CN116144737A - Porous silicon deoxyribozyme fluorescent probe and application thereof in evaluating anticancer activity of traditional Chinese medicine - Google Patents
Porous silicon deoxyribozyme fluorescent probe and application thereof in evaluating anticancer activity of traditional Chinese medicine Download PDFInfo
- Publication number
- CN116144737A CN116144737A CN202211571490.1A CN202211571490A CN116144737A CN 116144737 A CN116144737 A CN 116144737A CN 202211571490 A CN202211571490 A CN 202211571490A CN 116144737 A CN116144737 A CN 116144737A
- Authority
- CN
- China
- Prior art keywords
- microrna
- porous silica
- dna
- cells
- porous silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003814 drug Substances 0.000 title claims abstract description 68
- 229910021426 porous silicon Inorganic materials 0.000 title claims abstract description 51
- 108091027757 Deoxyribozyme Proteins 0.000 title claims abstract description 40
- 239000007850 fluorescent dye Substances 0.000 title claims abstract description 40
- 230000001093 anti-cancer Effects 0.000 title abstract description 6
- 108020004414 DNA Proteins 0.000 claims abstract description 56
- 108700011259 MicroRNAs Proteins 0.000 claims abstract description 46
- 239000002679 microRNA Substances 0.000 claims abstract description 45
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000002105 nanoparticle Substances 0.000 claims abstract description 31
- 108090000790 Enzymes Proteins 0.000 claims abstract description 21
- 102000004190 Enzymes Human genes 0.000 claims abstract description 21
- 238000003776 cleavage reaction Methods 0.000 claims abstract description 16
- 238000001514 detection method Methods 0.000 claims abstract description 14
- 230000007017 scission Effects 0.000 claims abstract description 12
- 239000002773 nucleotide Substances 0.000 claims abstract description 7
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 7
- 230000000295 complement effect Effects 0.000 claims abstract description 6
- 238000011156 evaluation Methods 0.000 claims abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 64
- 239000000243 solution Substances 0.000 claims description 37
- 238000006243 chemical reaction Methods 0.000 claims description 35
- 239000000377 silicon dioxide Substances 0.000 claims description 32
- 239000011148 porous material Substances 0.000 claims description 27
- 239000002244 precipitate Substances 0.000 claims description 21
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 15
- 208000003721 Triple Negative Breast Neoplasms Diseases 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 208000022679 triple-negative breast carcinoma Diseases 0.000 claims description 13
- 206010028980 Neoplasm Diseases 0.000 claims description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- 239000007853 buffer solution Substances 0.000 claims description 12
- 230000002829 reductive effect Effects 0.000 claims description 9
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims description 5
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 5
- 102100033072 DNA replication ATP-dependent helicase DNA2 Human genes 0.000 claims description 5
- 101000927313 Homo sapiens DNA replication ATP-dependent helicase DNA2 Proteins 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 238000003786 synthesis reaction Methods 0.000 claims description 4
- GIVLNOBJINYUNK-UHFFFAOYSA-N 3-[bis(3-oxopropyl)phosphanyl]propanal hydrochloride Chemical compound Cl.C(=O)CCP(CCC=O)CCC=O GIVLNOBJINYUNK-UHFFFAOYSA-N 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 3
- DZGCGKFAPXFTNM-UHFFFAOYSA-N ethanol;hydron;chloride Chemical compound Cl.CCO DZGCGKFAPXFTNM-UHFFFAOYSA-N 0.000 claims description 3
- 230000000259 anti-tumor effect Effects 0.000 claims description 2
- 238000000338 in vitro Methods 0.000 claims description 2
- 238000011068 loading method Methods 0.000 claims description 2
- 102000053602 DNA Human genes 0.000 claims 6
- 238000002156 mixing Methods 0.000 claims 4
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 claims 3
- 238000000137 annealing Methods 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 150000002148 esters Chemical class 0.000 claims 1
- 238000000643 oven drying Methods 0.000 claims 1
- 239000000523 sample Substances 0.000 abstract description 19
- 210000004027 cell Anatomy 0.000 description 122
- REFJWTPEDVJJIY-UHFFFAOYSA-N Quercetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 REFJWTPEDVJJIY-UHFFFAOYSA-N 0.000 description 58
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 description 56
- 102400001060 Neutrophil defensin 2 Human genes 0.000 description 55
- HYXITZLLTYIPOF-UHFFFAOYSA-N 1,6,6-trimethyl-8,9-dihydro-7H-naphtho[1,2-g]benzofuran-10,11-dione Chemical compound O=C1C(=O)C2=C3CCCC(C)(C)C3=CC=C2C2=C1C(C)=CO2 HYXITZLLTYIPOF-UHFFFAOYSA-N 0.000 description 47
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 34
- 230000000694 effects Effects 0.000 description 34
- ZVOLCUVKHLEPEV-UHFFFAOYSA-N Quercetagetin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=C(O)C(O)=C(O)C=C2O1 ZVOLCUVKHLEPEV-UHFFFAOYSA-N 0.000 description 29
- HWTZYBCRDDUBJY-UHFFFAOYSA-N Rhynchosin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=CC(O)=C(O)C=C2O1 HWTZYBCRDDUBJY-UHFFFAOYSA-N 0.000 description 29
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 description 29
- 229960001285 quercetin Drugs 0.000 description 29
- 235000005875 quercetin Nutrition 0.000 description 29
- 229940109262 curcumin Drugs 0.000 description 28
- 235000012754 curcumin Nutrition 0.000 description 28
- 239000004148 curcumin Substances 0.000 description 28
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 description 28
- 238000002474 experimental method Methods 0.000 description 23
- 206010006187 Breast cancer Diseases 0.000 description 17
- 208000026310 Breast neoplasm Diseases 0.000 description 17
- 239000000178 monomer Substances 0.000 description 17
- 229940079593 drug Drugs 0.000 description 15
- VKJGBAJNNALVAV-UHFFFAOYSA-M Berberine chloride (TN) Chemical compound [Cl-].C1=C2CC[N+]3=CC4=C(OC)C(OC)=CC=C4C=C3C2=CC2=C1OCO2 VKJGBAJNNALVAV-UHFFFAOYSA-M 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- YBHILYKTIRIUTE-UHFFFAOYSA-N berberine Chemical compound C1=C2CC[N+]3=CC4=C(OC)C(OC)=CC=C4C=C3C2=CC2=C1OCO2 YBHILYKTIRIUTE-UHFFFAOYSA-N 0.000 description 13
- 229940093265 berberine Drugs 0.000 description 13
- QISXPYZVZJBNDM-UHFFFAOYSA-N berberine Natural products COc1ccc2C=C3N(Cc2c1OC)C=Cc4cc5OCOc5cc34 QISXPYZVZJBNDM-UHFFFAOYSA-N 0.000 description 13
- 230000006907 apoptotic process Effects 0.000 description 12
- 239000002953 phosphate buffered saline Substances 0.000 description 10
- 239000006228 supernatant Substances 0.000 description 10
- 201000011510 cancer Diseases 0.000 description 9
- AZEZEAABTDXEHR-UHFFFAOYSA-M sodium;1,6,6-trimethyl-10,11-dioxo-8,9-dihydro-7h-naphtho[1,2-g][1]benzofuran-2-sulfonate Chemical compound [Na+].C12=CC=C(C(CCC3)(C)C)C3=C2C(=O)C(=O)C2=C1OC(S([O-])(=O)=O)=C2C AZEZEAABTDXEHR-UHFFFAOYSA-M 0.000 description 9
- AIGAZQPHXLWMOJ-UHFFFAOYSA-N tanshinone IIA Natural products C1=CC2=C(C)C=CC=C2C(C(=O)C2=O)=C1C1=C2C(C)=CO1 AIGAZQPHXLWMOJ-UHFFFAOYSA-N 0.000 description 9
- 239000007995 HEPES buffer Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000012292 cell migration Effects 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 8
- 230000012010 growth Effects 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 239000011550 stock solution Substances 0.000 description 8
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 7
- 230000003833 cell viability Effects 0.000 description 7
- 238000003501 co-culture Methods 0.000 description 7
- 229940126680 traditional chinese medicines Drugs 0.000 description 7
- 239000002585 base Substances 0.000 description 6
- 230000005757 colony formation Effects 0.000 description 6
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 6
- 229930040373 Paraformaldehyde Natural products 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 210000004940 nucleus Anatomy 0.000 description 5
- 229920002866 paraformaldehyde Polymers 0.000 description 5
- 210000004881 tumor cell Anatomy 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- -1 N-ε-maleimidocaproyl-oxysuccinimide ester Chemical class 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000011896 sensitive detection Methods 0.000 description 4
- 239000012192 staining solution Substances 0.000 description 4
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 3
- 102400000888 Cholecystokinin-8 Human genes 0.000 description 3
- 101800005151 Cholecystokinin-8 Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000010802 RNA extraction kit Methods 0.000 description 3
- 108010087230 Sincalide Proteins 0.000 description 3
- PZBFGYYEXUXCOF-UHFFFAOYSA-N TCEP Chemical compound OC(=O)CCP(CCC(O)=O)CCC(O)=O PZBFGYYEXUXCOF-UHFFFAOYSA-N 0.000 description 3
- 229920004890 Triton X-100 Polymers 0.000 description 3
- 239000013504 Triton X-100 Substances 0.000 description 3
- 230000003698 anagen phase Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000010609 cell counting kit-8 assay Methods 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- SPTYHKZRPFATHJ-HYZXJONISA-N dT6 Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)CO)[C@@H](O)C1 SPTYHKZRPFATHJ-HYZXJONISA-N 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000035876 healing Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- MIDXXTLMKGZDPV-UHFFFAOYSA-M sodium;1-[6-(2,5-dioxopyrrol-1-yl)hexanoyloxy]-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCCCN1C(=O)C=CC1=O MIDXXTLMKGZDPV-UHFFFAOYSA-M 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 108010077544 Chromatin Proteins 0.000 description 2
- 238000000116 DAPI staining Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 230000001640 apoptogenic effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000007910 cell fusion Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 210000003483 chromatin Anatomy 0.000 description 2
- 238000003235 crystal violet staining Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000000439 tumor marker Substances 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- VUFNLQXQSDUXKB-DOFZRALJSA-N 2-[4-[4-[bis(2-chloroethyl)amino]phenyl]butanoyloxy]ethyl (5z,8z,11z,14z)-icosa-5,8,11,14-tetraenoate Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)OCCOC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 VUFNLQXQSDUXKB-DOFZRALJSA-N 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 108091032955 Bacterial small RNA Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 102100038595 Estrogen receptor Human genes 0.000 description 1
- 238000002738 Giemsa staining Methods 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000009702 cancer cell proliferation Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 238000012921 fluorescence analysis Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000010832 independent-sample T-test Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 210000000633 nuclear envelope Anatomy 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 102000003998 progesterone receptors Human genes 0.000 description 1
- 108090000468 progesterone receptors Proteins 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000005919 time-dependent effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6811—Selection methods for production or design of target specific oligonucleotides or binding molecules
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/136—Screening for pharmacological compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/178—Oligonucleotides characterized by their use miRNA, siRNA or ncRNA
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Nanotechnology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Pathology (AREA)
- Inorganic Chemistry (AREA)
- Medical Informatics (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种多孔硅脱氧核酶荧光探针及在中药抗癌活性评价中的应用,该荧光探针包括氨基修饰的多孔二氧化硅纳米粒子、装载于纳米粒子孔道中的荧光分子和共价连接在纳米粒子表面的DNA发卡HP1、HP2;其中,HP1序列中包含待测microRNA的互补序列,HP2序列中含有锌离子特异性脱氧核酶的酶切位点;HP1与microRNA结合后,根部被打开,HP1环部发生构型变化并与HP2环部核苷酸序列结合,在锌离子辅助下激活锌离子特异性脱氧核酶,继而在酶切位点处将HP2切断,纳米粒子孔道中荧光分子释放,通过荧光分子强度实现对microRNA的检测。该探针能够特异、灵敏的检测体系中痕量的microRNA。
The invention discloses a porous silicon deoxyribozyme fluorescent probe and its application in the evaluation of the anticancer activity of traditional Chinese medicine. DNA hairpins HP1 and HP2 covalently linked to the surface of the nanoparticles; wherein, the sequence of HP1 contains the complementary sequence of the microRNA to be tested, and the sequence of HP2 contains the enzyme cleavage site of zinc ion-specific deoxyribozyme; after HP1 binds to the microRNA, The root is opened, the configuration of the HP1 loop changes and binds to the nucleotide sequence of the HP2 loop, and the zinc ion-specific deoxyribozyme is activated with the assistance of zinc ions, and then HP2 is cut off at the enzyme cleavage site, and the nanoparticle channel The medium fluorescent molecules are released, and the detection of microRNA is realized through the intensity of the fluorescent molecules. The probe can specifically and sensitively detect trace amounts of microRNA in the system.
Description
技术领域technical field
本发明属于材料领域,涉及荧光探针及应用,具体涉及一种多孔硅脱氧核酶荧光探针及在中药抗癌活性评价中的应用。The invention belongs to the field of materials, and relates to a fluorescent probe and its application, in particular to a porous silicon deoxyribozyme fluorescent probe and its application in evaluating the anticancer activity of traditional Chinese medicine.
背景技术Background technique
中药在治疗癌症方面具有多靶点、副作用小等优势,能够通过增强患者自身的免疫系统,减少治疗过程中的不良反应,提高患者的生活质量。在各种乳腺癌症类型中,三阴性乳腺癌(Triple negative breast cancer,TNBC)是雌激素受体、孕激素受体和人类表皮生长因子受体2表达均为阴性的一类乳腺癌,具有高转移性、高复发性等特点,临床治愈率低,预后差。Traditional Chinese medicine has the advantages of multiple targets and few side effects in the treatment of cancer. It can enhance the patient's own immune system, reduce adverse reactions during treatment, and improve the quality of life of patients. Among various types of breast cancer, triple negative breast cancer (TNBC) is a type of breast cancer with negative expression of estrogen receptor, progesterone receptor and human epidermal
在TNBC发生和发展的过程中,机体会对异常的肿瘤细胞做出反应而使体内某些物质发生含量变化,包括基因产物、蛋白质、激素、多胺和酶类等。其中,microRNA作为TNBC临床诊断中可信赖的指标之一,能够反映TNBC的发展进程。中药中的许多单体成分如小檗碱、丹参酮ⅡA、槲皮素、姜黄素等,能够调节TNBC细胞内microRNA的含量,抑制癌细胞增殖、转移,降低TNBC的高转移性、高复发性,在改善患者临床症状等方面均有显著疗效。During the occurrence and development of TNBC, the body will respond to abnormal tumor cells and cause changes in the content of certain substances in the body, including gene products, proteins, hormones, polyamines and enzymes. Among them, microRNA, as one of the reliable indicators in the clinical diagnosis of TNBC, can reflect the development process of TNBC. Many monomer components in traditional Chinese medicine, such as berberine, tanshinone Ⅱ A, quercetin, curcumin, etc., can regulate the content of microRNA in TNBC cells, inhibit cancer cell proliferation and metastasis, and reduce the high metastasis and high recurrence of TNBC. It has a significant effect in improving the clinical symptoms of patients.
目前对癌症标志物microRNA检测的方法有多种,其中荧光分析具有设备简单、分析灵敏度高、选择性强、检测直观等优点,应用最为广泛。由于microRNA在体内含量极低,通常需结合适当的纳米材料,以提高检测的灵敏度。microRNA21作为一种具有调控基因表达作用的小分子,在机体正常生长发育、细胞增殖、凋亡等生理活动中发挥着重要的作用。microRNA21的含量变化可能预示着体内信号通路、蛋白质合成等的异常,可以作为疾病标志物用于预测癌症、代谢性疾病、病毒感染等进程,在疾病的早期预防和治疗中具有重要的意义。由于microRNA21含量少、序列短,需要一种灵敏度和准确性更高的检测方法。At present, there are many methods for the detection of cancer marker microRNA, among which fluorescence analysis has the advantages of simple equipment, high analytical sensitivity, strong selectivity, and intuitive detection, and is the most widely used. Due to the extremely low content of microRNA in the body, it is usually necessary to combine appropriate nanomaterials to improve the sensitivity of detection. As a small molecule that can regulate gene expression, microRNA21 plays an important role in physiological activities such as normal growth and development, cell proliferation, and apoptosis. Changes in the content of microRNA21 may indicate abnormalities in signaling pathways and protein synthesis in the body, and can be used as disease markers to predict the progress of cancer, metabolic diseases, viral infections, etc., and are of great significance in the early prevention and treatment of diseases. Due to the low content and short sequence of microRNA21, a detection method with higher sensitivity and accuracy is needed.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种多孔硅脱氧核酶荧光探针及在中药抗癌活性评价中的应用。The purpose of the present invention is to overcome the deficiencies of the prior art, to provide a porous silicon deoxyribozyme fluorescent probe and its application in the evaluation of the anticancer activity of traditional Chinese medicine.
本发明上述目的通过如下技术方案实现:The above object of the present invention is achieved through the following technical solutions:
一种检测microRNA的多孔硅脱氧核酶荧光探针,包括氨基修饰的多孔二氧化硅纳米粒子、装载于所述多孔二氧化硅纳米粒子的孔道结构中的荧光分子和共价连接在所述多孔二氧化硅纳米粒子表面将所述荧光分子封堵于所述孔道结构内的两种DNA发卡HP1、HP2;其中,所述HP1的核苷酸序列中包含待测microRNA的互补序列,所述HP2的核苷酸序列中含有锌离子特异性脱氧核酶的酶切位点;HP1与待测microRNA结合后,根部被打开,HP1环部发生构型变化并与HP2的环部核苷酸序列结合,在锌离子的辅助下激活锌离子特异性脱氧核酶,继而在酶切位点处将HP2切断,对应的被封堵孔道被打开,装载于该孔道结构中的荧光分子得以释放,通过荧光分子强度实现对待测microRNA的检测。A porous silicon deoxyribozyme fluorescent probe for detecting microRNA, comprising amino-modified porous silica nanoparticles, fluorescent molecules loaded in the pore structure of the porous silica nanoparticles, and covalently linked in the porous silica nanoparticles Two DNA hairpins HP1 and HP2 that block the fluorescent molecules in the pore structure on the surface of the silica nanoparticles; wherein the nucleotide sequence of the HP1 contains the complementary sequence of the microRNA to be tested, and the HP2 The nucleotide sequence contains the enzyme cleavage site of zinc ion-specific deoxyribozyme; after HP1 combines with the microRNA to be tested, the root is opened, and the configuration of the HP1 loop changes and binds to the nucleotide sequence of the HP2 loop , with the assistance of zinc ions, zinc ion-specific deoxyribozymes are activated, and then HP2 is cut off at the enzyme cleavage site, the corresponding blocked pores are opened, and the fluorescent molecules loaded in the pore structure are released. Molecular strength enables detection of the microRNA to be tested.
优选地,所述氨基修饰的多孔二氧化硅纳米粒子通过如下步骤制备:Preferably, the amino-modified porous silica nanoparticles are prepared by the following steps:
(1)化学合成:取适量十六烷基三甲基溴化铵溶于氢氧化钠溶液中,然后依次加入适量四乙氧基硅烷和3-氨丙基三乙氧基硅烷,搅拌反应,静置,待溶液分层后,离心,得到白色沉淀,再用乙醇、纯水洗涤,烘干;(1) Chemical synthesis: take an appropriate amount of cetyltrimethylammonium bromide and dissolve it in sodium hydroxide solution, then add an appropriate amount of tetraethoxysilane and 3-aminopropyltriethoxysilane in turn, and stir the reaction. Stand still, after the solution is separated into layers, centrifuge to obtain a white precipitate, then wash with ethanol and pure water, and dry;
(2)去除模板:将沉淀溶解在盐酸-乙醇溶液中,回流提取,离心,将得到的白色沉淀用乙醇、纯水洗涤,烘干,得到氨基修饰的多孔二氧化硅纳米粒子粉末。(2) Template removal: dissolve the precipitate in hydrochloric acid-ethanol solution, reflux extraction, centrifuge, wash the obtained white precipitate with ethanol and pure water, and dry to obtain amino-modified porous silica nanoparticle powder.
更优选地,所述荧光分子为ce6,在所述多孔二氧化硅纳米粒子的孔道结构中装载荧光分子的步骤如下:More preferably, the fluorescent molecule is ce6, and the steps of loading the fluorescent molecule in the pore structure of the porous silica nanoparticles are as follows:
取适量氨基修饰的多孔二氧化硅纳米粒子粉末均匀分散于pH=7.0的N-2-羟乙基哌嗪-N'-2-乙磺酸缓冲液中,加入适量用于连接DNA与多孔二氧化硅纳米粒子上氨基的N-ε-马来酰亚胺基己酰-氧琥珀酰亚胺酯对多孔二氧化硅纳米粒子改性,离心,将沉淀均匀分散于pH=7.0的N-2-羟乙基哌嗪-N'-2-乙磺酸缓冲液中,加入适量ce6,混合,离心,将沉淀分散于pH=7.0的N-2-羟乙基哌嗪-N'-2-乙磺酸缓冲液中。Take an appropriate amount of amino-modified porous silica nanoparticle powder and evenly disperse it in N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid buffer solution with pH = 7.0, and add an appropriate amount of N-ε-maleimidocaproyl-oxysuccinimide ester of amino groups on silica nanoparticles modifies porous silica nanoparticles, centrifuges, and uniformly disperses the precipitate in N-2 at pH = 7.0 -Hydroxyethylpiperazine-N'-2-ethanesulfonic acid buffer, add appropriate amount of ce6, mix, centrifuge, and disperse the precipitate in N-2-hydroxyethylpiperazine-N'-2- in ethanesulfonic acid buffer.
更优选地,多孔二氧化硅纳米粒子表面共价连接DNA发卡HP1、HP2的方法为:将装载有荧光分子的多孔二氧化硅纳米粒子与新鲜制备的DNA发卡HP1、HP2混合,常温反应适量时间,离心,纯水洗涤,将沉淀复溶于pH=7.0的N-2-羟乙基哌嗪-N'-2-乙磺酸缓冲液中。More preferably, the method for covalently linking DNA hairpins HP1 and HP2 on the surface of porous silica nanoparticles is as follows: mix porous silica nanoparticles loaded with fluorescent molecules with freshly prepared DNA hairpins HP1 and HP2, and react at room temperature for an appropriate amount of time , centrifuged, washed with pure water, and redissolved the precipitate in N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid buffer solution with pH=7.0.
更优选地,microRNA为microRNA 21,DNA发卡HP1、HP2通过如下方法制备:取适量DNA 1、DNA2分别与适量三-(2-甲酰乙基)膦盐酸盐常温混合,还原DNA中的二硫键;然后,将还原后的DNA退火处理,常温静置,分别得到DNA发卡HP1、DNA发卡HP2;More preferably, the microRNA is
其中:in:
DNA 1的序列为:5’-TTTT GATG TTGATTC TCC GAG CCG GTC GAAATAGTG GGT TTTTTT TTT TTT TTT TTT TT T CAACAT CAG TCT GATAAG CTA-HS-3’;The sequence of
DNA 2的序列为:5’-CGA CGA CG TTT TTT ACC CAC TAT rA G GAA T CAA C TTTTTT CG TCG TCG TTTT-HS-3’。The sequence of
一种制备上述多孔硅脱氧核酶荧光探针的方法,包括步骤:A method for preparing the above-mentioned porous silicon deoxyribozyme fluorescent probe, comprising steps:
将装载荧光分子ce6的氨基修饰的多孔二氧化硅纳米粒子与新鲜制备的DNA发卡HP1、DNA发卡HP2混合,常温温和反应,离心,收集沉淀,纯水洗涤,将沉淀复溶于pH=7.0的N-2-羟乙基哌嗪-N'-2-乙磺酸缓冲液中。Mix amino-modified porous silica nanoparticles loaded with fluorescent molecule ce6 with freshly prepared DNA hairpin HP1 and DNA hairpin HP2, react gently at room temperature, centrifuge, collect the precipitate, wash with pure water, and redissolve the precipitate in pH=7.0 N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid buffer.
上述多孔硅脱氧核酶荧光探针在检测microRNA中的应用。Application of the above-mentioned porous silicon deoxyribozyme fluorescent probe in the detection of microRNA.
上述多孔硅脱氧核酶荧光探针在检测microRNA21中的应用。Application of the above-mentioned porous silicon deoxyribozyme fluorescent probe in detecting microRNA21.
上述多孔硅脱氧核酶荧光探针在通过检测microRNA21体外评价中药抗肿瘤活性中的应用,所述肿瘤为三阴性乳腺癌。The application of the above-mentioned porous silicon deoxyribozyme fluorescent probe in evaluating the anti-tumor activity of traditional Chinese medicine by detecting microRNA21 in vitro, and the tumor is triple-negative breast cancer.
技术优点:Technical advantages:
1、本发明提供的多孔硅脱氧核酶荧光探针基于氨基修饰的多孔硅,分别在孔道内部装载荧光分子、孔道外部修饰两种功能性DNA发卡结构,合成一种能够检测癌症标志物microRNA的多孔硅脱氧核酶荧光探针。实验结果表明,以microRNA 21为待测microRNA,该探针能够特异、灵敏的检测体系中痕量的microRNA21,并可通过荧光强度进行定量分析。1. The porous silicon deoxyribozyme fluorescent probe provided by the present invention is based on amino-modified porous silicon. Two functional DNA hairpin structures are respectively loaded inside the pore and modified outside the pore to synthesize a microRNA capable of detecting cancer markers. Porous silicon deoxyribozyme fluorescent probe. The experimental results show that using
2、在考察四种中药单体(丹参酮ⅡA、姜黄素、小檗碱、槲皮素)对MDA-MB-231细胞形态、细胞增殖、细胞凋亡、细胞迁移等作用的基础上,应用合成的多孔硅脱氧核酶荧光探针MSN@ce6-HP1/HP2检测给药后细胞内microRNA21的含量变化。结果表明,多孔硅脱氧核酶荧光探针能够实现对细胞内痕量microRNA21的高灵敏检测,给药后细胞中microRNA21含量的减少与给药后癌细胞行为的变化趋势一致(细胞活力降低、克隆形成能力减弱、细胞迁移能力减缓,以及细胞凋亡程度增加等),说明所构建的多孔硅-脱氧核酶荧光探针可用于评估不同中药成分的抗癌活性。2. On the basis of investigating the effects of four traditional Chinese medicine monomers (tanshinone ⅡA, curcumin, berberine, and quercetin) on MDA-MB-231 cell morphology, cell proliferation, cell apoptosis, and cell migration, the synthetic The porous silicon deoxyribozyme fluorescent probe MSN@ce6-HP1/HP2 detects the changes of microRNA21 content in cells after administration. The results show that the porous silicon deoxyribozyme fluorescent probe can realize highly sensitive detection of trace microRNA21 in cells, and the decrease of microRNA21 content in cells after administration is consistent with the change trend of cancer cell behavior after administration (decreased cell viability, clone Formation ability is weakened, cell migration ability is slowed down, and the degree of cell apoptosis is increased, etc.), indicating that the constructed porous silicon-DNAzyme fluorescent probe can be used to evaluate the anticancer activity of different traditional Chinese medicine ingredients.
附图说明Description of drawings
图1为多孔硅脱氧核酶荧光探针的设计及其检测microRNA21的原理图;Fig. 1 is the schematic diagram of the design of the porous silicon deoxyribozyme fluorescent probe and its detection of microRNA21;
图2为氨基修饰的多孔二氧化硅纳米粒子TEM图;Fig. 2 is the TEM picture of the porous silica nanoparticle of amino modification;
图3为氮气吸附脱附曲线图(内插图:多孔硅孔道的直径);Fig. 3 is a nitrogen adsorption-desorption curve diagram (inset: the diameter of the porous silicon channel);
图4为琼脂糖凝胶电泳法测定DNA发卡HP1、HP2与microRNA21之间的反应特性;Fig. 4 is the reaction characteristic between DNA hairpin HP1, HP2 and microRNA21 determined by agarose gel electrophoresis;
图5为在有、无锌离子存在下,多孔硅孔道内ce6的释放情况;Figure 5 shows the release of ce6 in the pores of porous silicon in the presence or absence of zinc ions;
图6为锌离子特异性酶切反应验证流程图;Fig. 6 is the verification flow chart of zinc ion-specific enzyme cleavage reaction;
图7为在有、无锌离子存在下,锌离子特异性DNAzyme酶切反应随时间的变化图;Fig. 7 is in the presence or absence of zinc ions, the change diagram of zinc ion-specific DNAzyme enzyme cleavage reaction over time;
图8为HP1:HP2不同浓度比下上清液中ce6的荧光强度随时间变化趋势;Figure 8 is the trend of the fluorescence intensity of ce6 in the supernatant under different concentration ratios of HP1:HP2 over time;
图9为多孔硅探针与不同浓度锌离子反应随时间变化上清液中ce6荧光强度变化趋势(A:5μM-1mM,B:100nM-5μM);Fig. 9 shows the trend of the fluorescence intensity of ce6 in the supernatant of the porous silicon probe reacting with different concentrations of zinc ions over time (A: 5μM-1mM, B: 100nM-5μM);
图10为多孔硅探针在不同金属离子存在下反应后上清液中ce6的荧光强度图;Figure 10 is a graph of the fluorescence intensity of ce6 in the supernatant after the reaction of the porous silicon probe in the presence of different metal ions;
图11为多孔硅探针分别与microRNA 21、单碱基错配microRNA 21、双碱基错配microRNA21和三碱基错配microRNA21反应,测定得到上清液中ce6荧光信号图;Figure 11 is a diagram of the fluorescent signal of ce6 in the supernatant obtained by reacting the porous silicon probe with
图12为多孔硅探针在五种不同的缓冲液中反应后上清液中ce6的荧光信号强度;Figure 12 is the fluorescence signal intensity of ce6 in the supernatant after the reaction of the porous silicon probe in five different buffer solutions;
图13为多孔硅探针与不同浓度的microRNA21反应后得到浓度-荧光强度标准曲线;Figure 13 is the concentration-fluorescence intensity standard curve obtained after the reaction of the porous silicon probe with different concentrations of microRNA21;
图14为丹参酮ⅡA与MDA-MB-231细胞共培养细胞形态;其中,(a)24h后空白对照组;(b)48h后空白对照组;(c)24h后给药组;(d)48h后给药组;Figure 14 is the co-culture cell morphology of Tanshinone Ⅱ A and MDA-MB-231 cells; wherein, (a) blank control group after 24h; (b) blank control group after 48h; (c) administration group after 24h; (d) 48h post-administration group;
图15为槲皮素与MDA-MB-231细胞共培养细胞形态;其中,(a)24h后空白对照组;(b)48h后空白对照组;(c)24h后给药组;(d)48h后给药组;Figure 15 is the co-culture cell morphology of quercetin and MDA-MB-231 cells; wherein, (a) blank control group after 24h; (b) blank control group after 48h; (c) administration group after 24h; (d) Administration group after 48h;
图16为姜黄素与MDA-MB-231细胞共培养细胞形态;其中,(a)24h后空白对照组;(b)48h后空白对照组;(c)24h后给药组;(d)48h后给药组Figure 16 is the co-culture cell morphology of curcumin and MDA-MB-231 cells; wherein, (a) blank control group after 24h; (b) blank control group after 48h; (c) administration group after 24h; (d) 48h After administration group
图17为小檗碱与MDA-MB-231细胞共培养细胞形态;其中,(a)24h后空白对照组;(b)48h后空白对照组;(c)24h后给药组;(d)48h后给药组Figure 17 is the co-culture cell morphology of berberine and MDA-MB-231 cells; wherein, (a) blank control group after 24h; (b) blank control group after 48h; (c) administration group after 24h; (d) 48h later administration group
图18为四种中药单体对乳腺癌细胞MDA-MB-231细胞生长影响具有时间和剂量依赖型;其中,(a)小檗碱;(b)姜黄素;(c)槲皮素;(d)丹参酮ⅡAFigure 18 shows that four kinds of traditional Chinese medicine monomers have time and dose-dependent effects on the growth of breast cancer cell MDA-MB-231 cells; wherein, (a) berberine; (b) curcumin; (c) quercetin; ( d) Tanshinone Ⅱ A
图19为四种中药单体对MDA-MB-231细胞克隆形成的作用影响;其中,A:结晶紫染色;B:克隆数;Figure 19 is the effect of four kinds of traditional Chinese medicine monomers on the formation of MDA-MB-231 cell clones; wherein, A: crystal violet staining; B: number of clones;
图20为四种中药单体对MDA-MB-231细胞的迁移与伤口愈合率随时间变化的影响;Figure 20 is the effect of four kinds of traditional Chinese medicine monomers on the migration and wound healing rate of MDA-MB-231 cells over time;
图21为不同分组的MDA-MB-231细胞DAPI荧光染色图;其中,对照组(0M),给药组(0.625M丹参酮ⅡA、20M小檗碱、25M槲皮素、15M姜黄素);Figure 21 is the DAPI fluorescent staining diagram of MDA-MB-231 cells in different groups; wherein, the control group (0M), the administration group (0.625M tanshinone Ⅱ A, 20M berberine, 25M quercetin, 15M curcumin);
图22为不同分组的MDA-MB-231细胞DAPI染色荧光强度柱状图;Figure 22 is a histogram of DAPI staining fluorescence intensity of MDA-MB-231 cells in different groups;
图23为各浓度中药与MDA-MB-231细胞培养后细胞内microRNA21含量变化图。Fig. 23 is a graph showing changes in microRNA21 content in cells after cultured with various concentrations of traditional Chinese medicine and MDA-MB-231 cells.
具体实施方式Detailed ways
下面结合实施例具体介绍本发明实质性内容,但并不以此限定本发明的保护范围。The substantive content of the present invention will be described in detail below in conjunction with the embodiments, but the protection scope of the present invention is not limited thereto.
实验原理:Experimental principle:
本研究合成了一种多孔硅脱氧核酶荧光探针MSN@ce6-HP1/HP2,该探针以氨基修饰的多孔二氧化硅纳米粒子(MSN)为基础,利用其致密的孔道结构,在孔内装载荧光小分子ce6;利用其表面易修饰特性,共价连接两种DNA发卡(HP1和HP2)用于封堵孔道。其中,HP1序列中包含待测物microRNA21的互补序列,HP2序列中设计有锌离子特异性脱氧核酶的酶切位点。当且仅当microRNA 21存在时,可将HP1根部打开,HP1环部发生构型变化并与HP2的环部序列结合,在锌离子的辅助下激活锌离子特异性脱氧核酶的活性,继而在酶切位点处将HP2切断,从而使孔内的荧光分子ce6释放出来。据此,多孔硅脱氧核酶荧光探针可以通过反应前后的上清液荧光强度变化实现microRNA21的灵敏检测。In this study, a porous silicon deoxyribozyme fluorescent probe MSN@ce6-HP1/HP2 was synthesized, which was based on amino-modified porous silica nanoparticles (MSN) The fluorescent small molecule ce6 is loaded inside; two kinds of DNA hairpins (HP1 and HP2) are covalently linked to block the pores by using its surface modification characteristics. Among them, the HP1 sequence contains the complementary sequence of the microRNA21 to be tested, and the HP2 sequence is designed with an enzyme cleavage site for a zinc ion-specific deoxyribozyme. If and only when
一、试剂与仪器1. Reagents and instruments
试剂:四乙氧基硅烷(TEOS);十六烷基三甲基溴化铵(CTAB);3-氨丙基三乙氧基硅烷(APTES);N-2-羟乙基哌嗪-N'-2-乙磺酸(HEPES);N-ε-马来酰亚胺基己酰-氧琥珀酰亚胺酯(Sulfo-EMCS);三-(2-甲酰乙基)膦盐酸盐(TCEP);TE溶液;DEPC处理水;氢氧化钠;盐酸;乙醇;丙酮;醛基改性玻璃片;人乳腺癌细胞(MDA-MB-231);丹参酮ⅡA、姜黄素、盐酸小檗碱、槲皮素;GBICO 10270-106胎牛血清;DAPI试剂盒;无菌PBS;DMEM;结晶紫染色液;CCK-8试剂盒;4%多聚甲醛;曲拉通Triton-X-100;细胞冻存液;甲醇;无水乙醇;二甲基亚砜(DMSO);异丙醇;RNAeasyTM动物小RNA抽提试剂盒(离心柱式)等。Reagents: tetraethoxysilane (TEOS); cetyltrimethylammonium bromide (CTAB); 3-aminopropyltriethoxysilane (APTES); N-2-hydroxyethylpiperazine-N '-2-Ethylsulfonic acid (HEPES); N-ε-maleimidocaproyl-oxysuccinimide ester (Sulfo-EMCS); Tris-(2-formylethyl)phosphine hydrochloride (TCEP); TE solution; DEPC treated water; sodium hydroxide; hydrochloric acid; ethanol; acetone; aldehyde-modified glass slides; human breast cancer cells (MDA-MB-231); , quercetin; GBICO 10270-106 fetal bovine serum; DAPI kit; sterile PBS; DMEM; crystal violet staining solution; CCK-8 kit; 4% paraformaldehyde; Triton-X-100; cells Freezing solution; methanol; absolute ethanol; dimethyl sulfoxide (DMSO); isopropanol; RNAeasy TM animal small RNA extraction kit (spin column type), etc.
仪器:透射电子显微镜;数控超声仪;磁力搅拌器;离心机;高速低温离心机;分析天平;瞬态/稳态荧光光谱仪;旋涡振荡器;恒温振荡培养箱;旋转混合器;倒置荧光显微镜;生物安全柜等。Instruments: transmission electron microscope; numerical control ultrasonic instrument; magnetic stirrer; centrifuge; high-speed low-temperature centrifuge; analytical balance; transient/steady-state fluorescence spectrometer; vortex oscillator; constant temperature oscillation incubator; rotary mixer; inverted fluorescence microscope; biological safety cabinets, etc.
二、实验方法2. Experimental method
1、多孔硅的合成1. Synthesis of porous silicon
通过法合成氨基修饰的多孔二氧化硅纳米粒子(MSN-NH2),具体步骤:(1)化学合成:称取48mL 14.5mM NaOH溶液,精密称定100.00mg CTAB加入并充分溶解,80℃搅拌30min,然后依次加入500μLTEOS和20μLAPTES,继续搅拌2h,反应结束后静置过夜。待溶液分层后,10000rpm离心20min,得到白色沉淀,再用乙醇、纯水各洗涤3次。60℃烘干,密封,室温保存。(2)去除模板:将沉淀溶解在盐酸-乙醇溶液(2.5mL:100mL)中,回流12h,共2次。离心,将得到的白色沉淀用乙醇、纯水各洗涤3次,60℃烘干,得到MSN-NH2粉末,密封,常温保存。pass Amino-modified porous silica nanoparticles (MSN-NH 2 ) were synthesized by the following method: (1) Chemical synthesis: Weigh 48mL of 14.5mM NaOH solution, accurately weigh 100.00mg of CTAB, add and fully dissolve, stir at 80°C for 30min , and then sequentially added 500 μLTEOS and 20 μL APTES, continued to stir for 2 hours, and stood overnight after the reaction. After the solution was separated, it was centrifuged at 10,000 rpm for 20 min to obtain a white precipitate, which was then washed three times with ethanol and pure water. Dry at 60°C, seal and store at room temperature. (2) Removal of template: Dissolve the precipitate in hydrochloric acid-ethanol solution (2.5 mL:100 mL), and reflux for 12 h, twice in total. After centrifugation, the obtained white precipitate was washed three times with ethanol and pure water, and dried at 60°C to obtain MSN-NH 2 powder, which was sealed and stored at room temperature.
2、多孔硅孔道内填充荧光分子ce62. Porous silicon pores are filled with fluorescent molecules ce6
精密称定10.00mg MSN-NH2溶解在950μL 20mM HEPES缓冲液中(pH=7.0),超声30min,使MSN-NH2分散均匀。加入50μL 10.00mg/mL sulfo-EMCS(DNA与MSN-NH2的连接剂)对多孔硅改性,充分混合30min。10000rpm离心3min,去除多余的sulfo-EMCS。然后将沉淀复溶于900μLHEPES缓冲液中,使其分散均匀。加入100μL 1.00mg/mL ce6,混合过夜,离心,将沉淀复溶于900μL HEPES缓冲液中,最终得到孔内封装荧光分子ce6的多孔硅MSN@ce6。Accurately weigh 10.00 mg MSN-NH 2 and dissolve it in 950
3、DNA发卡HP1与HP2预处理3. DNA hairpin HP1 and HP2 pretreatment
DNA 1序列:5’-TTTT GATG TTGATTC TCC GAG CCG GTC GAAATAGTG GGT TTT TTTTTT TTT TTT TTT TT T CAACAT CAG TCT GATAAG CTA-HS-3’
DNA2序列:5’-CGACGACG TTT TTTACC CAC TATrAG GAAT CAAC TTT TTT CG TCGTCG TTTT-HS-3’DNA2 sequence: 5'-CGACGACG TTT TTTACC CAC TATrAG GAAT CAAC TTT TTT CG TCGTCG TTTT-HS-3'
DNA发卡HP1:取20μL 5μM DNA 1与20μL 500μM TCEP室温下温和混合2h,还原DNA中的二硫键,便于DNA与多孔硅的连接。然后将还原后的DNA在95℃下退火5min,室温静置2h,得到DNA发卡HP1,4℃保存备用。DNA hairpin HP1: Take 20 μL of 5
DNA发卡HP2:取20μL 50μM DNA2与20μL 5mM TCEP室温下温和混合2h,还原DNA中的二硫键,便于DNA与多孔硅的连接。然后将还原后的DNA在95℃下退火5min,室温静置2h,得到DNA发卡HP2,4℃保存备用。DNA Hairpin HP2: Take 20 μL of 50 μM DNA2 and 20 μL of 5 mM TCEP and mix gently at room temperature for 2 hours to reduce the disulfide bonds in DNA and facilitate the connection of DNA to porous silicon. Then the reduced DNA was annealed at 95°C for 5min, and left at room temperature for 2h to obtain DNA hairpin HP2, which was stored at 4°C for future use.
4、MSN@ce6/HP1HP2探针的制备4. Preparation of MSN@ce6/HP1HP2 probe
将上述合成的MSN@ce6与新鲜制备的DNA发卡HP1、HP2混合,室温下温和反应2h。离心,纯水洗涤。将沉淀复溶于850μL HEPES缓冲液中,得到多孔硅脱氧核酶荧光探针MSN@ce6-HP1/HP2,并用于后续实验。The MSN@ce6 synthesized above was mixed with freshly prepared DNA hairpins HP1 and HP2, and reacted gently at room temperature for 2 h. Centrifuge and wash with pure water. The precipitate was redissolved in 850 μL HEPES buffer to obtain the porous silicon deoxyribozyme fluorescent probe MSN@ce6-HP1/HP2, which was used in subsequent experiments.
5、microRNA21的检测原理5. Detection principle of microRNA21
本研究的反应原理如图1所示,已合成多孔硅脱氧核酶荧光探针MSN@ce6-HP1/HP2。由于HP1包含待测物microRNA 21的互补序列,microRNA 21存在下可将HP1打开,随后HP1发生构型变化并与HP2上相应序列结合,激活HP2的锌离子特异性DNAzyme的酶活性,切断HP2上的酶切位点。HP1可对附近多个HP2进行行走式(Walking)切割,最终使封堵于孔道表面的多个HP2相继去除,孔道内的荧光分子ce6加速释放出来。因此,仅在少量microRNA21存在的情况下,通过测定反应后上清液的荧光强度即可实现对待测物的高灵敏检测。The reaction principle of this study is shown in Figure 1. The porous silicon deoxyribozyme fluorescent probe MSN@ce6-HP1/HP2 has been synthesized. Since HP1 contains the complementary sequence of the
6、探针在药效评价中的应用6. Application of probes in drug efficacy evaluation
6.1原理6.1 Principle
选择不同浓度的四种常见的中药单体(姜黄素、小檗碱、丹参酮ⅡA、槲皮素)分别与三阴性乳腺癌细胞MDA-MB-231共培养一定时间,提取细胞内的microRNA 21并加入探针MSN@ce6-HP1/HP2中,测定反应后荧光强度变化,推测四种中药单体对细胞内microRNA21含量的影响,以此评估各中药单体对三阴性乳腺癌的治疗作用效果。Four common traditional Chinese medicine monomers (curcumin, berberine, tanshinone ⅡA, quercetin) of different concentrations were selected to co-culture with triple-negative breast cancer cell MDA-MB-231 for a certain period of time, and
6.2实验中主要试剂的配制6.2 Preparation of main reagents in the experiment
丹参酮ⅡA储备液:用二甲基亚砜(DMSO)将丹参酮ⅡA配制成药物浓度分别为5mM,2.5mM,1.25mM,0.625mM,0.5mM,将各储存液放置于4℃冰箱,避光保存备用。实验时所需浓度用无血清的DMEM培养液稀释(DMSO终浓度为0.1%)。Tanshinone IIA stock solution: use dimethyl sulfoxide (DMSO) to prepare tanshinone IIA so that the drug concentrations are 5mM, 2.5mM, 1.25mM, 0.625mM, and 0.5mM, and store each stock solution in a refrigerator at 4°C, away from light. spare. The concentration required for the experiment was diluted with serum-free DMEM culture solution (the final concentration of DMSO was 0.1%).
槲皮素储备液:用二甲基亚砜(DMSO)将槲皮素配制成药物浓度分别为100mM,50mM,25mM,5mM,1mM,将各储存液放置于4℃冰箱,避光保存备用。实验时所需浓度用无血清的DMEM培养液稀释(DMSO终浓度为0.1%)。Quercetin stock solution: Quercetin was prepared with dimethyl sulfoxide (DMSO) to make drug concentrations of 100mM, 50mM, 25mM, 5mM, and 1mM respectively, and each stock solution was placed in a refrigerator at 4°C, and stored in the dark for future use. The concentration required for the experiment was diluted with serum-free DMEM culture solution (the final concentration of DMSO was 0.1%).
姜黄素储备液:用二甲基亚砜(DMSO)将姜黄素配制成药物浓度分别为25mM,20mM,15mM,10mM,5mM,将各储存液放置于4℃冰箱,避光保存备用。实验时所需浓度用无血清的DMEM培养液稀释(DMSO终浓度为0.1%)。Curcumin stock solution: dimethyl sulfoxide (DMSO) was used to prepare curcumin into drug concentrations of 25mM, 20mM, 15mM, 10mM, and 5mM, and each stock solution was placed in a refrigerator at 4°C, and stored in the dark for future use. The concentration required for the experiment was diluted with serum-free DMEM culture solution (the final concentration of DMSO was 0.1%).
盐酸小檗碱储备液:用二甲基亚砜(DMSO)将盐酸小檗碱配制成药物浓度分别为100mM,80mM,40mM,20mM,10mM,将各储存液放置于4℃冰箱,避光保存备用。实验时所需浓度用无血清的DMEM培养液稀释(DMSO终浓度为0.1%)。Berberine hydrochloride stock solution: use dimethyl sulfoxide (DMSO) to prepare berberine hydrochloride into drug concentrations of 100mM, 80mM, 40mM, 20mM, and 10mM, and store each stock solution in a refrigerator at 4°C, away from light. spare. The concentration required for the experiment was diluted with serum-free DMEM culture solution (the final concentration of DMSO was 0.1%).
6.3中药对细胞活力的影响6.3 The effect of traditional Chinese medicine on cell viability
实验所选MDA-MB-231为细胞浓度为对数生长期肿瘤细胞,稀释至3×104/mL,按每孔100μL接种于4块96孔培养板中,至37℃、5%CO2培养箱内培养24h、48h后,每块板分别加入含不同浓度丹参酮ⅡA(终浓度分别为0、0.5、0.625、1.25、2.5、5μM)、槲皮素(终浓度分别为0、1、5、25、50、100μM)、姜黄素(终浓度分别为0、5、10、15、20、25μM)以及盐酸小檗碱(终浓度分别为0、10、20、40、80、100μM)的无血清的新鲜培养基100μL,并设置丹参酮ⅡA0μM、槲皮素0μM、姜黄素0μM以及盐酸小檗碱0μM为空白对照(培养基中加入0.1%的DMSO为溶剂对照组),每浓度设置4个复孔,分别作用24h、48h后,加入10μL CCK-8,置37℃、5%CO2培养箱内,避光反应1h,置于酶标仪中检测。选择检测波长450nm,测量各组的吸光度值A。通过4个复孔的吸光度值的平均值,计算细胞活力及IC50。The MDA-MB-231 selected in the experiment is the tumor cells in the logarithmic growth phase at the cell concentration, diluted to 3×10 4 /mL, inoculated in 4 96-well culture plates at 100 μL per well, and kept at 37°C, 5% CO 2 After culturing in the incubator for 24 h and 48 h, each plate was added with different concentrations of tanshinone Ⅱ A (final concentrations were 0, 0.5, 0.625, 1.25, 2.5, 5 μM), quercetin (final concentrations were 0, 1, 5 μM, respectively). , 25, 50, 100 μM), curcumin (the final concentrations were 0, 5, 10, 15, 20, 25 μM) and berberine hydrochloride (the final concentrations were 0, 10, 20, 40, 80, 100 μM) 100 μL of serum-free fresh medium, and set 0 μM of tanshinone Ⅱ A, 0 μM of quercetin, 0 μM of curcumin and 0 μM of berberine hydrochloride as blank control (adding 0.1% DMSO to the medium as solvent control group), and set 4 samples for each concentration. After 24 hours and 48 hours of treatment, 10 μL of CCK-8 was added to the duplicate wells, placed in a 37°C, 5% CO 2 incubator, and reacted in the dark for 1 hour, and placed in a microplate reader for detection. Select the detection wavelength of 450nm, and measure the absorbance value A of each group. Cell viability and IC 50 were calculated by the average of the absorbance values of 4 duplicate wells.
公式:细胞活力(%)=(A(加药)-A(空白))/(A(0加药)-A(空白))×100%Formula: cell viability (%) = (A (dosing) - A (blank)) / (A (0 dosing) - A (blank)) × 100%
A(加药):具有细胞、CCK8溶液和药物溶液的孔的吸光度;A(空白):具有培养基、CCK8溶液,而没有细胞的孔的吸光度;A(0加药):具有细胞、CCK8溶液,而没有药物溶液的孔的吸光度。A (dosing): absorbance of wells with cells, CCK8 solution and drug solution; A (blank): absorbance of wells with medium, CCK8 solution, but no cells; A (0 dosing): cells, CCK8 solution, but the absorbance of wells without drug solution.
6.4中药对细胞克隆形成能力的影响6.4 The effect of traditional Chinese medicine on the ability of cell clone formation
实验所选MDA-MB-231细胞均为对数生长期肿瘤细胞,将细胞浓度稀释至5×102/mL,按1000个/孔接种于6孔板,培养过夜使细胞贴壁,次日分别用丹参酮ⅡA(0.625μM)、槲皮素(25μM)、姜黄素(15μM)以及盐酸小檗碱(20μM)处理实验组细胞,而对照组细胞中药物浓度为0μM(即培养基为终浓度为0.1%的DMSO溶液),置37℃、5%CO2培养箱培养14天,当肉眼可见菌落形成时,取出板,弃去培养液。PBS洗涤3次,加入1mL 4%多聚甲醛固定20min,弃去,纯水洗涤三次。再加入1mL 10%Giemsa染色液染色10min,纯水充分洗涤,静置干燥。然后在低倍显微镜下观察细胞克隆形成情况(以大于50个细胞为标准),计数各孔乳腺癌细胞的克隆数。The MDA-MB-231 cells selected for the experiment are all tumor cells in the logarithmic growth phase. The cell concentration was diluted to 5×10 2 /mL, and 1000 cells/well were seeded in a 6-well plate, and cultured overnight to allow the cells to adhere to the wall. The next day The cells in the experimental group were treated with tanshinone Ⅱ A (0.625 μM), quercetin (25 μM), curcumin (15 μM) and berberine hydrochloride (20 μM), while the drug concentration in the cells of the control group was 0 μM (that is, the medium was the final concentration 0.1% DMSO solution), placed in a 37°C, 5% CO 2 incubator for 14 days, when colonies were visible to the naked eye, the plate was taken out, and the culture solution was discarded.
6.5中药对细胞形态变化的影响6.5 Effects of traditional Chinese medicine on cell morphology changes
将不同浓度的4种中药单体与MDA-MB-231细胞共培养24h、48h,弃去培养液,置于显微镜上观察各实验组细胞的形态。各组中药的种类和终浓度分别为:丹参酮ⅡA(终浓度分别为0、0.5、0.625、1.25、2.5、5μM);槲皮素(终浓度分别为0、1、5、25、50、100μM);姜黄素(终浓度分别为0、5、10、15、20、25μM);盐酸小檗碱(终浓度分别为0、10、20、40、80、100μM)。MDA-MB-231 cells were co-cultured with four kinds of traditional Chinese medicine monomers at different concentrations for 24 hours and 48 hours, discarded the culture medium, and placed them on a microscope to observe the morphology of cells in each experimental group. The types and final concentrations of traditional Chinese medicine in each group were: tanshinone Ⅱ A (final concentrations were 0, 0.5, 0.625, 1.25, 2.5, 5 μM); quercetin (final concentrations were 0, 1, 5, 25, 50, 100 μM ); curcumin (final concentrations were 0, 5, 10, 15, 20, 25 μM); berberine hydrochloride (final concentrations were 0, 10, 20, 40, 80, 100 μM).
6.6中药对细胞迁移能力的影响6.6 The effect of traditional Chinese medicine on cell migration ability
将乳腺癌细胞MDA-MB-231以一定的密度接种到6孔板中,生长24h后细胞贴壁,细胞融合度达到90%左右。用10μL枪头轻轻在单层培养细胞间划痕,枪头与板孔的底部垂直,划痕的距离与枪头末端的直径距离相等。划痕后,用PBS轻轻洗涤孔板3次,以除去脱落的细胞。每孔中加入新鲜配制的含有1%血清的含药培养基(丹参酮ⅡA(终浓度分别为0、0.625、1.25、2.5μM)、槲皮素(终浓度分别为0、5、25、50μM)、姜黄素(终浓度分别为0、10、15、20μM)以及盐酸小檗碱(终浓度分别为0、10、20、40μM))。细胞增长24h、48h,用无菌PBS清洗细胞2次。最后加入2mL PBS。在显微镜下拍摄,观察记录细胞融合程度随时间的变化,并用ImageJ得到划痕面积,以计算细胞划痕愈合率。计算公式:划痕愈合率(%)=(初始划痕面积–一定时刻划痕面积)/初始划痕面积×100%。Breast cancer cells MDA-MB-231 were inoculated into a 6-well plate at a certain density, and after 24 hours of growth, the cells adhered to the wall, and the cell fusion degree reached about 90%. Use a 10 μL pipette tip to gently scratch between the cultured cells in the monolayer. The pipette tip is perpendicular to the bottom of the plate well, and the scratch distance is equal to the diameter of the end of the pipette tip. After scratching, gently wash the
6.7中药对细胞凋亡能力的影响6.7 The effect of traditional Chinese medicine on cell apoptosis
(1)将MDA-MB-231细胞稀释至细胞密度为4×104/mL,以8000个/孔接种于6孔板中,培养箱内培养24h使细胞贴壁,弃去培养基,加入不同浓度的含药培养基(丹参酮ⅡA为0、0.625、1.25、2.5μM;槲皮素为0、5、25、50μM;姜黄素为0、10、15、20μM;盐酸小檗碱为0、10、20、40μM)。(2)培养48h后,弃去培养基,加入1mLPBS清洗2次。(3)加入1mL 4%多聚甲醛,室温下反应20min,使细胞膜的通透性增加。(4)弃去4%多聚甲醛,加入1mL PBS洗涤3次,除去多余的4%多聚甲醛残留液。(5)加入1mL 0.1%Triton-X-100,室温下反应20min,使一部分膜蛋白变性,通透性进一步加强。(6)弃去Triton-X-100,加1mLPBS洗涤3次。(7)每孔加入200μLDAPI染色液,37℃下反应15min,弃去染色液,加1mL PBS轻轻洗涤3次。(8)最后,每孔中加入1mL PBS重悬细胞,在倒置荧光显微镜下观察记录染色情况。(1) Dilute MDA-MB-231 cells to a cell density of 4×10 4 /mL, inoculate 8000 cells/well in a 6-well plate, culture in an incubator for 24 hours to make the cells adhere to the wall, discard the medium, and add Drug-containing medium with different concentrations (0, 0.625, 1.25, 2.5 μM for tanshinone Ⅱ A; 0, 5, 25, 50 μM for quercetin; 0, 10, 15, 20 μM for curcumin; 10, 20, 40 μM). (2) After culturing for 48 hours, the culture medium was discarded, and 1 mL of LPBS was added to wash twice. (3) Add 1 mL of 4% paraformaldehyde and react at room temperature for 20 min to increase the permeability of the cell membrane. (4) Discard 4% paraformaldehyde, add 1 mL of PBS to wash 3 times, and remove excess 4% paraformaldehyde residual solution. (5) Add 1 mL of 0.1% Triton-X-100 and react at room temperature for 20 minutes to denature a part of the membrane protein and further enhance the permeability. (6) Discard Triton-X-100, add 1mL LPBS to wash 3 times. (7) Add 200 μL of DAPI staining solution to each well, react at 37°C for 15 minutes, discard the staining solution, add 1 mL PBS and wash gently 3 times. (8) Finally, 1 mL of PBS was added to each well to resuspend the cells, and the staining was observed and recorded under an inverted fluorescent microscope.
6.8中药对细胞内microRNA21含量的影响6.8 The effect of traditional Chinese medicine on the content of microRNA21 in cells
实验所选MDA-MB-231细胞均为对数生长期肿瘤细胞,培养过夜使细胞贴壁,融合度达到80%~90%。次日分别用相同体积不同浓度的丹参酮ⅡA(终浓度分别为0、0.5、0.625、1.25μM)、槲皮素(终浓度分别为0、1、5、25μM)、姜黄素(终浓度分别为0、5、10、15μM)以及盐酸小檗碱(终浓度分别为0、10、20、40μM)处理细胞,其中,对照组细胞中药物浓度为0μM(即培养基为终浓度为0.1%的DMSO溶液),置37℃、5%CO2培养箱培养48h。然后收集细胞培养液上清,按照RNA抽提试剂盒的要求提取各组细胞中的microRNA。最后,将提取得到的microRNA与多孔硅脱氧核酶荧光探针混合反应,测定细胞中microRNA含量。The MDA-MB-231 cells selected for the experiment were all tumor cells in the logarithmic growth phase, and were cultured overnight to allow the cells to adhere to the wall, and the confluence reached 80% to 90%. The next day, the same volume of different concentrations of tanshinone Ⅱ A (final concentrations were 0, 0.5, 0.625, 1.25 μM), quercetin (final concentrations were 0, 1, 5, 25 μM), curcumin (final concentrations were 0, 5, 10, 15 μM) and berberine hydrochloride (final concentrations were 0, 10, 20, 40 μM) to treat the cells, wherein, the drug concentration in the cells of the control group was 0 μM (that is, the medium was the final concentration of 0.1% DMSO solution), and cultivated in a 37°C, 5% CO 2 incubator for 48 hours. Then the cell culture supernatant was collected, and the microRNA in each group of cells was extracted according to the requirements of the RNA extraction kit. Finally, the extracted microRNA was mixed with the porous silicon deoxyribozyme fluorescent probe to measure the microRNA content in the cells.
具体步骤为:(1)收集每组中1×106个细胞,加入300μL裂解液使其溶解,转移至一洁净离心管中,然后加入300μL结合液I轻轻颠倒混匀;(2)将(1)中的混合物转移至第一个纯化柱内,12000g离心1min,回收上清液至一新的离心管中,加入700μL结合液Ⅱ混匀;(3)将(2)中的混合物分2次转移至第二个纯化柱内,12000g离心1min,弃去管内液体;(4)向纯化柱内加入600μL洗涤液,12000g离心1min,共2次,弃去管内液体;16000g离心2min,去除残留液体;(5)将纯化柱置于RNA洗脱管中,加入30μL洗脱液,室温放置2~3分钟,16000g离心1min,所得溶液即为纯化的microRNA。(6)将各组纯化好的microRNA与探针混合,测定ce6荧光,计算各组细胞中microRNA21的含量。The specific steps are: (1) collect 1×10 6 cells in each group, add 300 μL of lysate to dissolve them, transfer them to a clean centrifuge tube, then add 300 μL of binding solution I and mix by inversion; (2) Transfer the mixture in (1) to the first purification column, centrifuge at 12000g for 1min, recover the supernatant into a new centrifuge tube, add 700μL binding solution II and mix well; (3) divide the mixture in (2) Transfer to the second purification column twice, centrifuge at 12000g for 1min, discard the liquid in the tube; (4) add 600μL of washing solution to the purification column, centrifuge at 12000g for 1min, a total of 2 times, discard the liquid in the tube; centrifuge at 16000g for 2min, remove Residual liquid; (5) Put the purification column in the RNA elution tube, add 30 μL of eluent, leave it at room temperature for 2-3 minutes, centrifuge at 16000g for 1 minute, and the obtained solution is the purified microRNA. (6) Mix the purified microRNA of each group with the probe, measure the fluorescence of ce6, and calculate the content of microRNA21 in the cells of each group.
7、统计学分析7. Statistical analysis
数据以mean±SEM(x±s)表示。两组间采用独立样本t检验,P<0.05被认为具有统计学意义。Data are expressed as mean±SEM (x±s). An independent sample t-test was used between the two groups, and P<0.05 was considered statistically significant.
三、实验结构3. Experimental structure
1、MSN-NH2的表征1. Characterization of MSN-NH 2
利用透射电子显微镜(TEM)对制备好的MSN-NH2外观和尺寸进行观察,图2表明多孔二氧化硅纳米粒子呈球形或类球形,直径在100~120nm之间。MSN-NH2的孔道密集且均匀,孔道直径约为2~3nm。利用氮气吸附脱附测定(BET)反映多孔硅的表面积与孔径分布。由图3可得,本研究中得样品后能够得到IV型吸附等温线,合成的多孔硅材料具有均一的介孔,具体参数为:比表面积797.0492m2/g,孔道直径3.7296nm。The appearance and size of the prepared MSN-NH 2 were observed with a transmission electron microscope (TEM). Figure 2 shows that the porous silica nanoparticles are spherical or quasi-spherical, with a diameter between 100 and 120 nm. The pores of MSN-NH 2 are dense and uniform, and the diameter of the pores is about 2-3nm. The surface area and pore size distribution of porous silicon were reflected by nitrogen adsorption-desorption measurement (BET). It can be seen from Fig. 3 that type IV adsorption isotherms can be obtained after obtaining samples in this study. The synthesized porous silicon material has uniform mesopores, and the specific parameters are: specific surface area 797.0492m 2 /g, pore diameter 3.7296nm.
2、HP1/HP2与microRNA21的反应能力验证2. Verification of the reaction ability of HP1/HP2 and microRNA21
采用琼脂糖凝胶电泳法表征HP1、HP2与microRNA21之间的反应特性,结果如图4所示。其中,泳道1、2、3分别对应不同分子量的HP1、HP2和microRNA21在相同时间内移动的距离。在泳道4中,HP1与HP2各自在其对应的分子量位置,表明发卡HP1与发卡HP2各自结构稳定,两者混合后不会发生交叉结合;类似地,泳道6中现象显示microRNA21与HP2各自在其对应位置上,未产生新的光斑,说明当只存在microRNA21与发卡HP2时两者不会结合,因此HP2的存在不会对microRNA21产生干扰,反应体系无副产物。泳道5的现象显示,HP1和microRNA21两者混合后产生了一个新的、分子量更大更亮的斑点,说明只有当HP1和microRNA21共同存在时才会发生反应,microRNA21打开发卡HP1并结合,该斑点即为microRNA21与HP1结合后产生的新的复合物。此外,泳道7的结果共显示2个斑点,一个为单独的HP2,另一个则为HP1与microRNA21结合后的复合物,该现象说明HP2未干扰HP1与microRNA21之间的反应。综合以上分析表明,本研究中所设计的DNA发卡HP1/HP2与microRNA21之间具有良好的特异性反应。The reaction characteristics between HP1, HP2 and microRNA21 were characterized by agarose gel electrophoresis, and the results are shown in FIG. 4 . Among them,
3、锌离子特异性脱氧核酶反应性验证3. Reactivity verification of zinc ion-specific DNAzyme
首先考察了在有、无锌离子存在下,多孔硅内ce6的释放情况,由图5所示,在没有锌离子存在时,只有少量的ce6释放,该现象是因为少量的microRNA21将HP1打开,使孔内少量的ce6分子缓慢释放出来,但是不足以使大量的孔道开放并快速释放出ce6;当microRNA21和锌离子同时存在时,ce6的释放随时间持续增加,并在2h左右释放减缓。以上结果表明,只有锌离子辅助下,才能激活锌离子特异性脱氧核酶,进而切割HP2的酶切位点,导致孔内ce6的大量释放。Firstly, the release of ce6 in porous silicon was investigated in the presence or absence of zinc ions. As shown in Figure 5, only a small amount of ce6 was released in the absence of zinc ions. This phenomenon is because a small amount of microRNA21 turns on HP1. A small amount of ce6 molecules in the pores were released slowly, but it was not enough to open a large number of pores and release ce6 quickly; when microRNA21 and zinc ions were present at the same time, the release of ce6 continued to increase with time, and the release slowed down at about 2h. The above results indicated that only with the assistance of zinc ions, the zinc ion-specific deoxyribozyme could be activated to cut the enzyme cleavage site of HP2, resulting in a large release of ce6 in the pore.
本实验进一步验证了锌离子特异性脱氧核酶的酶切反应随时间的变化。在HP2一端通过共价键固定在载玻片基底上,另一端修饰荧光分子cy3,则基底上cy3的荧光强度变化将用于指示HP2的酶切效率,原理如图6所示。在microRNA21和锌离子存在下,HP1打开并发生构型变化,与HP2上互补序列结合,激活锌离子特异性脱氧核酶的酶活性,对HP2进行酶切,HP2断裂。由于HP2尾端修饰了cy3,将导致酶切和冲洗后载玻片上的cy3减少,荧光强度降低。随着反应时间的增长,HP1还可以在载玻片上Walking,继续与周围HP2反应,切断更多HP2,从而使载玻片上的cy3越来越少,荧光强度也将呈现出越来越低的动态变化。This experiment further verified the change of enzyme cleavage reaction of zinc ion-specific deoxyribozyme over time. One end of HP2 is covalently fixed on the glass slide substrate, and the other end is modified with fluorescent molecule cy3, then the change in the fluorescence intensity of cy3 on the substrate will be used to indicate the enzymatic cleavage efficiency of HP2, the principle is shown in Figure 6. In the presence of microRNA21 and zinc ions, HP1 opens and changes its configuration, binds to the complementary sequence on HP2, activates the enzymatic activity of zinc ion-specific deoxyribozyme, cuts HP2, and breaks HP2. Due to the modification of cy3 at the end of HP2, the cy3 on the glass slide will be reduced after enzyme digestion and washing, and the fluorescence intensity will be reduced. As the reaction time increases, HP1 can also walk on the slide, continue to react with surrounding HP2, and cut off more HP2, so that there will be less and less Cy3 on the slide, and the fluorescence intensity will also show lower and lower Dynamic changes.
用倒置荧光显微镜拍摄不同反应时间后cy3的荧光强度并记录,结果如图7所示。反应开始时,荧光强度最强,这是因为脱氧核酶暂未发生作用,HP2-cy3未被切割;随着反应时间增加,荧光强度呈现降低趋势,这是因为HP2被逐步切断,cy3从载玻片上逐步去除。在50min左右时,荧光强度微弱,几乎为零,说明酶切充分。这一现象验证了图6中“同一条件下一分子miRNA21可借助锌离子引起多分子HP2剪切”的原理,并作为本实验中门控式多孔硅释放荧光探针(图1)的信号放大基础。The fluorescence intensity of Cy3 after different reaction times was photographed and recorded with an inverted fluorescence microscope, and the results are shown in FIG. 7 . At the beginning of the reaction, the fluorescence intensity was the strongest, because the deoxyribozyme had not acted yet, and HP2-cy3 was not cleaved; as the reaction time increased, the fluorescence intensity showed a downward trend, because HP2 was gradually cut off, and cy3 was released from the load. gradually removed from the slide. At about 50 minutes, the fluorescence intensity was weak, almost zero, indicating that the digestion was sufficient. This phenomenon verifies the principle in Figure 6 that "under the same conditions, a molecule of miRNA21 can cause multi-molecule HP2 shearing with the help of zinc ions", and it serves as the signal amplification of the gated porous silicon-released fluorescent probe (Figure 1) in this experiment Base.
4、反应条件的优化4. Optimization of reaction conditions
4.1HP1与HP2的比例优化4.1 The ratio optimization of HP1 and HP2
为考察多孔硅表面HP1与HP2之间的最佳比例,选择等体积、浓度比分别为1:5,1:10,1:15,1:20和1:25的HP1和HP2用于包裹MSN@ce6,其他反应条件均相同。加入5μMmicroRNA 21与5μM锌离子溶液后,测定上清液中ce6的荧光强度。结果如图8所示,当HP1:HP2=1:10时,反应效率最好。In order to investigate the optimal ratio between HP1 and HP2 on the porous silicon surface, HP1 and HP2 with equal volumes and concentration ratios of 1:5, 1:10, 1:15, 1:20 and 1:25 were selected for wrapping MSN @ce6, other reaction conditions are the same. After adding 5
4.2锌离子浓度优化4.2 Zinc ion concentration optimization
测定探针在不同锌离子浓度下反应后释放的ce6荧光强度,考察锌离子浓度对酶切效率的影响。结果如图9所示,当锌离子浓度较高时(5μM~100μM),ce6的释放随时间逐渐增加,说明随着锌离子浓度增高,酶切效率加快;当锌离子浓度继续增加时(>100μM),ce6的释放反而降低,可能是因为较高的锌离子浓度破坏了体系中维持DNA稳定所需的条件,不利于反应进行。当锌离子浓度较小时(100nM~5μM),ce6的释放随浓度增加而增多。以上结果表明,锌离子特异性脱氧核酶的酶切效率在一定范围内呈浓度依赖型。因此,为了适宜的浓度和较好的酶切效率,选择5μM的锌离子浓度用于后续实验。The fluorescence intensity of ce6 released by the probe after reacting at different zinc ion concentrations was measured to investigate the effect of zinc ion concentration on enzyme cleavage efficiency. The results are shown in Figure 9, when the concentration of zinc ions was higher (5 μM to 100 μM), the release of ce6 gradually increased with time, indicating that as the concentration of zinc ions increased, the enzyme cleavage efficiency accelerated; when the concentration of zinc ions continued to increase (> 100 μM), the release of ce6 decreased instead, probably because the higher zinc ion concentration destroyed the conditions required to maintain DNA stability in the system, which was not conducive to the reaction. When the concentration of zinc ions is small (100nM~5μM), the release of ce6 increases with the increase of the concentration. The above results indicated that the enzymatic cleavage efficiency of zinc ion-specific DNAzyme was concentration-dependent within a certain range. Therefore, for a suitable concentration and better digestion efficiency, a zinc ion concentration of 5 μM was selected for subsequent experiments.
5、特异性考察5. Specificity investigation
5.1其它金属离子干扰5.1 Other metal ion interference
本实验考察了在相同实验条件下,其他干扰离子如钙离子、钾离子、镁离子、锰离子和钠离子对反应体系的影响,通过比较反应后ce6荧光强度评估其他金属离子对反应体系的干扰。结果如图10所示,该反应体系只有在锌离子的存在下才能释放出大量的ce6,而其它金属离子对反应的影响较小,不会干扰反应进行。This experiment investigated the influence of other interfering ions such as calcium ions, potassium ions, magnesium ions, manganese ions and sodium ions on the reaction system under the same experimental conditions, and evaluated the interference of other metal ions on the reaction system by comparing the ce6 fluorescence intensity after the reaction . The results are shown in Figure 10, the reaction system can only release a large amount of ce6 in the presence of zinc ions, while other metal ions have little effect on the reaction and will not interfere with the reaction.
5.2microRNA21特异性考察5.2 microRNA21 specificity investigation
本实验比较了microRNA21与其他错配microRNA与多孔硅脱氧核酶荧光探针反应后的荧光强度,用于验证探针对microRNA21的识别是否具有良好的选择性。结果如图11所示,与错配microRNA反应后的荧光信号较弱,说明孔内释放的ce6较少;当与microRNA21反应后,ce6荧光强度最强,说明只有microRNA 21才能打开HP1,并进一步引发后续的酶切反应,实现更多ce6的释放。此外,单碱基错配序列虽引发了较多的ce6释放,但此浓度高达10μM,远高于非错配的microRNA21浓度,说明单碱基错配在正常的反应体系中干扰很小。以上实验结果表明,本实验所合成的多孔硅脱氧核酶荧光探针用于检测microRNA21具有良好的特异性。In this experiment, the fluorescence intensity of microRNA21 and other mismatched microRNAs reacted with the porous silicon deoxyribozyme fluorescent probe was compared to verify whether the probe has good selectivity for the recognition of microRNA21. The results are shown in Figure 11. The fluorescent signal after reacting with mismatched microRNA is weak, indicating that less ce6 is released in the hole; after reacting with microRNA21, the fluorescence intensity of ce6 is the strongest, indicating that only
5.3不同缓冲液对反应体系的影响5.3 Effect of different buffers on the reaction system
本实验考察了多孔硅脱氧核酶荧光探针在不同缓冲溶液中的反应。将探针分散在多种不同的体系中(纯水、PBS、HEPES,DMEM和RPMI 1640培养基),然后在这些不同的体系中分别进行HP1和HP2的封堵和释放实验,记录反应中荧光强度的变化情况。结果如图12所示,在纯水介质中,由于缺少维持DNA和microRNA杂交反应所必须的盐离子,荧光分子释放缓慢;而在其他介质中,荧光释放曲线与在HEPES缓冲液中的趋势基本一致,证明了探针在不同缓冲液介质中的可控释放,说明探针在PBS、HEPES,DMEM和RPMI 1640培养基等不同溶液中的稳定性均良好。In this experiment, the reaction of porous silicon deoxyribozyme fluorescent probe in different buffer solutions was investigated. Disperse the probe in a variety of different systems (pure water, PBS, HEPES, DMEM and
6、miRNA21标准曲线的测定6. Determination of miRNA21 standard curve
本实验选择不同浓度的microRNA21(0、50、100、500、1000、2500、5000pM)与多孔硅探针反应,一定时间后检测上清液中ce6的荧光强度值,并绘制浓度-荧光强度关系曲线。如图13所示,microRNA21在100pM~5000pM范围内所对应的荧光强度变化有良好的线性关系,R2为0.9915,检测限为23pM。In this experiment, different concentrations of microRNA21 (0, 50, 100, 500, 1000, 2500, 5000pM) were selected to react with porous silicon probes. After a certain period of time, the fluorescence intensity value of ce6 in the supernatant was detected, and the concentration-fluorescence intensity relationship was drawn. curve. As shown in FIG. 13 , the change of the fluorescence intensity corresponding to microRNA21 in the range of 100 pM to 5000 pM has a good linear relationship, R 2 is 0.9915, and the detection limit is 23 pM.
7、探针在药效评价中的应用考察7. Investigation on the application of probes in drug efficacy evaluation
7.1中药对细胞形态的影响7.1 The effect of traditional Chinese medicine on cell morphology
本实验考察了四种中药单体(丹参酮ⅡA、姜黄素、槲皮素和盐酸小檗碱)对乳腺癌细胞MDA-MB-231的生长及形态的影响。各浓度中药单体分别与MDA-MB-231细胞共培养24h、48h后,用显微镜观察记录MDA-MB-231细胞数量和形态的改变,并计算各浓度下的细胞抑制率(%)。由图14~图17可知,空白对照组乳腺癌细胞MDA-MB-231生长情况良好,未见到细胞抑制形态学的改变。与空白对照组相比,各实验组不同浓度的丹参酮ⅡA、姜黄素、槲皮素和盐酸小檗碱对乳腺癌MDA-MB-231细胞生长均有不同程度的抑制,且呈浓度、时间依赖性(见表1~表4)。由结果可知,丹参酮ⅡA、姜黄素、槲皮素和盐酸小檗碱与MDA-MB-231细胞共培养后,乳腺癌细胞形状均逐渐出现形状不规则、细胞皱缩变小、细胞间隙增加、倾向于单个生长,悬浮细胞增多等特征。此外,随着各中药浓度的增加,上述细胞形态变化更加明显,并且在相同的显微镜视野下观察发现肿瘤细胞数也随中药浓度的增加呈现减少趋势。This experiment investigated the effects of four traditional Chinese medicine monomers (tanshinone ⅡA, curcumin, quercetin and berberine hydrochloride) on the growth and morphology of breast cancer cell MDA-MB-231. After co-cultivating with MDA-MB-231 cells for 24 hours and 48 hours at different concentrations of traditional Chinese medicine monomers, observe and record the changes in the number and shape of MDA-MB-231 cells with a microscope, and calculate the cell inhibition rate (%) at each concentration. It can be seen from Figures 14 to 17 that the breast cancer cells MDA-MB-231 in the blank control group grew well, and no morphological changes were observed. Compared with the blank control group, different concentrations of tanshinone Ⅱ A, curcumin, quercetin and berberine hydrochloride in each experimental group inhibited the growth of breast cancer MDA-MB-231 cells to varying degrees, and the concentration- and time-dependent Sex (see Table 1 to Table 4). It can be seen from the results that after the co-culture of tanshinone ⅡA, curcumin, quercetin and berberine hydrochloride with MDA-MB-231 cells, the shape of breast cancer cells gradually became irregular, the cells shrank and became smaller, and the intercellular spaces increased. Tend to single growth, increased suspension cells and other characteristics. In addition, with the increase of the concentration of each traditional Chinese medicine, the above-mentioned changes in cell morphology became more obvious, and under the same microscope field of view, it was found that the number of tumor cells also showed a decreasing trend with the increase of the concentration of traditional Chinese medicine.
表1丹参酮ⅡA在不同剂量组及不同时间点对MDA-MB-231抑制率(%)Table 1 Tanshinone Ⅱ A inhibits MDA-MB-231 at different dose groups and different time points (%)
a:P<0.05,vs 24h控制组,b:P<0.05,vs 48h控制组 a : P<0.05, vs 24h control group, b : P<0.05, vs 48h control group
表2槲皮素在不同剂量组及不同时间点对MDA-MB-231抑制率(%)Table 2 Quercetin inhibits MDA-MB-231 rate (%) in different dose groups and different time points
a:P<0.05,vs 24h控制组,b:P<0.05,vs 48h控制组 a : P<0.05, vs 24h control group, b : P<0.05, vs 48h control group
表3姜黄素在不同剂量组及不同时间点对MDA-MB-231抑制率(%)Table 3 Curcumin inhibits MDA-MB-231 rate (%) in different dosage groups and different time points
a:P<0.05,vs 24h控制组,b:P<0.05,vs 48h控制组 a : P<0.05, vs 24h control group, b : P<0.05, vs 48h control group
表4小檗碱在不同剂量组及不同时间点对MDA-MB-231抑制率(%)Table 4 berberine inhibits MDA-MB-231 rate (%) in different dose groups and different time points
a:P<0.05,vs 24h控制组,b:P<0.05,vs 48h控制组 a : P<0.05, vs 24h control group, b : P<0.05, vs 48h control group
7.2中药对细胞活力的影响7.2 The effect of traditional Chinese medicine on cell viability
本实验中,选择不同浓度的四种中药单体分别与乳腺癌细胞MDA-MB-231共培养24h、48h,采用CCK-8法测定不同浓度的四种中药单体对乳腺癌细胞的增殖抑制作用。结果如图18所示,四种中药单体对MDA-MB-231细胞的细胞增长具有剂量和时间依赖性。随着药物浓度增加,MDA-MB-231癌细胞的生长受到明显抑制,且随时间延长,这种现象更为显著。抑制细胞增长的浓度通过计算各中药单体的半数致死量浓度IC50得出,丹参酮ⅡA为1.213μM、姜黄素为16.43μM、盐酸小檗碱为30.87μM,以及槲皮素为49.90μM。In this experiment, four kinds of traditional Chinese medicine monomers with different concentrations were selected to co-culture with breast cancer cell MDA-MB-231 for 24h and 48h respectively, and the proliferation inhibition of breast cancer cells by four kinds of traditional Chinese medicine monomers with different concentrations was determined by CCK-8 method. effect. The results are shown in Figure 18, the four traditional Chinese medicine monomers have a dose- and time-dependent effect on the cell growth of MDA-MB-231 cells. With the increase of drug concentration, the growth of MDA-MB-231 cancer cells was significantly inhibited, and this phenomenon became more significant with time. The concentration for inhibiting cell growth was obtained by calculating the IC50 of each traditional Chinese medicine monomer. Tanshinone Ⅱ A was 1.213 μM, curcumin was 16.43 μM, berberine hydrochloride was 30.87 μM, and quercetin was 49.90 μM.
7.3中药对细胞克隆形成作用的影响7.3 The effect of traditional Chinese medicine on the formation of cell clones
将四种中药单体分别与乳腺癌细胞MDA-MB-231共培养,给药后细胞生长14天,当出现明显的细胞团后,结晶紫染色,比较各组MDA-MB-231细胞克隆数的差异。结果如图19所示,与四种中药作用后,MDA-MB-231细胞形成集落的能力明显降低,集落数减少。空白对照组MDA-MB-231细胞克隆形成数平均值为946,用0.625μM丹参酮ⅡA、25μM槲皮素、15μM姜黄素、20μM小檗碱处理后,克隆形成数平均值分别为152、114、76、48。与空白对照组相比差异均有统计学意义(P<0.05)。综上所述,选择克隆形成实验分析四种中药(丹参酮ⅡA、姜黄素、槲皮素和小檗碱)对乳腺癌细胞MDA-MB-231细胞克隆形成能力的影响,结果表明,与对照组相比,中药处理后的细胞克隆形成能力明显降低,说明中药丹参酮ⅡA、姜黄素、槲皮素和盐酸小檗碱均可以显著抑制MDA-MB-231细胞的克隆形成。The four kinds of traditional Chinese medicine monomers were co-cultured with breast cancer cells MDA-MB-231, and the cells were grown for 14 days after administration. When obvious cell clusters appeared, they were stained with crystal violet, and the number of MDA-MB-231 cell clones in each group was compared. difference. The results are shown in Figure 19, after the four kinds of traditional Chinese medicines were used, the ability of MDA-MB-231 cells to form colonies was significantly reduced, and the number of colonies decreased. The average number of colony formation of MDA-MB-231 cells in the blank control group was 946, and after treatment with 0.625 μM tanshinone Ⅱ A, 25 μM quercetin, 15 μM curcumin, and 20 μM berberine, the average number of colony formation was 152, 114, 76, 48. Compared with the blank control group, the differences were statistically significant (P<0.05). To sum up, the effect of four traditional Chinese medicines (tanshinone Ⅱ A, curcumin, quercetin and berberine) on the colony formation ability of breast cancer cell MDA-MB-231 cells was analyzed by selective clone formation experiment. In contrast, the colony formation ability of cells treated with traditional Chinese medicine was significantly reduced, indicating that the traditional Chinese medicine tanshinone ⅡA, curcumin, quercetin and berberine hydrochloride can all significantly inhibit the colony formation of MDA-MB-231 cells.
7.4中药对细胞迁移行为的影响7.4 The effect of traditional Chinese medicine on cell migration behavior
本研究选择在乳腺癌细胞MDA-MB-231给药后0h、24h和48h分别拍摄图像。为保证细胞保持一定的活力,选择浓度分别为:0.625μM丹参酮ⅡA、25μM槲皮素、15μM姜黄素以及20μM盐酸小檗碱,考察MDA-MB-231细胞迁移性质。结果如图20所示,未用中药处理的细胞,随着时间增加,划痕逐渐愈合,其迁移速度较快。当用中药处理后,细胞迁移减慢,愈合速度减小。对比四种中药的迁移结果,尽管抑制率各有不同,小檗碱和姜黄素作用较强,槲皮素和丹参酮ⅡA的作用较温和,但均显示四种中药丹参酮ⅡA、姜黄素、小檗碱和槲皮素可以抑制癌细胞的迁移,减小癌细胞扩散至非肿瘤区域的能力,以减缓癌症发展进程。In this study, images were taken at 0h, 24h and 48h after the administration of breast cancer cells MDA-MB-231. In order to ensure that the cells maintain a certain viability, the selected concentrations were: 0.625 μM tanshinone Ⅱ A, 25 μM quercetin, 15 μM curcumin and 20 μM berberine hydrochloride to investigate the migration properties of MDA-MB-231 cells. The results are shown in Figure 20, the cells that were not treated with traditional Chinese medicine, as time went on, the scratches gradually healed, and the migration speed was faster. When treated with traditional Chinese medicine, cell migration slowed down and healing speed decreased. Comparing the migration results of the four traditional Chinese medicines, although the inhibition rates are different, the effects of berberine and curcumin are stronger, and the effects of quercetin and tanshinone Ⅱ A are milder. Alkali and quercetin can inhibit the migration of cancer cells and reduce the ability of cancer cells to spread to non-tumor areas to slow down the progression of cancer.
7.5中药对细胞凋亡的影响7.5 The effect of traditional Chinese medicine on apoptosis
本研究将不同分组的MDA-MB-231细胞进行DAPI染色,倒置荧光显微镜下进行拍照,并用ImageJ计算荧光强度。结果如图21和22所示,对于控制组,即未与中药相互作用的MDA-MB-231细胞,可以观察到整个细胞核呈均匀的蓝色荧光;对于给药组,DAPI染色后细胞核呈较明显蓝白色荧光,且细胞核变圆。通过荧光亮度及细胞核形状可以判断细胞凋亡状态:早期凋亡细胞呈现核浓缩,染色加深,或核染色质呈新月形聚集于核膜一边;晚期凋亡细胞表现为核碎裂成大小不等的圆形小体,并被细胞膜所包绕。对比四种给药后的细胞染色结果,中药姜黄素处理后的MDA-MB-231细胞凋亡程度明显增加,染色质凝结大量的细胞核,形态为圆形,细胞膜起泡,荧光更加明亮;丹参酮ⅡA作用最为温和,只有少量细胞核显示较亮的蓝色荧光。综上,四种中药对于乳腺癌细胞的凋亡作用虽有明显的不同,但均影响了乳腺癌细胞的凋亡过程。In this study, different groups of MDA-MB-231 cells were stained with DAPI, photographed under an inverted fluorescence microscope, and the fluorescence intensity was calculated with ImageJ. The results are shown in Figures 21 and 22. For the control group, that is, the MDA-MB-231 cells that have not interacted with traditional Chinese medicine, uniform blue fluorescence can be observed in the entire nucleus; Obvious blue-white fluorescence, and the nuclei become round. The state of apoptosis can be judged by the fluorescence brightness and the shape of the nucleus: early apoptotic cells show nuclear condensation, staining deepens, or nuclear chromatin gathers in a crescent shape on one side of the nuclear membrane; late apoptotic cells show nuclear fragmentation into different sizes Equal round bodies surrounded by cell membranes. Comparing the cell staining results after four administrations, the degree of apoptosis of MDA-MB-231 cells treated with the traditional Chinese medicine curcumin was significantly increased, the chromatin condensed a large number of nuclei, the shape was round, the cell membrane was bubbling, and the fluorescence was brighter; Tanshinone IIA has the mildest effect, and only a small number of nuclei show brighter blue fluorescence. In summary, although the four traditional Chinese medicines have significantly different effects on the apoptosis of breast cancer cells, they all affect the apoptosis process of breast cancer cells.
7.6中药对细胞内microRNA21含量变化的影响7.6 The effect of traditional Chinese medicine on the change of microRNA21 content in cells
将不同浓度的四种中药与MDA-MB-231细胞共培养,提取每组中106个细胞,采用RNA抽提试剂盒提取各组细胞中的microRNA21,然后加入多孔硅-脱氧核酶荧光探针中进行反应,通过ce6荧光强度测定中药处理细胞后的microRNA21含量改变。结果如图23所示,与对照组相比,丹参酮ⅡA、小檗碱、槲皮素与姜黄素处理后的MDA-MB-231细胞中microRNA21的含量均有所减少,且呈浓度依赖性,说明四种中药均能够抑制细胞中microRNA21的增长。对比四种中药的作用效果可知,小檗碱的作用相对较强,细胞中microRNA21的含量几乎减少至0。同时,以上结果显示,microRNA21含量的减少与中药作用于三阴性乳腺癌细胞后所呈现的细胞活力降低、克隆形成能力减弱、细胞迁移能力减缓,以及细胞凋亡程度增加等细胞实验结果的变化趋势相一致,说明microRNA21含量变化能反应三阴性乳腺癌的发展进程。Four kinds of traditional Chinese medicines with different concentrations were co-cultured with MDA-MB-231 cells, 10 6 cells in each group were extracted, and microRNA21 in each group of cells was extracted with RNA extraction kit, and then porous silicon-DNAzyme fluorescent detection was added The reaction was carried out in the needle, and the change of microRNA21 content after the cells were treated with traditional Chinese medicine was measured by the fluorescence intensity of ce6. The results are shown in Figure 23. Compared with the control group, the content of microRNA21 in MDA-MB-231 cells treated with tanshinone Ⅱ A, berberine, quercetin and curcumin all decreased in a concentration-dependent manner. It shows that all four traditional Chinese medicines can inhibit the growth of microRNA21 in cells. Comparing the effects of the four traditional Chinese medicines, it can be seen that the effect of berberine is relatively strong, and the content of microRNA21 in cells is almost reduced to zero. At the same time, the above results show that the reduction of microRNA21 content is related to the change trend of cell experiment results such as decreased cell viability, weakened clone formation ability, slowed cell migration ability, and increased cell apoptosis after the traditional Chinese medicine acts on triple-negative breast cancer cells. It is consistent, indicating that the change of microRNA21 content can reflect the development process of triple-negative breast cancer.
实验结果说明:Explanation of the experimental results:
本研究基于氨基修饰的多孔硅,分别在孔道内部装载荧光分子ce6、孔道外部修饰两种功能性DNA发卡结构,合成一种能够检测癌症标志物microRNA 21的多孔硅脱氧核酶荧光探针。实验结果表明,该探针能够特异、灵敏的检测体系中痕量的microRNA 21,并可通过荧光强度进行定量分析。In this study, based on amino-modified porous silicon, two functional DNA hairpin structures were loaded on the inside of the pore and modified on the outside of the pore, and a porous silicon deoxyribozyme fluorescent probe capable of detecting
其次,在考察四种中药单体(丹参酮ⅡA、姜黄素、小檗碱、槲皮素)对MDA-MB-231细胞形态、细胞增殖、细胞凋亡、细胞迁移等作用的基础上,应用合成的多孔硅-脱氧核酶荧光探针MSN@ce6-HP1/HP2检测给药后细胞内microRNA21的含量变化。结果表明,多孔硅Secondly, on the basis of investigating the effects of four traditional Chinese medicine monomers (tanshinone ⅡA, curcumin, berberine, and quercetin) on MDA-MB-231 cell morphology, cell proliferation, cell apoptosis, and cell migration, the synthetic The porous silicon-DNAzyme fluorescent probe MSN@ce6-HP1/HP2 detects the changes of microRNA21 content in cells after administration. The results showed that the porous silicon
脱氧核酶荧光探针能够实现对细胞内痕量microRNA 21的高灵敏检测,给药后细胞中microRNA21含量的减少与给药后癌细胞行为的变化趋势一致(细胞活力降低、克隆形成能力减弱、细胞迁移能力减缓,以及细胞凋亡程度增加等),说明所构建的多孔硅-脱氧核酶荧光探针可用于评估不同中药成分的抗癌活性。The deoxyribozyme fluorescent probe can achieve highly sensitive detection of
此外,本研究所合成的多孔硅-脱氧核酶荧光探针可进一步修饰靶向性适体或易于胞吞的生物膜,使多孔硅复合物进入细胞内部,应用于实时荧光成像,监测细胞内microRNA21含量。在增强中药疗效作用方面,可以结合具有特异性响应性质的膜类载体负载不同结构类型的中药,以实现细胞内不同药物的有序释放,达到中药的不同成分配伍给药以及增强药物间疗效的作用,具有广阔的应用前景。In addition, the porous silicon-DNAzyme fluorescent probe synthesized in this study can be further modified to target aptamers or biomembranes that are easy to endocytosis, so that the porous silicon complex can enter the interior of the cell, and it can be applied to real-time fluorescence imaging to monitor intracellular microRNA21 content. In terms of enhancing the curative effect of traditional Chinese medicine, it can be combined with membrane carriers with specific response properties to load different structural types of traditional Chinese medicine, so as to realize the orderly release of different drugs in cells, achieve the combination of different ingredients of traditional Chinese medicine and enhance the efficacy of drugs. role and has broad application prospects.
上述实施例的作用在于具体介绍本发明的实质性内容,但本领域技术人员应当知道,不应将本发明的保护范围局限于该具体实施例。The purpose of the above embodiments is to specifically introduce the substantive content of the present invention, but those skilled in the art should know that the protection scope of the present invention should not be limited to the specific embodiments.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211571490.1A CN116144737A (en) | 2022-12-08 | 2022-12-08 | Porous silicon deoxyribozyme fluorescent probe and application thereof in evaluating anticancer activity of traditional Chinese medicine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211571490.1A CN116144737A (en) | 2022-12-08 | 2022-12-08 | Porous silicon deoxyribozyme fluorescent probe and application thereof in evaluating anticancer activity of traditional Chinese medicine |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116144737A true CN116144737A (en) | 2023-05-23 |
Family
ID=86372643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211571490.1A Pending CN116144737A (en) | 2022-12-08 | 2022-12-08 | Porous silicon deoxyribozyme fluorescent probe and application thereof in evaluating anticancer activity of traditional Chinese medicine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116144737A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120207795A1 (en) * | 2010-07-13 | 2012-08-16 | The Regents Of The University Of California | Cationic polymer coated mesoporous silica nanoparticles and uses thereof |
CN107142332A (en) * | 2017-07-17 | 2017-09-08 | 济南大学 | A kind of enzyme DNA machines are used for the method that miRNA is detected |
CN109486906A (en) * | 2018-11-16 | 2019-03-19 | 中山大学附属第五医院 | MicroRNA non-enzymatic amplification detection method intracellular based on the affine nanometer transport vehicle of electrostatic and cell imaging |
-
2022
- 2022-12-08 CN CN202211571490.1A patent/CN116144737A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120207795A1 (en) * | 2010-07-13 | 2012-08-16 | The Regents Of The University Of California | Cationic polymer coated mesoporous silica nanoparticles and uses thereof |
CN107142332A (en) * | 2017-07-17 | 2017-09-08 | 济南大学 | A kind of enzyme DNA machines are used for the method that miRNA is detected |
CN109486906A (en) * | 2018-11-16 | 2019-03-19 | 中山大学附属第五医院 | MicroRNA non-enzymatic amplification detection method intracellular based on the affine nanometer transport vehicle of electrostatic and cell imaging |
Non-Patent Citations (3)
Title |
---|
YONG QIAN等: "Assistant deoxyribonucleic acid recycling with Zn(2+) and molecular beacon for electrochemical detection of deoxyribonucleic acid via target-triggered assembly of mutated DNAzyme", ANAL CHIM ACTA, 19 July 2014 (2014-07-19), pages 10 * |
ZHANXIA ZHANG等: "Smart Mesoporous SiO2 Nanoparticles for the DNAzyme-Induced Multiplexed Release of Substrates", JACS, vol. 135, no. 5, 8 January 2013 (2013-01-08), pages 1934 - 1940, XP055106464, DOI: 10.1021/ja311385y * |
李新方等: "纳米材料在乳腺癌靶向治疗中的应用进展", 山东医药, vol. 28, no. 39, 21 October 2018 (2018-10-21), pages 100 - 104 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yu et al. | Hypoxia-induced exosomes promote hepatocellular carcinoma proliferation and metastasis via miR-1273f transfer | |
Chen et al. | Advances in the development of aptamer drug conjugates for targeted drug delivery | |
Yang et al. | An efficient cell-targeting drug delivery system based on aptamer-modified mesoporous silica nanoparticles | |
Wang et al. | Intelligent Gold Nanoparticles with Oncogenic MicroRNA‐Dependent Activities to Manipulate Tumorigenic Environments for Synergistic Tumor Therapy | |
CN107586781B (en) | Liver cancer marker lncRNA ENST00000620463.1 and its application | |
CN104711263B (en) | A kind of nucleic acid aptamer sequence and application for being used to target KB cell | |
Peng et al. | A double DNAzyme-loaded MnO2 versatile nanodevice for precise cancer diagnosis and Self-Sufficient synergistic gene therapy | |
Wu et al. | Combination of FAK inhibitor and cytokine-induced killer cell therapy: An alternative therapeutic strategy for patients with triple-negative breast cancer | |
Liang et al. | Ubiquitin-specific protease 3 facilitates cell proliferation by deubiquitinating pyruvate kinase L/R in gallbladder cancer | |
CN108486104A (en) | Targeting fluorescent probe and the application of cancer cell are detected based on DNA- silver nanoclusters | |
CN116370656A (en) | Exosome ferroferric oxide nano probe and preparation method and application thereof | |
CN110384680A (en) | A kind of temperature/pH responsiveness is double to carry medicine composite nanoparticle and its preparation method and application | |
CN116144737A (en) | Porous silicon deoxyribozyme fluorescent probe and application thereof in evaluating anticancer activity of traditional Chinese medicine | |
Cai et al. | Nanotechnology for the Diagnosis and Treatment of Liver Cancer | |
Zhang et al. | Cascade-catalysed nanocarrier degradation for regulating metabolism homeostasis and enhancing drug penetration on breast cancer | |
CN117757939A (en) | Application of circRNA in diagnosis and treatment of esophageal cancer | |
CN103800917B (en) | Nano-gold miR-885-5p conjugate and preparation method and application thereof | |
CN117025537A (en) | Special culture solution for small cell lung cancer organoids and application thereof | |
CN115581763A (en) | Targeting nano preparation for treating cancer and preparation method and application thereof | |
Leetanaporn et al. | Molecular insights and clinical impacts of extracellular vesicles in cancer | |
CN115969989A (en) | A DNA logic gate nanomaterial and its preparation method and application | |
CN113209043B (en) | Intracellular responsive nanoparticles loaded with target gene siRNA and preparation method thereof | |
Chen et al. | Polymerase chain reaction in the detection of miR-455-5p and sphingosine-1 phosphate proteins in cervical carcinoma with the help of gold nanoparticles-based | |
CN114813682A (en) | A kind of composite fluorescent nanoprobe and its preparation method and application | |
Qin et al. | Size effect of dynamic bioactive magnetic particles on regulated isolation of tumor cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |