CN116148669A - Battery pack simulation system and method - Google Patents
Battery pack simulation system and method Download PDFInfo
- Publication number
- CN116148669A CN116148669A CN202211730351.9A CN202211730351A CN116148669A CN 116148669 A CN116148669 A CN 116148669A CN 202211730351 A CN202211730351 A CN 202211730351A CN 116148669 A CN116148669 A CN 116148669A
- Authority
- CN
- China
- Prior art keywords
- module
- battery pack
- simulation
- battery
- simulated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
- G01R31/387—Determining ampere-hour charge capacity or SoC
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
本发明公开了一种蓄电池组模拟系统和方法。该系统包括:双向可编程直流电源模块、控制单元和采集模块;其中,控制单元包括控制模块和仿真模块。本发明通过以双向可编程直流电源、蓄电池数学模型和热仿真数学模型为基础的蓄电池组模拟系统,模拟蓄电池组在各种工作模式下的输入特性、输出特性、电能变换特性和温控特性,在真实蓄电池组设计生产前,快速精准的模拟出蓄电池组的各种特性,降低了生产成本,提高了生产效率,为操作人员提供最大化的系统集成功能。
The invention discloses a battery pack simulation system and method. The system includes: a bidirectional programmable DC power supply module, a control unit and an acquisition module; wherein, the control unit includes a control module and a simulation module. The invention simulates the input characteristics, output characteristics, electric energy conversion characteristics and temperature control characteristics of the battery group in various working modes through the battery pack simulation system based on the bidirectional programmable DC power supply, the battery mathematical model and the thermal simulation mathematical model, Before the design and production of the real battery pack, various characteristics of the battery pack can be quickly and accurately simulated, which reduces production costs, improves production efficiency, and provides operators with maximum system integration functions.
Description
技术领域technical field
本发明属于蓄电池组模拟技术领域,更具体地,涉及一种蓄电池组模拟系统及方法。The invention belongs to the technical field of battery pack simulation, and more particularly relates to a battery pack simulation system and method.
背景技术Background technique
在新能源电能系统中,蓄电池组作为提供和存储电能的部件,是系统不可或缺的重要部分。尤其在航空、航天技术领域,其航电系统在调试和性能评估时要进行蓄能、加载、减载、能量匹配、电网纹波检测等试验,都要采用蓄电池组作为工作电源。因新型航空、航天动力系统多为定制化储能产品,蓄电池组研制周期长,生产成本高,循环寿命短,蓄电池组电压调控困难,且系统联调阶段对蓄电池组频繁充放电,会影响电池及试验系统安全性造成影响,降低蓄电池组使用寿命;因此,需要在真实蓄电池组设计生产前,快速精准的模拟出蓄电池组SOC动态特性,不必进行蓄电池组批量化生产。In the new energy power system, the battery pack is an indispensable part of the system as a component for providing and storing electric energy. Especially in the field of aviation and aerospace technology, the avionics system needs to carry out tests such as energy storage, loading, load shedding, energy matching, grid ripple detection, etc. during debugging and performance evaluation, all of which use battery packs as the working power supply. Because most of the new aviation and aerospace power systems are customized energy storage products, the development cycle of the battery pack is long, the production cost is high, the cycle life is short, the voltage regulation of the battery pack is difficult, and the frequent charge and discharge of the battery pack during the system joint debugging stage will affect the battery life. It will affect the safety of the test system and reduce the service life of the battery pack; therefore, it is necessary to quickly and accurately simulate the SOC dynamic characteristics of the battery pack before the design and production of the real battery pack, without mass production of the battery pack.
公开于本发明背景技术部分的信息仅仅旨在加深对本发明的一般背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。The information disclosed in the background of the present invention is only intended to deepen the understanding of the general background of the present invention, and should not be regarded as an acknowledgment or any form of suggestion that the information constitutes the prior art known to those skilled in the art.
发明内容Contents of the invention
本发明的目的是提出一种蓄电池组模拟系统及方法,实现通过蓄电池组模拟系统对电能进行变换得到类似于真实蓄电池组伏安特性的电能曲线,简化操作难度、缩短试验周期、降低动力系统相关试验的安全风险,为操作人员提供最大化的系统集成功能。The purpose of the present invention is to propose a battery pack simulation system and method, which can transform the electric energy through the battery pack simulation system to obtain an electric energy curve similar to the volt-ampere characteristics of the real battery pack, simplify the operation difficulty, shorten the test period, and reduce the power system. Experimental safety risks, providing operators with maximized system integration capabilities.
根据本发明的第一方面,提出了一种蓄电池组模拟系统,包括:According to a first aspect of the present invention, a battery pack simulation system is proposed, comprising:
双向可编程直流电源模块,用于模拟蓄电池组的充放电功能;Bidirectional programmable DC power supply module, used to simulate the charging and discharging function of the battery pack;
控制单元,包括控制模块和仿真模块;A control unit, including a control module and a simulation module;
所述仿真模块内置仿真模型,所述控制模块根据所述仿真模型控制所述双向可编程直流电源模块进行电能的发生与耗散;The simulation module has a built-in simulation model, and the control module controls the bidirectional programmable DC power supply module to generate and dissipate electric energy according to the simulation model;
采集模块,用于对所述双向可编程直流电源模块的电流信号进行采集得到电能的累积量或者耗散量,并反馈至所述仿真模块。The collection module is used to collect the current signal of the bidirectional programmable DC power supply module to obtain the accumulation or dissipation of electric energy, and feed it back to the simulation module.
可选地,所述仿真模型为标准蓄电池数学模型和标准蓄电池热仿真数学模型;Optionally, the simulation model is a standard battery mathematical model and a standard battery thermal simulation mathematical model;
所述标准蓄电池数学模型用于生成模拟蓄电池组的SOC曲线,进而获取所述模拟蓄电池组的输入特性、输出特性和电能变换特性;The standard battery mathematical model is used to generate the SOC curve of the simulated battery pack, and then obtain the input characteristics, output characteristics and electric energy conversion characteristics of the simulated battery pack;
所述标准蓄电池热仿真数学模型用于进行所述模拟蓄电池组的温升变化的模拟。The standard battery thermal simulation mathematical model is used to simulate the temperature rise of the simulated battery pack.
可选地,还包括:Optionally, also include:
人机交互模块,用于用户选择所述仿真模型并配置所述模拟蓄电池组的参数。The human-computer interaction module is used for the user to select the simulation model and configure the parameters of the simulation battery pack.
可选地,还包括:Optionally, also include:
监测单元,包括监测模块、存储模块和显示界面;A monitoring unit, including a monitoring module, a storage module and a display interface;
所述监测模块用于实时监测蓄电池组模拟系统的输出特性和运行状态,并反馈到所述控制单元;The monitoring module is used for real-time monitoring of the output characteristics and operating status of the battery pack simulation system, and feeds back to the control unit;
所述存储模块用于存储所述监测模块的监测数据;The storage module is used to store the monitoring data of the monitoring module;
所述显示界面用于显示所述监测模块的监测数据。The display interface is used to display the monitoring data of the monitoring module.
可选地,还包括:Optionally, also include:
保护单元,包括软启动模块和散热保护模块;Protection unit, including soft start module and thermal protection module;
所述软启动模块用于软启动所述系统,抑制所述系统输出瞬间的超调现象及浪涌现象;The soft-start module is used for soft-starting the system, suppressing the instantaneous overshoot and surge of the system output;
散热保护模块用于对所述系统进行散热。The heat dissipation protection module is used for heat dissipation of the system.
可选地,还包括:Optionally, also include:
电源模块,用于给所述蓄电池组模拟系统提供电源。The power module is used to provide power for the battery pack simulation system.
根据本发明的第二方面,提出了一种蓄电池组模拟方法,包括:According to a second aspect of the present invention, a battery pack simulation method is proposed, comprising:
通过人机交互模块选择仿真模型,并在所述仿真模型中配置模拟蓄电池组的参数;Select a simulation model through the human-computer interaction module, and configure the parameters of the simulated battery pack in the simulation model;
控制模块根据所述仿真模型控制双向可编程直流电源模块进行电能的发生与耗散,模拟蓄电池组的充放电功能;The control module controls the bidirectional programmable DC power supply module to generate and dissipate electric energy according to the simulation model, and simulates the charging and discharging function of the battery pack;
通过采集模块对所述双向可编程直流电源模块的电流信号进行采集得到电能的累积量或者耗散量,并反馈至所述仿真模块;Collect the current signal of the bidirectional programmable DC power supply module through the collection module to obtain the cumulative amount or dissipation of electric energy, and feed it back to the simulation module;
所述仿真模块根据所述电能的累积量或者耗散量并通过所述控制模块调节所述双向直流电源模块的端口电压和电流,进而获取所述模拟蓄电池组的输入特性、输出特性、电能变换特性;The simulation module adjusts the port voltage and current of the bidirectional DC power supply module through the control module according to the cumulative amount or dissipation of the electric energy, and then obtains the input characteristics, output characteristics, and electric energy conversion of the simulated battery pack. characteristic;
所述仿真模块通过不断地迭代和修改蓄电池参数,完成温升变化的模拟,获取所述模拟蓄电池组的温控特性。The simulation module completes the simulation of temperature rise changes by continuously iterating and modifying battery parameters, and obtains the temperature control characteristics of the simulated battery pack.
可选地,所述仿真模型包括标准蓄电池数学模型和标准蓄电池热仿真数学模型;Optionally, the simulation model includes a standard battery mathematical model and a standard battery thermal simulation mathematical model;
所述标准蓄电池数学模型用于生成所述模拟蓄电池组的仿真SOC曲线,进而获取所述模拟蓄电池组的输入特性、输出特性和电能变换特性;The standard battery mathematical model is used to generate the simulated SOC curve of the simulated battery pack, and then obtain the input characteristics, output characteristics and electric energy conversion characteristics of the simulated battery pack;
所述蓄电池热仿真模型用于获取所述模拟蓄电池组的温控特性。The battery thermal simulation model is used to obtain the temperature control characteristics of the simulated battery pack.
可选地,还包括:Optionally, also include:
将单体电池的实测SOC曲线数据导入到所述标准蓄电池数学模型,拟合生成单体电池倍率组合模型,生成由所述单体电池组成模拟蓄电池组的SOC曲线和多循环状态容量衰降状态曲线。Import the measured SOC curve data of the single battery into the mathematical model of the standard battery, fit and generate the single battery rate combination model, and generate the SOC curve and the multi-cycle state capacity decline state of the simulated battery pack composed of the single battery curve.
可选地,通过所述采集模块对采集的电流信号进行毫秒级时间维度积分获取电能的累积量或者耗散量。Optionally, the collected current signal is integrated in a millisecond-level time dimension by the collection module to obtain a cumulative amount or a dissipated amount of electric energy.
本发明的有益效果在于:本发明通过以双向可编程直流电源、蓄电池数学模型和热仿真数学模型为基础的蓄电池组模拟系统,模拟蓄电池组在能量传递过程中各种工作模式下的输入特性、输出特性、电能变换特性和温控特性,在真实蓄电池组设计生产前,快速精准的模拟出蓄电池组SOC动态特性,不必进行蓄电池组批量化生产,通过蓄电池组模拟系统对电能进行变换得到类似于真实蓄电池组伏安特性的电能曲线,降低了生产成本,提高了生产效率,为操作人员提供最大化的系统集成功能。The beneficial effect of the present invention is that: the present invention simulates the input characteristics, Output characteristics, power conversion characteristics and temperature control characteristics, before the design and production of the actual battery pack, quickly and accurately simulate the dynamic characteristics of the battery pack SOC, without the need for mass production of the battery pack, the electric energy is transformed through the battery pack simulation system to obtain a similar The power curve of the volt-ampere characteristics of the real battery pack reduces production costs, improves production efficiency, and provides operators with maximum system integration functions.
本发明的系统具有其它的特性和优点,这些特性和优点从并入本文中的附图和随后的具体实施方式中将是显而易见的,或者将在并入本文中的附图和随后的具体实施方式中进行详细陈述,这些附图和具体实施方式共同用于解释本发明的特定原理。The system of the present invention has other features and advantages that will be apparent from or will be apparent from the drawings and detailed description that follow, incorporated herein. Set forth in detail in the manner, these drawings and the detailed description together serve to explain certain principles of the present invention.
附图说明Description of drawings
通过结合附图对本发明示例性实施例进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显,在本发明示例性实施例中,相同的参考标号通常代表相同部件。The above and other objects, features and advantages of the present invention will become more apparent by describing the exemplary embodiments of the present invention in more detail with reference to the accompanying drawings. In the exemplary embodiments of the present invention, the same reference numerals generally represent the same components .
图1示出了根据本发明的一种蓄电池组模拟系统的结构示意图。Fig. 1 shows a schematic structural diagram of a battery pack simulation system according to the present invention.
图2示出了根据本发明的实施例1的一种蓄电池组模拟系统的结构示意图。Fig. 2 shows a schematic structural diagram of a battery pack simulation system according to Embodiment 1 of the present invention.
图3示出了根据本发明的实施例1的一种蓄电池组模拟系统的检测单元的结构示意图。Fig. 3 shows a schematic structural diagram of a detection unit of a battery pack simulation system according to Embodiment 1 of the present invention.
1、双向可编程直流电源模块,2、控制单元,3、控制模块,4、仿真模块,5、采集模块,6、保护单元,7、软启动模块,8、散热保护模块,9、监测单元,10、人机交互模块,11、监测模块,12、存储模块,13显示界面。1. Bidirectional programmable DC power supply module, 2. Control unit, 3. Control module, 4. Simulation module, 5. Acquisition module, 6. Protection unit, 7. Soft start module, 8. Thermal protection module, 9. Monitoring unit , 10. Human-computer interaction module, 11. Monitoring module, 12. Storage module, 13 Display interface.
具体实施方式Detailed ways
下面将参照附图更详细地描述本发明。虽然附图中显示了本发明的优选实施例,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本发明更加透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。The present invention will be described in more detail below with reference to the accompanying drawings. Although preferred embodiments of the invention are shown in the drawings, it should be understood that the invention may be embodied in various forms and should not be limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
如图1所示,根据本发明的一种蓄电池组模拟系统,包括:As shown in Figure 1, a battery pack simulation system according to the present invention includes:
双向可编程直流电源模块,用于模拟蓄电池组的充放电功能;Bidirectional programmable DC power supply module, used to simulate the charging and discharging function of the battery pack;
控制单元,包括控制模块和仿真模块;A control unit, including a control module and a simulation module;
仿真模块内置仿真模型,控制模块根据仿真模型控制双向直流电源进行电能的发生与耗散;The simulation module has a built-in simulation model, and the control module controls the bidirectional DC power supply to generate and dissipate electric energy according to the simulation model;
采集模块,用于对双向可编程直流电源模块的电流信号进行采集得到电能的累积量或者耗散量,并反馈至仿真模块。The collection module is used to collect the current signal of the bidirectional programmable DC power supply module to obtain the accumulation or dissipation of electric energy, and feed it back to the simulation module.
具体地,在本发明中,蓄电池组模拟系统包括:双向可编程直流电源模块、控制单元和采集模块;其中,控制单元包括控制模块和仿真模块;Specifically, in the present invention, the battery pack simulation system includes: a bidirectional programmable DC power supply module, a control unit, and an acquisition module; wherein, the control unit includes a control module and a simulation module;
通过仿真模块内置的仿真模型来模拟蓄电池组,在仿真模型中输入模拟蓄电池组的参数,控制模块根据仿真模型控制双向可编程直流电源模块进行电能的发生与耗散,模拟蓄电池组的充放电功能;采集模块对双向可编程直流电源模块的电流信号进行采集得到电能的累积量或者耗散量,并反馈至仿真模块,通过仿真模块二阶系统的PID校正,实时的计算数据结果并且不断地迭代,对蓄电池组模拟系统的参数(电压、电流、剩余电量、仿真温度等)进行修正,实现蓄电池组模拟系统的闭环仿真模拟。The battery pack is simulated through the simulation model built in the simulation module, and the parameters of the simulated battery pack are input in the simulation model. The control module controls the bidirectional programmable DC power supply module to generate and dissipate electric energy according to the simulation model, and simulates the charging and discharging function of the battery pack. ;The acquisition module collects the current signal of the bidirectional programmable DC power supply module to obtain the accumulation or dissipation of electric energy, and feeds it back to the simulation module. Through the PID correction of the second-order system of the simulation module, the data results are calculated in real time and continuously iterated , modify the parameters (voltage, current, remaining power, simulation temperature, etc.) of the battery pack simulation system, and realize the closed-loop simulation of the battery pack simulation system.
在一个示例中,仿真模型为标准蓄电池数学模型和标准蓄电池热仿真数学模型;In an example, the simulation model is a standard battery mathematical model and a standard battery thermal simulation mathematical model;
标准蓄电池数学模型用于生成模拟蓄电池组的SOC曲线;The standard battery mathematical model is used to generate the SOC curve of the simulated battery pack;
标准蓄电池热仿真数学模型用于进行模拟蓄电池组的温升变化的模拟。The standard battery thermal simulation mathematical model is used to simulate the temperature rise of the battery pack.
具体地,通过在仿真模块的标准蓄电池数学模型输入模拟蓄电池组的串/并联关系和循环次数,生成模拟蓄电池组SOC曲线;Specifically, the SOC curve of the simulated battery pack is generated by inputting the series/parallel relationship and the number of cycles of the simulated battery pack in the standard battery mathematical model of the simulation module;
或者,通过在仿真模块的标准蓄电池数学模型输入模拟蓄电池组的串/并联关系、循环次数和单体电池的参数,生成模拟蓄电池组SOC曲线;Or, by inputting the series/parallel relationship of the simulated battery pack, the number of cycles and the parameters of the single battery in the standard battery mathematical model of the simulation module, the SOC curve of the simulated battery pack is generated;
通过标准蓄电池热仿真数学模型输入恒定的环境温度和气压,协同标准蓄电池数学模型,根据模拟蓄电池组功率的变化实时仿真出模拟蓄电池组的温度变化;Input the constant ambient temperature and air pressure through the standard battery thermal simulation mathematical model, cooperate with the standard battery mathematical model, and simulate the temperature change of the simulated battery pack in real time according to the change of the power of the simulated battery pack;
或者通过标准蓄电池热仿真数学模型输入动态的环境温度和气压,协同标准蓄电池数学模型,根据温度、气压和模拟蓄电池组功率的变化实时仿真出模拟蓄电池组的温度变化。Or input the dynamic ambient temperature and air pressure through the standard battery thermal simulation mathematical model, cooperate with the standard battery mathematical model, and simulate the temperature change of the simulated battery pack in real time according to the changes in temperature, air pressure and simulated battery pack power.
例如,通过向标准蓄电池数学模型导入单体电池实测SOC曲线数据,即单体电池的单倍率多循环数据、多倍率单循环数据和多倍率多循环数据,通过设定起始SOC、起始蓄电池组充放电循环次数,拟合生成由该单体电池组合成的蓄电池组仿真SOC曲线及其多循环状态容量衰降状态;For example, by importing the measured SOC curve data of the single battery into the standard battery mathematical model, that is, the single-rate multi-cycle data, multi-rate single-cycle data and multi-rate multi-cycle data of the single battery, by setting the initial SOC, initial battery The number of charging and discharging cycles of the battery pack is used to generate the simulated SOC curve of the battery pack composed of the single battery pack and its multi-cycle state capacity decline state;
通过向标准蓄电池热仿真数学模型输入标准大气环境的温度和气压,并调用标准蓄电池热仿真数学模型,进行热学仿真,配置单体电池在标准大气环境下的理论设计值或导入单体电池不同充放电倍率的实测温度数据,在模拟蓄电池组的充放电过程中,系统不断地迭代、修改蓄电池组的参数,从而完成温升变化的模拟,获取模拟蓄电池组在标准大气环境下的温升变化。By inputting the temperature and air pressure of the standard atmospheric environment into the standard battery thermal simulation mathematical model, and calling the standard battery thermal simulation mathematical model, thermal simulation is performed, and the theoretical design value of the single battery in the standard atmospheric environment is configured or the charging of the single battery is different. The measured temperature data of the discharge rate, in the process of simulating the charging and discharging of the battery pack, the system continuously iterates and modifies the parameters of the battery pack, so as to complete the simulation of the temperature rise change and obtain the temperature rise change of the simulated battery pack in the standard atmospheric environment.
在一个示例中,在本发明中,蓄电池组模拟系统还包括:In one example, in the present invention, the battery pack simulation system further includes:
人机交互模块,用于用户选择仿真模型并配置模拟蓄电池组的参数。The human-computer interaction module is used for the user to select the simulation model and configure the parameters of the simulation battery pack.
具体地,用户通过人机交互模块选择标准蓄电池数学模型和标准蓄电池热仿真数学模型,并在模型中配置模拟蓄电池组的串/并联关系、循环次数、环境温度和气压等参数。Specifically, the user selects the standard battery mathematical model and the standard battery thermal simulation mathematical model through the human-computer interaction module, and configures parameters such as the series/parallel relationship of the simulated battery pack, cycle times, ambient temperature, and air pressure in the model.
例如,人机交互模块可以为键盘、鼠标或者触摸操作设备等;For example, the human-computer interaction module can be a keyboard, mouse or touch operation device, etc.;
用户通过人机交互模块选择标准蓄电池数学模型,并在模型中配置模拟蓄电池组的串/并联关系和循环次数;The user selects the standard battery mathematical model through the human-computer interaction module, and configures the series/parallel relationship and cycle times of the simulated battery pack in the model;
或者,用户通过人机交互模块选择标准蓄电池数学模型,并在模型中配置模拟蓄电池组的串/并联关系和循环次数,并输入单体电池的参数,如电压、电流、容量、内阻等参数,替换标准蓄电池数学模型中的单体电池参数。Or, the user selects the standard battery mathematical model through the human-computer interaction module, and configures the series/parallel relationship and cycle times of the simulated battery pack in the model, and inputs the parameters of the single battery, such as voltage, current, capacity, internal resistance and other parameters , to replace the single battery parameters in the standard battery mathematical model.
在一个示例中,在本发明中,蓄电池组模拟系统还包括:In one example, in the present invention, the battery pack simulation system further includes:
监测单元,包括监测模块、存储模块和显示界面;A monitoring unit, including a monitoring module, a storage module and a display interface;
监测模块用于实时监测蓄电池组模拟系统的输出特性和运行状态,并反馈到控制单元;The monitoring module is used to monitor the output characteristics and operating status of the battery pack simulation system in real time, and feed back to the control unit;
存储模块用于存储监测模块的监测数据;The storage module is used to store the monitoring data of the monitoring module;
显示界面用于显示监测模块的监测数据。The display interface is used to display the monitoring data of the monitoring module.
具体地,监测模块可实时监测系统的输出特性、运行状态,并反馈至系统的控制单元;监测模块通过系统内部的传感器和信号调理装置进行能量节点的二次状态监测,可以实时采集配电通道的电压和电流值,并反馈至系统的控制单元进行遥调数据复核;监测模块可以将系统遥调数据和监测数据实时显示在显示界面并存储在存储模块中,通过查看存储的电压和电流波形,分析系统运行状态,并对系统内可能出现的故障进行实时预警,其中,显示界面还可以显示人机交互界面。Specifically, the monitoring module can monitor the output characteristics and operating status of the system in real time, and feed back to the control unit of the system; the monitoring module can monitor the secondary status of energy nodes through the sensors and signal conditioning devices inside the system, and can collect power distribution channels in real time. The voltage and current values are fed back to the control unit of the system for remote adjustment data review; the monitoring module can display the system remote adjustment data and monitoring data on the display interface in real time and store them in the storage module, by viewing the stored voltage and current waveforms , analyze the operating status of the system, and give real-time early warning of possible faults in the system, wherein the display interface can also display a human-computer interaction interface.
在一个示例中,在本发明中,蓄电池组模拟系统还包括:In one example, in the present invention, the battery pack simulation system further includes:
保护单元,包括软启动模块和散热保护模块;Protection unit, including soft start module and thermal protection module;
软启动模块用于软启动系统,抑制系统输出瞬间的超调现象及浪涌现象;The soft start module is used in the soft start system to suppress the instantaneous overshoot and surge of the system output;
散热保护模块用于对系统进行散热。The thermal protection module is used for cooling the system.
具体地,软启动模块是为防止双向可编程直流电源模块在输出的瞬间产生电压超调现象,保护蓄电池组模拟系统的外接功率设备;对系统内部采用软起动保护方式,抑制蓄电池模拟系统输出瞬间的超调现象及浪涌现象;散热保护模块是为防止蓄电池模拟系统长周期大功率运行导致系统内温度过高,对系统进行散热;针对所连接的系统外部设备存在的感性负载特性,还可以采用反电势耗散器对系统和外部其它设备提供安全保护。Specifically, the soft start module is to prevent the voltage overshoot of the bidirectional programmable DC power supply module at the moment of output, and protect the external power equipment of the battery pack simulation system; the soft start protection method is used inside the system to suppress the output of the battery simulation system. Overshoot phenomenon and surge phenomenon; the heat dissipation protection module is to prevent the internal temperature of the battery simulation system from being too high due to long-term high-power operation, and to dissipate heat from the system; for the inductive load characteristics of the external equipment connected to the system, it can also The back EMF dissipator is used to provide safety protection for the system and other external equipment.
例如,散热保护模块可以采用风冷散热对系统进行散热。For example, the thermal protection module can use air cooling to dissipate heat from the system.
在一个示例中,在本发明中,蓄电池组模拟系统还包括:In one example, in the present invention, the battery pack simulation system further includes:
电源模块,用于给蓄电池组模拟系统提供电源。The power module is used to provide power for the battery pack simulation system.
具体地,电源模块用于给双向可编程直流电源模块、控制模块、仿真模块和采集模块等系统内的模块提供电源。Specifically, the power supply module is used to provide power to modules in the system such as a bidirectional programmable DC power supply module, a control module, a simulation module and an acquisition module.
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the present invention. It should be noted that, in the case of no conflict, the embodiments of the present invention and the features in the embodiments can be combined with each other.
实施例1Example 1
如图2所示,本实施例提供了一种蓄电池组模拟系统,包括:As shown in Figure 2, this embodiment provides a battery pack simulation system, including:
双向可编程直流电源模块1,用于模拟蓄电池组的充放电功能;Bidirectional programmable DC power supply module 1, used to simulate the charging and discharging function of the storage battery pack;
控制单元2,包括控制模块3和仿真模块4;A
仿真模块4内置仿真模型,控制模块3根据仿真模型控制双向可编程直流电源模块1进行电能的发生与耗散;The
采集模块5,用于对双向可编程直流电源模块1的电流信号进行采集得到电能的累积量或者耗散量,并反馈至仿真模块4。The
保护单元6,包括软启动模块7和散热保护模块8;The
软启动模块7用于软启动系统,抑制系统输出瞬间的超调现象及浪涌现象;The soft-start module 7 is used for the soft-start system to suppress the instantaneous overshoot and surge phenomena of the system output;
散热保护模块8用于对系统进行散热;The heat
监测单元9,包括监测模块11、存储模块12和显示界面13,如图3所示;The monitoring unit 9 includes a
监测模块11用于实时监测蓄电池组模拟系统的输出特性和运行状态,并反馈到控制单元;The
存储模块12用于存储监测模块的监测数据;The
显示界面13用于显示监测模块的监测数据。The
人机交互模块10,用于用户选择仿真模型并配置模拟蓄电池组的参数。The human-
实施例2Example 2
本实施例提供了一种蓄电池组模拟方法,包括:This embodiment provides a battery pack simulation method, including:
通过人机交互模块选择仿真模块内置的标准蓄电池数学模型,并配置模拟蓄电池组的的串/并联关系和循环次数,生成模拟蓄电池组的仿真SOC曲线;Select the standard battery mathematical model built in the simulation module through the human-computer interaction module, and configure the series/parallel relationship and cycle times of the simulated battery pack to generate the simulated SOC curve of the simulated battery pack;
或者在标准蓄电池数学模型另外配置单体电池的参数,如电压、电流、容量、内阻等参数,替换标准蓄电池数学模型中的单体电池参数,生成模拟蓄电池组的仿真SOC曲线;Or configure the parameters of the single battery in the standard battery mathematical model, such as voltage, current, capacity, internal resistance and other parameters, replace the single battery parameters in the standard battery mathematical model, and generate the simulated SOC curve of the simulated battery pack;
或者向标准蓄电池数学模型导入单体电池实测SOC曲线数据,即单体电池的单倍率多循环数据、多倍率单循环数据和多倍率多循环数据,拟合生成由该单体电池组合成的蓄电池组仿真SOC曲线及其多循环状态容量衰降状态曲线;Or import the measured SOC curve data of the single battery into the standard battery mathematical model, that is, the single-rate multi-cycle data, multi-rate single-cycle data and multi-rate multi-cycle data of the single battery, and fit and generate a battery composed of the single battery Group simulation SOC curve and its multi-cycle state capacity decline state curve;
控制模块根据配置完成的标准蓄电池数学模型控制双向可编程直流电源模块进行电能的发生与耗散,模拟蓄电池组的充放电功能;The control module controls the bidirectional programmable DC power supply module to generate and dissipate electric energy according to the configured standard battery mathematical model, and simulates the charging and discharging function of the battery pack;
通过采集模块对双向可编程直流电源模块的电流信号进行采集得到电能的累积量或者耗散量,并反馈至仿真模块;Collect the current signal of the bidirectional programmable DC power supply module through the acquisition module to obtain the accumulation or dissipation of electric energy, and feed it back to the simulation module;
仿真模块根据电能的累积量或者耗散量并通过控制模块调节双向直流电源模块的端口电压和电流,模拟蓄电池组在能量传递系统中各种工作模式下输入特性、输出特性和电能变换特性;The simulation module adjusts the port voltage and current of the bidirectional DC power supply module through the control module according to the accumulation or dissipation of electric energy, and simulates the input characteristics, output characteristics and electric energy conversion characteristics of the battery pack in various working modes in the energy transfer system;
通过人机交互模块选择仿真模块内置的标准蓄电池热仿真数学模型,并配置恒定的温度和气压或者动态的温度和气压,然后配置单体电池在标准大气环境下的理论设计值或导入单体电池不同充放电倍率的实测温度数据;调用标准蓄电池数学模型,在蓄电池组充放电模拟过程中,仿真模块不断地迭代和修改蓄电池参数,从而完成温升变化的模拟,获取模拟蓄电池组的温控特性。Select the standard battery thermal simulation mathematical model built in the simulation module through the human-computer interaction module, and configure constant temperature and air pressure or dynamic temperature and air pressure, and then configure the theoretical design value of the single battery in the standard atmospheric environment or import the single battery The measured temperature data of different charge and discharge ratios; calling the standard battery mathematical model, during the battery pack charge and discharge simulation process, the simulation module continuously iterates and modifies the battery parameters, thereby completing the simulation of temperature rise and obtaining the temperature control characteristics of the simulated battery pack .
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。Having described various embodiments of the present invention, the foregoing description is exemplary, not exhaustive, and is not limited to the disclosed embodiments. Many modifications and alterations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211730351.9A CN116148669A (en) | 2022-12-30 | 2022-12-30 | Battery pack simulation system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211730351.9A CN116148669A (en) | 2022-12-30 | 2022-12-30 | Battery pack simulation system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116148669A true CN116148669A (en) | 2023-05-23 |
Family
ID=86355518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211730351.9A Pending CN116148669A (en) | 2022-12-30 | 2022-12-30 | Battery pack simulation system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116148669A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103730905A (en) * | 2013-12-20 | 2014-04-16 | 杨仁刚 | Accumulator power supply simulation device and method |
CN103869197A (en) * | 2014-03-31 | 2014-06-18 | 南京南瑞集团公司 | Electric vehicle charging-discharging device double-energy-feeding testing system |
CN105223505A (en) * | 2014-06-30 | 2016-01-06 | 北京瑞龙鸿威科技有限公司 | Based on the storage battery analog device that embedded system controls |
KR20160069384A (en) * | 2014-12-08 | 2016-06-16 | 주식회사 엘지화학 | Apparatus for simulating battery module |
CN106980725A (en) * | 2017-03-28 | 2017-07-25 | 奇瑞汽车股份有限公司 | A kind of analog simulation method of automobile storage battery type selecting |
CN112395740A (en) * | 2020-10-19 | 2021-02-23 | 深圳市航天新源科技有限公司 | System and method for simulating storage battery based on energy feedback and step-less programming |
-
2022
- 2022-12-30 CN CN202211730351.9A patent/CN116148669A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103730905A (en) * | 2013-12-20 | 2014-04-16 | 杨仁刚 | Accumulator power supply simulation device and method |
CN103869197A (en) * | 2014-03-31 | 2014-06-18 | 南京南瑞集团公司 | Electric vehicle charging-discharging device double-energy-feeding testing system |
CN105223505A (en) * | 2014-06-30 | 2016-01-06 | 北京瑞龙鸿威科技有限公司 | Based on the storage battery analog device that embedded system controls |
KR20160069384A (en) * | 2014-12-08 | 2016-06-16 | 주식회사 엘지화학 | Apparatus for simulating battery module |
CN106980725A (en) * | 2017-03-28 | 2017-07-25 | 奇瑞汽车股份有限公司 | A kind of analog simulation method of automobile storage battery type selecting |
CN112395740A (en) * | 2020-10-19 | 2021-02-23 | 深圳市航天新源科技有限公司 | System and method for simulating storage battery based on energy feedback and step-less programming |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Akinlabi et al. | Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review | |
CN102411128B (en) | Virtual battery management system and application method thereof | |
Gao et al. | Dynamic lithium-ion battery model for system simulation | |
CN103412205B (en) | A kind of method of testing of charging equipment of electric automobile | |
CN116632983B (en) | Charging and discharging control system suitable for outdoor energy storage power supply | |
CA2512871C (en) | Method and system for modeling energy transfer | |
CN107453446B (en) | A battery balance repair system and method | |
CN105356528A (en) | Battery management system | |
CN101109789A (en) | Electric vehicle battery performance intelligent analysis test bench | |
CN102508167A (en) | Device and method for automatically testing and calibrating parameters of battery management systems | |
CN106291392A (en) | A kind of battery dynamic characteristic test method and device | |
Knauff et al. | Simulink model of a lithium-ion battery for the hybrid power system testbed | |
WO2024131296A1 (en) | Energy storage thermal management system, control method, and control apparatus | |
Manas et al. | Designing a battery Management system for electric vehicles: A congregated approach | |
CN109581241A (en) | A kind of battery characteristics analogy method and device | |
JP4401734B2 (en) | Secondary battery internal resistance detection method, internal resistance detection device, internal resistance detection program, and medium containing the program | |
CN116148669A (en) | Battery pack simulation system and method | |
CN100375368C (en) | Ac adaptor | |
CN203645375U (en) | Portable battery state of charge regulating equipment | |
Ghimire et al. | Parametric study of battery module cooling: configuration optimization using response curve method | |
CN204142930U (en) | A kind of accumulator cell charging and discharging electric quantity monitoring table | |
Xu et al. | Performance comparison of phase change material/liquid cooling hybrid battery thermal management system under different cyclic charging-discharging mode designs | |
CN219657840U (en) | BMU testing arrangement | |
CN104714179A (en) | Method for estimating battery life based on alternating-current impedance spectrum | |
Padalkar et al. | Energy conversion and balance of Li-ion battery cell with emphasis on heat generation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |