020-12-16 | 2022-06-22 | Dassault Systèmes | Machine-learning for 3d object detection |
-
2022
- 2022-12-27 CN CN202211685566.3A patent/CN116188543B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019226686A2 (en) * | 2018-05-23 | 2019-11-28 | Movidius Ltd. | Deep learning system |
WO2020036742A1 (en) * | 2018-08-17 | 2020-02-20 | Nec Laboratories America, Inc. | Dense three-dimensional correspondence estimation with multi-level metric learning and hierarchical matching |
WO2020154964A1 (en) * | 2019-01-30 | 2020-08-06 | Baidu.Com Times Technology (Beijing) Co., Ltd. | A point clouds registration system for autonomous vehicles |
CN113077501A (zh) * | 2021-04-02 | 2021-07-06 | 浙江大学计算机创新技术研究院 | 一种基于特征学习的端到端点云配准方法 |
CN113706710A (zh) * | 2021-08-11 | 2021-11-26 | 武汉大学 | 基于fpfh特征差异的虚拟点多源点云融合方法及系统 |
CN113780389A (zh) * | 2021-08-31 | 2021-12-10 | 中国人民解放军战略支援部队信息工程大学 | 基于一致性约束的深度学习半监督密集匹配方法及系统 |
CN114332175A (zh) * | 2021-12-16 | 2022-04-12 | 广东工业大学 | 一种基于注意力机制的低重叠3d动态点云配准方法和系统 |
CN114937066A (zh) * | 2022-06-09 | 2022-08-23 | 重庆理工大学 | 基于交叉偏移特征与空间一致性的点云配准系统及方法 |
CN115170626A (zh) * | 2022-07-07 | 2022-10-11 | 广西师范大学 | 一种基于深度特征进行鲁棒点云配准的无监督方法 |
CN115471423A (zh) * | 2022-09-28 | 2022-12-13 | 吉林大学 | 一种基于生成对抗网络及自注意力机制的点云去噪方法 |
Non-Patent Citations (2)
Title |
---|
LSG-CPD: Coherent Point Drift With Local Surface Geometry for Point Cloud Registration;Weixiao Liu等;《Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)》;15293-15302 * |
三维点云配准中的关键技术研究;石晓敬;《中国博士学位论文全文数据库 (信息科技辑)》(第15期);I138-10 * |
Also Published As
Publication number | Publication date |
---|---|
CN116188543A (zh) | 2023-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116188543B (zh) | 基于深度学习无监督的点云配准方法及系统 | |
Arnold et al. | Fast and robust registration of partially overlapping point clouds | |
CN109800648B (zh) | 基于人脸关键点校正的人脸检测识别方法及装置 | |
Zhao et al. | Where are you heading? dynamic trajectory prediction with expert goal examples | |
Liu et al. | Learning gaussian instance segmentation in point clouds | |
Yue et al. | Hierarchical probabilistic fusion framework for matching and merging of 3-d occupancy maps | |
Sarode et al. | MaskNet: A fully-convolutional network to estimate inlier points | |
WO2022256460A1 (en) | Systems for rapid accurate complete detailing and cost estimation for building construction from 2d plans | |
CN109697236A (zh) | 一种多媒体数据匹配信息处理方法 | |
CN117522990A (zh) | 基于多头注意力机制和迭代细化的类别级位姿估计方法 | |
CN113033656B (zh) | 一种基于生成对抗网络的交互式孔探数据扩展方法 | |
CN115578574A (zh) | 一种基于深度学习和拓扑感知的三维点云补全方法 | |
CN117909881A (zh) | 多源数据融合的抽油机的故障诊断方法及装置 | |
Chen et al. | Rethinking point cloud registration as masking and reconstruction | |
Häger et al. | Predicting disparity distributions | |
CN109165587A (zh) | 智能图像信息抽取方法 | |
CN117409209B (zh) | 一种多任务感知的三维场景图要素分割与关系推理方法 | |
Netto et al. | Robust point-cloud registration based on dense point matching and probabilistic modeling | |
Hou et al. | Fast 2d map matching based on area graphs | |
Cheng et al. | Deep learning-based point cloud registration: A comprehensive investigation | |
Blayney et al. | Bezier Everywhere All at Once: Learning Drivable Lanes as Bezier Graphs | |
Wang et al. | Local consensus transformer for correspondence learning | |
Liu et al. | Category-agnostic pose estimation for point clouds | |
CN113688875A (zh) | 工业系统故障识别方法及装置 | |
Zhang et al. | 3D point cloud classification method based on multiple attention mechanism and dynamic graph convolution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information |
Inventor after: Niu Zexuan Inventor after: Yuan Haijun Inventor after: Chen Siyu Inventor after: Yang Fan Inventor after: Guan Kai Inventor after: Zhu Xiaolei Inventor after: Jin Fei Inventor after: Du Yanfeng Inventor after: Yan Fei Inventor after: Zhao Ziming Inventor after: He Jiang Inventor after: Liu Yaqi Inventor before: Niu Zexuan Inventor before: Yuan Haijun Inventor before: Chen Siyu Inventor before: Yang Fan Inventor before: Guan Kai Inventor before: Zhu Xiaolei Inventor before: Jin Fei Inventor before: Du Yanfeng Inventor before: Yan Fei Inventor before: Zhao Ziming Inventor before: He Jiang Inventor before: Liu Yaqi |
|
CB03 | Change of inventor or designer information |