[go: up one dir, main page]

CN116159532A - 一种层状赤泥基水滑石吸附剂及其制备方法和应用 - Google Patents

一种层状赤泥基水滑石吸附剂及其制备方法和应用 Download PDF

Info

Publication number
CN116159532A
CN116159532A CN202310255894.8A CN202310255894A CN116159532A CN 116159532 A CN116159532 A CN 116159532A CN 202310255894 A CN202310255894 A CN 202310255894A CN 116159532 A CN116159532 A CN 116159532A
Authority
CN
China
Prior art keywords
red mud
based hydrotalcite
hydrotalcite adsorbent
aluminum
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310255894.8A
Other languages
English (en)
Inventor
谢武明
谢谊鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202310255894.8A priority Critical patent/CN116159532A/zh
Publication of CN116159532A publication Critical patent/CN116159532A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/045Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing sulfur, e.g. sulfates, thiosulfates, gypsum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • B01J2220/4887Residues, wastes, e.g. garbage, municipal or industrial sludges, compost, animal manure; fly-ashes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明属于功能材料领域,公开了一种赤泥基水滑石吸附剂及其制备方法和应用。所述赤泥基水滑石吸附剂是将赤泥机械球磨活化得到的活化赤泥加入无机酸中在60~80℃进行浸泡,得到含铁和铝的赤泥浸出液;再将二价金属盐添加至含铁和铝的赤泥浸出液中溶解后,在搅拌条件下滴加NaOH和Na2CO3的混合液,调节pH为7.5~8.5,得到悬浮液;将悬浮液在130~150℃进行水热反应,冷却后,离心、洗涤、干燥、研磨制得。该吸附剂通过阴离子交换,吸附耦合还原作用,静电吸引有效去除水中的重金属铬离子。

Description

一种层状赤泥基水滑石吸附剂及其制备方法和应用
技术领域
本发明属于新型功能性材料领域,更具体地,涉及一种层状赤泥基水滑石吸附剂及其制备方法和应用。
背景技术
随着人类社会工业化的快速发展,其中产生的一些污染未能有效去除和处理,如大量的重金属通过排放或者泄露进入生态环境中,污染着土壤或者水体环境。重金属在环境中不可消解,可通过生物累积性,最终对人类的身体健康和生产活动产生破坏和影响。其中,金属铬是重金属污染水体中常见的污染物,在自然环境中一般以三价铬和六价铬的形式存在。而六价铬的毒性往往比三价铬的毒性大,容易在自然环境中迁移扩散,且被认为是人类致癌物质,对生态环境和人类健康造成威胁。
目前国内外研究去除水中的重金属铬的技术有很多,如化学还原法,生物法,吸附法等。吸附固定的优点是操作简便,净化深度高,是去除水中重金属铬的常见思路。水滑石(LDH)是一种层状结构的阴离子黏土,层间附着阴离子如碳酸根,硫酸根等,与水中重金属阴离子进行交换,达到吸附去除效果。水中的六价铬通常以CrO4 2-、HCr2O7-阴离子的形态存在,能被LDH进行捕捉富集和吸附固定,是一种有效去除水中六价铬的功能性材料。但大部分研究合成的LDH都是使用纯物质进行合成。赤泥是铝土矿提取铝后剩下的固体废物,产量大,其中含有铁铝等有价金属和稀有金属元素,是优质的二次资源,但资源化利用程度不高。
发明内容
本发明目的在于提供一种层状赤泥基水滑石吸附剂吸附剂,该吸附剂具有还原能力,通过阴离子交换和置换作用,吸附固定和富集六价铬,达到有效去除水环境中的金属铬。
本发明的另一目的在于提供上述层状赤泥基水滑石吸附剂的制备方法。该方法利用无机酸浸赤泥,获取富含铁铝的浸出液,然后添加金属盐制备层状赤泥基水滑石吸附剂,实现赤泥资源化与功能性材料的结合,同时针对废水中重金属六价铬的去除应用。经过洗脱后制备的水滑石可以实现循环使用,这赤泥资源化提供一条新途径。
本发明的再一目的在于提供上述层状赤泥基水滑石吸附剂的应用。
本发明的目的通过下述技术方案来实现:
一种赤泥基水滑石吸附剂,所述赤泥基水滑石吸附剂是将赤泥机械球磨活化得到的活化赤泥加入无机酸中在60~80℃进行浸泡,得到含铁和铝的赤泥浸出液;再将二价金属盐添加至含铁和铝的赤泥浸出液中溶解后,在搅拌条件下滴加NaOH和Na2CO3的混合液,调节pH为7.5~8.5,得到悬浮液;将悬浮液在130~150℃进行水热反应,冷却后,离心、洗涤、干燥、研磨制得。
优选地,所述吸附剂的比表面积为90~100m2/g。
优选地,所述的无机酸为盐酸或硫酸,所述无机酸的体积和活化赤泥的质量比为(8~12)mL:1g,所述无机酸的浓度为3~6mol/L,所述浸泡的时间为2.0~2.5h。
优选地,所述的二价金属盐为MgCl2·6H2O或MgSO4·7H2O,所述的二价金属盐中的Mg与赤泥浸出液中铁和铝的摩尔比为(2~3):1。
所述的赤泥基水滑石吸附剂的制备方法,包括如下具体步骤:
S1.将赤泥机械球磨活化,用盐酸在60~80℃浸出活化的赤泥,得到含铁和铝的赤泥浸出液;
S2.将金属盐添加至含铁和铝的赤泥浸出液中溶解后,在搅拌条件下滴加NaOH和Na2CO3的混合液,调节pH为7.5~8.5,得到悬浮液;
S3.将悬浮液在130~150℃进行水热反应20~24h,冷却后,离心、洗涤、干燥、研磨得到赤泥基水滑石吸附剂。
优选地,步骤S1中所述的机械球磨活化中赤泥和球磨介质的质量比为1:(40~60),球磨的时间为3~6h,球磨转速为200~250rpm。
优选地,步骤S3中所述混合液中NaOH的浓度为4~5mol/L,Na2CO3的浓度为0.1~0.3mol/L。
优选地,步骤S3中所述的干燥的温度为40~60℃,所述干燥的时间为22~26h。
所述的赤泥基水滑石吸附剂在去除废水中重金属六价铬领域中的应用。
优选地,所述废水的pH为2~7,所述的废水中重金属六价铬的浓度为10~40mg/L,所述废水中的阴离子为NO3 -、HCO3 -、SO4 2-和HPO4 2-,阴离子浓度为5~20mmol/L。
与现有技术相比,本发明具有以下有益效果:
1.本发明的层状赤泥基水滑石吸附剂具有还原能力,通过阴离子交换和置换作用,吸附固定和富集六价铬,达到有效去除水环境中的金属铬。
2.本发明利用无机酸浸赤泥,获取富含铁铝的浸出液,然后添加金属盐制备层状赤泥基水滑石吸附剂。采用用无机酸酸浸出赤泥,经过离心,抽滤,得到浸出液,该浸出液可作为合成水滑石的铁铝盐,直接使用,不需要进一步的净化。
3.本发明的方法简便,可操作性强,合成效率高。使用的赤泥是产量大、富含铁铝元素的固体废物,作为合成材料来源之一,获取成本低。
4.本发明的层状赤泥基水滑石吸附剂在去除模拟废水中的六价铬,通过阴离子交换,静电吸附、吸附还原耦合的协同作用实现去除过程。
附图说明
图1为实施例1制备的层状赤泥基水滑石吸附剂吸附反应前后的XRD图。
图2为实施例1制备的层状赤泥基水滑石吸附剂的SEM和EDS图。
图3为实施例1制备的层状赤泥基水滑石吸附剂在Cr(VI)浓度为20mg/L、pH为2~7的去除效率。
图4为实施例1制备的层状赤泥基水滑石吸附剂在pH为3,Cr(VI)浓度为10~40mg/L的吸附容量。
图5为实施例1制备的层状赤泥基水滑石吸附剂在不同阴离子,Cr(VI)浓度为5~20mmol/L的去除效果。
图6为实施例1制备的层状赤泥基水滑石吸附剂在Cr(VI)浓度为20mg/L、pH为3的条件下的循环再生情况。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.取5g赤泥置于玛瑙球磨罐,以赤泥与磨球的质量比为1:50添加磨球,其中大球:中球:小球的质量比为9:4:2,机械球磨时间为6h,转速为250rpm,得到机械活化赤泥;
2.将机械活化赤泥以液固比为10mL/g,5g赤泥添加进锥形瓶中,注入50mL盐酸,盐酸浓度为6mol/L,使用保鲜膜进行密封,置于水浴锅在80℃进行盐酸浸出2.5h。冷却后进行离心,转速为5000rpm,然后抽滤,得到赤泥浸出液。
3.按照MgCl2·6H2O与赤泥浸出液中总铁铝的摩尔比为2:1,在浸出液中添加MgCl2·6H2O,待MgCl2·6H2O溶解后,开始缓慢滴加5mol/L的NaOH和0.1mol/L的Na2CO3的混合液,这一过程保持剧烈的磁性搅拌,调节pH为7.5-8.5,并在剧烈搅拌下保持30min,得到悬浮液;
4.将悬浮液转移至水热反应釜,密封后置于烘箱中,在140℃下反应24h。待反应釜冷却后进行,将悬浮液以转速5000rpm进行离心,所得固体用无水乙醇和超纯水交替洗涤,再放置真空干燥箱中,在60℃下烘干,然后经研磨过100目筛,得到层状赤泥基水滑石吸附剂(简写为Mg-RM-LDH)。
图1为实施例1制备的层状赤泥基水滑石吸附剂在吸附反应前后的XRD图。从图1中可知,合成的Mg-RM-LDH具有水滑石的典型特征峰:003、006、012等,而且这些特征峰高而尖,说明Mg-RM-LDH成功合成,而且结晶度良好。在进行吸附反应后,Mg-RM-LDH的峰高都有所下降,说明在吸附过程中,材料与Cr(VI)形成了相互作用,一部分原因可能是发生了置换反应。图2为实施例1制备的Mg-RM-LDH的SEM和EDS图。其中,(a)为200nm标尺下的SEM,(b)为500nm标尺下的SEM,(c)和(d)为EDS图。从图2中可以清晰观察到赤泥基水滑石吸附剂具有明显的层状结构。Mg-RM-LDH的各个元素在其表面都均匀分布,说明已成功制备了Mg-RM-LDH,该吸附剂的比表面积为90~100m2/g。
实施例2
1.取5g赤泥置于玛瑙球磨罐,以赤泥与磨球的质量比为1:50添加磨球,其中大球:中球:小球的质量比为9:4:2,机械球磨时间为6h,转速为250rpm,得到机械活化赤泥;
2.将机械活化赤泥以液固比为10mL/g,5g赤泥添加进锥形瓶中,注入60mL硫酸,硫酸浓度为3mol/L,使用保鲜膜进行密封,置于水浴锅在80℃进行硫酸浸出2.5h。冷却后进行离心,转速为5000rpm,然后抽滤,得到赤泥浸出液。
3.按照MgSO4·7H2O与赤泥浸出液中总铁铝的摩尔比为3:1,在浸出液中添加MgSO4·7H2O,待MgSO4·7H2O溶解后,开始缓慢滴加4mol/L的NaOH和0.3mol/L的Na2CO3的混合液,这一过程保持剧烈的磁性搅拌,调节pH为7.5~8.5,并在剧烈搅拌下保持30min,得到悬浮液;
4.将悬浮液转移至水热反应釜,密封后置于烘箱中,在140℃下反应24h。待反应釜冷却后进行,将悬浮液以转速5000rpm进行离心,所得固体用无水乙醇和超纯水交替洗涤,再放置真空干燥箱中,在60℃下烘干,然后经研磨过100目筛,得到层状赤泥基水滑石吸附剂(简写为Mg-RM-LDH)。该吸附剂的比表面积为90~100m2/g。
应用例1
采用实施例1制得的Mg-RM-LDH验证去除模拟Cr(VI)污染废水的效果。
使用重铬酸钾配制模拟Cr(VI)污染废水,使用原子吸收光度计进行测定水样中的Cr(VI)的浓度。在整个实验中,Mg-RM-LDH的投加量为0.5g/L,具体为在100ml锥形瓶中,注入20mL的模拟含Cr(VI)废水然后再添加10mg Mg-RM-LDH。
图3为实施例1制备的Mg-RM-LDH在Cr(VI)浓度为20mg/L,pH为2-7下的去除效率。从图3中可知,在pH为3的情况下Mg-RM-LDH对Cr(VI)的去除效果达到90%。后续试验在pH为3的情况下进行。图4为实施例1制备的Mg-RM-LDH在不同浓度下含Cr(VI)模拟废水的吸附容量。其中,废水中含Cr(VI)的浓度为20、30、40mg/L,pH调节为3,从图4中可知,随着浓度的升高Mg-RM-LDH的吸附容量越大,在40mg/L的浓度下,吸附容量达到40mg/g。图5为实施例1制备的Mg-RM-LDH在NO3 -,HCO3 -,SO4 2-,HPO4 2-(浓度5-20mmol/L)下去除效果。从图5中可知,在浓度为5-20mmol/L的NO3 -的溶液中,Mg-RM-LDH对Cr(VI)的去除率大于78%;在HCO3 -溶液中,Cr(VI)去除率随着HCO3 -浓度的升高显著下降;而在SO4 2-和HPO4 2-溶液中,Cr(VI)去除率在20%左右。这说明一价阴离子NO3 -和HCO3 -的影响效果明显比二价阴离子SO4 2-和HPO4 2-的小,这是由于静电吸引二价的阴离子比一价的占据更多的吸附位点,导致去除率下降。
图6为实施例1制备的层状赤泥基水滑石吸附剂在Cr(VI)浓度为20mg/L、pH为3的条件下的循环再生情况。在循环再生的实验中,废水中含Cr(VI)的浓度为20mg/L,pH为3,反应后的Mg-RM-LDH使用0.1mol/LNaOH和0.1mol/LNa2CO3的混合液进行5次洗脱,再进行下一轮的吸附实验,一共进行三次循环再生试验。从图6中可知,进过三次循环吸附,层状赤泥基水滑石吸附剂的去除率仍然保持在60%以上,这说明层状赤泥基水滑石吸附剂具有良好的再生能力。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种赤泥基水滑石吸附剂,其特征在于,所述赤泥基水滑石吸附剂是将赤泥机械球磨活化得到的活化赤泥加入无机酸中在60~80℃进行浸泡,得到含铁和铝的赤泥浸出液;再将二价金属盐添加至含铁和铝的赤泥浸出液中溶解后,在搅拌条件下滴加NaOH和Na2CO3的混合液,调节pH为7.5~8.5,得到悬浮液;将悬浮液在130~150℃进行水热反应,冷却后,离心、洗涤、干燥、研磨制得。
2.根据权利要求1所述的赤泥基水滑石吸附剂,其特征在于,所述吸附剂的比表面积为90~100m2/g。
3.根据权利要求1所述的赤泥基水滑石吸附剂,其特征在于,所述的无机酸为盐酸或硫酸,所述无机酸的体积和活化赤泥的质量比为(8~12)mL:1g,所述无机酸的浓度为3~6mol/L,所述浸泡的时间为2.0~2.5h。
4.根据权利要求1所述的赤泥基水滑石吸附剂,其特征在于,所述的二价金属盐为MgCl2·6H2O或MgSO4·7H2O,所述的二价金属盐中的镁与赤泥浸出液中铁和铝的摩尔比为(2~3):1。
5.根据权利要求1-4任一项所述的赤泥基水滑石吸附剂的制备方法,其特征在于,包括如下具体步骤:
S1.将赤泥机械球磨活化,用盐酸在60~80℃浸出活化的赤泥,得到含铁和铝的赤泥浸出液;
S2.将金属盐添加至含铁和铝的赤泥浸出液中溶解后,在搅拌条件下滴加NaOH和Na2CO3的混合液,调节pH为7.5~8.5,得到悬浮液;
S3.将悬浮液在130~150℃进行水热反应20~24h,冷却后,离心、洗涤、干燥、研磨得到赤泥基水滑石吸附剂。
6.根据权利要求5所述的赤泥基水滑石吸附剂的制备方法,其特征在于,步骤S1中所述的机械球磨活化中赤泥和球磨介质的质量比为1:(40~60),球磨的时间为3~6h,球磨转速为200~250rpm。
7.根据权利要求5所述的赤泥基水滑石吸附剂的制备方法,其特征在于,步骤S3中所述混合液中NaOH的浓度为4~5mol/L,Na2CO3的浓度为0.1~0.3mol/L。
8.根据权利要求5所述的赤泥基水滑石吸附剂的制备方法,其特征在于,步骤S3中所述的干燥的温度为40~60℃,所述干燥的时间为22~26h。
9.权利要求1-4任一项所述的赤泥基水滑石吸附剂在去除废水中重金属铬领域中的应用。
10.根据权利要求9所述的应用,其特征在于,所述废水的pH为2~7,所述的废水中重金属铬的浓度为10~40mg/L,所述废水中的阴离子为NO3 -、HCO3 -、SO4 2-和HPO4 2-,阴离子浓度为5~20mmol/L。
CN202310255894.8A 2023-03-16 2023-03-16 一种层状赤泥基水滑石吸附剂及其制备方法和应用 Pending CN116159532A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310255894.8A CN116159532A (zh) 2023-03-16 2023-03-16 一种层状赤泥基水滑石吸附剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310255894.8A CN116159532A (zh) 2023-03-16 2023-03-16 一种层状赤泥基水滑石吸附剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116159532A true CN116159532A (zh) 2023-05-26

Family

ID=86420122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310255894.8A Pending CN116159532A (zh) 2023-03-16 2023-03-16 一种层状赤泥基水滑石吸附剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116159532A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118085873A (zh) * 2024-02-26 2024-05-28 山东长泽新材料科技有限公司 一种用于治理铬土壤污染的修复剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1478602A (en) * 2000-10-27 2002-05-06 Nauveau Technology Investments Ltd Processes and compositions for water treatment
CN108160026A (zh) * 2017-12-20 2018-06-15 成都理工大学 一种基于铁镁铝类水滑石吸收与还原Cr(VI)的方法
CN112850793A (zh) * 2021-02-11 2021-05-28 贵州大学 一种赤泥高值化利用的方法
CN114573034A (zh) * 2021-12-31 2022-06-03 武汉工程大学 一种利用拜耳赤泥制备层状铁铝双金属氢氧化物的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1478602A (en) * 2000-10-27 2002-05-06 Nauveau Technology Investments Ltd Processes and compositions for water treatment
CN108160026A (zh) * 2017-12-20 2018-06-15 成都理工大学 一种基于铁镁铝类水滑石吸收与还原Cr(VI)的方法
CN112850793A (zh) * 2021-02-11 2021-05-28 贵州大学 一种赤泥高值化利用的方法
CN114573034A (zh) * 2021-12-31 2022-06-03 武汉工程大学 一种利用拜耳赤泥制备层状铁铝双金属氢氧化物的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宋 勇等: "铝镁铁三元类水滑石对Cr(VI)的吸附性能研究", 《电镀与环保》, vol. 33, no. 4, 31 July 2013 (2013-07-31), pages 13 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118085873A (zh) * 2024-02-26 2024-05-28 山东长泽新材料科技有限公司 一种用于治理铬土壤污染的修复剂的制备方法

Similar Documents

Publication Publication Date Title
KR102525321B1 (ko) 수성 스트림 중의 관심 원소 또는 원자재의 선택적 분리
CN110563190B (zh) 一种电解锰渣渗滤液的处理方法
AU2014203770A1 (en) Treatment and Remediation of Natural or Waste Water
CN102976437A (zh) 一种高比表面积施氏矿物吸附剂处理水中砷的方法
CN116159532A (zh) 一种层状赤泥基水滑石吸附剂及其制备方法和应用
CN101691250A (zh) 一种用于吸附磷酸根的吸附剂及吸附方法
CN113184926B (zh) 利用电镀污泥制备Ni-Cu LDH材料的方法及应用
CN115140777A (zh) 一种利用大洋锰结核生产软磁用锰铁复合料的方法
WO2025015800A1 (zh) 一种重金属离子成膜矿化固定分离回收的方法和装置
CN1810353A (zh) 一种制备锂离子筛吸附剂的方法
CN110106356B (zh) 一种粉末型钛系离子交换剂分离盐湖卤水中锂的方法
CN110394154B (zh) 一种毛竹炭/FeMn-LDH复合材料的制备方法及其应用
WO2021127497A1 (en) Methods for selective recovery of rare earth elements and metals from coal ash by ionic liquids
Xie et al. A green synthesis strategy toward calcined calcium-aluminum layered double hydroxide with sludge as aluminum source for efficient removal of phosphate from water
CN104525103B (zh) 磁性氧化铁/海泡石纳米复合材料及其制备方法和用途
CN113041991A (zh) 一种载镧凹凸棒石除磷吸附剂的制备方法及其应用
CN106390960A (zh) 一种磁性锂离子筛及其制备方法
Yuan et al. Efficient adsorption and mechanistic analysis of phosphorus in acid leaching solution of incinerated sewage sludge ash by zirconium-modified reed biochar
CN107381705B (zh) 一种相变调控分离回收水中多种阳离子重金属的方法
CN114984932B (zh) 一种利用电镀污泥制备LDHs吸附材料的方法和应用
JPS5939163B2 (ja) ウランの複合磁性吸着剤
CN104445504B (zh) 一种增强吸附地下水中氟化物和硫酸盐并回收硫酸铵的方法
Zhou et al. Removal of phosphate from water using lanthanum-modified coal gangue
CN113000015A (zh) 一种凹凸棒石-方镁石基类水滑石的制备方法及其除磷应用
CN114288984A (zh) 一种改性石灰氮渣复合颗粒及其制备方法和在含铍固废或污染土壤稳定化固化中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination