[go: up one dir, main page]

CN116156904A - Dual-mode organic photodiode based on barrier layer interface regulation and control and preparation method thereof - Google Patents

Dual-mode organic photodiode based on barrier layer interface regulation and control and preparation method thereof Download PDF

Info

Publication number
CN116156904A
CN116156904A CN202310164910.2A CN202310164910A CN116156904A CN 116156904 A CN116156904 A CN 116156904A CN 202310164910 A CN202310164910 A CN 202310164910A CN 116156904 A CN116156904 A CN 116156904A
Authority
CN
China
Prior art keywords
barrier layer
layer
mode
dual
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310164910.2A
Other languages
Chinese (zh)
Inventor
王洋
李凌峰
吴佳澳
刘青霞
袁柳
顾德恩
黎威志
太惠玲
蒋亚东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202310164910.2A priority Critical patent/CN116156904A/en
Publication of CN116156904A publication Critical patent/CN116156904A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Light Receiving Elements (AREA)

Abstract

本发明提供一种基于阻挡层界面调控的双模有机光电二极管及制备方法,包括透明基底层和五层材料结构,五层材料结构包括透明底电极层、第一阻挡层、有机光敏层、第二阻挡层和顶电极层;正向偏压下,阻挡层与光敏层界面处的载流子陷阱引发外电路载流子隧穿注入,器件以PM模式工作,外量子效率高,适用于弱光探测,可避免前置放大电路的使用。反向偏压下,光敏层两侧的阻挡层可阻止外电路载流子的注入,器件以PV模式工作,外量子效率有限,适用于强光探测,可避免高功耗造成的器件散热和击穿等问题。本发明提出了一种通过调控阻挡层界面来制备双模器件的方法,优化了双模器件的光电性能,从而为双模有机光电二极管的制备提供了解决方案。

Figure 202310164910

The invention provides a dual-mode organic photodiode based on barrier layer interface regulation and its preparation method, comprising a transparent base layer and a five-layer material structure, the five-layer material structure comprising a transparent bottom electrode layer, a first barrier layer, an organic photosensitive layer, a second Two barrier layers and the top electrode layer; under forward bias, the carrier traps at the interface between the barrier layer and the photosensitive layer trigger tunneling injection of carriers in the external circuit, the device works in PM mode, with high external quantum efficiency, suitable for weak Light detection can avoid the use of pre-amplification circuit. Under reverse bias, the barrier layers on both sides of the photosensitive layer can prevent the injection of carriers in the external circuit. The device works in PV mode with limited external quantum efficiency. It is suitable for strong light detection and can avoid heat dissipation and heat dissipation caused by high power consumption. Breakdown and other issues. The invention proposes a method for preparing a dual-mode device by regulating the barrier layer interface, optimizes the photoelectric performance of the dual-mode device, and thus provides a solution for the preparation of a dual-mode organic photodiode.

Figure 202310164910

Description

基于阻挡层界面调控的双模有机光电二极管及制备方法Dual-mode organic photodiode and preparation method based on barrier layer interface regulation

技术领域technical field

本发明属于有机半导体技术领域,具体涉及一种基于阻挡层界面调控的双模有机光电二极管,同时适用于应用于强、弱两种条件的光检测。The invention belongs to the technical field of organic semiconductors, and in particular relates to a dual-mode organic photodiode based on barrier layer interface regulation, which is suitable for light detection under both strong and weak conditions.

背景技术Background technique

信息化的社会对体积越来越小、价格越来越便宜,同时可提供更多功能的高集成度微电子器件的需求日益增加。光电二极管具有体积小、易集成、低暗电流、响应快等优点,被广泛应用于CCD/CMOS阵列等成像系统中。近年来,有机光电二极管具有兼容柔性基底、材料修饰空间大、响应光谱可调、质量轻、利于大面积加工制备等优势而备受关注。In the information-based society, there is an increasing demand for highly integrated microelectronic devices that are smaller in size, cheaper in price, and can provide more functions. Photodiodes have the advantages of small size, easy integration, low dark current, and fast response, and are widely used in imaging systems such as CCD/CMOS arrays. In recent years, organic photodiodes have attracted much attention due to their advantages such as compatible flexible substrates, large material modification space, adjustable response spectrum, light weight, and large-area processing and preparation.

由于光电二极管的整流特性,一般光电二极管器件在正偏压下的暗电流很高且无法保证恒压下亮暗电流的平稳,因而正偏下器件无法用于光信号探测。因此,光电二极管通常在反偏模式下基于光伏(PV)效应实现光信号探测。然而,在PV模式下的器件,其外量子效率(EQE)较低,小于100%,同时光生电流很小;在微弱光信号检测中,CCD/CMOS阵列内的单个像素的光生电流可低至pA级别,因此光电二极管在实际应用中通常结合前置放大电路,导致成像系统结构趋于复杂,并且增加成本。Due to the rectification characteristics of photodiodes, the dark current of general photodiode devices under forward bias is very high, and the stability of bright and dark currents under constant voltage cannot be guaranteed, so forward bias devices cannot be used for optical signal detection. Therefore, photodiodes typically implement light signal detection based on the photovoltaic (PV) effect in reverse bias mode. However, the device in PV mode has low external quantum efficiency (EQE), which is less than 100%, and the photogenerated current is very small; in the detection of weak light signals, the photogenerated current of a single pixel in the CCD/CMOS array can be as low as pA level, so the photodiode is usually combined with a preamplifier circuit in practical applications, which leads to a complex structure of the imaging system and increases the cost.

基于光电倍增(PM)效应工作的PM-OPD,其EQE远大于100%,对微弱光信号的检测能力更强,同时无需前置放大电路,进一步满足了成像系统集成化和小型化的要求。如今,PM-OPD的EQE往往可以达到105%。这也意味着在PM模式器件的光电流比PV模式高出几个数量级,但是驱动器件工作于PM模式通常需要较高的偏压,这将使系统的功耗大大增加。尤其是在检测较强光信号时,高功耗造成的抗击穿和散热等问题对基于有机光敏层的OPD器件是不容忽视的。The PM-OPD based on the photomultiplier (PM) effect has an EQE far greater than 100%, and has a stronger detection ability for weak light signals. At the same time, it does not require a preamplifier circuit, which further meets the requirements of imaging system integration and miniaturization. Nowadays, the EQE of PM-OPD can often reach 10 5 %. This also means that the photocurrent of the device in PM mode is several orders of magnitude higher than that in PV mode, but driving the device to work in PM mode usually requires a higher bias voltage, which will greatly increase the power consumption of the system. Especially when detecting strong optical signals, problems such as breakdown resistance and heat dissipation caused by high power consumption cannot be ignored for OPD devices based on organic photosensitive layers.

综上所述,不论是PV型器件还是PM型器件,由于其单一工作模式的局限性,难以调和日益增加的多场景应用需求与高集成度的冲突。To sum up, whether it is a PV-type device or a PM-type device, due to the limitation of its single working mode, it is difficult to reconcile the conflict between the increasing requirements of multi-scenario applications and high integration.

发明内容Contents of the invention

为了解决上述存在的问题,本发明的目的在于提供一种基于阻挡层界面调控的双模有机光电二极管,以解决现阶段有机光电二极管因工作模式单一导致的应用局限性问题。In order to solve the above existing problems, the purpose of the present invention is to provide a dual-mode organic photodiode based on barrier layer interface regulation, so as to solve the application limitation problem caused by the single working mode of organic photodiodes at the present stage.

为实现上述目的,本发明采用的技术方案如下:To achieve the above object, the technical scheme adopted in the present invention is as follows:

一种基于阻挡层界面调控的双模有机光电二极管,包括底部的透明基底1、透明基底1上方的五层材料结构,五层材料结构包括:透明底电极层2、第一阻挡层3、有机光敏层4、第二阻挡层5、顶电极层6;A dual-mode organic photodiode based on barrier layer interface regulation, including a transparent substrate 1 at the bottom, and a five-layer material structure above the transparent substrate 1. The five-layer material structure includes: a transparent bottom electrode layer 2, a first barrier layer 3, an organic Photosensitive layer 4, second barrier layer 5, top electrode layer 6;

其中,透明底电极层2覆盖透明基底1的半个上表面,透明底电极层2的上表面以及未被透明底电极层2覆盖的透明基底1上表面被第一阻挡层3覆盖,第一阻挡层3上方依次为有机光敏层4、第二阻挡层5、顶电极层6;Wherein, the transparent bottom electrode layer 2 covers half of the upper surface of the transparent substrate 1, and the upper surface of the transparent bottom electrode layer 2 and the upper surface of the transparent substrate 1 not covered by the transparent bottom electrode layer 2 are covered by the first barrier layer 3, and the first Above the barrier layer 3 are an organic photosensitive layer 4, a second barrier layer 5, and a top electrode layer 6 in sequence;

第一阻挡层3和/或第二阻挡层5,与有机光敏层4的界面处具有用于堆积载流子的载流子陷阱;在正向偏压下,第一阻挡层3和/或第二阻挡层5与有机光敏层4界面处的载流子陷阱引发外电路载流子隧穿注入,使所述基于阻挡层界面调控的双模有机光电二极管以PM模式工作;在反向偏压下,有机光敏层4上下两侧的第一阻挡层3和第二阻挡层5阻止外电路载流子的注入,使所述基于阻挡层界面调控的双模有机光电二极管以PV模式工作。The interface between the first barrier layer 3 and/or the second barrier layer 5 and the organic photosensitive layer 4 has a carrier trap for accumulating carriers; under forward bias, the first barrier layer 3 and/or The carrier trap at the interface between the second barrier layer 5 and the organic photosensitive layer 4 induces tunneling injection of external circuit carriers, so that the dual-mode organic photodiode regulated based on the barrier layer interface works in PM mode; in reverse bias Pressing down, the first barrier layer 3 and the second barrier layer 5 on the upper and lower sides of the organic photosensitive layer 4 prevent the injection of external circuit carriers, so that the dual-mode organic photodiode based on barrier layer interface regulation works in PV mode.

作为优选方式,所述有机光敏层包含一种或多种有机半导体材料。As a preferred manner, the organic photosensitive layer contains one or more organic semiconductor materials.

作为优选方式,所述有机光敏层的材料选自:聚([2,6-4,8-双-((2-乙基己基)-噻吩-5-基)苯并[1,2-B(PBDB-T),聚[(2,6-(4,8-双(5-(2-乙基己基-3-氟)噻吩-2-基)-苯并[1,2-B:4,5-B']二噻吩])-ALT-(5,5-(1',3'-二-2-噻吩-5',7'-双(2-乙基己基)苯并[1',2'-C:4',5'-C']二噻吩-4,8-二酮)(PM6),聚(3-己基噻吩-2,5-二基)(P3HT),3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(5-hexylthienyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene(ITIC-Th),2,2'-((12,13-双(2-乙基己基)-12,13-二氢-3,9-二十一烷基bisthieno[2”,3”:4',5']thieno[2',3':4,5]pyrrolo[3,2-e:2',3'-g][2,1,3]benzothiadiazole-2,10-二基)双(次甲基(5,6-二氟-3-氧代-1H-茚-2,1(3H)-二亚基)))双(丙二腈)(Y6),[6,6]-苯基C61丁酸甲酯1-[3-(甲氧羰基)丙基]-1-苯基-[6.6]C613′H-环丙[1,9][5,6]富勒烯-C60-IH-3′-丁酸3′-苯甲酯3-苯基-3H-环丙[1,9][5,6]富勒烯-C60-IH-3-丁酸甲酯(PC61BM)其中一种或多种。As a preferred mode, the material of the organic photosensitive layer is selected from: poly([2,6-4,8-bis-((2-ethylhexyl)-thiophen-5-yl)benzo[1,2-B (PBDB-T), poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-B:4 ,5-B']dithiophene])-ALT-(5,5-(1',3'-di-2-thiophene-5',7'-bis(2-ethylhexyl)benzo[1' ,2'-C:4',5'-C']dithiophene-4,8-dione) (PM6), poly(3-hexylthiophene-2,5-diyl)(P3HT),3,9 -bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(5-hexylthienyl)-dithieno[2,3-d:2',3' -d']-s-indaceno[1,2-b:5,6-b']dithiophene(ITIC-Th),2,2'-((12,13-bis(2-ethylhexyl)-12 ,13-dihydro-3,9-unicosyl bisthieno[2",3":4',5']thieno[2',3':4,5]pyrrolo[3,2-e:2 ',3'-g][2,1,3]benzothiadiazole-2,10-diyl)bis(methine(5,6-difluoro-3-oxo-1H-indene-2,1(3H )-diylidene)))bis(malononitrile)(Y6),[6,6]-phenyl C61 butyric acid methyl ester 1-[3-(methoxycarbonyl)propyl]-1-phenyl- [6.6]C613'H-cyclopropane[1,9][5,6]fullerene-C60-IH-3'-butyric acid 3'-benzyl ester 3-phenyl-3H-cyclopropane[1, 9] One or more of [5,6]fullerene-C60-IH-3-butyric acid methyl ester (PC61BM).

作为优选方式,阻挡层的制备过程为:将阻挡层材料通过蒸镀、刮涂、滴涂、旋涂或喷涂工艺,使第一阻挡层覆于底电极层上表面形成薄膜,第二阻挡层覆于有机光敏层上表面形成薄膜,再进行蒸镀工艺调控处理、材料掺杂、纳米压印、模板生长、热退火或溶剂退火,使第一阻挡层上表面和/或第二阻挡层下表面形成化学态缺陷或形貌缺陷。As a preferred mode, the preparation process of the barrier layer is as follows: the barrier layer material is deposited on the upper surface of the bottom electrode layer to form a thin film by evaporation, scraping, drop coating, spin coating or spraying process, and the second barrier layer Cover the upper surface of the organic photosensitive layer to form a thin film, and then perform evaporation process control treatment, material doping, nanoimprinting, template growth, thermal annealing or solvent annealing, so that the upper surface of the first barrier layer and/or the lower surface of the second barrier layer Chemical state defects or morphology defects are formed on the surface.

作为优选方式,所述化学态缺陷或形貌缺陷的调控方法包括:调控制备阻挡层的蒸发速率,或调控掺杂材料,或退火处理。As a preferred manner, the method for regulating the chemical state defect or the morphology defect includes: regulating the evaporation rate for preparing the barrier layer, or regulating the doping material, or annealing treatment.

作为优选方式,所述第一阻挡层和第二阻挡层为电子阻挡层或空穴阻挡层,电子阻挡层材料选自MoO3、PVK、poly-TPD、P3HT和PEDOT:PSS,所述空穴阻挡层材料选自ZnO、TiO2、PEIE、PEIE-Zn、LiF和SeO2。As a preferred mode, the first blocking layer and the second blocking layer are electron blocking layers or hole blocking layers, and the material of the electron blocking layer is selected from MoO3, PVK, poly-TPD, P3HT and PEDOT:PSS, and the hole blocking layer The layer material is selected from ZnO, TiO2, PEIE, PEIE-Zn, LiF and SeO2.

作为优选方式,所述有机光敏层4的厚度为100nm~2000nm。As a preferred manner, the thickness of the organic photosensitive layer 4 is 100nm-2000nm.

本发明还提供一种所基于阻挡层界面调控的双模有机光电二极管的制备方法,包括如下步骤:The present invention also provides a method for preparing a dual-mode organic photodiode based on barrier layer interface regulation, comprising the following steps:

步骤1、在透明基底上,通过磁控溅射、或热蒸发、或电子束蒸发方法沉积透明底电极;Step 1. Depositing a transparent bottom electrode on a transparent substrate by magnetron sputtering, thermal evaporation, or electron beam evaporation;

步骤2、对透明底电极进行清洗,去除杂质;Step 2, cleaning the transparent bottom electrode to remove impurities;

步骤3、将阻挡层材料通过蒸镀、或刮涂、或滴涂、或旋涂或喷涂工艺,使第一阻挡层覆于底电极层上表面形成薄膜,再进行蒸镀工艺调控处理、材料掺杂、纳米压印、模板生长、热退火或溶剂退火,使第一阻挡层上表面和/或第二阻挡层下表面形成化学态缺陷或缺陷形貌;Step 3. Apply the material of the barrier layer by evaporation, or scrape coating, or drop coating, or spin coating or spraying process, so that the first barrier layer is coated on the upper surface of the bottom electrode layer to form a thin film, and then the evaporation process is controlled and processed, and the material Doping, nanoimprinting, template growth, thermal annealing or solvent annealing to form chemical state defects or defect morphology on the upper surface of the first barrier layer and/or the lower surface of the second barrier layer;

步骤4、将有机光敏层材料通过旋涂、或蒸镀、或刮涂、或滴涂、或喷涂工艺,使有机光敏层覆于第一阻挡层上表面;Step 4, the organic photosensitive layer is coated on the upper surface of the first barrier layer by spin coating, or evaporation, or scraping, or drop coating, or spraying process;

步骤5、将阻挡层材料通过蒸镀、或刮涂、或滴涂、或旋涂或喷涂工艺,使第一阻挡层覆于底电极层上表面形成薄膜;Step 5, apply the barrier layer material by evaporation, or scrape coating, or drop coating, or spin coating or spraying process, so that the first barrier layer is coated on the upper surface of the bottom electrode layer to form a thin film;

步骤6、通过磁控溅射、或热蒸发、或电子束蒸发方法沉积顶电极。Step 6. Deposit the top electrode by magnetron sputtering, or thermal evaporation, or electron beam evaporation.

本发明的有益效果为:The beneficial effects of the present invention are:

本发明提供的一种基于阻挡层界面调控的双模有机光电二极管,具有光伏(PV)和光电倍增(PM)两种工作模式,通过控制外加偏压的方向进行模式切换,从而满足强弱光检测的多场景应用需求。反向偏压下,有机光敏层两侧的阻挡层可阻止外电路载流子的注入,使所述双模有机光电二极管以PV模式工作,此时外量子效率有限且光生电流较小,适用于强光条件探测,可避免高功耗造成的器件击穿和散热等问题。正向偏压下,阻挡层与有机光敏层界面处的载流子陷阱引发外电路的载流子隧穿注入,使所述双模有机光电二极管以PM模式工作,此时外量子效率高且光生电流较大,适用于弱光条件探测,可避免前置放大电路的使用。The invention provides a dual-mode organic photodiode based on barrier layer interface regulation, which has two working modes of photovoltaic (PV) and photomultiplier (PM), and the mode switching is performed by controlling the direction of the applied bias voltage, so as to meet the requirements of strong and weak light. Multi-scenario application requirements for testing. Under reverse bias, the barrier layers on both sides of the organic photosensitive layer can prevent the injection of external circuit carriers, so that the dual-mode organic photodiode works in PV mode. At this time, the external quantum efficiency is limited and the photogenerated current is small, which is suitable for It is suitable for detection under strong light conditions, which can avoid problems such as device breakdown and heat dissipation caused by high power consumption. Under forward bias, the carrier trap at the interface between the barrier layer and the organic photosensitive layer induces carrier tunneling injection in the external circuit, so that the dual-mode organic photodiode works in PM mode. At this time, the external quantum efficiency is high and The photogenerated current is large, which is suitable for detection in weak light conditions and can avoid the use of preamplification circuits.

附图说明Description of drawings

图1为本发明中基于阻挡层界面调控的双模有机光电二极管的器件结构示意图;Fig. 1 is the device structure schematic diagram of the dual-mode organic photodiode based on barrier layer interface control in the present invention;

图2为实施例1和对照组制备的双模有机光电二极管中第一阻挡层上表面XPS表征分析图;2 is an XPS characterization analysis diagram of the upper surface of the first barrier layer in the dual-mode organic photodiode prepared in Example 1 and the control group;

图3为实施例1制备的双模有机光电二极管工作原理图;Fig. 3 is the working principle diagram of the dual-mode organic photodiode prepared in embodiment 1;

图4为实施例1和对照组制备的双模有机光电二极管EQE光谱响应图。Fig. 4 is the EQE spectral response graph of the dual-mode organic photodiode prepared in Example 1 and the control group.

图5为实施例2、实施例1和对照组制备的双模有机光电二极管EQE光谱响应图。Fig. 5 is the EQE spectral response graph of the dual-mode organic photodiode prepared in Example 2, Example 1 and the control group.

1为透明基底,2为透明底电极层,3为第一阻挡层,4为有机光敏层,5为第二阻挡层,6为顶电极层。1 is a transparent substrate, 2 is a transparent bottom electrode layer, 3 is a first barrier layer, 4 is an organic photosensitive layer, 5 is a second barrier layer, and 6 is a top electrode layer.

具体实施方式Detailed ways

以下将通过特定实施例说明本发明的具体实施方式,本领域的技术人员可据此对本发明的目的、技术方案、优点与功效有清晰的理解。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例;基于本说明书中的实施例,本领域普通技术人员在没有做出创造性改变前提下所获得的所有其他实施例,也属于本发明保护的范围。Specific embodiments of the present invention will be described below through specific examples, based on which those skilled in the art can have a clear understanding of the purpose, technical solutions, advantages and effects of the present invention. Obviously, the described embodiments are some embodiments of the present invention, rather than all embodiments; based on the embodiments in this specification, all other embodiments obtained by those skilled in the art without making creative changes , also belong to the protection scope of the present invention.

实施例提供基于阻挡层界面调控的双模有机光电二极管,包括底部的透明基底1、透明基底1上方的五层材料结构,五层材料结构包括:透明底电极层2、第一阻挡层3、有机光敏层4、第二阻挡层5、顶电极层6;The embodiment provides a dual-mode organic photodiode based on barrier layer interface regulation, including a transparent substrate 1 at the bottom, and a five-layer material structure above the transparent substrate 1. The five-layer material structure includes: a transparent bottom electrode layer 2, a first barrier layer 3, Organic photosensitive layer 4, second barrier layer 5, top electrode layer 6;

其中,透明底电极层2覆盖透明基底1的半个上表面,透明底电极层2的上表面以及未被透明底电极层2覆盖的透明基底1上表面被第一阻挡层3覆盖,第一阻挡层3上方依次为有机光敏层4、第二阻挡层5、顶电极层6;Wherein, the transparent bottom electrode layer 2 covers half of the upper surface of the transparent substrate 1, and the upper surface of the transparent bottom electrode layer 2 and the upper surface of the transparent substrate 1 not covered by the transparent bottom electrode layer 2 are covered by the first barrier layer 3, and the first Above the barrier layer 3 are an organic photosensitive layer 4, a second barrier layer 5, and a top electrode layer 6 in sequence;

第一阻挡层3和/或第二阻挡层5,与有机光敏层4的界面处具有用于堆积载流子的载流子陷阱;在正向偏压下,第一阻挡层3和/或第二阻挡层5与有机光敏层4界面处的载流子陷阱引发外电路载流子隧穿注入,使所述基于阻挡层界面调控的双模有机光电二极管以PM模式工作;在反向偏压下,有机光敏层4上下两侧的第一阻挡层3和第二阻挡层5阻止外电路载流子的注入,使所述基于阻挡层界面调控的双模有机光电二极管以PV模式工作。The interface between the first barrier layer 3 and/or the second barrier layer 5 and the organic photosensitive layer 4 has a carrier trap for accumulating carriers; under forward bias, the first barrier layer 3 and/or The carrier trap at the interface between the second barrier layer 5 and the organic photosensitive layer 4 induces tunneling injection of external circuit carriers, so that the dual-mode organic photodiode regulated based on the barrier layer interface works in PM mode; in reverse bias Pressing down, the first barrier layer 3 and the second barrier layer 5 on the upper and lower sides of the organic photosensitive layer 4 prevent the injection of external circuit carriers, so that the dual-mode organic photodiode based on barrier layer interface regulation works in PV mode.

在一些实施例中,所述有机光敏层包含一种或多种有机半导体材料。In some embodiments, the organic photosensitive layer includes one or more organic semiconductor materials.

在一些实施例中,所述有机光敏层的材料选自:聚([2,6-4,8-双-((2-乙基己基)-噻吩-5-基)苯并[1,2-B(PBDB-T),聚[(2,6-(4,8-双(5-(2-乙基己基-3-氟)噻吩-2-基)-苯并[1,2-B:4,5-B']二噻吩])-ALT-(5,5-(1',3'-二-2-噻吩-5',7'-双(2-乙基己基)苯并[1',2'-C:4',5'-C']二噻吩-4,8-二酮)(PM6),聚(3-己基噻吩-2,5-二基)(P3HT),3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanon e))-5,5,11,11-tetrakis(5-hexylthienyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene(ITIC-Th),2,2'-((12,13-双(2-乙基己基)-12,13-二氢-3,9-二十一烷基bisthieno[2”,3”:4',5']thien o[2',3':4,5]pyrrolo[3,2-e:2',3'-g][2,1,3]benzothiadiazole-2,10-二基)双(次甲基(5,6-二氟-3-氧代-1H-茚-2,1(3H)-二亚基)))双(丙二腈)(Y6),[6,6]-苯基C61丁酸甲酯1-[3-(甲氧羰基)丙基]-1-苯基-[6.6]C613′H-环丙[1,9][5,6]富勒烯-C60-IH-3′-丁酸3′-苯甲酯3-苯基-3H-环丙[1,9][5,6]富勒烯-C60-IH-3-丁酸甲酯(PC61BM)其中一种或多种。In some embodiments, the material of the organic photosensitive layer is selected from: poly([2,6-4,8-bis-((2-ethylhexyl)-thiophen-5-yl)benzo[1,2 -B(PBDB-T), poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-B :4,5-B']dithiophene])-ALT-(5,5-(1',3'-di-2-thiophene-5',7'-bis(2-ethylhexyl)benzo[ 1',2'-C:4',5'-C']dithiophene-4,8-dione) (PM6), poly(3-hexylthiophene-2,5-diyl)(P3HT),3 ,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(5-hexylthienyl)-dithieno[2,3-d:2' ,3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene(ITIC-Th),2,2'-((12,13-bis(2-ethylhexyl )-12,13-dihydro-3,9-eicosyl bisthieno[2",3":4',5']thien o[2',3':4,5]pyrrolo[3,2 -e:2',3'-g][2,1,3]benzothiadiazole-2,10-diyl)bis(methine(5,6-difluoro-3-oxo-1H-indene-2 ,1(3H)-diylidene)))bis(malononitrile)(Y6),[6,6]-phenyl C61 methyl butanoate 1-[3-(methoxycarbonyl)propyl]-1 -Phenyl-[6.6]C61 3′H-cyclopropane[1,9][5,6]fullerene-C60-IH-3′-butyric acid 3′-benzyl ester 3-phenyl-3H-cyclo One or more of propane[1,9][5,6]fullerene-C60-IH-3-butyric acid methyl ester (PC61BM).

在一些实施例中,阻挡层的制备过程为:将阻挡层材料通过蒸镀、刮涂、滴涂、旋涂或喷涂工艺,使第一阻挡层覆于底电极层上表面形成薄膜,第二阻挡层覆于有机光敏层上表面形成薄膜,再进行蒸镀工艺调控处理、材料掺杂、纳米压印、模板生长、热退火或溶剂退火,使第一阻挡层上表面和/或第二阻挡层下表面形成化学态缺陷或形貌缺陷。In some embodiments, the preparation process of the barrier layer is as follows: the material of the barrier layer is deposited on the upper surface of the bottom electrode layer to form a thin film by evaporation, scraping, drop coating, spin coating or spraying process, and the second The barrier layer is coated on the upper surface of the organic photosensitive layer to form a thin film, and then the evaporation process control treatment, material doping, nanoimprinting, template growth, thermal annealing or solvent annealing are performed to make the upper surface of the first barrier layer and/or the second barrier layer Chemical state defects or morphology defects are formed on the lower surface of the layer.

在一些实施例中,所述化学态缺陷或形貌缺陷的调控方法包括:调控制备阻挡层的蒸发速率,或调控掺杂材料,或退火处理。In some embodiments, the method for adjusting the chemical state defect or the shape defect includes: adjusting the evaporation rate for preparing the barrier layer, or adjusting the doping material, or annealing treatment.

在一些实施例中,所述第一阻挡层和第二阻挡层为电子阻挡层或空穴阻挡层,电子阻挡层材料选自MoO3、PVK、poly-TPD、P3HT和PEDOT:PSS,所述空穴阻挡层材料选自ZnO、TiO2、PEIE、PEIE-Zn、LiF和SeO2。In some embodiments, the first blocking layer and the second blocking layer are an electron blocking layer or a hole blocking layer, and the material of the electron blocking layer is selected from MoO3, PVK, poly-TPD, P3HT and PEDOT:PSS, and the hole The hole blocking layer material is selected from ZnO, TiO2, PEIE, PEIE-Zn, LiF and SeO2.

在一些实施例中,所述有机光敏层4的厚度为100nm~2000nm。In some embodiments, the thickness of the organic photosensitive layer 4 is 100nm-2000nm.

在一些实施例中,所述的基于阻挡层界面调控的双模有机光电二极管的制备方法,包括如下步骤:In some embodiments, the preparation method of the dual-mode organic photodiode based on barrier layer interface regulation includes the following steps:

步骤1、在透明基底上,通过磁控溅射、或热蒸发、或电子束蒸发方法沉积透明底电极;Step 1. Depositing a transparent bottom electrode on a transparent substrate by magnetron sputtering, thermal evaporation, or electron beam evaporation;

步骤2、对透明底电极进行清洗,去除杂质;Step 2, cleaning the transparent bottom electrode to remove impurities;

步骤3、将阻挡层材料通过蒸镀、或刮涂、或滴涂、或旋涂或喷涂工艺,使第一阻挡层覆于底电极层上表面形成薄膜,再进行蒸镀工艺调控处理、材料掺杂、纳米压印、模板生长、热退火或溶剂退火,使第一阻挡层上表面和/或第二阻挡层下表面形成化学态缺陷或缺陷形貌;Step 3. Apply the material of the barrier layer by evaporation, or scrape coating, or drop coating, or spin coating or spraying process, so that the first barrier layer is coated on the upper surface of the bottom electrode layer to form a thin film, and then the evaporation process is controlled and processed, and the material Doping, nanoimprinting, template growth, thermal annealing or solvent annealing to form chemical state defects or defect morphology on the upper surface of the first barrier layer and/or the lower surface of the second barrier layer;

步骤4、将有机光敏层材料通过旋涂、或蒸镀、或刮涂、或滴涂、或喷涂工艺,使有机光敏层覆于第一阻挡层上表面;Step 4, the organic photosensitive layer is coated on the upper surface of the first barrier layer by spin coating, or evaporation, or scraping, or drop coating, or spraying process;

步骤5、将阻挡层材料通过蒸镀、或刮涂、或滴涂、或旋涂或喷涂工艺,使第一阻挡层覆于底电极层上表面形成薄膜;Step 5, apply the barrier layer material by evaporation, or scrape coating, or drop coating, or spin coating or spraying process, so that the first barrier layer is coated on the upper surface of the bottom electrode layer to form a thin film;

步骤6、通过磁控溅射、或热蒸发、或电子束蒸发方法沉积顶电极。Step 6. Deposit the top electrode by magnetron sputtering, or thermal evaporation, or electron beam evaporation.

实施例1Example 1

本实施例提供的基于阻挡层界面调控的双模有机光电二极管,其结构如图1所示,包括底部的透明基底1、透明基底1上方的五层材料结构,五层材料结构包括:透明底电极层2、第一阻挡层3、有机光敏层4、第二阻挡层5、顶电极层6;The structure of the dual-mode organic photodiode based on barrier layer interface control provided in this embodiment is shown in Figure 1, including a transparent substrate 1 at the bottom and a five-layer material structure above the transparent substrate 1. The five-layer material structure includes: transparent substrate Electrode layer 2, first barrier layer 3, organic photosensitive layer 4, second barrier layer 5, top electrode layer 6;

其中,透明底电极层2覆盖透明基底1的半个上表面,透明底电极层2的上表面以及未被透明底电极层2覆盖的透明基底1上表面被第一阻挡层3覆盖,第一阻挡层3上方依次为有机光敏层4、第二阻挡层5、顶电极层6;Wherein, the transparent bottom electrode layer 2 covers half of the upper surface of the transparent substrate 1, and the upper surface of the transparent bottom electrode layer 2 and the upper surface of the transparent substrate 1 not covered by the transparent bottom electrode layer 2 are covered by the first barrier layer 3, and the first Above the barrier layer 3 are an organic photosensitive layer 4, a second barrier layer 5, and a top electrode layer 6 in sequence;

第一阻挡层3和/或第二阻挡层5,与有机光敏层4的界面处具有用于堆积载流子的载流子陷阱;在正向偏压下,第一阻挡层3和/或第二阻挡层5与有机光敏层4界面处的载流子陷阱引发外电路载流子隧穿注入,使所述基于阻挡层界面调控的双模有机光电二极管以PM模式工作;在反向偏压下,有机光敏层4上下两侧的第一阻挡层3和第二阻挡层5阻止外电路载流子的注入,使所述基于阻挡层界面调控的双模有机光电二极管以PV模式工作。The interface between the first barrier layer 3 and/or the second barrier layer 5 and the organic photosensitive layer 4 has a carrier trap for accumulating carriers; under forward bias, the first barrier layer 3 and/or The carrier trap at the interface between the second barrier layer 5 and the organic photosensitive layer 4 induces tunneling injection of external circuit carriers, so that the dual-mode organic photodiode regulated based on the barrier layer interface works in PM mode; in reverse bias Pressing down, the first barrier layer 3 and the second barrier layer 5 on the upper and lower sides of the organic photosensitive layer 4 prevent the injection of external circuit carriers, so that the dual-mode organic photodiode based on barrier layer interface regulation works in PV mode.

上述基于阻挡层界面调控的双模有机光电二极管,采用反型结构,具体制备方法包括下列步骤:The above-mentioned dual-mode organic photodiode based on barrier layer interface regulation adopts an inverse structure, and the specific preparation method includes the following steps:

步骤1、在透明玻璃基底上,通过磁控溅射沉积厚度为150nm的氧化铟锡(ITO)薄膜;Step 1, on a transparent glass substrate, depositing an indium tin oxide (ITO) film with a thickness of 150 nm by magnetron sputtering;

步骤2、将沉积有ITO薄膜的基底依次浸没于洗涤剂、去离子水、丙酮、异丙醇分别超声清洗15分钟后,用氮气枪吹干,并对电极表面进行20分钟紫外臭氧清洗处理,得到透明导电电极;Step 2. Submerge the substrate deposited with the ITO film in detergent, deionized water, acetone, and isopropanol for 15 minutes, then ultrasonically clean it for 15 minutes, dry it with a nitrogen gun, and clean the surface of the electrode with ultraviolet and ozone for 20 minutes. Obtain a transparent conductive electrode;

步骤3、本实施例中第一阻挡层作为空穴阻挡层,为ZnO薄膜;使用200目的ZnO粉末,在气压小于1x10-4Pa的真空条件下进行热蒸发,基片台旋转速率11RPM,蒸发速率控制在0.03nm/s,总膜厚20nm。ZnO在热蒸发的高温条件下,发生元素失配,制备得到的ZnO薄膜将混杂少量单质态的Zn,由此引入化学态缺陷,作为阻挡层和有机光敏层界面处的载流子陷阱,对照组的ZnO阻挡层薄膜不具有载流子陷阱。Step 3. In this embodiment, the first barrier layer is used as a hole barrier layer, which is a ZnO thin film; use 200 mesh ZnO powder, and perform thermal evaporation under a vacuum condition with an air pressure less than 1x10 -4 Pa, and the rotation rate of the substrate stage is 11RPM. The rate is controlled at 0.03nm/s, and the total film thickness is 20nm. Under the high temperature conditions of thermal evaporation of ZnO, element mismatch occurs, and the prepared ZnO film will be mixed with a small amount of Zn in a single state, thereby introducing chemical state defects, which serve as carrier traps at the interface between the barrier layer and the organic photosensitive layer. The group of ZnO barrier films does not have carrier traps.

步骤4、采用有机半导体材料PBDB-T和ITIC-Th作为有机光敏层材料,按质量比1:1的比例溶于有机溶剂氯苯中,溶液总浓度为30mg/ml,将溶液放置在50℃的加热搅拌台上搅拌12h以上。在氮气氛围下,使用旋涂工艺在ZnO空穴阻挡层表面制备有机光敏层,旋涂转速2000rpm,加速度10000rpm/s,时间40s,并在氮气氛围下110℃退火10min,所得有机光敏层厚度约为200nm。Step 4. Use organic semiconductor materials PBDB-T and ITIC-Th as organic photosensitive layer materials, dissolve them in the organic solvent chlorobenzene at a mass ratio of 1:1, the total concentration of the solution is 30mg/ml, and place the solution at 50°C Stirring on a heated stirring table for more than 12h. In a nitrogen atmosphere, an organic photosensitive layer was prepared on the surface of the ZnO hole blocking layer by a spin-coating process. The spin-coating speed was 2000rpm, the acceleration was 10000rpm/s, and the time was 40s. It was annealed at 110°C for 10min under a nitrogen atmosphere. The thickness of the obtained organic photosensitive layer was about 200nm.

步骤5、本实施例中第二阻挡层作为电子阻挡层,材料采用MoO3,厚度为10nm,采用真空热蒸发法制备在有机光敏层上表面,蒸镀压强小于1x10-4Pa。Step 5. In this embodiment, the second blocking layer is used as the electron blocking layer, and the material is MoO 3 with a thickness of 10nm. It is prepared on the upper surface of the organic photosensitive layer by vacuum thermal evaporation, and the evaporation pressure is less than 1×10 -4 Pa.

步骤6、本实施例中顶电极层,在步骤5所得电子阻挡层表面采用真空热蒸发法制备,电极材料为金属银(Ag),蒸镀压强小于1x10-4 Pa,薄膜厚度为100nm。Step 6. The top electrode layer in this embodiment is prepared by vacuum thermal evaporation on the surface of the electron blocking layer obtained in step 5. The electrode material is metallic silver (Ag), the evaporation pressure is less than 1x10 -4 Pa, and the film thickness is 100nm.

按照上述步骤制备对照组,对照组的器件结构与实施例1相同,但是对照组的第一阻挡层采用旋涂工艺制备:将ZnO前驱体溶液旋涂于透明底电极上,旋涂转速4000rpm,加速度10000rpm/s,时间40s;在大气环境下进行热退火处理,热退火温度200℃,时间30min。因此,阻挡层与有机光敏层界面处不制备载流子陷阱。Prepare the control group according to the above steps, the device structure of the control group is the same as that of Example 1, but the first barrier layer of the control group is prepared by a spin coating process: the ZnO precursor solution is spin coated on the transparent bottom electrode, and the spin coating speed is 4000rpm. The acceleration is 10000rpm/s, the time is 40s; the thermal annealing treatment is carried out in the atmospheric environment, the thermal annealing temperature is 200°C, and the time is 30min. Therefore, no carrier trap is formed at the interface between the blocking layer and the organic photosensitive layer.

图2为本发明基于阻挡层界面调控的双模有机光电二极管及其对照组器件盾斧阻挡层XPS表征结果分析图,如图2所示,实施例1组采用真空热蒸发法制备的阻挡层中,Zn的俄歇谱包含ZnO和Zn两种谱峰;而对照组采用旋涂工艺制备的阻挡层中,Zn的俄歇谱仅包含ZnO一种谱峰。这说明真空热蒸发制备的ZnO薄膜中具有游离态的Zn作为化学态缺陷在倍增过程中起作用,而对照组旋涂法制备的ZnO薄膜则不具有这种缺陷。Fig. 2 is the XPS characterization result analysis diagram of the dual-mode organic photodiode based on the interface regulation of the barrier layer and its control group device shield ax barrier layer of the present invention, as shown in Fig. 2, the barrier layer prepared by the vacuum thermal evaporation method in Example 1 group Among them, the Auger spectrum of Zn contains two peaks of ZnO and Zn; while in the barrier layer prepared by spin coating process in the control group, the Auger spectrum of Zn only contains one peak of ZnO. This shows that the free Zn in the ZnO film prepared by vacuum thermal evaporation plays a role in the multiplication process as a chemical state defect, while the ZnO film prepared by the control spin coating method does not have this defect.

本发明的机理如下:通过调控阻挡层与有机光敏层的界面,在界面上形成载流子陷阱,使光生载流子在阻挡层与有机光敏层界面处被载流子陷阱束缚,进而引发外电路载流子的隧穿注入。以具有第一阻挡层与有机光敏层界面的载流子陷阱的器件为例,如图3所示,实施例1的基于阻挡层界面调控的双模有机光电二极管在反向偏压下,由于MoO3阻挡层和ZnO阻挡层的能级阻挡,此时器件具有较低的暗电流;光照条件下,有机光敏层中的光生电子/空穴分别被ITO/Ag电极采集以产生光生电流,此时器件在PV模式工作。在正向偏压下,由于阻挡层与有机光敏层界面处载流子的传输受阻,相较于对照组阻挡层与有机光敏层界面处无载流子陷阱的器件,其暗电流降低;光照条件下,阻挡层与有机光敏层界面处的载流子陷阱和ZnO层的阻挡,使得光生空穴被俘于ZnO/有机光敏层界面,光生电子被MoO3层阻挡,然后聚集在有机光敏层/MoO3界面;随着光生空穴在阻挡层与有机光敏层界面处被俘而不断累积,增强了界面能带的弯曲,最终引发电子隧穿注入,从而产生PM效应。因此,实施例1的基于阻挡层界面调控的双模有机光电二极管可以在反向偏压和正向偏压下分别以PV和PM模式工作。The mechanism of the present invention is as follows: by regulating the interface between the barrier layer and the organic photosensitive layer, carrier traps are formed on the interface, so that the photogenerated carriers are bound by the carrier traps at the interface between the barrier layer and the organic photosensitive layer, thereby triggering external Tunneling injection of circuit carriers. Taking a device with a carrier trap at the interface between the first barrier layer and the organic photosensitive layer as an example, as shown in Figure 3, the dual-mode organic photodiode based on the interface regulation of the barrier layer in Example 1 under reverse bias, due to The energy levels of the MoO3 barrier layer and the ZnO barrier layer are blocked, and the device has a lower dark current at this time; under the condition of light, the photogenerated electrons/holes in the organic photosensitive layer are respectively collected by the ITO/Ag electrode to generate a photogenerated current. The device operates in PV mode. Under forward bias, because the transport of carriers at the interface between the barrier layer and the organic photosensitive layer is hindered, compared with the control device without carrier traps at the interface between the barrier layer and the organic photosensitive layer, the dark current is reduced; Under the conditions, the carrier trap at the interface between the barrier layer and the organic photosensitive layer and the blocking of the ZnO layer make the photogenerated holes trapped at the ZnO/organic photosensitive layer interface, and the photogenerated electrons are blocked by the MoO3 layer, and then gather in the organic photosensitive layer/ MoO3 interface; as the photogenerated holes are captured and accumulated at the interface between the barrier layer and the organic photosensitive layer, the bending of the interface energy band is enhanced, and finally electron tunneling injection is induced, thereby producing the PM effect. Therefore, the dual-mode organic photodiode based on barrier layer interface modulation in Example 1 can work in PV and PM modes under reverse bias and forward bias, respectively.

下面通过具体的试验数据对本发明的技术效果进行验证:Technical effect of the present invention is verified below by concrete test data:

对实施例1的基于阻挡层界面调控的双模有机光电二极管及其对照组器件进行测试,测试波段为300~800nm。由图4可知,实施例1的双模有机光电二极管器件在-0.5V偏压以PV模式工作,此时EQE低于100%;在+2V偏压下,器件则可获得超过100%的EQE,以PM模式工作。而对照组器件只能在反向偏压下以PV模式进行工作。The dual-mode organic photodiode based on barrier layer interface regulation in Example 1 and its control device were tested, and the test wavelength range was 300-800 nm. It can be seen from Figure 4 that the dual-mode organic photodiode device of Example 1 works in PV mode at -0.5V bias, at this time the EQE is lower than 100%; at +2V bias, the device can obtain more than 100% EQE , work in PM mode. The control device can only operate in PV mode under reverse bias.

实施例2Example 2

实施例2与实施例1的区别在于,在有机光敏层与第二阻挡层界面处也添加了载流子陷阱,且该种载流子陷阱形成的工艺与实施例1不同,采用热退火的方式形成界面缺陷。实施例2中,第一阻挡层与有机光敏层界面,有机光敏层与第二阻挡层界面都存在载流子陷阱;对照组中,有且只有热退火形成的有机光敏层与第二阻挡层界面处的载流子陷阱。具体实验数据如图5所示,取得了超过只含有其中任一种类载流子陷阱器件的PM模式性能。The difference between Example 2 and Example 1 is that carrier traps are also added at the interface between the organic photosensitive layer and the second barrier layer, and the process for forming the carrier traps is different from that of Example 1. Thermal annealing is used. form interface defects. In Example 2, there are carrier traps at the interface between the first barrier layer and the organic photosensitive layer, and at the interface between the organic photosensitive layer and the second barrier layer; in the control group, there are and only the organic photosensitive layer formed by thermal annealing and the second barrier layer Carrier traps at the interface. The specific experimental data are shown in Fig. 5, and the performance of the PM mode exceeds that of the device containing only any one of the carrier traps.

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection scope of the present invention within.

Claims (8)

1.一种基于阻挡层界面调控的双模有机光电二极管,其特征在于:包括底部的透明基底(1)、透明基底(1)上方的五层材料结构,五层材料结构包括:透明底电极层(2)、第一阻挡层(3)、有机光敏层(4)、第二阻挡层(5)、顶电极层(6);1. A dual-mode organic photodiode based on barrier layer interface regulation, characterized in that it includes a bottom transparent substrate (1), a five-layer material structure above the transparent substrate (1), and the five-layer material structure includes: a transparent bottom electrode Layer (2), first barrier layer (3), organic photosensitive layer (4), second barrier layer (5), top electrode layer (6); 其中,透明底电极层(2)覆盖透明基底(1)的半个上表面,透明底电极层(2)的上表面以及未被透明底电极层(2)覆盖的透明基底(1)上表面被第一阻挡层(3)覆盖,第一阻挡层(3)上方依次为有机光敏层(4)、第二阻挡层(5)、顶电极层(6);Wherein, the transparent bottom electrode layer (2) covers half of the upper surface of the transparent substrate (1), the upper surface of the transparent bottom electrode layer (2) and the upper surface of the transparent substrate (1) not covered by the transparent bottom electrode layer (2) Covered by the first barrier layer (3), the organic photosensitive layer (4), the second barrier layer (5), and the top electrode layer (6) are sequentially above the first barrier layer (3); 第一阻挡层(3)和/或第二阻挡层(5),与有机光敏层(4)的界面处具有用于堆积载流子的载流子陷阱;在正向偏压下,第一阻挡层(3)和/或第二阻挡层(5)与有机光敏层(4)界面处的载流子陷阱引发外电路载流子隧穿注入,使所述基于阻挡层界面调控的双模有机光电二极管以PM模式工作;在反向偏压下,有机光敏层(4)上下两侧的第一阻挡层(3)和第二阻挡层(5)阻止外电路载流子的注入,使所述基于阻挡层界面调控的双模有机光电二极管以PV模式工作。The interface between the first barrier layer (3) and/or the second barrier layer (5) and the organic photosensitive layer (4) has a carrier trap for accumulating carriers; under forward bias, the first The carrier trap at the interface between the barrier layer (3) and/or the second barrier layer (5) and the organic photosensitive layer (4) induces the tunneling injection of carriers in the external circuit, so that the dual mode based on barrier layer interface regulation The organic photodiode works in PM mode; under reverse bias, the first barrier layer (3) and the second barrier layer (5) on the upper and lower sides of the organic photosensitive layer (4) prevent the injection of carriers in the external circuit, so that The dual-mode organic photodiode based on barrier layer interface regulation works in PV mode. 2.根据权利要求1所述的基于阻挡层界面调控的双模有机光电二极管,其特征在于:所述有机光敏层包含一种或多种有机半导体材料。2 . The dual-mode organic photodiode based on barrier layer interface modulation according to claim 1 , wherein the organic photosensitive layer comprises one or more organic semiconductor materials. 3.根据权利要求1所述的基于阻挡层界面调控的双模有机光电二极管,其特征在于:所述有机光敏层的材料选自:3. The dual-mode organic photodiode based on barrier layer interface regulation according to claim 1, characterized in that: the material of the organic photosensitive layer is selected from: 聚([2,6-4,8-双-((2-乙基己基)-噻吩-5-基)苯并[1,2-B(PBDB-T),poly([2,6-4,8-bis-((2-ethylhexyl)-thiophen-5-yl)benzo[1,2-B(PBDB-T), 聚[(2,6-(4,8-双(5-(2-乙基己基-3-氟)噻吩-2-基)-苯并[1,2-B:4,5-B']二噻吩])-ALT-(5,5-(1',3'-二-2-噻吩-5',7'-双(2-乙基己基)苯并[1',2'-C:4',5'-C']二噻吩-4,8-二酮)(PM6),Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-B:4,5-B'] Dithiophene])-ALT-(5,5-(1',3'-di-2-thiophene-5',7'-bis(2-ethylhexyl)benzo[1',2'-C: 4',5'-C']dithiophene-4,8-dione) (PM6), 聚(3-己基噻吩-2,5-二基)(P3HT),poly(3-hexylthiophene-2,5-diyl) (P3HT), 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(5-hexylthienyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene(ITIC-Th),3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(5-hexylthienyl)-dithieno[2,3-d:2' ,3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC-Th), 2,2'-((12,13-双(2-乙基己基)-12,13-二氢-3,9-二十一烷基bisthieno[2”,3”:4',5']thieno[2',3':4,5]pyrrolo[3,2-e:2',3'-g][2,1,3]benzothiadiazole-2,10-二基)双(次甲基(5,6-二氟-3-氧代-1H-茚-2,1(3H)-二亚基)))双(丙二腈)(Y6),2,2'-((12,13-bis(2-ethylhexyl)-12,13-dihydro-3,9-unicosyl bisthieno[2",3":4',5'] thieno[2',3':4,5]pyrrolo[3,2-e:2',3'-g][2,1,3]benzothiadiazole-2,10-diyl)bis(methine( 5,6-difluoro-3-oxo-1H-indene-2,1(3H)-diylidene))) bis(malononitrile) (Y6), [6,6]-苯基C61丁酸甲酯1-[3-(甲氧羰基)丙基]-1-苯基-[6.6]C613′H-环丙[1,9][5,6]富勒烯-C60-IH-3′-丁酸3′-苯甲酯3-苯基-3H-环丙[1,9][5,6]富勒烯-C60-IH-3-丁酸甲酯(PC61BM)其中一种或多种。[6,6]-Phenyl C61 butyric acid methyl ester 1-[3-(methoxycarbonyl)propyl]-1-phenyl-[6.6]C61 3′H-cyclopropane[1,9][5,6 ]fullerene-C60-IH-3′-butyric acid 3′-benzyl ester 3-phenyl-3H-cyclopropane[1,9][5,6]fullerene-C60-IH-3-butanol One or more of methyl esters (PC61BM). 4.根据权利要求1所述的基于阻挡层界面调控的双模有机光电二极管,其特征在于,阻挡层的制备过程为:将阻挡层材料通过蒸镀、刮涂、滴涂、旋涂或喷涂工艺,使第一阻挡层覆于底电极层上表面形成薄膜,第二阻挡层覆于有机光敏层上表面形成薄膜,再进行蒸镀工艺调控处理、材料掺杂、纳米压印、模板生长、热退火或溶剂退火,使第一阻挡层上表面和/或第二阻挡层下表面形成化学态缺陷或形貌缺陷。4. The dual-mode organic photodiode based on barrier layer interface regulation according to claim 1, characterized in that the preparation process of the barrier layer is: the barrier layer material is evaporated, scraped, dripped, spin-coated or sprayed process, so that the first barrier layer is coated on the upper surface of the bottom electrode layer to form a thin film, and the second barrier layer is coated on the upper surface of the organic photosensitive layer to form a thin film, and then the evaporation process control treatment, material doping, nanoimprinting, template growth, Thermal annealing or solvent annealing causes chemical state defects or morphology defects to be formed on the upper surface of the first barrier layer and/or the lower surface of the second barrier layer. 5.根据权利要求4所述的一种基于阻挡层界面调控的双模有机光电二极管,其特征在于:所述化学态缺陷或形貌缺陷的调控方法包括:调控制备阻挡层的蒸发速率,或调控掺杂材料,或退火处理。5. A dual-mode organic photodiode based on barrier layer interface regulation according to claim 4, characterized in that: the method for regulating the chemical state defect or the morphology defect comprises: regulating and controlling the evaporation rate for preparing the barrier layer, or Control doping material, or annealing treatment. 6.根据权利要求1所述的一种基于阻挡层界面调控的双模有机光电二极管,其特征在于,所述第一阻挡层和第二阻挡层为电子阻挡层或空穴阻挡层,电子阻挡层材料选自MoO3、PVK、poly-TPD、P3HT和PEDOT:PSS,所述空穴阻挡层材料选自ZnO、TiO2、PEIE、PEIE-Zn、LiF和SeO2。6. A kind of dual-mode organic photodiode based on barrier layer interface adjustment according to claim 1, characterized in that, the first barrier layer and the second barrier layer are electron barrier layers or hole barrier layers, and the electron barrier layer The layer material is selected from MoO3, PVK, poly-TPD, P3HT and PEDOT:PSS, and the hole blocking layer material is selected from ZnO, TiO2, PEIE, PEIE-Zn, LiF and SeO2. 7.根据权利要求1所述的一种基于阻挡层界面调控的双模有机光电二极管,其特征在于,所述有机光敏层(4)的厚度为100nm~2000nm。7 . The dual-mode organic photodiode based on barrier layer interface regulation according to claim 1 , characterized in that, the thickness of the organic photosensitive layer ( 4 ) is 100 nm˜2000 nm. 8.权利要求1至7任意一项所述的基于阻挡层界面调控的双模有机光电二极管的制备方法,其特征在于包括如下步骤:8. The preparation method of the dual-mode organic photodiode based on barrier layer interface regulation according to any one of claims 1 to 7, characterized in that it comprises the steps of: 步骤1、在透明基底上,通过磁控溅射、或热蒸发、或电子束蒸发方法沉积透明底电极;Step 1. Depositing a transparent bottom electrode on a transparent substrate by magnetron sputtering, thermal evaporation, or electron beam evaporation; 步骤2、对透明底电极进行清洗,去除杂质;Step 2, cleaning the transparent bottom electrode to remove impurities; 步骤3、将阻挡层材料通过蒸镀、或刮涂、或滴涂、或旋涂或喷涂工艺,使第一阻挡层覆于底电极层上表面形成薄膜,再进行蒸镀工艺调控处理、材料掺杂、纳米压印、模板生长、热退火或溶剂退火,使第一阻挡层上表面和/或第二阻挡层下表面形成化学态缺陷或缺陷形貌;Step 3. Apply the material of the barrier layer by evaporation, or scrape coating, or drop coating, or spin coating or spraying process, so that the first barrier layer is coated on the upper surface of the bottom electrode layer to form a thin film, and then the evaporation process is controlled and processed, and the material Doping, nanoimprinting, template growth, thermal annealing or solvent annealing to form chemical state defects or defect morphology on the upper surface of the first barrier layer and/or the lower surface of the second barrier layer; 步骤4、将有机光敏层材料通过旋涂、或蒸镀、或刮涂、或滴涂、或喷涂工艺,使有机光敏层覆于第一阻挡层上表面;Step 4, the organic photosensitive layer is coated on the upper surface of the first barrier layer by spin coating, or evaporation, or scraping, or drop coating, or spraying process; 步骤5、将阻挡层材料通过蒸镀、或刮涂、或滴涂、或旋涂或喷涂工艺,使第一阻挡层覆于底电极层上表面形成薄膜;Step 5, apply the barrier layer material by evaporation, or scrape coating, or drop coating, or spin coating or spraying process, so that the first barrier layer is coated on the upper surface of the bottom electrode layer to form a thin film; 步骤6、通过磁控溅射、或热蒸发、或电子束蒸发方法沉积顶电极。Step 6. Deposit the top electrode by magnetron sputtering, or thermal evaporation, or electron beam evaporation.
CN202310164910.2A 2023-02-24 2023-02-24 Dual-mode organic photodiode based on barrier layer interface regulation and control and preparation method thereof Pending CN116156904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310164910.2A CN116156904A (en) 2023-02-24 2023-02-24 Dual-mode organic photodiode based on barrier layer interface regulation and control and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310164910.2A CN116156904A (en) 2023-02-24 2023-02-24 Dual-mode organic photodiode based on barrier layer interface regulation and control and preparation method thereof

Publications (1)

Publication Number Publication Date
CN116156904A true CN116156904A (en) 2023-05-23

Family

ID=86373332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310164910.2A Pending CN116156904A (en) 2023-02-24 2023-02-24 Dual-mode organic photodiode based on barrier layer interface regulation and control and preparation method thereof

Country Status (1)

Country Link
CN (1) CN116156904A (en)

Similar Documents

Publication Publication Date Title
CN107591484B (en) A kind of multiplication type organic photodetector having both narrowband and broadband light detectivity
US9741901B2 (en) Two-terminal electronic devices and their methods of fabrication
US6670213B2 (en) Method of preparing photoresponsive devices, and devices made thereby
Wang et al. Spin‐On‐Patterning of Sn–Pb Perovskite Photodiodes on IGZO Transistor Arrays for Fast Active‐Matrix Near‐Infrared Imaging
CN106025070A (en) Photomultiplier organic light detector with spectral selectivity and preparation method of photomultiplier organic light detector
KR102174703B1 (en) Organic solar cells comprising optical defensive double carrier transport layer and manufacturing method thereof
CN114284436B (en) Organic-inorganic hybrid short-wave infrared photoelectric detector, array formed by same and related preparation method
CN105720197A (en) Self-driven wide-spectral-response silicon-based hybrid heterojunction photoelectric sensor and preparation method therefor
WO2017115646A1 (en) Photoelectric conversion element and imaging device
CN105977336A (en) Quantum dot infrared detection and display device and production method thereof
EP3136460A2 (en) Organic photoelectronic device and image sensor
CN110911568A (en) A kind of silver bismuth sulfur thin film photodetector and preparation method thereof
CN108807683B (en) Wide-spectral-response multiplication type organic photoelectric detector
CN108336231A (en) A kind of organic photodetector of wide spectrum response
WO2016014345A2 (en) Two-terminal electronic devices and their methods of fabrication
Aryal et al. Efficient dual cathode interfacial layer for high performance organic and perovskite solar cells
CN115020590A (en) Perovskite photoelectric detector, perovskite photoelectric detector array and preparation method thereof
CN113140678B (en) Full-polymer photodetector with high detectivity and low dark current
CN113054110B (en) Near-infrared narrow-band selective photoelectric detector
KR20170046877A (en) Composition for reducing work function of metal oxide-based electron-collection buffer layer, inverted organic solar cell using the same, and preparation method of the inverted organic solar cell
CN116156904A (en) Dual-mode organic photodiode based on barrier layer interface regulation and control and preparation method thereof
CN117715445A (en) A translucent organic light detector and its preparation method
CN115988890A (en) Full-waveband/dual-waveband/single-waveband organic optical detector suitable for optical communication system
Jeong et al. Inverted organic photodetectors with ZnO electron-collecting buffer layers and polymer bulk heterojunction active layers
CN116322246A (en) A transistor-type photodetector based on bismuth sulfide thin film and its preparation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination