CN116156904A - Dual-mode organic photodiode based on barrier layer interface regulation and control and preparation method thereof - Google Patents
Dual-mode organic photodiode based on barrier layer interface regulation and control and preparation method thereof Download PDFInfo
- Publication number
- CN116156904A CN116156904A CN202310164910.2A CN202310164910A CN116156904A CN 116156904 A CN116156904 A CN 116156904A CN 202310164910 A CN202310164910 A CN 202310164910A CN 116156904 A CN116156904 A CN 116156904A
- Authority
- CN
- China
- Prior art keywords
- barrier layer
- layer
- mode
- dual
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 152
- 230000033228 biological regulation Effects 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 28
- 239000000969 carrier Substances 0.000 claims abstract description 18
- 238000002347 injection Methods 0.000 claims abstract description 14
- 239000007924 injection Substances 0.000 claims abstract description 14
- 230000001105 regulatory effect Effects 0.000 claims abstract description 10
- 230000005641 tunneling Effects 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims description 25
- 230000007547 defect Effects 0.000 claims description 22
- 238000001704 evaporation Methods 0.000 claims description 22
- 230000008020 evaporation Effects 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 20
- 238000000137 annealing Methods 0.000 claims description 19
- 230000000903 blocking effect Effects 0.000 claims description 19
- 238000004528 spin coating Methods 0.000 claims description 17
- 239000010409 thin film Substances 0.000 claims description 13
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims description 12
- 238000002207 thermal evaporation Methods 0.000 claims description 12
- 238000001548 drop coating Methods 0.000 claims description 11
- 238000005507 spraying Methods 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 11
- -1 poly(3-hexylthiophene-2,5-diyl) Polymers 0.000 claims description 9
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 claims description 9
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 238000005566 electron beam evaporation Methods 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 238000007790 scraping Methods 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 5
- IBMVRGMZLQWAJY-SLZAGEDMSA-N 2-[(2Z)-2-[[20-[(Z)-[1-(dicyanomethylidene)-3-oxoinden-2-ylidene]methyl]-12,12,24,24-tetrakis(5-hexylthiophen-2-yl)-5,9,17,21-tetrathiaheptacyclo[13.9.0.03,13.04,11.06,10.016,23.018,22]tetracosa-1(15),2,4(11),6(10),7,13,16(23),18(22),19-nonaen-8-yl]methylidene]-3-oxoinden-1-ylidene]propanedinitrile Chemical compound CCCCCCc1ccc(s1)C1(c2ccc(CCCCCC)s2)c2cc3-c4sc5cc(\C=C6/C(=O)c7ccccc7C6=C(C#N)C#N)sc5c4C(c4ccc(CCCCCC)s4)(c4ccc(CCCCCC)s4)c3cc2-c2sc3cc(\C=C4/C(=O)c5ccccc5C4=C(C#N)C#N)sc3c12 IBMVRGMZLQWAJY-SLZAGEDMSA-N 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 4
- PDQRQJVPEFGVRK-UHFFFAOYSA-N 2,1,3-benzothiadiazole Chemical compound C1=CC=CC2=NSN=C21 PDQRQJVPEFGVRK-UHFFFAOYSA-N 0.000 claims description 3
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 claims description 3
- 229920000144 PEDOT:PSS Polymers 0.000 claims description 3
- 229910018162 SeO2 Inorganic materials 0.000 claims description 3
- 125000005605 benzo group Chemical group 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- CUONGYYJJVDODC-UHFFFAOYSA-N malononitrile Chemical compound N#CCC#N CUONGYYJJVDODC-UHFFFAOYSA-N 0.000 claims description 3
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 claims description 3
- 238000004886 process control Methods 0.000 claims description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- JPJALAQPGMAKDF-UHFFFAOYSA-N selenium dioxide Chemical compound O=[Se]=O JPJALAQPGMAKDF-UHFFFAOYSA-N 0.000 claims description 3
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 claims description 2
- 230000001276 controlling effect Effects 0.000 claims description 2
- 230000009977 dual effect Effects 0.000 claims 1
- 150000004702 methyl esters Chemical class 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 9
- 239000000243 solution Substances 0.000 abstract description 5
- 230000017525 heat dissipation Effects 0.000 abstract description 4
- 230000015556 catabolic process Effects 0.000 abstract description 3
- 230000003321 amplification Effects 0.000 abstract 1
- 238000003199 nucleic acid amplification method Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000000864 Auger spectrum Methods 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- UUIQMZJEGPQKFD-UHFFFAOYSA-N Methyl butyrate Chemical compound CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Light Receiving Elements (AREA)
Abstract
本发明提供一种基于阻挡层界面调控的双模有机光电二极管及制备方法,包括透明基底层和五层材料结构,五层材料结构包括透明底电极层、第一阻挡层、有机光敏层、第二阻挡层和顶电极层;正向偏压下,阻挡层与光敏层界面处的载流子陷阱引发外电路载流子隧穿注入,器件以PM模式工作,外量子效率高,适用于弱光探测,可避免前置放大电路的使用。反向偏压下,光敏层两侧的阻挡层可阻止外电路载流子的注入,器件以PV模式工作,外量子效率有限,适用于强光探测,可避免高功耗造成的器件散热和击穿等问题。本发明提出了一种通过调控阻挡层界面来制备双模器件的方法,优化了双模器件的光电性能,从而为双模有机光电二极管的制备提供了解决方案。
The invention provides a dual-mode organic photodiode based on barrier layer interface regulation and its preparation method, comprising a transparent base layer and a five-layer material structure, the five-layer material structure comprising a transparent bottom electrode layer, a first barrier layer, an organic photosensitive layer, a second Two barrier layers and the top electrode layer; under forward bias, the carrier traps at the interface between the barrier layer and the photosensitive layer trigger tunneling injection of carriers in the external circuit, the device works in PM mode, with high external quantum efficiency, suitable for weak Light detection can avoid the use of pre-amplification circuit. Under reverse bias, the barrier layers on both sides of the photosensitive layer can prevent the injection of carriers in the external circuit. The device works in PV mode with limited external quantum efficiency. It is suitable for strong light detection and can avoid heat dissipation and heat dissipation caused by high power consumption. Breakdown and other issues. The invention proposes a method for preparing a dual-mode device by regulating the barrier layer interface, optimizes the photoelectric performance of the dual-mode device, and thus provides a solution for the preparation of a dual-mode organic photodiode.
Description
技术领域technical field
本发明属于有机半导体技术领域,具体涉及一种基于阻挡层界面调控的双模有机光电二极管,同时适用于应用于强、弱两种条件的光检测。The invention belongs to the technical field of organic semiconductors, and in particular relates to a dual-mode organic photodiode based on barrier layer interface regulation, which is suitable for light detection under both strong and weak conditions.
背景技术Background technique
信息化的社会对体积越来越小、价格越来越便宜,同时可提供更多功能的高集成度微电子器件的需求日益增加。光电二极管具有体积小、易集成、低暗电流、响应快等优点,被广泛应用于CCD/CMOS阵列等成像系统中。近年来,有机光电二极管具有兼容柔性基底、材料修饰空间大、响应光谱可调、质量轻、利于大面积加工制备等优势而备受关注。In the information-based society, there is an increasing demand for highly integrated microelectronic devices that are smaller in size, cheaper in price, and can provide more functions. Photodiodes have the advantages of small size, easy integration, low dark current, and fast response, and are widely used in imaging systems such as CCD/CMOS arrays. In recent years, organic photodiodes have attracted much attention due to their advantages such as compatible flexible substrates, large material modification space, adjustable response spectrum, light weight, and large-area processing and preparation.
由于光电二极管的整流特性,一般光电二极管器件在正偏压下的暗电流很高且无法保证恒压下亮暗电流的平稳,因而正偏下器件无法用于光信号探测。因此,光电二极管通常在反偏模式下基于光伏(PV)效应实现光信号探测。然而,在PV模式下的器件,其外量子效率(EQE)较低,小于100%,同时光生电流很小;在微弱光信号检测中,CCD/CMOS阵列内的单个像素的光生电流可低至pA级别,因此光电二极管在实际应用中通常结合前置放大电路,导致成像系统结构趋于复杂,并且增加成本。Due to the rectification characteristics of photodiodes, the dark current of general photodiode devices under forward bias is very high, and the stability of bright and dark currents under constant voltage cannot be guaranteed, so forward bias devices cannot be used for optical signal detection. Therefore, photodiodes typically implement light signal detection based on the photovoltaic (PV) effect in reverse bias mode. However, the device in PV mode has low external quantum efficiency (EQE), which is less than 100%, and the photogenerated current is very small; in the detection of weak light signals, the photogenerated current of a single pixel in the CCD/CMOS array can be as low as pA level, so the photodiode is usually combined with a preamplifier circuit in practical applications, which leads to a complex structure of the imaging system and increases the cost.
基于光电倍增(PM)效应工作的PM-OPD,其EQE远大于100%,对微弱光信号的检测能力更强,同时无需前置放大电路,进一步满足了成像系统集成化和小型化的要求。如今,PM-OPD的EQE往往可以达到105%。这也意味着在PM模式器件的光电流比PV模式高出几个数量级,但是驱动器件工作于PM模式通常需要较高的偏压,这将使系统的功耗大大增加。尤其是在检测较强光信号时,高功耗造成的抗击穿和散热等问题对基于有机光敏层的OPD器件是不容忽视的。The PM-OPD based on the photomultiplier (PM) effect has an EQE far greater than 100%, and has a stronger detection ability for weak light signals. At the same time, it does not require a preamplifier circuit, which further meets the requirements of imaging system integration and miniaturization. Nowadays, the EQE of PM-OPD can often reach 10 5 %. This also means that the photocurrent of the device in PM mode is several orders of magnitude higher than that in PV mode, but driving the device to work in PM mode usually requires a higher bias voltage, which will greatly increase the power consumption of the system. Especially when detecting strong optical signals, problems such as breakdown resistance and heat dissipation caused by high power consumption cannot be ignored for OPD devices based on organic photosensitive layers.
综上所述,不论是PV型器件还是PM型器件,由于其单一工作模式的局限性,难以调和日益增加的多场景应用需求与高集成度的冲突。To sum up, whether it is a PV-type device or a PM-type device, due to the limitation of its single working mode, it is difficult to reconcile the conflict between the increasing requirements of multi-scenario applications and high integration.
发明内容Contents of the invention
为了解决上述存在的问题,本发明的目的在于提供一种基于阻挡层界面调控的双模有机光电二极管,以解决现阶段有机光电二极管因工作模式单一导致的应用局限性问题。In order to solve the above existing problems, the purpose of the present invention is to provide a dual-mode organic photodiode based on barrier layer interface regulation, so as to solve the application limitation problem caused by the single working mode of organic photodiodes at the present stage.
为实现上述目的,本发明采用的技术方案如下:To achieve the above object, the technical scheme adopted in the present invention is as follows:
一种基于阻挡层界面调控的双模有机光电二极管,包括底部的透明基底1、透明基底1上方的五层材料结构,五层材料结构包括:透明底电极层2、第一阻挡层3、有机光敏层4、第二阻挡层5、顶电极层6;A dual-mode organic photodiode based on barrier layer interface regulation, including a
其中,透明底电极层2覆盖透明基底1的半个上表面,透明底电极层2的上表面以及未被透明底电极层2覆盖的透明基底1上表面被第一阻挡层3覆盖,第一阻挡层3上方依次为有机光敏层4、第二阻挡层5、顶电极层6;Wherein, the transparent
第一阻挡层3和/或第二阻挡层5,与有机光敏层4的界面处具有用于堆积载流子的载流子陷阱;在正向偏压下,第一阻挡层3和/或第二阻挡层5与有机光敏层4界面处的载流子陷阱引发外电路载流子隧穿注入,使所述基于阻挡层界面调控的双模有机光电二极管以PM模式工作;在反向偏压下,有机光敏层4上下两侧的第一阻挡层3和第二阻挡层5阻止外电路载流子的注入,使所述基于阻挡层界面调控的双模有机光电二极管以PV模式工作。The interface between the first barrier layer 3 and/or the second barrier layer 5 and the organic photosensitive layer 4 has a carrier trap for accumulating carriers; under forward bias, the first barrier layer 3 and/or The carrier trap at the interface between the second barrier layer 5 and the organic photosensitive layer 4 induces tunneling injection of external circuit carriers, so that the dual-mode organic photodiode regulated based on the barrier layer interface works in PM mode; in reverse bias Pressing down, the first barrier layer 3 and the second barrier layer 5 on the upper and lower sides of the organic photosensitive layer 4 prevent the injection of external circuit carriers, so that the dual-mode organic photodiode based on barrier layer interface regulation works in PV mode.
作为优选方式,所述有机光敏层包含一种或多种有机半导体材料。As a preferred manner, the organic photosensitive layer contains one or more organic semiconductor materials.
作为优选方式,所述有机光敏层的材料选自:聚([2,6-4,8-双-((2-乙基己基)-噻吩-5-基)苯并[1,2-B(PBDB-T),聚[(2,6-(4,8-双(5-(2-乙基己基-3-氟)噻吩-2-基)-苯并[1,2-B:4,5-B']二噻吩])-ALT-(5,5-(1',3'-二-2-噻吩-5',7'-双(2-乙基己基)苯并[1',2'-C:4',5'-C']二噻吩-4,8-二酮)(PM6),聚(3-己基噻吩-2,5-二基)(P3HT),3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(5-hexylthienyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene(ITIC-Th),2,2'-((12,13-双(2-乙基己基)-12,13-二氢-3,9-二十一烷基bisthieno[2”,3”:4',5']thieno[2',3':4,5]pyrrolo[3,2-e:2',3'-g][2,1,3]benzothiadiazole-2,10-二基)双(次甲基(5,6-二氟-3-氧代-1H-茚-2,1(3H)-二亚基)))双(丙二腈)(Y6),[6,6]-苯基C61丁酸甲酯1-[3-(甲氧羰基)丙基]-1-苯基-[6.6]C613′H-环丙[1,9][5,6]富勒烯-C60-IH-3′-丁酸3′-苯甲酯3-苯基-3H-环丙[1,9][5,6]富勒烯-C60-IH-3-丁酸甲酯(PC61BM)其中一种或多种。As a preferred mode, the material of the organic photosensitive layer is selected from: poly([2,6-4,8-bis-((2-ethylhexyl)-thiophen-5-yl)benzo[1,2-B (PBDB-T), poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-B:4 ,5-B']dithiophene])-ALT-(5,5-(1',3'-di-2-thiophene-5',7'-bis(2-ethylhexyl)benzo[1' ,2'-C:4',5'-C']dithiophene-4,8-dione) (PM6), poly(3-hexylthiophene-2,5-diyl)(P3HT),3,9 -bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(5-hexylthienyl)-dithieno[2,3-d:2',3' -d']-s-indaceno[1,2-b:5,6-b']dithiophene(ITIC-Th),2,2'-((12,13-bis(2-ethylhexyl)-12 ,13-dihydro-3,9-unicosyl bisthieno[2",3":4',5']thieno[2',3':4,5]pyrrolo[3,2-e:2 ',3'-g][2,1,3]benzothiadiazole-2,10-diyl)bis(methine(5,6-difluoro-3-oxo-1H-indene-2,1(3H )-diylidene)))bis(malononitrile)(Y6),[6,6]-phenyl C61 butyric acid methyl ester 1-[3-(methoxycarbonyl)propyl]-1-phenyl- [6.6]C613'H-cyclopropane[1,9][5,6]fullerene-C60-IH-3'-butyric acid 3'-benzyl ester 3-phenyl-3H-cyclopropane[1, 9] One or more of [5,6]fullerene-C60-IH-3-butyric acid methyl ester (PC61BM).
作为优选方式,阻挡层的制备过程为:将阻挡层材料通过蒸镀、刮涂、滴涂、旋涂或喷涂工艺,使第一阻挡层覆于底电极层上表面形成薄膜,第二阻挡层覆于有机光敏层上表面形成薄膜,再进行蒸镀工艺调控处理、材料掺杂、纳米压印、模板生长、热退火或溶剂退火,使第一阻挡层上表面和/或第二阻挡层下表面形成化学态缺陷或形貌缺陷。As a preferred mode, the preparation process of the barrier layer is as follows: the barrier layer material is deposited on the upper surface of the bottom electrode layer to form a thin film by evaporation, scraping, drop coating, spin coating or spraying process, and the second barrier layer Cover the upper surface of the organic photosensitive layer to form a thin film, and then perform evaporation process control treatment, material doping, nanoimprinting, template growth, thermal annealing or solvent annealing, so that the upper surface of the first barrier layer and/or the lower surface of the second barrier layer Chemical state defects or morphology defects are formed on the surface.
作为优选方式,所述化学态缺陷或形貌缺陷的调控方法包括:调控制备阻挡层的蒸发速率,或调控掺杂材料,或退火处理。As a preferred manner, the method for regulating the chemical state defect or the morphology defect includes: regulating the evaporation rate for preparing the barrier layer, or regulating the doping material, or annealing treatment.
作为优选方式,所述第一阻挡层和第二阻挡层为电子阻挡层或空穴阻挡层,电子阻挡层材料选自MoO3、PVK、poly-TPD、P3HT和PEDOT:PSS,所述空穴阻挡层材料选自ZnO、TiO2、PEIE、PEIE-Zn、LiF和SeO2。As a preferred mode, the first blocking layer and the second blocking layer are electron blocking layers or hole blocking layers, and the material of the electron blocking layer is selected from MoO3, PVK, poly-TPD, P3HT and PEDOT:PSS, and the hole blocking layer The layer material is selected from ZnO, TiO2, PEIE, PEIE-Zn, LiF and SeO2.
作为优选方式,所述有机光敏层4的厚度为100nm~2000nm。As a preferred manner, the thickness of the organic photosensitive layer 4 is 100nm-2000nm.
本发明还提供一种所基于阻挡层界面调控的双模有机光电二极管的制备方法,包括如下步骤:The present invention also provides a method for preparing a dual-mode organic photodiode based on barrier layer interface regulation, comprising the following steps:
步骤1、在透明基底上,通过磁控溅射、或热蒸发、或电子束蒸发方法沉积透明底电极;
步骤2、对透明底电极进行清洗,去除杂质;
步骤3、将阻挡层材料通过蒸镀、或刮涂、或滴涂、或旋涂或喷涂工艺,使第一阻挡层覆于底电极层上表面形成薄膜,再进行蒸镀工艺调控处理、材料掺杂、纳米压印、模板生长、热退火或溶剂退火,使第一阻挡层上表面和/或第二阻挡层下表面形成化学态缺陷或缺陷形貌;Step 3. Apply the material of the barrier layer by evaporation, or scrape coating, or drop coating, or spin coating or spraying process, so that the first barrier layer is coated on the upper surface of the bottom electrode layer to form a thin film, and then the evaporation process is controlled and processed, and the material Doping, nanoimprinting, template growth, thermal annealing or solvent annealing to form chemical state defects or defect morphology on the upper surface of the first barrier layer and/or the lower surface of the second barrier layer;
步骤4、将有机光敏层材料通过旋涂、或蒸镀、或刮涂、或滴涂、或喷涂工艺,使有机光敏层覆于第一阻挡层上表面;Step 4, the organic photosensitive layer is coated on the upper surface of the first barrier layer by spin coating, or evaporation, or scraping, or drop coating, or spraying process;
步骤5、将阻挡层材料通过蒸镀、或刮涂、或滴涂、或旋涂或喷涂工艺,使第一阻挡层覆于底电极层上表面形成薄膜;Step 5, apply the barrier layer material by evaporation, or scrape coating, or drop coating, or spin coating or spraying process, so that the first barrier layer is coated on the upper surface of the bottom electrode layer to form a thin film;
步骤6、通过磁控溅射、或热蒸发、或电子束蒸发方法沉积顶电极。
本发明的有益效果为:The beneficial effects of the present invention are:
本发明提供的一种基于阻挡层界面调控的双模有机光电二极管,具有光伏(PV)和光电倍增(PM)两种工作模式,通过控制外加偏压的方向进行模式切换,从而满足强弱光检测的多场景应用需求。反向偏压下,有机光敏层两侧的阻挡层可阻止外电路载流子的注入,使所述双模有机光电二极管以PV模式工作,此时外量子效率有限且光生电流较小,适用于强光条件探测,可避免高功耗造成的器件击穿和散热等问题。正向偏压下,阻挡层与有机光敏层界面处的载流子陷阱引发外电路的载流子隧穿注入,使所述双模有机光电二极管以PM模式工作,此时外量子效率高且光生电流较大,适用于弱光条件探测,可避免前置放大电路的使用。The invention provides a dual-mode organic photodiode based on barrier layer interface regulation, which has two working modes of photovoltaic (PV) and photomultiplier (PM), and the mode switching is performed by controlling the direction of the applied bias voltage, so as to meet the requirements of strong and weak light. Multi-scenario application requirements for testing. Under reverse bias, the barrier layers on both sides of the organic photosensitive layer can prevent the injection of external circuit carriers, so that the dual-mode organic photodiode works in PV mode. At this time, the external quantum efficiency is limited and the photogenerated current is small, which is suitable for It is suitable for detection under strong light conditions, which can avoid problems such as device breakdown and heat dissipation caused by high power consumption. Under forward bias, the carrier trap at the interface between the barrier layer and the organic photosensitive layer induces carrier tunneling injection in the external circuit, so that the dual-mode organic photodiode works in PM mode. At this time, the external quantum efficiency is high and The photogenerated current is large, which is suitable for detection in weak light conditions and can avoid the use of preamplification circuits.
附图说明Description of drawings
图1为本发明中基于阻挡层界面调控的双模有机光电二极管的器件结构示意图;Fig. 1 is the device structure schematic diagram of the dual-mode organic photodiode based on barrier layer interface control in the present invention;
图2为实施例1和对照组制备的双模有机光电二极管中第一阻挡层上表面XPS表征分析图;2 is an XPS characterization analysis diagram of the upper surface of the first barrier layer in the dual-mode organic photodiode prepared in Example 1 and the control group;
图3为实施例1制备的双模有机光电二极管工作原理图;Fig. 3 is the working principle diagram of the dual-mode organic photodiode prepared in
图4为实施例1和对照组制备的双模有机光电二极管EQE光谱响应图。Fig. 4 is the EQE spectral response graph of the dual-mode organic photodiode prepared in Example 1 and the control group.
图5为实施例2、实施例1和对照组制备的双模有机光电二极管EQE光谱响应图。Fig. 5 is the EQE spectral response graph of the dual-mode organic photodiode prepared in Example 2, Example 1 and the control group.
1为透明基底,2为透明底电极层,3为第一阻挡层,4为有机光敏层,5为第二阻挡层,6为顶电极层。1 is a transparent substrate, 2 is a transparent bottom electrode layer, 3 is a first barrier layer, 4 is an organic photosensitive layer, 5 is a second barrier layer, and 6 is a top electrode layer.
具体实施方式Detailed ways
以下将通过特定实施例说明本发明的具体实施方式,本领域的技术人员可据此对本发明的目的、技术方案、优点与功效有清晰的理解。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例;基于本说明书中的实施例,本领域普通技术人员在没有做出创造性改变前提下所获得的所有其他实施例,也属于本发明保护的范围。Specific embodiments of the present invention will be described below through specific examples, based on which those skilled in the art can have a clear understanding of the purpose, technical solutions, advantages and effects of the present invention. Obviously, the described embodiments are some embodiments of the present invention, rather than all embodiments; based on the embodiments in this specification, all other embodiments obtained by those skilled in the art without making creative changes , also belong to the protection scope of the present invention.
实施例提供基于阻挡层界面调控的双模有机光电二极管,包括底部的透明基底1、透明基底1上方的五层材料结构,五层材料结构包括:透明底电极层2、第一阻挡层3、有机光敏层4、第二阻挡层5、顶电极层6;The embodiment provides a dual-mode organic photodiode based on barrier layer interface regulation, including a
其中,透明底电极层2覆盖透明基底1的半个上表面,透明底电极层2的上表面以及未被透明底电极层2覆盖的透明基底1上表面被第一阻挡层3覆盖,第一阻挡层3上方依次为有机光敏层4、第二阻挡层5、顶电极层6;Wherein, the transparent
第一阻挡层3和/或第二阻挡层5,与有机光敏层4的界面处具有用于堆积载流子的载流子陷阱;在正向偏压下,第一阻挡层3和/或第二阻挡层5与有机光敏层4界面处的载流子陷阱引发外电路载流子隧穿注入,使所述基于阻挡层界面调控的双模有机光电二极管以PM模式工作;在反向偏压下,有机光敏层4上下两侧的第一阻挡层3和第二阻挡层5阻止外电路载流子的注入,使所述基于阻挡层界面调控的双模有机光电二极管以PV模式工作。The interface between the first barrier layer 3 and/or the second barrier layer 5 and the organic photosensitive layer 4 has a carrier trap for accumulating carriers; under forward bias, the first barrier layer 3 and/or The carrier trap at the interface between the second barrier layer 5 and the organic photosensitive layer 4 induces tunneling injection of external circuit carriers, so that the dual-mode organic photodiode regulated based on the barrier layer interface works in PM mode; in reverse bias Pressing down, the first barrier layer 3 and the second barrier layer 5 on the upper and lower sides of the organic photosensitive layer 4 prevent the injection of external circuit carriers, so that the dual-mode organic photodiode based on barrier layer interface regulation works in PV mode.
在一些实施例中,所述有机光敏层包含一种或多种有机半导体材料。In some embodiments, the organic photosensitive layer includes one or more organic semiconductor materials.
在一些实施例中,所述有机光敏层的材料选自:聚([2,6-4,8-双-((2-乙基己基)-噻吩-5-基)苯并[1,2-B(PBDB-T),聚[(2,6-(4,8-双(5-(2-乙基己基-3-氟)噻吩-2-基)-苯并[1,2-B:4,5-B']二噻吩])-ALT-(5,5-(1',3'-二-2-噻吩-5',7'-双(2-乙基己基)苯并[1',2'-C:4',5'-C']二噻吩-4,8-二酮)(PM6),聚(3-己基噻吩-2,5-二基)(P3HT),3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanon e))-5,5,11,11-tetrakis(5-hexylthienyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene(ITIC-Th),2,2'-((12,13-双(2-乙基己基)-12,13-二氢-3,9-二十一烷基bisthieno[2”,3”:4',5']thien o[2',3':4,5]pyrrolo[3,2-e:2',3'-g][2,1,3]benzothiadiazole-2,10-二基)双(次甲基(5,6-二氟-3-氧代-1H-茚-2,1(3H)-二亚基)))双(丙二腈)(Y6),[6,6]-苯基C61丁酸甲酯1-[3-(甲氧羰基)丙基]-1-苯基-[6.6]C613′H-环丙[1,9][5,6]富勒烯-C60-IH-3′-丁酸3′-苯甲酯3-苯基-3H-环丙[1,9][5,6]富勒烯-C60-IH-3-丁酸甲酯(PC61BM)其中一种或多种。In some embodiments, the material of the organic photosensitive layer is selected from: poly([2,6-4,8-bis-((2-ethylhexyl)-thiophen-5-yl)benzo[1,2 -B(PBDB-T), poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-B :4,5-B']dithiophene])-ALT-(5,5-(1',3'-di-2-thiophene-5',7'-bis(2-ethylhexyl)benzo[ 1',2'-C:4',5'-C']dithiophene-4,8-dione) (PM6), poly(3-hexylthiophene-2,5-diyl)(P3HT),3 ,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(5-hexylthienyl)-dithieno[2,3-d:2' ,3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene(ITIC-Th),2,2'-((12,13-bis(2-ethylhexyl )-12,13-dihydro-3,9-eicosyl bisthieno[2",3":4',5']thien o[2',3':4,5]pyrrolo[3,2 -e:2',3'-g][2,1,3]benzothiadiazole-2,10-diyl)bis(methine(5,6-difluoro-3-oxo-1H-indene-2 ,1(3H)-diylidene)))bis(malononitrile)(Y6),[6,6]-phenyl C61 methyl butanoate 1-[3-(methoxycarbonyl)propyl]-1 -Phenyl-[6.6]C61 3′H-cyclopropane[1,9][5,6]fullerene-C60-IH-3′-butyric acid 3′-benzyl ester 3-phenyl-3H-cyclo One or more of propane[1,9][5,6]fullerene-C60-IH-3-butyric acid methyl ester (PC61BM).
在一些实施例中,阻挡层的制备过程为:将阻挡层材料通过蒸镀、刮涂、滴涂、旋涂或喷涂工艺,使第一阻挡层覆于底电极层上表面形成薄膜,第二阻挡层覆于有机光敏层上表面形成薄膜,再进行蒸镀工艺调控处理、材料掺杂、纳米压印、模板生长、热退火或溶剂退火,使第一阻挡层上表面和/或第二阻挡层下表面形成化学态缺陷或形貌缺陷。In some embodiments, the preparation process of the barrier layer is as follows: the material of the barrier layer is deposited on the upper surface of the bottom electrode layer to form a thin film by evaporation, scraping, drop coating, spin coating or spraying process, and the second The barrier layer is coated on the upper surface of the organic photosensitive layer to form a thin film, and then the evaporation process control treatment, material doping, nanoimprinting, template growth, thermal annealing or solvent annealing are performed to make the upper surface of the first barrier layer and/or the second barrier layer Chemical state defects or morphology defects are formed on the lower surface of the layer.
在一些实施例中,所述化学态缺陷或形貌缺陷的调控方法包括:调控制备阻挡层的蒸发速率,或调控掺杂材料,或退火处理。In some embodiments, the method for adjusting the chemical state defect or the shape defect includes: adjusting the evaporation rate for preparing the barrier layer, or adjusting the doping material, or annealing treatment.
在一些实施例中,所述第一阻挡层和第二阻挡层为电子阻挡层或空穴阻挡层,电子阻挡层材料选自MoO3、PVK、poly-TPD、P3HT和PEDOT:PSS,所述空穴阻挡层材料选自ZnO、TiO2、PEIE、PEIE-Zn、LiF和SeO2。In some embodiments, the first blocking layer and the second blocking layer are an electron blocking layer or a hole blocking layer, and the material of the electron blocking layer is selected from MoO3, PVK, poly-TPD, P3HT and PEDOT:PSS, and the hole The hole blocking layer material is selected from ZnO, TiO2, PEIE, PEIE-Zn, LiF and SeO2.
在一些实施例中,所述有机光敏层4的厚度为100nm~2000nm。In some embodiments, the thickness of the organic photosensitive layer 4 is 100nm-2000nm.
在一些实施例中,所述的基于阻挡层界面调控的双模有机光电二极管的制备方法,包括如下步骤:In some embodiments, the preparation method of the dual-mode organic photodiode based on barrier layer interface regulation includes the following steps:
步骤1、在透明基底上,通过磁控溅射、或热蒸发、或电子束蒸发方法沉积透明底电极;
步骤2、对透明底电极进行清洗,去除杂质;
步骤3、将阻挡层材料通过蒸镀、或刮涂、或滴涂、或旋涂或喷涂工艺,使第一阻挡层覆于底电极层上表面形成薄膜,再进行蒸镀工艺调控处理、材料掺杂、纳米压印、模板生长、热退火或溶剂退火,使第一阻挡层上表面和/或第二阻挡层下表面形成化学态缺陷或缺陷形貌;Step 3. Apply the material of the barrier layer by evaporation, or scrape coating, or drop coating, or spin coating or spraying process, so that the first barrier layer is coated on the upper surface of the bottom electrode layer to form a thin film, and then the evaporation process is controlled and processed, and the material Doping, nanoimprinting, template growth, thermal annealing or solvent annealing to form chemical state defects or defect morphology on the upper surface of the first barrier layer and/or the lower surface of the second barrier layer;
步骤4、将有机光敏层材料通过旋涂、或蒸镀、或刮涂、或滴涂、或喷涂工艺,使有机光敏层覆于第一阻挡层上表面;Step 4, the organic photosensitive layer is coated on the upper surface of the first barrier layer by spin coating, or evaporation, or scraping, or drop coating, or spraying process;
步骤5、将阻挡层材料通过蒸镀、或刮涂、或滴涂、或旋涂或喷涂工艺,使第一阻挡层覆于底电极层上表面形成薄膜;Step 5, apply the barrier layer material by evaporation, or scrape coating, or drop coating, or spin coating or spraying process, so that the first barrier layer is coated on the upper surface of the bottom electrode layer to form a thin film;
步骤6、通过磁控溅射、或热蒸发、或电子束蒸发方法沉积顶电极。
实施例1Example 1
本实施例提供的基于阻挡层界面调控的双模有机光电二极管,其结构如图1所示,包括底部的透明基底1、透明基底1上方的五层材料结构,五层材料结构包括:透明底电极层2、第一阻挡层3、有机光敏层4、第二阻挡层5、顶电极层6;The structure of the dual-mode organic photodiode based on barrier layer interface control provided in this embodiment is shown in Figure 1, including a
其中,透明底电极层2覆盖透明基底1的半个上表面,透明底电极层2的上表面以及未被透明底电极层2覆盖的透明基底1上表面被第一阻挡层3覆盖,第一阻挡层3上方依次为有机光敏层4、第二阻挡层5、顶电极层6;Wherein, the transparent
第一阻挡层3和/或第二阻挡层5,与有机光敏层4的界面处具有用于堆积载流子的载流子陷阱;在正向偏压下,第一阻挡层3和/或第二阻挡层5与有机光敏层4界面处的载流子陷阱引发外电路载流子隧穿注入,使所述基于阻挡层界面调控的双模有机光电二极管以PM模式工作;在反向偏压下,有机光敏层4上下两侧的第一阻挡层3和第二阻挡层5阻止外电路载流子的注入,使所述基于阻挡层界面调控的双模有机光电二极管以PV模式工作。The interface between the first barrier layer 3 and/or the second barrier layer 5 and the organic photosensitive layer 4 has a carrier trap for accumulating carriers; under forward bias, the first barrier layer 3 and/or The carrier trap at the interface between the second barrier layer 5 and the organic photosensitive layer 4 induces tunneling injection of external circuit carriers, so that the dual-mode organic photodiode regulated based on the barrier layer interface works in PM mode; in reverse bias Pressing down, the first barrier layer 3 and the second barrier layer 5 on the upper and lower sides of the organic photosensitive layer 4 prevent the injection of external circuit carriers, so that the dual-mode organic photodiode based on barrier layer interface regulation works in PV mode.
上述基于阻挡层界面调控的双模有机光电二极管,采用反型结构,具体制备方法包括下列步骤:The above-mentioned dual-mode organic photodiode based on barrier layer interface regulation adopts an inverse structure, and the specific preparation method includes the following steps:
步骤1、在透明玻璃基底上,通过磁控溅射沉积厚度为150nm的氧化铟锡(ITO)薄膜;
步骤2、将沉积有ITO薄膜的基底依次浸没于洗涤剂、去离子水、丙酮、异丙醇分别超声清洗15分钟后,用氮气枪吹干,并对电极表面进行20分钟紫外臭氧清洗处理,得到透明导电电极;
步骤3、本实施例中第一阻挡层作为空穴阻挡层,为ZnO薄膜;使用200目的ZnO粉末,在气压小于1x10-4Pa的真空条件下进行热蒸发,基片台旋转速率11RPM,蒸发速率控制在0.03nm/s,总膜厚20nm。ZnO在热蒸发的高温条件下,发生元素失配,制备得到的ZnO薄膜将混杂少量单质态的Zn,由此引入化学态缺陷,作为阻挡层和有机光敏层界面处的载流子陷阱,对照组的ZnO阻挡层薄膜不具有载流子陷阱。Step 3. In this embodiment, the first barrier layer is used as a hole barrier layer, which is a ZnO thin film; use 200 mesh ZnO powder, and perform thermal evaporation under a vacuum condition with an air pressure less than 1x10 -4 Pa, and the rotation rate of the substrate stage is 11RPM. The rate is controlled at 0.03nm/s, and the total film thickness is 20nm. Under the high temperature conditions of thermal evaporation of ZnO, element mismatch occurs, and the prepared ZnO film will be mixed with a small amount of Zn in a single state, thereby introducing chemical state defects, which serve as carrier traps at the interface between the barrier layer and the organic photosensitive layer. The group of ZnO barrier films does not have carrier traps.
步骤4、采用有机半导体材料PBDB-T和ITIC-Th作为有机光敏层材料,按质量比1:1的比例溶于有机溶剂氯苯中,溶液总浓度为30mg/ml,将溶液放置在50℃的加热搅拌台上搅拌12h以上。在氮气氛围下,使用旋涂工艺在ZnO空穴阻挡层表面制备有机光敏层,旋涂转速2000rpm,加速度10000rpm/s,时间40s,并在氮气氛围下110℃退火10min,所得有机光敏层厚度约为200nm。Step 4. Use organic semiconductor materials PBDB-T and ITIC-Th as organic photosensitive layer materials, dissolve them in the organic solvent chlorobenzene at a mass ratio of 1:1, the total concentration of the solution is 30mg/ml, and place the solution at 50°C Stirring on a heated stirring table for more than 12h. In a nitrogen atmosphere, an organic photosensitive layer was prepared on the surface of the ZnO hole blocking layer by a spin-coating process. The spin-coating speed was 2000rpm, the acceleration was 10000rpm/s, and the time was 40s. It was annealed at 110°C for 10min under a nitrogen atmosphere. The thickness of the obtained organic photosensitive layer was about 200nm.
步骤5、本实施例中第二阻挡层作为电子阻挡层,材料采用MoO3,厚度为10nm,采用真空热蒸发法制备在有机光敏层上表面,蒸镀压强小于1x10-4Pa。Step 5. In this embodiment, the second blocking layer is used as the electron blocking layer, and the material is MoO 3 with a thickness of 10nm. It is prepared on the upper surface of the organic photosensitive layer by vacuum thermal evaporation, and the evaporation pressure is less than 1×10 -4 Pa.
步骤6、本实施例中顶电极层,在步骤5所得电子阻挡层表面采用真空热蒸发法制备,电极材料为金属银(Ag),蒸镀压强小于1x10-4 Pa,薄膜厚度为100nm。
按照上述步骤制备对照组,对照组的器件结构与实施例1相同,但是对照组的第一阻挡层采用旋涂工艺制备:将ZnO前驱体溶液旋涂于透明底电极上,旋涂转速4000rpm,加速度10000rpm/s,时间40s;在大气环境下进行热退火处理,热退火温度200℃,时间30min。因此,阻挡层与有机光敏层界面处不制备载流子陷阱。Prepare the control group according to the above steps, the device structure of the control group is the same as that of Example 1, but the first barrier layer of the control group is prepared by a spin coating process: the ZnO precursor solution is spin coated on the transparent bottom electrode, and the spin coating speed is 4000rpm. The acceleration is 10000rpm/s, the time is 40s; the thermal annealing treatment is carried out in the atmospheric environment, the thermal annealing temperature is 200°C, and the time is 30min. Therefore, no carrier trap is formed at the interface between the blocking layer and the organic photosensitive layer.
图2为本发明基于阻挡层界面调控的双模有机光电二极管及其对照组器件盾斧阻挡层XPS表征结果分析图,如图2所示,实施例1组采用真空热蒸发法制备的阻挡层中,Zn的俄歇谱包含ZnO和Zn两种谱峰;而对照组采用旋涂工艺制备的阻挡层中,Zn的俄歇谱仅包含ZnO一种谱峰。这说明真空热蒸发制备的ZnO薄膜中具有游离态的Zn作为化学态缺陷在倍增过程中起作用,而对照组旋涂法制备的ZnO薄膜则不具有这种缺陷。Fig. 2 is the XPS characterization result analysis diagram of the dual-mode organic photodiode based on the interface regulation of the barrier layer and its control group device shield ax barrier layer of the present invention, as shown in Fig. 2, the barrier layer prepared by the vacuum thermal evaporation method in Example 1 group Among them, the Auger spectrum of Zn contains two peaks of ZnO and Zn; while in the barrier layer prepared by spin coating process in the control group, the Auger spectrum of Zn only contains one peak of ZnO. This shows that the free Zn in the ZnO film prepared by vacuum thermal evaporation plays a role in the multiplication process as a chemical state defect, while the ZnO film prepared by the control spin coating method does not have this defect.
本发明的机理如下:通过调控阻挡层与有机光敏层的界面,在界面上形成载流子陷阱,使光生载流子在阻挡层与有机光敏层界面处被载流子陷阱束缚,进而引发外电路载流子的隧穿注入。以具有第一阻挡层与有机光敏层界面的载流子陷阱的器件为例,如图3所示,实施例1的基于阻挡层界面调控的双模有机光电二极管在反向偏压下,由于MoO3阻挡层和ZnO阻挡层的能级阻挡,此时器件具有较低的暗电流;光照条件下,有机光敏层中的光生电子/空穴分别被ITO/Ag电极采集以产生光生电流,此时器件在PV模式工作。在正向偏压下,由于阻挡层与有机光敏层界面处载流子的传输受阻,相较于对照组阻挡层与有机光敏层界面处无载流子陷阱的器件,其暗电流降低;光照条件下,阻挡层与有机光敏层界面处的载流子陷阱和ZnO层的阻挡,使得光生空穴被俘于ZnO/有机光敏层界面,光生电子被MoO3层阻挡,然后聚集在有机光敏层/MoO3界面;随着光生空穴在阻挡层与有机光敏层界面处被俘而不断累积,增强了界面能带的弯曲,最终引发电子隧穿注入,从而产生PM效应。因此,实施例1的基于阻挡层界面调控的双模有机光电二极管可以在反向偏压和正向偏压下分别以PV和PM模式工作。The mechanism of the present invention is as follows: by regulating the interface between the barrier layer and the organic photosensitive layer, carrier traps are formed on the interface, so that the photogenerated carriers are bound by the carrier traps at the interface between the barrier layer and the organic photosensitive layer, thereby triggering external Tunneling injection of circuit carriers. Taking a device with a carrier trap at the interface between the first barrier layer and the organic photosensitive layer as an example, as shown in Figure 3, the dual-mode organic photodiode based on the interface regulation of the barrier layer in Example 1 under reverse bias, due to The energy levels of the MoO3 barrier layer and the ZnO barrier layer are blocked, and the device has a lower dark current at this time; under the condition of light, the photogenerated electrons/holes in the organic photosensitive layer are respectively collected by the ITO/Ag electrode to generate a photogenerated current. The device operates in PV mode. Under forward bias, because the transport of carriers at the interface between the barrier layer and the organic photosensitive layer is hindered, compared with the control device without carrier traps at the interface between the barrier layer and the organic photosensitive layer, the dark current is reduced; Under the conditions, the carrier trap at the interface between the barrier layer and the organic photosensitive layer and the blocking of the ZnO layer make the photogenerated holes trapped at the ZnO/organic photosensitive layer interface, and the photogenerated electrons are blocked by the MoO3 layer, and then gather in the organic photosensitive layer/ MoO3 interface; as the photogenerated holes are captured and accumulated at the interface between the barrier layer and the organic photosensitive layer, the bending of the interface energy band is enhanced, and finally electron tunneling injection is induced, thereby producing the PM effect. Therefore, the dual-mode organic photodiode based on barrier layer interface modulation in Example 1 can work in PV and PM modes under reverse bias and forward bias, respectively.
下面通过具体的试验数据对本发明的技术效果进行验证:Technical effect of the present invention is verified below by concrete test data:
对实施例1的基于阻挡层界面调控的双模有机光电二极管及其对照组器件进行测试,测试波段为300~800nm。由图4可知,实施例1的双模有机光电二极管器件在-0.5V偏压以PV模式工作,此时EQE低于100%;在+2V偏压下,器件则可获得超过100%的EQE,以PM模式工作。而对照组器件只能在反向偏压下以PV模式进行工作。The dual-mode organic photodiode based on barrier layer interface regulation in Example 1 and its control device were tested, and the test wavelength range was 300-800 nm. It can be seen from Figure 4 that the dual-mode organic photodiode device of Example 1 works in PV mode at -0.5V bias, at this time the EQE is lower than 100%; at +2V bias, the device can obtain more than 100% EQE , work in PM mode. The control device can only operate in PV mode under reverse bias.
实施例2Example 2
实施例2与实施例1的区别在于,在有机光敏层与第二阻挡层界面处也添加了载流子陷阱,且该种载流子陷阱形成的工艺与实施例1不同,采用热退火的方式形成界面缺陷。实施例2中,第一阻挡层与有机光敏层界面,有机光敏层与第二阻挡层界面都存在载流子陷阱;对照组中,有且只有热退火形成的有机光敏层与第二阻挡层界面处的载流子陷阱。具体实验数据如图5所示,取得了超过只含有其中任一种类载流子陷阱器件的PM模式性能。The difference between Example 2 and Example 1 is that carrier traps are also added at the interface between the organic photosensitive layer and the second barrier layer, and the process for forming the carrier traps is different from that of Example 1. Thermal annealing is used. form interface defects. In Example 2, there are carrier traps at the interface between the first barrier layer and the organic photosensitive layer, and at the interface between the organic photosensitive layer and the second barrier layer; in the control group, there are and only the organic photosensitive layer formed by thermal annealing and the second barrier layer Carrier traps at the interface. The specific experimental data are shown in Fig. 5, and the performance of the PM mode exceeds that of the device containing only any one of the carrier traps.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection scope of the present invention within.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310164910.2A CN116156904A (en) | 2023-02-24 | 2023-02-24 | Dual-mode organic photodiode based on barrier layer interface regulation and control and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310164910.2A CN116156904A (en) | 2023-02-24 | 2023-02-24 | Dual-mode organic photodiode based on barrier layer interface regulation and control and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116156904A true CN116156904A (en) | 2023-05-23 |
Family
ID=86373332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310164910.2A Pending CN116156904A (en) | 2023-02-24 | 2023-02-24 | Dual-mode organic photodiode based on barrier layer interface regulation and control and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116156904A (en) |
-
2023
- 2023-02-24 CN CN202310164910.2A patent/CN116156904A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107591484B (en) | A kind of multiplication type organic photodetector having both narrowband and broadband light detectivity | |
US9741901B2 (en) | Two-terminal electronic devices and their methods of fabrication | |
US6670213B2 (en) | Method of preparing photoresponsive devices, and devices made thereby | |
Wang et al. | Spin‐On‐Patterning of Sn–Pb Perovskite Photodiodes on IGZO Transistor Arrays for Fast Active‐Matrix Near‐Infrared Imaging | |
CN106025070A (en) | Photomultiplier organic light detector with spectral selectivity and preparation method of photomultiplier organic light detector | |
KR102174703B1 (en) | Organic solar cells comprising optical defensive double carrier transport layer and manufacturing method thereof | |
CN114284436B (en) | Organic-inorganic hybrid short-wave infrared photoelectric detector, array formed by same and related preparation method | |
CN105720197A (en) | Self-driven wide-spectral-response silicon-based hybrid heterojunction photoelectric sensor and preparation method therefor | |
WO2017115646A1 (en) | Photoelectric conversion element and imaging device | |
CN105977336A (en) | Quantum dot infrared detection and display device and production method thereof | |
EP3136460A2 (en) | Organic photoelectronic device and image sensor | |
CN110911568A (en) | A kind of silver bismuth sulfur thin film photodetector and preparation method thereof | |
CN108807683B (en) | Wide-spectral-response multiplication type organic photoelectric detector | |
CN108336231A (en) | A kind of organic photodetector of wide spectrum response | |
WO2016014345A2 (en) | Two-terminal electronic devices and their methods of fabrication | |
Aryal et al. | Efficient dual cathode interfacial layer for high performance organic and perovskite solar cells | |
CN115020590A (en) | Perovskite photoelectric detector, perovskite photoelectric detector array and preparation method thereof | |
CN113140678B (en) | Full-polymer photodetector with high detectivity and low dark current | |
CN113054110B (en) | Near-infrared narrow-band selective photoelectric detector | |
KR20170046877A (en) | Composition for reducing work function of metal oxide-based electron-collection buffer layer, inverted organic solar cell using the same, and preparation method of the inverted organic solar cell | |
CN116156904A (en) | Dual-mode organic photodiode based on barrier layer interface regulation and control and preparation method thereof | |
CN117715445A (en) | A translucent organic light detector and its preparation method | |
CN115988890A (en) | Full-waveband/dual-waveband/single-waveband organic optical detector suitable for optical communication system | |
Jeong et al. | Inverted organic photodetectors with ZnO electron-collecting buffer layers and polymer bulk heterojunction active layers | |
CN116322246A (en) | A transistor-type photodetector based on bismuth sulfide thin film and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |