CN116165932A - A magnetic levitation control circuit for a three-float instrument - Google Patents
A magnetic levitation control circuit for a three-float instrument Download PDFInfo
- Publication number
- CN116165932A CN116165932A CN202211706560.XA CN202211706560A CN116165932A CN 116165932 A CN116165932 A CN 116165932A CN 202211706560 A CN202211706560 A CN 202211706560A CN 116165932 A CN116165932 A CN 116165932A
- Authority
- CN
- China
- Prior art keywords
- circuit
- signal
- magnetic levitation
- digital signal
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
- G05B19/0423—Input/output
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/25—Pc structure of the system
- G05B2219/25257—Microcontroller
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Description
技术领域technical field
本发明属于惯性技术领域,特别涉及一种三浮仪表磁悬浮控制电路。The invention belongs to the technical field of inertia, and in particular relates to a magnetic levitation control circuit for a three-float instrument.
背景技术Background technique
现阶段,三浮仪表作为高精度惯性仪表,被广泛应用于国内外弹道导弹、运载火箭的惯性导航中,三浮仪表主要包含三浮陀螺仪和三浮陀螺加速度计,采用了气浮、液浮和磁悬浮的支撑技术。磁悬浮系统的作用是通过磁悬浮线圈检测浮子位置变化,分析浮子运动状态及趋势,通过对磁悬浮线圈施加直流产生磁悬浮拉力,将油液中浮子控制在宝石轴承的中间位置,完全脱离与宝石轴承的机械接触,避免因机械摩擦带来的干扰力矩,从而提高三浮仪表的精度。At present, the three-float instrument, as a high-precision inertial instrument, is widely used in the inertial navigation of ballistic missiles and launch vehicles at home and abroad. The three-float instrument mainly includes a three-float gyroscope and a three-float gyro accelerometer. The supporting technology of levitation and magnetic levitation. The function of the magnetic levitation system is to detect the position change of the float through the magnetic levitation coil, analyze the movement state and trend of the float, and generate a magnetic levitation pulling force by applying a direct current to the magnetic levitation coil, so as to control the float in the oil at the middle position of the jewel bearing, completely breaking away from the mechanism of the jewel bearing. contact, avoiding the disturbance torque caused by mechanical friction, thereby improving the accuracy of the three-floating instrument.
目前公开发表的三浮仪表磁悬浮控制电路中,其电路原理中均需使用到国外进口器件或进口芯片国产封装的器件做功能支撑,其中部分电路可以使用国内完全国产化芯片可以原位替代,但集成了激磁发生电路和相敏解调电路的7B698芯片在国内没有可以原位替代的国产化芯片或相似功能的国产化芯片,国内没有芯片厂家能够研制出该款芯片。因此,现有的三浮仪表磁悬浮控制电路面临无法直接用国产化芯片原位替代实现完全自主可控的难题。In the maglev control circuit of the three-floating instrument published publicly at present, the circuit principle needs to use imported foreign devices or imported chip domestically packaged devices as functional support, and some of the circuits can be replaced in situ with domestic fully domesticated chips, but The 7B698 chip that integrates the excitation generating circuit and the phase-sensitive demodulation circuit has no localized chips that can be replaced in situ or similar functions in China, and no domestic chip manufacturer can develop this chip. Therefore, the existing maglev control circuit of the three-floating instrument is faced with the problem that it cannot be directly replaced in situ with a domestically produced chip to achieve complete autonomous control.
发明内容Contents of the invention
本发明的目的在于克服上述缺陷,提供一种三浮仪表磁悬浮控制电路,解决了现有三浮仪表磁悬浮控制电路不能采用国产化芯片原位替代的技术问题,本发明实现了三浮仪表磁悬浮电路国产化、小型化以及对受控对象的快速、精密控制。The purpose of the present invention is to overcome the above-mentioned defects, provide a three-float instrument magnetic suspension control circuit, solve the technical problem that the existing three-float instrument magnetic suspension control circuit cannot be replaced in situ with a domestic chip, and the present invention realizes the domestic production of the three-float instrument magnetic suspension circuit. miniaturization and fast and precise control of the controlled object.
为实现上述发明目的,本发明提供如下技术方案:In order to realize the foregoing invention object, the present invention provides following technical scheme:
一种三浮仪表磁悬浮控制电路,包括激磁发生电路、位置检测电桥、多路选通开关、信号处理电路、数字信号处理器电路和加力控制电路;A magnetic levitation control circuit for a three-float instrument, including an excitation generating circuit, a position detection bridge, a multi-channel selector switch, a signal processing circuit, a digital signal processor circuit and an afterburner control circuit;
数字信号处理器电路产生PWM方波,并将方波输出至激磁发生电路;The digital signal processor circuit generates a PWM square wave, and outputs the square wave to the excitation generating circuit;
激磁发生电路接收由数字信号处理器电路输入的PWM方波,将PWM方波调制为正弦波激磁信号,将正弦波激磁信号输出至位置检测电桥;The excitation generating circuit receives the PWM square wave input by the digital signal processor circuit, modulates the PWM square wave into a sine wave excitation signal, and outputs the sine wave excitation signal to the position detection bridge;
位置检测电桥在正弦波激磁信号的作用下驱动磁悬浮线圈工作;The position detection bridge drives the magnetic levitation coil to work under the action of the sine wave excitation signal;
位置检测电桥获取用于表征磁悬浮线圈位置的交流电压信号,并将交流电压信号经过多路选通开关输出至信号处理电路;The position detection bridge obtains the AC voltage signal used to characterize the position of the magnetic levitation coil, and outputs the AC voltage signal to the signal processing circuit through the multi-channel selection switch;
信号处理电路将由位置检测电桥输入的交流电压信号转换为用于表征磁悬浮线圈位置的直流信号,将直流信号输出至数字信号处理器电路;The signal processing circuit converts the AC voltage signal input by the position detection bridge into a DC signal used to represent the position of the magnetic levitation coil, and outputs the DC signal to the digital signal processor circuit;
数字信号处理器电路根据直流信号得到加力控制信号,将加力控制信号输出至加力控制电路;The digital signal processor circuit obtains the afterburner control signal according to the DC signal, and outputs the afterburner control signal to the afterburner control circuit;
加力控制电路响应加力控制信号,为磁悬浮线圈提供悬浮加力。The afterburner control circuit responds to the afterburner control signal and provides levitation afterburner for the magnetic levitation coil.
进一步的,位置检测电桥获取用于表征磁悬浮线圈位置的多路差分信号;Further, the position detection bridge acquires multiple differential signals used to characterize the position of the magnetic levitation coil;
数字信号处理器电路控制多路选通开关中的各路选通开关依次通断,使各路差分信号按设定选通顺序依次输入信号处理电路。The digital signal processor circuit controls the gate switches of the multi-channel gate switches to be turned on and off in sequence, so that the differential signals of all channels are sequentially input into the signal processing circuit according to the set gate order.
进一步的,信号处理电路包含差动放大电路和解调电路;差动放大电路将选通的一路差分信号进行放大及差值处理,得到差分放大后的交流电压信号,所述一路差分信号由位置检测电桥的两个通道输出的交流电压信号形成;解调电路包括相敏解调器和低通滤波电路,相敏解调器以激磁发生电路输入的正弦波激磁信号作为参考信号,对差分放大后的交流电压信号进行解调,得到用于表征磁悬浮线圈位置的全半波交流信号,低通滤波电路将全半波交流信号过滤为用于表征磁悬浮线圈位置的直流信号。Further, the signal processing circuit includes a differential amplifier circuit and a demodulation circuit; the differential amplifier circuit amplifies and performs difference processing on the gated differential signal to obtain a differentially amplified AC voltage signal, and the differential signal is determined by the position The AC voltage signal output by the two channels of the detection bridge is formed; the demodulation circuit includes a phase-sensitive demodulator and a low-pass filter circuit, and the phase-sensitive demodulator uses the sine wave excitation signal input by the excitation generation circuit as a reference signal, and the differential The amplified AC voltage signal is demodulated to obtain a full half-wave AC signal used to characterize the position of the magnetic levitation coil, and the low-pass filter circuit filters the full half-wave AC signal into a DC signal used to characterize the position of the magnetic levitation coil.
进一步的,差动放大电路为国产仪表放大器ZSAD620TF,解调电路为国产相敏解调器LZX2。Further, the differential amplifier circuit is a domestic instrument amplifier ZSAD620TF, and the demodulation circuit is a domestic phase-sensitive demodulator LZX2.
进一步的,数字信号处理器电路中包含系统初始化模块、磁悬浮位置采集与处理模块、磁悬浮加力计算模块、执行磁悬浮加力模块和RS485通信模块;Further, the digital signal processor circuit includes a system initialization module, a magnetic levitation position acquisition and processing module, a magnetic levitation force calculation module, a magnetic levitation force force execution module and an RS485 communication module;
系统初始化模块用于设置系统时钟、中断使能和多路选通开关使能;The system initialization module is used to set the system clock, interrupt enable and multi-channel strobe switch enable;
磁悬浮位置采集与处理模块包括PWM方波产生模块、A/D转换电路和多路选通开关控制模块;A/D转换电路用于将信号处理电路输入的直流信号转换为数字信号;多路选通开关控制模块用于控制多路选通开关的选通;The magnetic levitation position acquisition and processing module includes a PWM square wave generation module, an A/D conversion circuit and a multiplex switch control module; the A/D conversion circuit is used to convert the DC signal input by the signal processing circuit into a digital signal; the multiplexer The pass switch control module is used to control the gating of the multi-channel strobe switch;
磁悬浮加力计算模块预设浮子定中位置的数字量范围,即死区,将数字信号与预设死区进行对比,得到加力控制信号;具体方法为:若数字信号在死区范围内,认为浮子处于中心位置,不需执行加力;若数字信号大于死区上边界或小区死区下边界,则需执行正向或负向加力,拉动浮子向死区内运动;加力大小根据数字信号超出死区边界差值大小动态调整,差值越大则加力周期内加力时间越长,差值越小则加力周期内加力时间越短;The maglev force calculation module presets the digital range of the center position of the float, that is, the dead zone, and compares the digital signal with the preset dead zone to obtain the force control signal; the specific method is: if the digital signal is within the dead zone, consider The float is in the center position, no additional force is required; if the digital signal is greater than the upper boundary of the dead zone or the lower boundary of the dead zone of the cell, positive or negative force is required to pull the float to move into the dead zone; the force is determined according to the number When the signal exceeds the dead zone boundary, the difference value is dynamically adjusted. The larger the difference, the longer the boosting time in the boosting cycle, and the smaller the difference, the shorter the boosting time in the boosting cycle;
执行磁悬浮加力模块用于PWM断使能和控制加力开关通断;加力控制电路为磁悬浮线圈提供悬浮加力时PWM断使能,根据加力控制信号,通过GPIO口控制加力控制电路,将加力电流输入到磁悬浮线圈中,产生磁拉力使浮子定中;Executing the maglev booster module is used for PWM off-enabling and controlling the on-off of the booster switch; the booster control circuit provides the magnetic levitation coil with the PWM off-enable when the booster is suspended, and controls the booster control circuit through the GPIO port according to the booster control signal , input the booster current into the magnetic levitation coil to generate magnetic pulling force to center the float;
RS485通信模块用于与外部设通信。The RS485 communication module is used to communicate with external devices.
进一步的,A/D转换电路为数字信号处理器电路中内置的12位A/D模块;Further, the A/D conversion circuit is a built-in 12-bit A/D module in the digital signal processor circuit;
数字信号处理器电路还包括连接于A/D转换电路和信号处理电路之间的A/D输入限幅电路;A/D输入限幅电路由两个开关二极管组成,将输入A/D转换电路的高电压钳制在3.3V,输入低电压钳制在0V。The digital signal processor circuit also includes an A/D input limiting circuit connected between the A/D conversion circuit and the signal processing circuit; the A/D input limiting circuit is composed of two switching diodes, which input the A/D conversion circuit The high voltage is clamped at 3.3V, and the input low voltage is clamped at 0V.
进一步的,加力控制电路包含≥10路加力开关,每一路加力开关受数字信号处理器电路的I/O口输出的加力控制信号控制,加力开关导通时实现磁悬浮线圈与直流电源导通,进行磁悬浮加力。Further, the booster control circuit includes ≥10 booster switches, each booster switch is controlled by the booster control signal output from the I/O port of the digital signal processor circuit, and when the booster switch is turned on, the magnetic levitation coil and the DC The power is turned on, and the magnetic levitation afterburner is performed.
进一步的,激磁发生电路包含带通滤波电路和电压跟随器;Further, the excitation generating circuit includes a band-pass filter circuit and a voltage follower;
带通滤波电路用于将PWM方波调制为正弦波激磁信号,电压跟随器用于稳定正弦波激磁信号不受后级负载影响;The band-pass filter circuit is used to modulate the PWM square wave into a sine wave excitation signal, and the voltage follower is used to stabilize the sine wave excitation signal without being affected by the subsequent load;
带通滤波电路中的电阻、电容根据实际需求的正弦波激磁信号参数确定。The resistors and capacitors in the band-pass filter circuit are determined according to the parameters of the actual demanded sine wave excitation signal.
进一步的,带通滤波电路为有源二阶带通滤波器;Further, the band-pass filter circuit is an active second-order band-pass filter;
有源二阶带通滤波器包含电阻R1、R2、R3和电容C1、C2;The active second-order bandpass filter includes resistors R1, R2, R3 and capacitors C1, C2;
设实际需求的正弦波激磁信号参数包括放大倍数Au、品质因数Q、中心频率f0、带宽Bw,电阻R1、R2、R3和电容C1、C2根据如下公式计算:Assume that the actual required sine wave excitation signal parameters include amplification factor A u , quality factor Q, center frequency f 0 , bandwidth B w , resistors R1, R2, R3 and capacitors C1 and C2 are calculated according to the following formula:
其中,C=C1=C2。Wherein, C=C1=C2.
进一步的,带通滤波电路中的运算放大器为四通道集成运算放大器FX147BH(Z),使用FX147BH(Z)其中1个通道构成交流激磁信号的电压跟随器;Further, the operational amplifier in the band-pass filter circuit is a four-channel integrated operational amplifier FX147BH(Z), and one channel of the FX147BH(Z) is used to form a voltage follower for the AC excitation signal;
数字信号处理器电路采用国产化DSP控制器JDSPF2812A,以晶振JA120-30MHz作为数字信号处理器电路的时钟源,经数字信号处理器电路内分频电路产生12kHz时钟,由数字信号处理器电路内事件管理器模块EVA输出12kHz的PWM方波;The digital signal processor circuit adopts the domestic DSP controller JDSPF2812A, and the crystal oscillator JA120-30MHz is used as the clock source of the digital signal processor circuit, and the frequency division circuit in the digital signal processor circuit generates a 12kHz clock, which is determined by the event in the digital signal processor circuit The manager module EVA outputs a 12kHz PWM square wave;
数字信号处理器电路内具有片上存储器FLASH,其扇区A、C~J共9个用于固化磁悬浮控制软件,其扇区B专用于固化磁悬浮参数。There is an on-chip memory FLASH in the digital signal processor circuit, 9 sectors A, C~J are used to solidify the magnetic levitation control software, and sector B is dedicated to solidify the magnetic levitation parameters.
本发明与现有技术相比具有如下至少一种有益效果:Compared with the prior art, the present invention has at least one of the following beneficial effects:
(1)本发明创造性的提出一种三浮仪表磁悬浮控制电路,通过新设计功能电路替代了目前常规方案中使用进口或伪国产的LVDT信号调理器,实现了三浮仪表磁悬浮控制电路所有物料的完全国产化,摆脱了对进口器件和伪空包器件的依赖;(1) The present invention creatively proposes a magnetic levitation control circuit for a three-float instrument, which replaces the imported or pseudo-domestic LVDT signal conditioner used in the current conventional scheme by a newly designed functional circuit, and realizes the control of all materials in the three-float instrument magnetic levitation control circuit Completely localized, getting rid of the dependence on imported devices and pseudo empty package devices;
(2)本发明磁悬浮控制电路可以实现对三浮仪表浮子位置的快速、精确控制,特别是激磁信号频率由数字信号处理器电路的分频电路和晶振决定,时钟高度稳定性赋予激磁信号频率的高稳定性,远高于常规方案中LVDT信号调理器产生的激磁信号;(2) The magnetic levitation control circuit of the present invention can realize fast and accurate control to the position of the float of the three-float meter, especially the frequency of the excitation signal is determined by the frequency division circuit and the crystal oscillator of the digital signal processor circuit, and the high stability of the clock is given to the frequency of the excitation signal High stability, much higher than the excitation signal generated by the LVDT signal conditioner in the conventional scheme;
(3)本发明磁悬浮控制电路兼顾现有技术的所有用户需求,在印制板尺寸不变的条件下兼容现有任务、多类型的三浮仪表磁悬浮控制电路,适用于多型号,实现货架式的产品化,推动了三浮仪表产品化;(3) The magnetic levitation control circuit of the present invention takes into account all the user needs of the prior art, and is compatible with existing tasks and multi-type three-float instrument magnetic levitation control circuits under the condition that the size of the printed board remains unchanged. It is suitable for multiple models and realizes shelf-type The productization of Sanfu Instrument has promoted the productization of Sanfu Instrument;
(4)本发明做到了极简化设计,由于全新设计功能电路替代7B698芯片和加力电路封装尺寸变大3倍,电路板空间变成难题,通过使用四通道集成运算放大器、数字信号处理器电路内置A/D转换模块替代单片/D转换电路、多路模拟开关、数字信号处理器电路片上存储器替代片外存储器,显著得减小了电路体积,且解决了内置A/D转换精度差、输入信号受限等问题。(4) The present invention achieves a very simplified design, because the newly designed functional circuit replaces the 7B698 chip and the power circuit package size becomes 3 times larger, and the circuit board space becomes a problem, by using four-channel integrated operational amplifier and digital signal processor circuit The built-in A/D conversion module replaces the single-chip/D conversion circuit, the multi-channel analog switch, and the digital signal processor circuit. The input signal is limited and so on.
附图说明Description of drawings
图1为本发明实施例中一种完全国产化的三浮仪表磁悬浮控制电路的结构框图;Fig. 1 is a structural block diagram of a fully localized three-float instrument maglev control circuit in an embodiment of the present invention;
图2为本发明实施例中一种磁悬浮电路控制过程流程示意图;Fig. 2 is a schematic flow chart of a magnetic levitation circuit control process in an embodiment of the present invention;
图3为本发明实施例中一种有源二阶带通滤波器示意图。Fig. 3 is a schematic diagram of an active second-order bandpass filter in an embodiment of the present invention.
具体实施方式Detailed ways
下面通过对本发明进行详细说明,本发明的特点和优点将随着这些说明而变得更为清楚、明确。The following describes the present invention in detail, and the features and advantages of the present invention will become more clear and definite along with these descriptions.
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。The word "exemplary" is used exclusively herein to mean "serving as an example, embodiment, or illustration." Any embodiment described herein as "exemplary" is not necessarily to be construed as superior or better than other embodiments. While various aspects of the embodiments are shown in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
目前可查磁悬浮技术方案中,提及或未提及但方案中必须的多个器件均为进口器件或伪空包器件,本发明通过新设计功能电路替代了目前常规方案中使用进口或伪国产的LVDT信号调理器进行激磁产生、信号解调、直流信号输出功能,率先解决了LVDT信号调理器裸芯受限于国外技术的问题。In the currently available magnetic levitation technology schemes, many devices that are mentioned or not mentioned but necessary in the scheme are all imported devices or pseudo-empty package devices. The present invention replaces the imported or pseudo-domestic components used in the current conventional scheme with a newly designed functional circuit. The advanced LVDT signal conditioner performs excitation generation, signal demodulation, and DC signal output functions, and takes the lead in solving the problem that the bare core of the LVDT signal conditioner is limited by foreign technology.
本发明提供一种完全国产化的三浮仪表磁悬浮控制电路,通过自主式激励信号发生电路和解调电路的新设计,对进口芯片或伪空包芯片进行功能电路替代,在保证磁悬浮控制精度及可靠性前提下实现了磁悬浮电路的完全国产化,解决了国外芯片卡脖子的问题。此外,通过精简设计,将磁悬浮电路做到少器件、小体积,为三浮仪表小型化奠定基础。The present invention provides a completely localized three-float meter magnetic levitation control circuit. Through the new design of the autonomous excitation signal generation circuit and the demodulation circuit, the imported chip or the pseudo-empty package chip is replaced by a functional circuit, which ensures the accuracy of the magnetic levitation control and Under the premise of reliability, the complete localization of the magnetic levitation circuit has been realized, and the problem of foreign chips being stuck has been solved. In addition, through streamlining the design, the magnetic levitation circuit has fewer components and a smaller volume, laying the foundation for the miniaturization of the three-floating instrument.
本发明提供一种三浮仪表磁悬浮控制电路,包括:激磁发生电路1、位置检测电桥2、多路选通开关3、信号处理电路4、数字信号处理器电路6(内部集成A/D转换电路5)、加力控制电路7、RS485接口电路8;The present invention provides a magnetic levitation control circuit for a three-float instrument, comprising: an excitation generating circuit 1, a position detection bridge 2, a multi-channel selection switch 3, a signal processing circuit 4, a digital signal processor circuit 6 (integrated A/D conversion Circuit 5), afterburner control circuit 7, RS485 interface circuit 8;
激磁发生电路1,用于产生正弦激励信号,作用于位置检测电桥,驱动磁悬浮线圈工作;处理12kHz信号要求运算放大器具有很高的带宽,产生幅值为1.6V的12kHz交流信号进一步要求运算放大器具有很大的压摆率,因此,带通滤波电路9只能采用国产化芯片四通道集成运算放大器FX147BH(Z)。针对带通滤波电路9的交流激磁信号负载能力不足问题,使用FX147BH(Z)其中1个通道构成交流激磁信号的电压跟随器10,大大提高了激磁发生电路1的负载能力。Excitation generating circuit 1 is used to generate a sinusoidal excitation signal, which acts on the position detection bridge to drive the magnetic levitation coil to work; processing the 12kHz signal requires the operational amplifier to have a very high bandwidth, and generating a 12kHz AC signal with an amplitude of 1.6V further requires the operational amplifier It has a large slew rate, therefore, the band-
位置检测电桥2,用于检测各通道磁悬浮电压信号,表征三浮仪表浮子当前的位置;The position detection bridge 2 is used to detect the magnetic levitation voltage signal of each channel to represent the current position of the float of the three-float instrument;
多路选通开关3,用于磁悬浮位置信号的通道选通,实现对磁悬浮信号分路采集;The multi-channel gating switch 3 is used for channel gating of the magnetic levitation position signal, so as to realize the branch acquisition of the magnetic levitation signal;
信号处理电路4,用于将采集的位置信号进行放大、解调及滤波等处理形成待转换模拟信号;The signal processing circuit 4 is used to amplify, demodulate and filter the collected position signal to form an analog signal to be converted;
A/D转换电路5,用于将经过处理的位置信号进行模数转换,得到磁悬浮位置的数字信号;A/D转换电路5是集成于数字信号处理器电路6内部的一个12位A/D转换器,替代现有技术的单片A/D转换电路,通过基准源校正和中值滤波处理,A/D转换电路5精度优于现有技术。The A/D conversion circuit 5 is used for analog-to-digital conversion of the processed position signal to obtain the digital signal of the magnetic levitation position; the A/D conversion circuit 5 is a 12-bit A/D integrated in the digital
数字信号处理器电路6,是电路核心控制器件,存储嵌入式软件和磁悬浮参数、产生PWM、执行I/O控制、运算、通信等功能。数字信号处理器电路6搭载嵌入式软件,将数字信号进行运算分析,根据运算结果执行磁悬浮加力控制,并通过RS485接口电路将位置信号及加力控制等信号发送至上位机监测;The digital
加力控制电路7,用于响应数字信号处理电路5输出的控制信号,作为执行机构通过控制开关方式对磁悬浮线圈通断直流电源,实现磁悬浮加力;加力控制电路7采用模拟开关SF312MD,其封装尺寸是现有技术的伪空包芯片模拟开关TW312SS的3倍。The afterburner control circuit 7 is used to respond to the control signal output by the digital signal processing circuit 5, and as an actuator, switch the DC power supply on and off the magnetic levitation coil by means of a control switch to realize the magnetic levitation afterburner; the afterburner control circuit 7 adopts an analog switch SF312MD, its The packaging size is three times that of the pseudo-empty package chip analog switch TW312SS in the prior art.
RS485接口电路8,用于磁悬浮控制电路与外部设备的通信。The RS485 interface circuit 8 is used for communication between the magnetic levitation control circuit and external equipment.
在上述三浮仪表磁悬浮控制电路中,激磁发生电路1,通过数字信号处理器电路6控制产生PWM方波,PWM方波信号通过带通滤波电路9及电压跟随器10后,转换为目标值的正弦波激磁信号。In the maglev control circuit of the above-mentioned three-floating instrument, the excitation generating circuit 1 is controlled by the digital
位置检测电桥2,是通过电阻与线圈组成电桥电路,可将浮子位置变化带来的线圈电感变化转换为交流电压信号,表征磁悬浮位置变化。The position detection bridge 2 is a bridge circuit composed of resistors and coils, which can convert the coil inductance change caused by the position change of the float into an AC voltage signal to represent the position change of the magnetic levitation.
多路选通开关3,用于磁悬浮位置信号多个通道顺序选通,可按需求逐一采集各通道磁悬浮信号。The multi-channel strobe switch 3 is used to sequentially select multiple channels of the maglev position signal, and can collect the maglev signals of each channel one by one according to requirements.
信号处理电路4用于将采集的位置信号进行放大、解调及滤波等处理形成待转换模拟信号,包含差动放大电路11和解调电路12。差动放大电路11将选通的某一路正负两个通道磁悬浮差分信号进行放大及差值处理,得到放大后的位置信号;解调电路12包含相敏解调器和低通滤波电路两部分,其中相敏解调器将差动放大后的位置信号进行解调,以激磁发生电路1输出的正弦激励信号作为参考信号,解调得到表征磁悬浮位置的全半波交流信号,低通滤波电路将全半波交流信号滤为表征磁悬浮位置的直流信号。The signal processing circuit 4 is used to amplify, demodulate and filter the collected position signal to form an analog signal to be converted, and includes a differential amplifier circuit 11 and a demodulation circuit 12 . The differential amplifier circuit 11 amplifies and performs difference processing on the maglev differential signal of a positive and negative channel of a selected channel to obtain the amplified position signal; the demodulation circuit 12 includes two parts: a phase-sensitive demodulator and a low-pass filter circuit , where the phase-sensitive demodulator demodulates the differentially amplified position signal, takes the sinusoidal excitation signal output by the excitation generating circuit 1 as a reference signal, and demodulates to obtain a full half-wave AC signal representing the magnetic levitation position, and the low-pass filter circuit The full half-wave AC signal is filtered into a DC signal representing the position of the magnetic levitation.
A/D转换电路5为数字信号处理器电路内置集成模块,负责将信号处理电路4得到的直流信号转换为数字信号,输入数字信号处理器电路6内做进一步计算处理。The A/D conversion circuit 5 is a built-in integrated module of the digital signal processor circuit, responsible for converting the DC signal obtained by the signal processing circuit 4 into a digital signal, and inputting it into the digital
数字信号处理器电路6采用国产化DSP控制器JDSPF2812A,本发明以晶振JA120-30MHz作为数字信号处理器电路6的时钟源,经数字信号处理器电路6内分频电路产生12kHz时钟,由数字信号处理器电路6内事件管理器模块EVA输出12kHz的PWM方波。The digital
数字信号处理器电路6内具有片上存储器FLASH,其扇区A、C~J共9个用于固化磁悬浮控制软件,其扇区B专用于固化磁悬浮参数,无需设计片外存储器,充分利用了数字信号处理器电路6的存储器资源。There is an on-chip memory FLASH in the digital
数字信号处理器电路6内固化有磁悬浮控制软件,完成系统初始化、PWM方波产生、通道选通控制、A/D转换电路的采数、磁悬浮控制律计算加力值、输出加力控制信号、RS485通信等功能;数字信号处理器电路6包括系统初始化模块S1、磁悬浮位置采集与处理模块S2、磁悬浮加力计算模块S3、执行磁悬浮加力模块S4、RS485通信模块S5共五个主要功能模块,实现以下控制过程:The magnetic levitation control software is solidified in the digital
系统初始化模块S1:设置系统时钟、中断使能、多路选通开关使能、扇区B的磁悬浮参数读取等。System initialization module S1: set system clock, enable interrupt, enable multi-channel strobe switch, read magnetic levitation parameters of sector B, etc.
磁悬浮位置采集与处理模块S2:PWM输出使能、多路选通开关选通控制、A/D转换等。Magnetic levitation position acquisition and processing module S2: PWM output enable, multi-channel strobe switch strobe control, A/D conversion, etc.
磁悬浮加力计算模块S3:该领域仪表通常预设浮子定中位置的数字量范围,称为死区。将采样处理后的位置数字量与死区进行对比,若在死区范围内,认为浮子处于中心位置,不需执行加力;若大于死区上边界或小区死区下边界,则需执行正向或负向加力,拉动浮子向死区内运动;加力大小根据超出死区边界差值大小动态调整,差值越大则加力周期内加力时间越长,差值越小则加力周期内加力时间越短。Magnetic levitation afterburner calculation module S3: Instruments in this field usually preset the digital value range of the center position of the float, which is called the dead zone. Compare the position digital quantity after sampling processing with the dead zone. If it is within the range of the dead zone, it is considered that the float is in the center position, and there is no need to execute force; Adding force in the positive or negative direction, pulling the float to move into the dead zone; the size of the boosting force is dynamically adjusted according to the difference beyond the boundary of the dead zone. The shorter the force time in the force cycle.
执行磁悬浮加力模块S4:包含PWM断使能和控制加力开关通断。磁悬浮线圈既是检测机构又是执行机构,采用分时复用的方式,位置采集与磁悬浮加力均通过线圈实现。为避免加力时仍通入激磁信号造成叠加干扰,需断开激磁,即PWM断使能;根据S3中加力计算结果,通过GPIO口控制加力开关,将加力电流输入到十个磁悬浮线圈中,产生磁拉力使浮子定中。Executing the magnetic levitation booster module S4: including PWM off enable and control booster switch on and off. The magnetic levitation coil is both a detection mechanism and an actuator. It adopts a time-division multiplexing method, and both position acquisition and magnetic levitation force are realized through the coil. In order to avoid the superimposed interference caused by the excitation signal still being connected when the force is applied, the excitation needs to be disconnected, that is, the PWM is disabled; according to the calculation result of the force in S3, the force switch is controlled through the GPIO port, and the force current is input to ten maglev In the coil, a magnetic pull is generated to center the float.
RS485通信模块S5:向外界发送磁悬浮位置以及加力数据等通信数据。RS485 communication module S5: Send communication data such as magnetic levitation position and afterburner data to the outside world.
加力控制电路7,其每一路加力开关受数字信号处理器I/O口控制,根据磁悬浮控制律计算出的加力值,控制加力开关导通使加力通路接通,为浮子提供磁悬浮加力;加力控制电路7总通道数不小于10。The booster control circuit 7, each booster switch of which is controlled by the I/O port of the digital signal processor, controls the booster switch to conduct the booster switch through the booster value calculated according to the magnetic levitation control law, and provides the buoy with Magnetic levitation afterburner; the total number of channels of the afterburner control circuit 7 is not less than 10.
本发明三浮仪表磁悬浮控制电路用于三浮仪表磁悬浮轴承的控制,也可以用于其他磁悬浮轴承的控制实现,可应用于高精度导航的航空、航天领域;本发明所有的组成部件完全自主可控,达到100%国产化。通过本发明能够摆脱现有电路对国外技术及芯片依赖,实现对三浮仪表磁悬浮电路国产化、小型化以及对受控对象的快速、精密控制。The magnetic levitation control circuit of the three-float instrument of the present invention is used for the control of the magnetic levitation bearing of the three-float instrument, and can also be used for the control and realization of other magnetic levitation bearings, and can be applied to the aviation and aerospace fields of high-precision navigation; all the components of the present invention can be completely autonomous. Control, to achieve 100% localization. The invention can get rid of the existing circuit's dependence on foreign technology and chips, and realize the localization and miniaturization of the magnetic levitation circuit of the three-floating instrument and the rapid and precise control of the controlled object.
实施例:Example:
图1为本发明实施例中一种完全国产化的三浮仪表磁悬浮控制电路的结构框图。在本实施例中,完全国产化的三浮仪表磁悬浮控制电路包括:激磁发生电路1、位置检测电桥2、多路选通开关3、信号处理电路4、集成于数字信号处理器电路6中的A/D转换电路5、数字信号处理器电路6、加力控制电路7、RS485接口电路8。Fig. 1 is a structural block diagram of a completely localized three-float instrument maglev control circuit in an embodiment of the present invention. In this embodiment, the maglev control circuit of the fully domesticated three-float meter includes: an excitation generating circuit 1, a position detection bridge 2, a multiplex switch 3, a signal processing circuit 4, and a digital
激磁发生电路1包含带通滤波电路9及电压跟随器10。根据实际需求的激磁信号参数,配置相应阻容值的电阻、电容,使带通滤波电路9将数字信号处理器电路6产生的PWM方波信号调制为要求正弦波激磁信号,电压跟随器10用于稳定正弦信号不受后级负载影响。The excitation generating circuit 1 includes a
本实施例中,通过软件设定数字信号处理器电路6在初始化完成后即通过PWM引脚输出3.3V、占空比为50%的方波信号;设置带通滤波电路9适当阻容值,该值可通过经验及计算取得,其中一种优选的设计方式如下:In this embodiment, the digital
选择带通滤波电路形式为有源二阶带通滤波器,根据下述公式(1)、公式(2)、公式(3)、公式(4)可知,通过调整如图3所示的电阻R1、R2、R3阻值及电容C(C=C1=C2)容值可以获得所需增益、带宽及Q值的激磁信号。Select the form of the band-pass filter circuit as an active second-order band-pass filter. According to the following formulas (1), formula (2), formula (3), and formula (4), it can be known that by adjusting the resistance R1 shown in Figure 3 , R2, R3 resistance and capacitance C (C=C1=C2) capacitance can obtain the required gain, bandwidth and excitation signal of Q value.
放大倍数 gain
品质因数 Quality factor
中心频率 Center frequency
带宽 bandwidth
根据上述设计方式,可以将方波信号转换为有效值1.6V、频率12KHz的正弦激磁信号;带通滤波电路9和电压跟随器10中运放优选四路集成运算放大器。According to the above-mentioned design method, the square wave signal can be converted into a sinusoidal excitation signal with an effective value of 1.6V and a frequency of 12KHz; the operational amplifier in the band-
位置检测电桥2通过线圈与电阻组成,可将浮子位置变化带来的线圈电感变化转换为交流电压信号。其实施方式为根据施加的激磁信号可得到被激励后电感线圈的等效阻抗,计算方式如公式(5):The position detection bridge 2 is composed of a coil and a resistor, and can convert the coil inductance change caused by the position change of the float into an AC voltage signal. The implementation method is that the equivalent impedance of the excited inductance coil can be obtained according to the applied excitation signal, and the calculation method is as formula (5):
等效阻抗 Equivalent impedance
选择与之相应的桥臂电阻,即可实现磁悬浮浮子定中位置的电桥平衡状态。By selecting the corresponding bridge arm resistance, the balance state of the electric bridge at the fixed position of the magnetic levitation float can be realized.
多路选通开关3用于选通磁悬浮多个通道线圈的位置检测信号,通过数字信号处理器电路6控制多路选通开关3依次通断,可按需求采集各通道磁悬浮信号。The multi-channel strobe switch 3 is used to strobe the position detection signals of the multiple channel coils of the maglev. The digital
本实施例中,设置了十个磁悬浮线圈,通过位置检测电桥2得到五路差分信号;多路选通开关3优选国产双8选1模拟开关,使五路信号按设定选通顺序依次输入后级电路。In this embodiment, ten magnetic levitation coils are set, and five differential signals are obtained through the position detection bridge 2; the multi-channel strobe switch 3 is preferably a domestic double 8-selection 1 analog switch, so that the five-channel signals are sequentially selected according to the set strobe sequence Enter the post-stage circuit.
信号处理电路4包含差动放大电路11和解调电路12。差动放大电路11将选通的某一路正负两个通道磁悬浮差分信号进行放大及差值处理,得到放大后的位置信号;解调电路12将差动放大后的位置信号进行调制,以激磁发生电路1输出的正弦激励信号作为参考信号,解调得到磁悬浮位置直流信号;The signal processing circuit 4 includes a differential amplifier circuit 11 and a demodulation circuit 12 . The differential amplifier circuit 11 amplifies and performs difference processing on the maglev differential signal of a positive and negative channel of a gate, and obtains the amplified position signal; the demodulation circuit 12 modulates the differentially amplified position signal to excite The sinusoidal excitation signal output by the generating circuit 1 is used as a reference signal, and demodulated to obtain a DC signal of the magnetic levitation position;
在本实施例中,差动放大电路11优选国产仪表放大器,具有低成本、高精度特性,且可通过调节电阻设置所需放大倍数,本实施例中根据系统总体增益情况,选用调节电阻阻值为9.1KΩ,放大倍数为5.5倍;In this embodiment, the differential amplifier circuit 11 is preferably a domestic instrument amplifier, which has the characteristics of low cost and high precision, and the required amplification factor can be set by adjusting the resistance. In this embodiment, according to the overall gain of the system, the resistance value of the adjustment resistor is selected 9.1KΩ, the magnification is 5.5 times;
在本实施例中,解调电路12中调制解调器优选国产相敏解调器,具有可调节输出零位的特性;由于用于A/D转换的信号须为直流信号,则还需根据所选相敏解调器类型做适应性调整,如解调后信号为直流,可直接用于A/D转换;如解调后信号为交流,则可根据信号情况设置滤波电路将其转换为直流信号。在本实施例的其中一种情况中,得到解调后波形为半波交流信号,故设计二阶低通滤波电路将波形进行滤波处理,得到相应直流信号。In this embodiment, the modem in the demodulation circuit 12 is preferably a domestic phase-sensitive demodulator, which has the characteristic of adjustable output zero; since the signal used for A/D conversion must be a DC signal, it also needs to be based on the selected phase. Sensitive demodulator type for adaptive adjustment, if the demodulated signal is DC, it can be directly used for A/D conversion; if the demodulated signal is AC, filter circuit can be set according to the signal condition to convert it to DC signal. In one case of this embodiment, the demodulated waveform is a half-wave AC signal, so a second-order low-pass filter circuit is designed to filter the waveform to obtain a corresponding DC signal.
本实施例中所述激磁发生电路1、信号处理电路4(包含差动放大电路11和解调电路12)通过自主电路设计,实现了国外LVDT信号处理器的激磁发生及解调功能的国产化替代,解决了该相关器件电路无法实现国产化的问题。The excitation generation circuit 1 and the signal processing circuit 4 (including the differential amplifier circuit 11 and the demodulation circuit 12) described in this embodiment realize the localization of the excitation generation and demodulation functions of foreign LVDT signal processors through independent circuit design Substitution solves the problem that the relevant device circuit cannot be localized.
A/D转换电路5,用于将经过处理的直流位置信号进行模数转换,得到磁悬浮位置数字信号;The A/D conversion circuit 5 is used to perform analog-to-digital conversion on the processed DC position signal to obtain a magnetic levitation position digital signal;
在本实施例中,前述A/D转换电路5优选使用数字信号处理器电路6中P内置12位A/D模块,减少外设芯片使用,进一步缩减了电路体积及成本;根据A/D转换电路5输入电压要求为正,使用前述四路运算放大器第四路运放设计加法器电路,将解调的直流信号抬高恒定电压值;In this embodiment, the aforementioned A/D conversion circuit 5 preferably uses a built-in 12-bit A/D module in the digital
为进一步保护数字信号处理电路6,本实施例中使用由两个开关二极管组成A/D输入限幅电路,将输入高电压钳制在3.3V,输入低电压钳制在0V,避免了过高电压或过低负电压输入损坏器件。In order to further protect the digital
数字信号处理器电路6内写有磁悬浮控制软件,将位置数字信号进行运算分析,计算出所需加力值,并根据运算结果执行磁悬浮加力控制,并由RS485接口电路将位置信号及加力控制等信号向外发送监测;The magnetic levitation control software is written in the digital
数字信号处理器电路6常见封装外形为四角扁平封装LQFP,在本实施例中优选数字信号处理器电路6封装形式为BGA,较常规LQFP封装体积更小;并通过调整器件的引脚排序,由回字形改为16*16阵列排序,进一步优化BGA封装外形,较常规表贴封装形式尺寸减小了三分之一,有利于进一步减小电路体积。The common package shape of the digital
加力控制电路7,用于响应数字信号处理电路6输出的控制信号,作为执行机构通过控制开关方式对磁悬浮线圈通断加力电源,实现磁悬浮加力;且其单路开关受单路I/O控制,加力时该单路开关导通使直流电源通过,为单路线圈提供电流,且加力开关总通道数不小于10。The afterburner control circuit 7 is used to respond to the control signal output by the digital
本实施例中,加力控制电路7选用了3只国产四路单刀单掷模拟开关,具有四路开关分别控制、通道输入电流大的特点。In this embodiment, the afterburner control circuit 7 selects three domestic four-way single-pole single-throw analog switches, which have the characteristics of controlling the four-way switches separately and having a large channel input current.
RS485接口电路8,用于磁悬浮电路与上位机的通信。The RS485 interface circuit 8 is used for the communication between the magnetic levitation circuit and the upper computer.
参照图2所示,在本实施例中,加力控制电路7包含:系统初始化模块S1、磁悬浮位置采集与处理模块S2、磁悬浮加力计算模块S3、执行磁悬浮加力模块S4、RS485通信模块S5共五个主要功能模块。其中可以由S2~S5各模块组成程序中的主循环,在系统初始化后循坏执行。Referring to Fig. 2, in this embodiment, the afterburner control circuit 7 includes: a system initialization module S1, a maglev position acquisition and processing module S2, a maglev afterburner calculation module S3, an execution maglev afterburner module S4, and an RS485 communication module S5 There are five main functional modules in total. Among them, the main loop in the program can be composed of S2 ~ S5 modules, which will be executed after the system is initialized.
系统初始化模块S1:设置系统时钟、中断使能、多路选通开关使能等。System initialization module S1: set system clock, interrupt enable, multi-channel strobe switch enable, etc.
磁悬浮位置采集与处理模块S2:PWM输出使能、多路选通开关选通控制、A/D转换等;本实施例中需采集五路磁悬浮信号,通过I/O口控制多路选通开关依次选通,采集每一路位置信号。Magnetic levitation position acquisition and processing module S2: PWM output enable, multi-channel strobe switch strobe control, A/D conversion, etc.; in this embodiment, five maglev signals need to be collected, and the multi-channel strobe switch is controlled through the I/O port Strobe in turn to collect each position signal.
磁悬浮加力计算模块S3:本实施例中仪表预设了浮子定中位置的数字量范围,称为死区,例如可设置为2048±8。将采样处理后的位置数字量与死区进行对比,若在死区范围内,认为浮子处于中心位置,不需执行加力;若大于死区上边界(本例中为2056)或小区死区下边界(本例中为2040),则需执行正向或负向加力,拉动浮子向死区内运动。Magnetic levitation force calculation module S3: In this embodiment, the meter presets the digital value range of the center position of the float, which is called the dead zone, which can be set to 2048±8 for example. Compare the position digital quantity after sampling processing with the dead zone, if it is within the range of the dead zone, it is considered that the float is in the center position, and there is no need to apply force; if it is greater than the upper boundary of the dead zone (2056 in this example) or the dead zone of the community Lower boundary (2040 in this example), it is necessary to implement positive or negative afterburner to pull the float to move in the dead zone.
执行磁悬浮加力S4模块:包含PWM断使能和控制加力开关通断。本实施例中,磁悬浮线圈既是检测机构又是执行机构,采用分时复用的方式,位置采集与磁悬浮加力均通过线圈实现。为避免加力时仍通入激磁信号造成叠加干扰,需断开激磁,即PWM断使能;根据S3中加力计算结果,通过GPIO口控制十路加力开关,将加力电流输入到十个磁悬浮线圈中,产生磁拉力使浮子定中。Execution of magnetic levitation afterburner S4 module: including PWM off enable and control on and off of afterburner switch. In this embodiment, the magnetic levitation coil is both a detection mechanism and an execution mechanism, and a time-division multiplexing method is adopted, and position acquisition and magnetic levitation force are both realized through the coil. In order to avoid the superimposed interference caused by the excitation signal still being connected when the force is applied, the excitation needs to be disconnected, that is, the PWM is disabled; according to the calculation result of the force in S3, the ten-way force switch is controlled through the GPIO port, and the force current is input to the ten-way In a magnetic levitation coil, a magnetic pull is generated to center the float.
RS485通信S5模块:向上位机发送磁悬浮位置以及加力数据。RS485 communication S5 module: Send the magnetic levitation position and afterburner data to the upper computer.
以上结合具体实施方式和范例性实例对本发明进行了详细说明,不过这些说明并不能理解为对本发明的限制。本领域技术人员理解,在不偏离本发明精神和范围的情况下,可以对本发明技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本发明的范围内。本发明的保护范围以所附权利要求为准。The present invention has been described in detail above in conjunction with specific implementations and exemplary examples, but these descriptions should not be construed as limiting the present invention. Those skilled in the art understand that without departing from the spirit and scope of the present invention, various equivalent replacements, modifications or improvements can be made to the technical solutions and implementations of the present invention, all of which fall within the scope of the present invention. The protection scope of the present invention shall be determined by the appended claims.
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。The content that is not described in detail in the description of the present invention belongs to the well-known technology of those skilled in the art.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211706560.XA CN116165932A (en) | 2022-12-29 | 2022-12-29 | A magnetic levitation control circuit for a three-float instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211706560.XA CN116165932A (en) | 2022-12-29 | 2022-12-29 | A magnetic levitation control circuit for a three-float instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116165932A true CN116165932A (en) | 2023-05-26 |
Family
ID=86412446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211706560.XA Pending CN116165932A (en) | 2022-12-29 | 2022-12-29 | A magnetic levitation control circuit for a three-float instrument |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116165932A (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102288171A (en) * | 2011-04-28 | 2011-12-21 | 中国船舶重工集团公司第七○七研究所 | Active magnetically-suspended gyroscope floater centering and adjusting device |
CN103884867A (en) * | 2014-03-27 | 2014-06-25 | 北京航天控制仪器研究所 | Magnetic suspension centering system of three-floated-gyroscope accelerometer |
CN103913157A (en) * | 2014-02-28 | 2014-07-09 | 北京航天控制仪器研究所 | Active magnetic suspension control system and control method for three-floated gyro |
CN103913597A (en) * | 2014-03-27 | 2014-07-09 | 北京航天控制仪器研究所 | Centering monitoring system for spinning top accelerometer floater |
CN104677382A (en) * | 2015-02-15 | 2015-06-03 | 北京航天控制仪器研究所 | Active magnetic suspension automatic wet centering calibration method for three-floating inertia instrument |
CN106840200A (en) * | 2016-12-29 | 2017-06-13 | 北京航天控制仪器研究所 | A kind of three automatic dampness elimination center support systems of floating inertia type instrument of tape jam diagnosis |
CN108627146A (en) * | 2018-05-17 | 2018-10-09 | 北京控制工程研究所 | A kind of three floating gyroscope magnetic suspension control circuits |
CN109631868A (en) * | 2018-12-11 | 2019-04-16 | 西安航天精密机电研究所 | A kind of three float-type gyroscope active magnetic suspension system of high-precision |
US20220397155A1 (en) * | 2020-12-18 | 2022-12-15 | Tianjin Emaging Technology Co., Ltd. | Magnetic suspension bearing, magnetic suspension bearing control system and control method |
-
2022
- 2022-12-29 CN CN202211706560.XA patent/CN116165932A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102288171A (en) * | 2011-04-28 | 2011-12-21 | 中国船舶重工集团公司第七○七研究所 | Active magnetically-suspended gyroscope floater centering and adjusting device |
CN103913157A (en) * | 2014-02-28 | 2014-07-09 | 北京航天控制仪器研究所 | Active magnetic suspension control system and control method for three-floated gyro |
CN103884867A (en) * | 2014-03-27 | 2014-06-25 | 北京航天控制仪器研究所 | Magnetic suspension centering system of three-floated-gyroscope accelerometer |
CN103913597A (en) * | 2014-03-27 | 2014-07-09 | 北京航天控制仪器研究所 | Centering monitoring system for spinning top accelerometer floater |
CN104677382A (en) * | 2015-02-15 | 2015-06-03 | 北京航天控制仪器研究所 | Active magnetic suspension automatic wet centering calibration method for three-floating inertia instrument |
CN106840200A (en) * | 2016-12-29 | 2017-06-13 | 北京航天控制仪器研究所 | A kind of three automatic dampness elimination center support systems of floating inertia type instrument of tape jam diagnosis |
CN108627146A (en) * | 2018-05-17 | 2018-10-09 | 北京控制工程研究所 | A kind of three floating gyroscope magnetic suspension control circuits |
CN109631868A (en) * | 2018-12-11 | 2019-04-16 | 西安航天精密机电研究所 | A kind of three float-type gyroscope active magnetic suspension system of high-precision |
US20220397155A1 (en) * | 2020-12-18 | 2022-12-15 | Tianjin Emaging Technology Co., Ltd. | Magnetic suspension bearing, magnetic suspension bearing control system and control method |
Non-Patent Citations (2)
Title |
---|
吴辽;杨孟兴;王卿;申志刚;马千里;: "三浮陀螺有源磁悬浮位置信号采集电路研究", 导航与控制, no. 03, 5 June 2016 (2016-06-05) * |
常肖;徐龙祥;董继勇;: "磁悬浮轴承数字功率放大器", 机械工程学报, no. 20, 20 October 2010 (2010-10-20) * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109143942B (en) | Attitude sensor control system | |
CN103235202B (en) | Multi-channel analog signal acquisition system with automatic compensation function | |
CN110297206B (en) | Three-phase electric energy meter verification device power source based on IR46 standard | |
CN105973509B (en) | A kind of pressure sensor circuit and its adjustment method | |
CN104682407A (en) | Load imbalance compensation system comprising amplitude-limiting controller and amplitude-limiting compensation method | |
CN104296786A (en) | Digital bridge capacitive measuring module | |
CN104375435A (en) | Signal sampling system and method | |
CN109884403B (en) | A non-inductive compensation technical scheme for measuring the transmission AC loss of superconducting units | |
CN110646673A (en) | A Magnetostrictive Transducer Automatic Impedance Matcher | |
CN107688048A (en) | Reverse addition type potentiostat and IV converted measurement circuit available for electrochemical measurement | |
CN104330621A (en) | Electric appliance energy consumption tester | |
CN111006728B (en) | Flow automatic controller converter and control method of flow automatic controller converter | |
CN210775659U (en) | Automatic impedance matcher for magnetostrictive transducer | |
CN116165932A (en) | A magnetic levitation control circuit for a three-float instrument | |
CN109342805B (en) | High-precision microampere current detection circuit | |
CN212008697U (en) | A portable reactive power compensation function test device | |
CN205809203U (en) | A kind of converter special test system | |
CN205620737U (en) | Ultrasonic generator automatic frequency tracker based on single chip microcomputer control | |
CN208383294U (en) | A kind of triple axle vibrating sensor | |
CN100367321C (en) | Multifunctional and highly integrated portable signal detection device | |
CN204259197U (en) | For the digitlization inverter controller of electromagnetic induction heating power supply | |
CN103235203B (en) | Acquisition method of multi-channel analog signal acquisition system with automatic compensation function | |
CN205160502U (en) | Metal vibration top differential signal high resolution detection circuitry | |
CN213688203U (en) | Six-wire system LVDT sensor and magnetic core pull rod falling detection device | |
CN112857349B (en) | High-precision signal acquisition system and method applied to liquid floated gyroscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |