CN116143994B - Aqueous organosilicon modified polyurethane dispersoid, preparation method thereof, synthetic leather surface layer containing aqueous organosilicon modified polyurethane dispersoid and luggage leather - Google Patents
Aqueous organosilicon modified polyurethane dispersoid, preparation method thereof, synthetic leather surface layer containing aqueous organosilicon modified polyurethane dispersoid and luggage leather Download PDFInfo
- Publication number
- CN116143994B CN116143994B CN202211705160.7A CN202211705160A CN116143994B CN 116143994 B CN116143994 B CN 116143994B CN 202211705160 A CN202211705160 A CN 202211705160A CN 116143994 B CN116143994 B CN 116143994B
- Authority
- CN
- China
- Prior art keywords
- parts
- modified polyurethane
- chain extender
- diisocyanate
- organosilicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002649 leather substitute Substances 0.000 title claims abstract description 41
- 229920002635 polyurethane Polymers 0.000 title claims abstract description 40
- 239000004814 polyurethane Substances 0.000 title claims abstract description 40
- 238000002360 preparation method Methods 0.000 title claims abstract description 31
- 239000002344 surface layer Substances 0.000 title claims abstract description 26
- 239000010985 leather Substances 0.000 title claims abstract description 16
- 238000006243 chemical reaction Methods 0.000 claims abstract description 40
- 239000004970 Chain extender Substances 0.000 claims abstract description 38
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000012948 isocyanate Substances 0.000 claims abstract description 26
- 150000002513 isocyanates Chemical class 0.000 claims abstract description 26
- 229920005862 polyol Polymers 0.000 claims abstract description 25
- 150000003077 polyols Chemical class 0.000 claims abstract description 25
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 25
- 239000010703 silicon Substances 0.000 claims abstract description 25
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 19
- 239000002002 slurry Substances 0.000 claims abstract description 16
- 239000003054 catalyst Substances 0.000 claims abstract description 14
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 13
- 150000001412 amines Chemical group 0.000 claims abstract description 10
- 125000005442 diisocyanate group Chemical group 0.000 claims abstract description 10
- 229920000642 polymer Polymers 0.000 claims abstract description 10
- 239000002994 raw material Substances 0.000 claims abstract description 10
- 230000003472 neutralizing effect Effects 0.000 claims abstract description 6
- 229920003009 polyurethane dispersion Polymers 0.000 claims description 31
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 28
- 239000006185 dispersion Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 11
- 229920000909 polytetrahydrofuran Polymers 0.000 claims description 10
- 239000013638 trimer Substances 0.000 claims description 9
- OWJKJLOCIDNNGJ-UHFFFAOYSA-N 4-[[4-hydroxybutyl(dimethyl)silyl]oxy-dimethylsilyl]butan-1-ol Chemical compound OCCCC[Si](C)(C)O[Si](C)(C)CCCCO OWJKJLOCIDNNGJ-UHFFFAOYSA-N 0.000 claims description 8
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 claims description 8
- 239000004417 polycarbonate Substances 0.000 claims description 8
- 229920000515 polycarbonate Polymers 0.000 claims description 8
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical group CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 claims description 8
- 239000005058 Isophorone diisocyanate Substances 0.000 claims description 7
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 7
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 7
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims description 7
- 229920000570 polyether Polymers 0.000 claims description 7
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 claims description 6
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 claims description 6
- 239000002518 antifoaming agent Substances 0.000 claims description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 6
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 claims description 6
- 238000006386 neutralization reaction Methods 0.000 claims description 6
- 229920005906 polyester polyol Polymers 0.000 claims description 6
- 229920001451 polypropylene glycol Polymers 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 239000002562 thickening agent Substances 0.000 claims description 6
- 239000000080 wetting agent Substances 0.000 claims description 6
- 230000035484 reaction time Effects 0.000 claims description 5
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 4
- -1 polyethylene adipate Polymers 0.000 claims description 4
- XSCLFFBWRKTMTE-UHFFFAOYSA-N 1,3-bis(isocyanatomethyl)cyclohexane Chemical compound O=C=NCC1CCCC(CN=C=O)C1 XSCLFFBWRKTMTE-UHFFFAOYSA-N 0.000 claims description 3
- ROHUXHMNZLHBSF-UHFFFAOYSA-N 1,4-bis(isocyanatomethyl)cyclohexane Chemical compound O=C=NCC1CCC(CN=C=O)CC1 ROHUXHMNZLHBSF-UHFFFAOYSA-N 0.000 claims description 3
- NSMWYRLQHIXVAP-UHFFFAOYSA-N 2,5-dimethylpiperazine Chemical compound CC1CNC(C)CN1 NSMWYRLQHIXVAP-UHFFFAOYSA-N 0.000 claims description 3
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 claims description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 3
- 239000005057 Hexamethylene diisocyanate Substances 0.000 claims description 3
- SSJXIUAHEKJCMH-UHFFFAOYSA-N cyclohexane-1,2-diamine Chemical compound NC1CCCCC1N SSJXIUAHEKJCMH-UHFFFAOYSA-N 0.000 claims description 3
- GEQHKFFSPGPGLN-UHFFFAOYSA-N cyclohexane-1,3-diamine Chemical compound NC1CCCC(N)C1 GEQHKFFSPGPGLN-UHFFFAOYSA-N 0.000 claims description 3
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 claims description 3
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims description 3
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 claims description 3
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 claims description 3
- 239000010410 layer Substances 0.000 claims description 3
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 claims description 3
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 claims description 3
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 claims description 2
- VZXPHDGHQXLXJC-UHFFFAOYSA-N 1,6-diisocyanato-5,6-dimethylheptane Chemical compound O=C=NC(C)(C)C(C)CCCCN=C=O VZXPHDGHQXLXJC-UHFFFAOYSA-N 0.000 claims description 2
- PTBDIHRZYDMNKB-UHFFFAOYSA-N 2,2-Bis(hydroxymethyl)propionic acid Chemical compound OCC(C)(CO)C(O)=O PTBDIHRZYDMNKB-UHFFFAOYSA-N 0.000 claims description 2
- JVYDLYGCSIHCMR-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)butanoic acid Chemical compound CCC(CO)(CO)C(O)=O JVYDLYGCSIHCMR-UHFFFAOYSA-N 0.000 claims description 2
- ASUUYDBHVNPPRZ-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)octanoic acid Chemical compound CCCCCCC(CO)(CO)C(O)=O ASUUYDBHVNPPRZ-UHFFFAOYSA-N 0.000 claims description 2
- UHAMPPWFPNXLIU-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)pentanoic acid Chemical compound CCCC(CO)(CO)C(O)=O UHAMPPWFPNXLIU-UHFFFAOYSA-N 0.000 claims description 2
- BGHSBLYBOOUZFE-UHFFFAOYSA-N 2-[3-[[3-(2-hydroxyethoxy)propyl-dimethylsilyl]oxy-dimethylsilyl]propoxy]ethanol Chemical compound OCCOCCC[Si](C)(C)O[Si](C)(C)CCCOCCO BGHSBLYBOOUZFE-UHFFFAOYSA-N 0.000 claims description 2
- ILQCBWLWTBXJOL-UHFFFAOYSA-N 3-[[(3-hydroxy-2-methylpropyl)-dimethylsilyl]oxy-dimethylsilyl]-2-methylpropan-1-ol Chemical compound CC(CO)C[Si](C)(C)O[Si](C)(C)CC(C)CO ILQCBWLWTBXJOL-UHFFFAOYSA-N 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 claims description 2
- 239000003431 cross linking reagent Substances 0.000 claims description 2
- 150000002009 diols Chemical class 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 claims description 2
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 2
- 229920001610 polycaprolactone Polymers 0.000 claims description 2
- 239000004632 polycaprolactone Substances 0.000 claims description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims description 2
- NNOZGCICXAYKLW-UHFFFAOYSA-N 1,2-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC=C1C(C)(C)N=C=O NNOZGCICXAYKLW-UHFFFAOYSA-N 0.000 claims 1
- VGHCVSPDKSEROA-UHFFFAOYSA-N 2-methyl-1,4-dioxecane-5,10-dione Chemical compound CC1COC(=O)CCCCC(=O)O1 VGHCVSPDKSEROA-UHFFFAOYSA-N 0.000 claims 1
- 229920000921 polyethylene adipate Polymers 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 10
- 238000007334 copolymerization reaction Methods 0.000 abstract description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 26
- 238000003756 stirring Methods 0.000 description 19
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 15
- 125000001261 isocyanato group Chemical group *N=C=O 0.000 description 12
- 238000001723 curing Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000010008 shearing Methods 0.000 description 8
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- INJAHHABQHQOMY-UHFFFAOYSA-N 2-(dihydroxymethyl)butanoic acid Chemical compound CCC(C(O)O)C(O)=O INJAHHABQHQOMY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000012752 auxiliary agent Substances 0.000 description 3
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 3
- 229920005749 polyurethane resin Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000004812 organic fluorine compounds Chemical class 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000004383 yellowing Methods 0.000 description 2
- VGHSXKTVMPXHNG-UHFFFAOYSA-N 1,3-diisocyanatobenzene Chemical compound O=C=NC1=CC=CC(N=C=O)=C1 VGHSXKTVMPXHNG-UHFFFAOYSA-N 0.000 description 1
- YXRKNIZYMIXSAD-UHFFFAOYSA-N 1,6-diisocyanatohexane Chemical compound O=C=NCCCCCCN=C=O.O=C=NCCCCCCN=C=O.O=C=NCCCCCCN=C=O YXRKNIZYMIXSAD-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- WOVNROWPOFTJPT-UHFFFAOYSA-N 2,3-diisocyanato-2,3-dimethylbutane Chemical compound O=C=NC(C)(C)C(C)(C)N=C=O WOVNROWPOFTJPT-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 239000012972 dimethylethanolamine Substances 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- FJQXCDYVZAHXNS-UHFFFAOYSA-N methadone hydrochloride Chemical compound Cl.C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 FJQXCDYVZAHXNS-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920006264 polyurethane film Polymers 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8061—Masked polyisocyanates masked with compounds having only one group containing active hydrogen
- C08G18/8083—Masked polyisocyanates masked with compounds having only one group containing active hydrogen with compounds containing at least one heteroatom other than oxygen or nitrogen
- C08G18/809—Masked polyisocyanates masked with compounds having only one group containing active hydrogen with compounds containing at least one heteroatom other than oxygen or nitrogen containing silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
- C08G18/12—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/4009—Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
- C08G18/4018—Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/44—Polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4825—Polyethers containing two hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4854—Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6666—Compounds of group C08G18/48 or C08G18/52
- C08G18/667—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/6674—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
- C08G18/751—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
- C08G18/752—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
- C08G18/753—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
- C08G18/755—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
- C08G18/758—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/791—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
- C08G18/792—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/12—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
- D06N3/14—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/12—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
- D06N3/14—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
- D06N3/146—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes characterised by the macromolecular diols used
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/12—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
- D06N3/14—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
- D06N3/147—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes characterised by the isocyanates used
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2209/00—Properties of the materials
- D06N2209/10—Properties of the materials having mechanical properties
- D06N2209/103—Resistant to mechanical forces, e.g. shock, impact, puncture, flexion, shear, compression, tear
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2209/00—Properties of the materials
- D06N2209/16—Properties of the materials having other properties
- D06N2209/1685—Wear resistance
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2211/00—Specially adapted uses
- D06N2211/12—Decorative or sun protection articles
- D06N2211/28—Artificial leather
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
- Y02P70/62—Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
The invention relates to an aqueous organosilicon modified polyurethane dispersoid, a preparation method thereof, a synthetic leather surface layer containing the aqueous organosilicon modified polyurethane dispersoid and luggage leather. The preparation raw materials of the aqueous organosilicon modified polyurethane dispersoid comprise: a polymer polyol, a diisocyanate, an isocyanate-based silicone prepolymer, an isocyanate, optionally a catalyst, a hydrophilic chain extender, an amine chain extender, a silicon-containing chain extender, and a neutralizing agent; the synthetic leather surface layer is prepared from synthetic leather surface layer slurry containing the aqueous organosilicon modified polyurethane dispersoid. According to the invention, the isocyanate-based organosilicon prepolymer is added in the prepolymer stage for copolymerization, the organosilicon side chain is introduced in the main chain, and part of the silicon-containing chain extension is added to participate in the chain extension reaction, so that the obtained aqueous organosilicon modified polyurethane dispersoid has high organosilicon content, can generate a better long-acting anti-graffiti effect, and has better hand feeling and mechanical property.
Description
Technical Field
The invention belongs to the technical field of polyurethane, and particularly relates to a water-based organic silicon modified polyurethane dispersoid, a preparation method thereof, a synthetic leather surface layer containing the water-based organic silicon modified polyurethane dispersoid and luggage leather.
Background
The polyurethane synthetic leather has the characteristics of good hand feeling, air permeability, leather-like appearance and the like, and simultaneously has the advantages of environmental protection and lower price, greatly meets the environmental protection requirement and the consumption requirement, and has wide development prospect. With the continuous expansion and development of the application field of synthetic leather, the requirements of people on polyurethane synthetic leather are more and more stringent, so that more requirements are put on synthetic leather products, and the surfaces of the synthetic leather products are expected to have anti-graffiti properties, such as sweat, marker pens, oily pens and the like, so that the synthetic leather products are easy to clean, and no graffiti marks are left.
Usually people increase the anti-graffiti performance by adding a prepolymer auxiliary agent of organic silicon and organic fluorine, and the anti-graffiti effect is achieved by utilizing the characteristic that the organic silicon and the organic fluorine are easy to migrate to the surface of the adhesive film. As disclosed in CN102168378A, the non-yellowing anti-graffiti resin for synthetic leather is composed of the following components in proportion, 35 parts of polyether polyurethane resin, 45 parts of DMF, 10 parts of acetone, 3 parts of dimethyl siloxane, 2 parts of silicone oil, 1.5 parts of anti-graffiti auxiliary agent, 0.5 part of anti-ultraviolet first absorbent and 3 parts of organosilicon leveling agent, and the non-yellowing anti-graffiti resin for synthetic leather realizes the anti-graffiti effect by adding fluorine compound as the anti-graffiti auxiliary agent and adding organosilicon for coaction, but the method has one defect: free organosilicon and organofluorine are easily ground off, and the continuous anti-graffiti effect is not ideal.
To achieve a sustained anti-graffiti effect, scientists have attempted to use grafting silicones and organofluorine into polymers. However, the price of the organic fluorine monomer is high, which is not beneficial to large-scale industrialized production; although the organosilicon is relatively low in price, the mechanical properties of polyurethane resin are affected by the fact that a large amount of organosilicon is connected to polyurethane molecular chains, but the polyurethane resin with low organosilicon content has difficulty in achieving a better continuous anti-graffiti effect.
Therefore, developing polyurethane for synthetic leather with high silicon content, good mechanical property and continuous anti-graffiti effect is a technical problem which needs to be solved in the field.
Disclosure of Invention
Aiming at the defects existing in the prior art, the invention aims to provide a water-based organic silicon modified polyurethane dispersoid, a preparation method thereof, a synthetic leather surface layer and luggage leather containing the water-based organic silicon modified polyurethane dispersoid, wherein the water-based organic silicon modified polyurethane dispersoid has higher silicon content and better mechanical property, and the surface layer of the synthetic leather containing the water-based organic silicon modified polyurethane dispersoid can realize continuous anti-graffiti effect and has the characteristics of better hand feeling, wear resistance and the like.
To achieve the purpose, the invention adopts the following technical scheme.
In a first aspect, the invention provides an isocyanate-based organosilicon, wherein the isocyanate-based organosilicon prepolymer is obtained by reacting a system comprising an isocyanate trimer and a monohydroxy-terminated organosilicon, and the molar ratio between the isocyanate trimer and the monohydroxy-organosilicon is 1-1.05:1.
Preferably, the isocyanate trimer comprises one or more of isophorone diisocyanate trimer, hexamethylene diisocyanate trimer and diphenylmethane diisocyanate trimer.
In a second aspect, the present invention provides an aqueous silicone-modified polyurethane dispersion, the aqueous silicone-modified polyurethane comprising, as raw materials: a polymer polyol, a diisocyanate, the above isocyanate-based silicone prepolymer, a silicon-containing chain extender, a hydrophilic chain extender, an amine chain extender, a neutralizing agent, and optionally a catalyst.
Preferably, the preparation raw materials of the aqueous organosilicon modified polyurethane comprise the following components in parts by weight:
55 to 75 parts by weight of polymer polyol
10 to 30 parts by weight of diisocyanate
1 to 10 parts by weight of isocyanate group organosilicon prepolymer
0.5 to 2 parts by weight of silicon-containing chain extender
2 to 6 parts by weight of hydrophilic chain extender
0.5 to 2 weight portions of amine chain extender
1 to 5 weight portions of neutralizer
0 to 0.5 weight portion of catalyst.
Preferably, the polymer polyol comprises a polyester polyol and a polyether polyol; the mass ratio between the polyester polyol and the polyether polyol is (80-95): (5-20).
Preferably, the polyester polyol comprises any one or a combination of at least two of polyethylene glycol adipate glycol, poly-1, 4-butylene glycol adipate glycol, poly-propylene glycol adipate glycol, poly-neopentyl glycol-1, 6-hexanediol adipate glycol, poly-1, 6-hexanediol carbonate glycol, poly-hexanediol adipate glycol, polycarbonate polyol, and polycaprolactone polyol.
Preferably, the polyether polyol comprises one or more of polyoxypropylene glycol, polyoxypropylene triol and polytetrahydrofuran diol.
Preferably, the diisocyanate comprises any one or a combination of at least two of 1, 4-bis (isocyanatomethyl) cyclohexane, 4' -dicyclohexylmethane diisocyanate, 1, 3-bis (isocyanatomethyl) cyclohexane, isophorone diisocyanate, toluene diisocyanate, 4' -diphenylmethane diisocyanate, 1, 4-bis (isocyanatomethyl) cyclohexane, 4' -dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, m-phenylene diisocyanate, tetramethyldimethylene diisocyanate, 1, 3-bis (isocyanatomethyl) cyclohexane, xylylene diisocyanate or isophorone diisocyanate.
Preferably, the silicon-containing chain extender comprises any one or a combination of at least two of 1, 3-bis (3-aminopropyl) -1, 3-tetramethyldisiloxane, 1, 3-bis (4-hydroxybutyl) tetramethyldisiloxane, 1, 3-bis (3-hydroxyisobutyl) tetramethyldisiloxane, and 1, 3-bis (3- (2-hydroxyethoxy) propyl) tetramethyldisiloxane.
Preferably, the hydrophilic chain extender comprises one or more of dimethylolpropionic acid, dimethylolbutyric acid, dimethylolvaleric acid and dimethyloloctanoic acid.
Preferably, the amine chain extender comprises one or more of 1, 3-bis (3-aminopropyl) -1, 3-tetramethyldisiloxane, methyldiethanolamine, diethanolamine, ethylenediamine, 1, 2-propylenediamine, 1, 6-hexamethylenediamine, piperazine, 2, 5-dimethylpiperazine, isophoronediamine, 1, 2-cyclohexanediamine, 1, 3-cyclohexanediamine, 1, 4-cyclohexanediamine, 4 '-dicyclohexylmethane diamine, 3' -dimethyl-4, 4-diaminodicyclohexylmethane.
Further preferably, the amine chain extender comprises a siloxane-containing amine chain extender.
Preferably, the neutralizing agent comprises one or more of triethylamine, dimethylethanolamine and ammonia water.
Preferably, the catalyst comprises an organobismuth and/or an organotin.
Preferably, the preparation raw materials of the aqueous organosilicon modified polyurethane dispersion also comprise any one or a combination of at least two of a non-silicon chain extender, a solvent and a crosslinking agent; the mass ratio of the non-silicon chain extender to the silicon-containing chain extender is (0.5-3): (1-3).
In the present invention, the solvent is not particularly limited, and illustratively, the solvent includes any one or a combination of at least two of acetone, propylene glycol monomethyl ether, N-methylpyrrolidone, butanone, N-dimethylformamide, N-dimethylacetamide, N-methyl-2-pyrrolidone, ethyl acetate, butyl acetate, toluene, or xylene.
Preferably, the non-silicon chain extender comprises any one or a combination of at least two of ethylene glycol, 1,4 butanediol, neopentyl glycol, 1, 6-hexanediol, methyl diethanolamine, diethylene glycol, ethylenediamine, 1, 2-propylenediamine, 1, 6-hexamethylenediamine, piperazine, 2, 5-dimethylpiperazine, isophoronediamine, 1, 2-cyclohexanediamine, 1, 3-cyclohexanediamine, 1, 4-cyclohexanediamine, 4 '-dicyclohexylmethane diamine, 3' -dimethyl-4, 4-diaminodicyclohexylmethane, or hydrazine.
In a third aspect, the present invention provides a method for preparing the above aqueous silicone-modified polyurethane dispersion, the method comprising the steps of:
s1, mixing polymer polyol, isocyanate-based organosilicon prepolymer, diisocyanate and optional catalyst, and reacting to obtain prepolymer;
s2, adding a hydrophilic chain extender and a silicon-containing chain extender into the prepolymer, performing chain extension reaction, and adding a neutralizing agent to perform neutralization reaction after the chain extension reaction is completed; after the neutralization reaction is finished, adding water for dispersion; after the dispersion is finished, adding an amine chain extender to perform post-chain extension reaction, and ending the reaction to obtain the aqueous organosilicon modified polyurethane dispersion.
Preferably, the reaction time in step S1 is 1 to 6 h; the temperature of the reaction in the step S1 is 70-90 ℃.
Preferably, in step S2, the temperature of the chain extension reaction is 60 to 90 ℃, and the time of the chain extension reaction is 1 to 6 h.
Preferably, in step S2, the neutralization reaction time is 1 to 30 minutes.
Preferably, in step S2, the time of the post-chain extension reaction is 5 to 30min.
In a fourth aspect, the invention provides a synthetic leather facing prepared from a synthetic leather facing slurry comprising the aqueous silicone modified polyurethane dispersion described above.
Preferably, the synthetic leather surface sizing agent comprises 100 parts by weight of the aqueous organosilicon modified polyurethane dispersoid, 1-5 parts by weight of curing agent, 0.1-2 parts by weight of wetting agent, 0.1-5 parts by weight of thickening agent, 0-1 part by weight of defoaming agent and 0-12 parts by weight of color paste.
Preferably, the curing agent is a polycarbodiimide curing agent and/or an aziridine curing agent.
In a fifth aspect, the use of the synthetic leather facing described above for the preparation of luggage leather or sofa leather.
In a sixth aspect, a luggage leather includes a base layer and the surface layer sequentially attached from bottom to top.
Compared with the prior art, the invention has the following beneficial effects: the preparation raw materials of the aqueous organosilicon modified polyurethane dispersoid organosilicon comprise polymer polyol, diisocyanate, isocyanate-based organosilicon prepolymer, isocyanate, optional catalyst, hydrophilic chain extender, silicon-containing chain extender and neutralizer; the isocyanate group organosilicon prepolymer is added in the prepolymer stage for copolymerization, an organosilicon side chain is introduced into the main chain, and part of silicon-containing chain extension is added to participate in the chain extension reaction, so that the obtained aqueous organosilicon modified polyurethane dispersoid has high organosilicon content and good mechanical property; the synthetic leather surface layer obtained by the aqueous organosilicon modified polyurethane dispersoid can produce a better long-acting anti-graffiti effect, and has the characteristics of better hand feeling, mechanical property, bending resistance, wear resistance and the like.
Detailed Description
The technical scheme of the invention is further described by the following specific embodiments. It will be apparent to those skilled in the art that the examples are merely to aid in understanding the invention and are not to be construed as a specific limitation thereof. Unless specifically stated otherwise, the reagents, methods and apparatus employed in the present invention are those conventional in the art. In the present specification, "part" and "%" respectively mean "part by mass" and "% by mass" unless otherwise specified.
Synthesis example 1
An isocyanate-based silicone prepolymer, the preparation method of which comprises the following steps:
100 parts of IPDI trimer (Kogyo), 55 parts of monohydroxy end-capped organosilicon (Silok 8841, guangzhou, sirocco) and 20 parts of butyl acetate are added into a reaction kettle, nitrogen is introduced, stirring is started, 0.05 part of organobismuth catalyst (BiCAT 8106, advanced in the United states) is added at normal temperature for reaction, after 3 hours of reaction, the solvent is distilled off under reduced pressure, and an isocyanate-based organosilicon prepolymer (marked as A1) is obtained, wherein the NCO content is 5%.
Synthesis example 2
An isocyanate-based silicone prepolymer, the preparation method of which comprises the following steps:
50 parts of HDI trimer (Kogyo), 118 parts of monohydroxy end-capped organosilicon (Silok 8861, guangzhou, co.) and 10 parts of butyl acetate were added to a reaction vessel, nitrogen was introduced, stirring was started, 0.01 part of an organobismuth catalyst (BiCAT 8106, U.S. leading) was added at normal temperature to react, after 3 hours of reaction, the solvent was distilled off under reduced pressure to obtain an isocyanate-based organosilicon prepolymer (designated A2) having an NCO content of 4%.
Example 1
The preparation method of the organosilicon modified polyurethane aqueous dispersion comprises the following steps:
(1) 67.5 parts of polycarbonate polyol (Yu Ji, PH-200), 7.5 parts of polytetrahydrofuran ether (Jia Xiao xing, PTMEG 2000) and 50 parts of acetone which are dehydrated are put into a reaction kettle with a stirrer, a reflux condenser and a thermometer, the temperature is raised to 40 ℃, 25 parts of 4,4' -dicyclohexylmethane diisocyanate, 5 parts of isocyanato organosilicon (A1) and 0.08 part of organobismuth catalyst (BiCAT 8106, advanced in the U.S.) are added after the mixture is fully stirred, the temperature is raised to 80 ℃ to react for 3h, and then the NCO content is measured until the theoretical value (4.81%) is reached to obtain a prepolymer;
(2) Cooling the reaction kettle to 50 ℃, adding 4 parts of dihydroxymethylbutanoic acid, 1 part of 1, 3-bis (4-hydroxybutyl) tetramethyl disiloxane, 1 part of butanediol and 50 parts of acetone into the prepolymer obtained in the step (1), stirring, heating to 80 ℃ for chain extension reaction, measuring NCO content after 2 hours, stopping reaction after theoretical value (1.9%), cooling to 30 ℃, adding 2 parts of triethylamine, stirring for 5 minutes, adding 208 parts of deionized water under the condition of high-speed shearing, shearing and dispersing for 5 minutes, adding 2 parts of 1, 3-bis (3-aminopropyl) -1, 3-tetramethyl disiloxane, continuously reacting for 10 minutes, and distilling to remove acetone in the system, thereby obtaining the organosilicon modified polyurethane aqueous dispersion.
The preparation method of the surface layer slurry comprises the following steps:
1.5 parts of an aziridine curing agent CX-100 (Dissman) is added to 100 parts of the prepared organosilicon modified polyurethane aqueous dispersion under stirring, 1 part of a wetting agent (SiloKe, silok 8022), 0.1 part of an antifoaming agent (SiloKe, silok 4662) and 6 parts of aqueous color paste (yellow 2GXD, crain) are added continuously, and after the mixture is fully stirred until the mixture is uniformly dispersed, a thickening agent (TEGO viscoPlus 3000) is added to thicken the mixture to 700 Pa.s, so that surface layer slurry is obtained.
Example 2
The preparation method of the organosilicon modified polyurethane aqueous dispersion comprises the following steps:
(1) Adding 61.8 parts of dehydrated polycarbonate polyol (Yu Kogyo, PH-200) and 3.2 parts of polypropylene glycol (sea oil, PPG 2000) into a reaction kettle with a stirrer, a reflux condenser and a thermometer, heating to 40 ℃, fully stirring, adding 24 parts of isophorone diisocyanate, 10 parts of isocyanate-based organosilicon (A1) and 0.1 part of organic bismuth catalyst (BiCAT 8106, advanced in the United states), heating to 70 ℃, reacting for 3h, measuring NCO content until the theoretical value (6.81%) is reached, and obtaining a prepolymer;
(2) Cooling the reaction kettle to 50 ℃, adding 2 parts of dihydroxymethylbutanoic acid, 2 parts of 1, 3-bis (4-hydroxybutyl) tetramethyl disiloxane, 3 parts of pentanediol and 50 parts of acetone into the prepolymer obtained in the step (1), stirring, heating to 80 ℃ for chain extension reaction, reacting for 2 hours, measuring the NCO content to a theoretical value (2.39%), stopping the reaction, cooling to 30 ℃, adding 2 parts of triethylamine, stirring for 5 minutes, adding 279 parts of deionized water under the condition of high-speed shearing, shearing and dispersing for 5 minutes, adding 1.5 parts of 1, 3-bis (3-aminopropyl) -1, 3-tetramethyl disiloxane, continuously reacting for 10 minutes, and distilling to remove acetone in the system, thereby obtaining the organosilicon modified polyurethane aqueous dispersion.
The preparation method of the surface layer slurry comprises the following steps:
2 parts of an aziridine curing agent CX-100 (Dissman) was added to 100 parts of the above-prepared aqueous silicone-modified polyurethane dispersion with stirring, 1 part of a wetting agent (Silokoch, silok 8022), 0.1 part of an antifoaming agent (Silokoch, silok 4662) and 6 parts of an aqueous color paste (yellow 2GXD, craien) were further added, and after stirring thoroughly until the dispersion was uniform, a thickener (TEGO ViscoPlus 3000) was finally added to thicken to 6000mpa.s, to obtain a surface layer slurry.
Example 3
The preparation method of the organosilicon modified polyurethane aqueous dispersion comprises the following steps:
(1) Adding 55.8 parts of polycarbonate polyol (Yu Ji, PH-200), 4.2 parts of polytetrahydrofuran ether (Jia Xiao xing, PTMEG 2000) and 50 parts of acetone into a reaction kettle with a stirrer, a reflux condenser and a thermometer, heating to 40 ℃, fully stirring, adding 28 parts of isophorone diisocyanate, 8 parts of isocyanato organosilicon (A1) and 0.1 part of organobismuth catalyst (BiCAT 8106, advanced in the U.S.) into the reaction kettle, heating to 85 ℃, reacting for 2h, measuring the NCO content to a theoretical value (6.18%), and obtaining a prepolymer;
(2) Cooling the reaction kettle to 50 ℃, adding 6 parts of dihydroxymethylbutanoic acid, 0.5 part of 1, 3-bis (4-hydroxybutyl) tetramethyl disiloxane, 1 part of hexanediol and 50 parts of acetone into the prepolymer obtained in the step (1), stirring, heating to 80 ℃ for chain extension reaction, measuring NCO content after 2 hours, stopping reaction after theoretical value (1.6%), cooling to 30 ℃, adding 2 parts of triethylamine, stirring for 5 minutes, adding 143 parts of deionized water under high-speed shearing, shearing and dispersing for 5 minutes, adding 0.5 part of 1, 3-bis (3-aminopropyl) -1, 3-tetramethyl disiloxane, continuously reacting for 10 minutes, and distilling to remove acetone in the system, thereby obtaining the organosilicon modified polyurethane aqueous dispersion.
The preparation method of the surface layer slurry comprises the following steps:
1 part of an aziridine curing agent CX-100 (Dissman) is added to 100 parts of the prepared organosilicon modified polyurethane aqueous dispersion under stirring, 1 part of a wetting agent (SiloKe, silok 8022), 0.1 part of an antifoaming agent (SiloKe, silok 4662) and 6 parts of aqueous color paste (yellow 2GXD, kelain) are added continuously, and after the mixture is fully stirred until the mixture is uniformly dispersed, a thickening agent (TEGO ViscoPlus 3000) is added to thicken the mixture to 7500mPa.s, so that surface layer slurry is obtained.
Example 4
The preparation method of the organosilicon modified polyurethane aqueous dispersion comprises the following steps:
(1) Adding 49.5 parts of polycarbonate polyol (U.S. Pat. No. 3, UH-100), 5.5 parts of polytetrahydrofuran ether (PTMEG 1000) and 40 parts of acetone which are dehydrated into a reaction kettle with a stirrer, a reflux condenser pipe and a thermometer, heating to 40 ℃, fully stirring, adding 30 parts of 4,4' -dicyclohexylmethane diisocyanate, 10 parts of isocyanate-based organosilicon (A2) and 0.05 part of organobismuth catalyst (BiCAT 8106, advanced in the U.S.), heating to 90 ℃, reacting for 2h, measuring the NCO content to a theoretical value (6.46%), and obtaining a prepolymer;
(2) Cooling the reaction kettle to 50 ℃, adding 2 parts of dihydroxymethylbutanoic acid, 1.5 parts of 1, 3-bis (4-hydroxybutyl) tetramethyl disiloxane, 2 parts of butanediol and 50 parts of acetone into the prepolymer obtained in the step (1), stirring, heating to 80 ℃ for chain extension reaction, reacting for 2 hours, measuring NCO content to a theoretical value (1.72%), stopping the reaction, cooling to 30 ℃, adding 2 parts of triethylamine, stirring for 5 minutes, adding 280 parts of deionized water under the condition of high-speed shearing, shearing and dispersing for 5 minutes, adding 2 parts of 1, 3-bis (3-aminopropyl) -1, 3-tetramethyl disiloxane, continuously reacting for 10 minutes, and distilling to remove acetone in the system, thereby obtaining the organosilicon modified polyurethane aqueous dispersion.
The preparation method of the surface layer slurry comprises the following steps:
3 parts of an aziridine curing agent CX-100 (Dissman) was added to 100 parts of the above-prepared aqueous silicone-modified polyurethane dispersion with stirring, and 1 part of a wetting agent (Silokoch, silok 8022), 0.1 part of an antifoaming agent (Silokoch, silok 4662), and 6 parts of an aqueous color paste (yellow 2GXD, kelain) were further added to the mixture with stirring until the mixture was uniformly dispersed, and a thickener (TEGO ViscoPlus 3000) was added to thicken the resin to 800 Pa.s, to obtain a surface layer slurry.
Example 5
An aqueous silicone-modified polyurethane dispersion which differs from example 1 only in that: the isocyanate group silicone prepolymer was added in an amount of 1 part, and the other components, amounts and preparation methods were the same as in example 1.
A facestock was prepared in the same manner as in example 1.
Example 6
An aqueous silicone-modified polyurethane dispersion which differs from example 1 only in that: the isocyanate group silicone prepolymer was added in an amount of 15 parts, and the other components, amounts and preparation methods were the same as in example 1.
A facestock was prepared in the same manner as in example 1.
Example 7
An aqueous silicone-modified polyurethane dispersion which differs from example 1 only in that: the entire replacement of butanediol with 1, 3-bis (4-hydroxybutyl) tetramethyldisiloxane was performed, and the other components, amounts and preparation methods were the same as in example 1.
A facestock was prepared in the same manner as in example 1.
Example 8
An aqueous silicone-modified polyurethane dispersion which differs from example 1 only in that: the polytetrahydrofuran ether was replaced entirely by polycarbonate polyol and the other components, amounts and preparation methods were the same as in example 1.
A facestock was prepared in the same manner as in example 1.
Example 9
An aqueous silicone-modified polyurethane dispersion which differs from example 1 only in that: the polycarbonate polyol was replaced with polytetrahydrofuran ether in its entirety, and the other components, amounts and preparation methods were the same as in example 1.
A facestock was prepared in the same manner as in example 1.
Comparative example 1
An aqueous silicone-modified polyurethane dispersion which differs from example 1 only in that: the addition amount of the isocyanate group silicone was 0 part, and the other components, amounts and preparation methods were the same as in example 1.
A facestock was prepared in the same manner as in example 1.
Comparative example 2
A silicone-modified bio-based polyurethane differing from example 1 only in that: the amount of 1, 3-bis (4-hydroxybutyl) tetramethyldisiloxane added was 0 parts, and the other components, amounts and preparation methods were the same as in example 1.
A facestock was prepared in the same manner as in example 1.
Application example
The preparation method of the luggage leather comprises the following steps:
the surface layer slurries obtained in the examples 1 to 8 and the comparative examples 1 and 2 were uniformly coated on release paper with a coating thickness of 0.1mm, and dried at 110 ℃ for 2min to obtain a surface layer; thickening the surface layer slurry to 25000mPa.s, then spreading the surface layer slurry on the surface layer, attaching a semi-finished product bass, drying and curing, cooling, peeling off release paper, and carrying out vacuum grain suction and rubbing treatment according to a conventional method to obtain the luggage leather.
And (5) testing performance.
The performance test method of the aqueous organosilicon modified polyurethane dispersoid comprises the following steps: the aqueous organosilicon modified polyurethane dispersion is coated on a glass plate, and after drying and curing, the tensile strength of the obtained aqueous polyurethane film is tested according to GB/T1040-92 plastic tensile property test method.
The test method for detecting the performance of the luggage leather is as follows.
1. Anti-graffiti performance: drawing a line on the surface of the synthetic leather by using a ball pen, wiping the synthetic leather for 1 minute, repeatedly coating and wiping for 10 times, observing whether the graffiti can be removed cleanly, classifying the graffiti into 1-5 grades according to the residual degree of the surface marks, wherein the 1 grade is non-mark, and the graffiti resistance is optimal; grade 5 is the most visible mark remaining, and the worst anti-graffiti performance.
2. Wear resistance: the abrasion resistance of the synthetic leather was tested according to the standard of the measurement of abrasion resistance of the fabrics by the GB/T21196-2007 Martindale method, and the surface of the synthetic leather was visually damaged as a test end point, and the abrasion resistance was evaluated according to the following method: stage 1: more than 20 ten thousand times; 2 stages: more than 10 ten thousand times and less than 20 ten thousand times; 3 stages: less than 10 ten thousand times.
3. Bending resistance: the normal temperature tortuosity and low temperature (-20 ℃) tortuosity properties of the luggage leather are measured according to the method of QB/T1646-2007, the performance index is crack-free, and the evaluation is carried out according to the following method:
(1) Bending at normal temperature: stage 1: more than 20 ten thousand times; 2-grade, more than 10 ten thousand times and less than 20 ten thousand times; 3 stages: less than 10 ten thousand times;
(2) Low temperature bending: stage 1: more than 3 ten thousand times; 2 stages: more than 2 ten thousand times and less than 3 ten thousand times; 3 stages: less than 2 ten thousand times.
4. The feel of the synthetic leather was evaluated: the degree of softness, softness and smoothness of the surface is classified into 1-5 grades, wherein the 1 grade is the best; grade 5 is worst.
The above-mentioned top layer slurry and the above-mentioned luggage leather were tested according to the above-mentioned test methods, and the test results are shown in table 1.
Table 1.
According to the data in Table 1, it can be seen that the aqueous organosilicon modified polyurethane dispersion provided by the invention is prepared by adding the isocyanate group organosilicon prepolymer to carry out copolymerization in the prepolymer stage, introducing the organosilicon side chains on the main chain, and adding part of the silicon-containing chain to participate in the chain extension reaction, so that the obtained aqueous organosilicon modified polyurethane dispersion has high organosilicon content, but the mechanical property of the aqueous organosilicon modified polyurethane dispersion cannot be influenced, and the synthetic leather surface layer containing the aqueous organosilicon modified polyurethane dispersion can generate better long-acting anti-graffiti effect, and has the characteristics of smoothness, smooth skin-friendly feel, good rebound resilience, good bending resistance, good wear resistance and the like. By further limiting the content of each raw material, the synthetic leather containing the aqueous organosilicon modified polyurethane dispersoid has better long-acting graffiti resistance, mechanical property and hand feeling.
As can be seen from a comparison of the data of example 1 and comparative examples 1 to 2, the absence of the addition of the isocyanate-based silicone prepolymer and the silicon-containing chain extender affects the graffiti resistance, abrasion resistance and hand feel of the aqueous silicone-modified polyurethane dispersion and the synthetic leather containing the aqueous silicone-modified polyurethane dispersion.
Further comparing the data of examples 1 and 5-6, it was also found that the amount of isocyanate-based silicone prepolymer added also affected the properties of the final aqueous silicone-modified polyurethane dispersion and synthetic leather containing it.
It was further found from a comparison of the test results of example 1 and examples 7 to 9 that the structures of the macropolyol and the chain extender also have an influence on the properties of the aqueous silicone-modified polyurethane dispersion and the synthetic leather containing the same.
The applicant states that the present invention is illustrated by the above examples for isocyanate-based silicone prepolymers, aqueous silicone-modified polyurethane dispersions, methods of making the same and synthetic leather finishes, but the present invention is not limited to, i.e., does not mean that the present invention must be practiced in dependence upon the above examples. It should be apparent to those skilled in the art that any modification of the present invention, equivalent substitution of raw materials for the product of the present invention, addition of auxiliary components, selection of specific modes, etc., falls within the scope of the present invention and the scope of disclosure.
Claims (14)
1. The aqueous organosilicon modified polyurethane dispersoid for the synthetic leather surface layer is characterized by comprising the following raw materials in parts by weight:
55-75 parts by weight of a polymer polyol
10-30 parts by weight of diisocyanate
5-10 parts by weight of isocyanate-based organosilicon prepolymer
0.5-2 parts by weight of silicon-containing chain extender
2-6 parts by weight of hydrophilic chain extender
0.5-2 parts by weight of amine chain extender
1-5 parts by weight of a neutralizing agent
0-0.5 parts by weight of a catalyst;
the isocyanate-based organosilicon prepolymer is obtained by reacting a system comprising an isocyanate trimer and monohydroxy end-capped organosilicon, and the molar ratio between the isocyanate trimer and the monohydroxy end-capped organosilicon is 1-1.05:1;
the polymer polyol comprises a polyester polyol and a polyether polyol, and the mass ratio between the polyester polyol and the polyether polyol is (80-95): (5-20);
the preparation raw materials also comprise a non-silicon chain extender, wherein the mass ratio of the non-silicon chain extender to the silicon-containing chain extender is (0.5-3) (1-3);
the silicon-containing chain extender comprises any one or a combination of at least two of 1, 3-bis (3-aminopropyl) -1, 3-tetramethyl disiloxane, 1, 3-bis (4-hydroxybutyl) tetramethyl disiloxane, 1, 3-bis (3-hydroxyisobutyl) tetramethyl disiloxane and 1, 3-bis (3- (2-hydroxyethoxy) propyl) tetramethyl disiloxane;
the hydrophilic chain extender comprises one or more of dimethylolpropionic acid, dimethylolbutyric acid, dimethylolvaleric acid and dimethyloloctanoic acid;
the amine chain extender comprises 1, 3-bis (3-aminopropyl) -1, 3-tetramethyldisiloxane;
the non-silicon chain extender comprises any one or a combination of at least two of ethylene glycol, 1, 4-butanediol, neopentyl glycol, 1, 6-hexanediol, methyl diethanolamine, diethylene glycol, ethylenediamine, 1, 2-propylenediamine, 1, 6-hexamethylenediamine, piperazine, 2, 5-dimethylpiperazine, isophoronediamine, 1, 2-cyclohexanediamine, 1, 3-cyclohexanediamine, 1, 4-cyclohexanediamine, 4 '-dicyclohexylmethane diamine, 3' -dimethyl-4, 4-diaminodicyclohexylmethane or hydrazine.
2. The aqueous silicone-modified polyurethane dispersion of claim 1, wherein the polyester polyol comprises any one or a combination of at least two of polyethylene adipate glycol, poly-1, 4-butanediol adipate glycol, poly-propylene adipate glycol, poly-neopentyl glycol-1, 6-hexanediol adipate glycol, poly-hexanediol adipate glycol, polycarbonate polyol, polycaprolactone polyol; the polyether polyol comprises one or more of polyoxypropylene glycol, polyoxypropylene triol and polytetrahydrofuran diol.
3. The aqueous silicone-modified polyurethane dispersion of claim 1, wherein the diisocyanate comprises any one or a combination of at least two of 1, 4-bis (isocyanatomethyl) cyclohexane, 4 '-dicyclohexylmethane diisocyanate, 1, 3-bis (isocyanatomethyl) cyclohexane, toluene diisocyanate, 4' -diphenylmethane diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, isophthalene diisocyanate, tetramethylxylylene diisocyanate, xylylene diisocyanate, or isophorone diisocyanate.
4. The aqueous silicone-modified polyurethane dispersion according to claim 1, wherein the raw materials for preparing the aqueous silicone-modified polyurethane dispersion further comprise any one or a combination of at least two of a solvent and a crosslinking agent.
5. A method for preparing the aqueous silicone-modified polyurethane dispersion according to any one of claims 1 to 4, comprising the steps of:
s1, mixing polymer polyol, isocyanate-based organosilicon prepolymer, diisocyanate and optional catalyst, and reacting to obtain prepolymer;
s2, adding a hydrophilic chain extender and a silicon-containing chain extender into the prepolymer, performing chain extension reaction, and adding a neutralizing agent to perform neutralization reaction after the chain extension reaction is completed; after the neutralization reaction is finished, adding water for dispersion; after the dispersion is finished, adding an amine chain extender to perform post-chain extension reaction, and ending the reaction to obtain the aqueous organosilicon modified polyurethane dispersion.
6. The preparation method according to claim 5, wherein in the step S1, the reaction time is 1 to 6 hours; in the step S1, the reaction temperature is 70-90 ℃.
7. The method according to claim 5, wherein in the step S2, the temperature of the chain extension reaction is 60-90 ℃, and the time of the chain extension reaction is 1-6 hours.
8. The method according to claim 5, wherein in the step S2, the neutralization reaction time is 1 to 30 minutes.
9. The method according to claim 5, wherein in step S2, the post-chain extension reaction time is 5 to 30min.
10. A synthetic leather facing prepared from a synthetic leather facing slurry comprising the aqueous silicone-modified polyurethane dispersion of any one of claims 1-4.
11. The synthetic leather facing according to claim 10, wherein the synthetic leather facing slurry comprises 100 parts by weight of the aqueous silicone modified polyurethane dispersion according to any one of claims 1 to 4, 1 to 5 parts of a curing agent, 0.1 to 2 parts of a wetting agent, 0.1 to 5 parts of a thickener, 0 to 1 part of an antifoaming agent, and 0 to 12 parts of color paste.
12. The synthetic leather facing according to claim 11, wherein the curing agent is a polycarbodiimide and/or aziridine type curing agent.
13. Use of a synthetic leather facing according to any one of claims 10-12 for the preparation of luggage leather or sofa leather.
14. A luggage leather comprising a base layer and a synthetic leather surface layer as claimed in any one of claims 10 to 12 laminated in that order from bottom to top.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211705160.7A CN116143994B (en) | 2022-12-29 | 2022-12-29 | Aqueous organosilicon modified polyurethane dispersoid, preparation method thereof, synthetic leather surface layer containing aqueous organosilicon modified polyurethane dispersoid and luggage leather |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211705160.7A CN116143994B (en) | 2022-12-29 | 2022-12-29 | Aqueous organosilicon modified polyurethane dispersoid, preparation method thereof, synthetic leather surface layer containing aqueous organosilicon modified polyurethane dispersoid and luggage leather |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116143994A CN116143994A (en) | 2023-05-23 |
CN116143994B true CN116143994B (en) | 2023-09-15 |
Family
ID=86351886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211705160.7A Active CN116143994B (en) | 2022-12-29 | 2022-12-29 | Aqueous organosilicon modified polyurethane dispersoid, preparation method thereof, synthetic leather surface layer containing aqueous organosilicon modified polyurethane dispersoid and luggage leather |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116143994B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117382015B (en) * | 2023-08-21 | 2024-09-27 | 深圳市百事达先进材料有限公司 | Preparation process of polyurethane composite material with low permeability and low water reaction performance |
CN118005884B (en) * | 2024-04-08 | 2024-07-02 | 旭川化学(苏州)有限公司 | Water-based polyurethane emulsion for water-reduced microfiber and water-reduced microfiber leather |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106702750A (en) * | 2016-12-30 | 2017-05-24 | 康伦国 | Graphene-organosilicon modified urethane resin synthetic leather |
CN111254719A (en) * | 2020-01-16 | 2020-06-09 | 上海汇得科技股份有限公司 | Fluorine-free water-drawing agent for polyurethane synthetic leather and preparation method thereof |
CN112391850A (en) * | 2020-11-02 | 2021-02-23 | 安徽安利材料科技股份有限公司 | Environment-friendly polyurethane synthetic leather for slow-rebound sofa furniture and preparation method thereof |
CN112724347A (en) * | 2020-12-28 | 2021-04-30 | 上海汇得科技股份有限公司 | Bio-based waterborne polyurethane resin and preparation method and application thereof |
CN113072852A (en) * | 2021-03-31 | 2021-07-06 | 安徽大学 | Preparation method of fluorine-silicon-containing waterborne polyurethane acrylate composite coating for wood lacquer |
CN113150732A (en) * | 2021-03-09 | 2021-07-23 | 四川大学 | Preparation method of water-based adhesive with mutual identification on surface energy of base material |
CN113150241A (en) * | 2021-03-12 | 2021-07-23 | 扬州工业职业技术学院 | Polyurethane resin for anti-doodling leather and preparation method thereof |
CN113956424A (en) * | 2021-11-26 | 2022-01-21 | 广州海豚新材料有限公司 | Preparation method of anionic waterborne polyurethane with anti-graffiti function |
CN114829429A (en) * | 2019-12-16 | 2022-07-29 | 瓦克化学股份公司 | Process for producing organooxysilane-terminated polymers |
CN114853970A (en) * | 2022-06-15 | 2022-08-05 | 佛山市精信汇明科技有限公司 | Closed cationic waterborne polyurethane curing agent and preparation method and application thereof |
CN115716904A (en) * | 2022-11-28 | 2023-02-28 | 广州市斯洛柯高分子聚合物有限公司 | Organic silicon modified bio-based polyurethane, preparation method thereof and synthetic leather containing organic silicon modified bio-based polyurethane |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020180760A1 (en) * | 2019-03-05 | 2020-09-10 | Board Of Trustees Of Michigan State University | Omniphobic polyurethane compositions, related articles, and related methods |
-
2022
- 2022-12-29 CN CN202211705160.7A patent/CN116143994B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106702750A (en) * | 2016-12-30 | 2017-05-24 | 康伦国 | Graphene-organosilicon modified urethane resin synthetic leather |
CN114829429A (en) * | 2019-12-16 | 2022-07-29 | 瓦克化学股份公司 | Process for producing organooxysilane-terminated polymers |
CN111254719A (en) * | 2020-01-16 | 2020-06-09 | 上海汇得科技股份有限公司 | Fluorine-free water-drawing agent for polyurethane synthetic leather and preparation method thereof |
CN112391850A (en) * | 2020-11-02 | 2021-02-23 | 安徽安利材料科技股份有限公司 | Environment-friendly polyurethane synthetic leather for slow-rebound sofa furniture and preparation method thereof |
CN112724347A (en) * | 2020-12-28 | 2021-04-30 | 上海汇得科技股份有限公司 | Bio-based waterborne polyurethane resin and preparation method and application thereof |
CN113150732A (en) * | 2021-03-09 | 2021-07-23 | 四川大学 | Preparation method of water-based adhesive with mutual identification on surface energy of base material |
CN113150241A (en) * | 2021-03-12 | 2021-07-23 | 扬州工业职业技术学院 | Polyurethane resin for anti-doodling leather and preparation method thereof |
CN113072852A (en) * | 2021-03-31 | 2021-07-06 | 安徽大学 | Preparation method of fluorine-silicon-containing waterborne polyurethane acrylate composite coating for wood lacquer |
CN113956424A (en) * | 2021-11-26 | 2022-01-21 | 广州海豚新材料有限公司 | Preparation method of anionic waterborne polyurethane with anti-graffiti function |
CN114853970A (en) * | 2022-06-15 | 2022-08-05 | 佛山市精信汇明科技有限公司 | Closed cationic waterborne polyurethane curing agent and preparation method and application thereof |
CN115716904A (en) * | 2022-11-28 | 2023-02-28 | 广州市斯洛柯高分子聚合物有限公司 | Organic silicon modified bio-based polyurethane, preparation method thereof and synthetic leather containing organic silicon modified bio-based polyurethane |
Non-Patent Citations (2)
Title |
---|
Multifaceted Synthesis, Properties and Applications of Polyurethanes and its Composites;Desai, Shivang K.;《Current Organic Chemistry》;第23卷;361-389 * |
氟、硅改性聚氨酯材料的研究进展;郑林禄;陈荷莲;陈鹭;;化工科技(第05期);77-81 * |
Also Published As
Publication number | Publication date |
---|---|
CN116143994A (en) | 2023-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116143994B (en) | Aqueous organosilicon modified polyurethane dispersoid, preparation method thereof, synthetic leather surface layer containing aqueous organosilicon modified polyurethane dispersoid and luggage leather | |
CN110835401B (en) | Waterborne polyurethane surface layer resin and preparation method thereof | |
CN108840987B (en) | Organosilicon polyol modified waterborne polyurethane emulsion and preparation method thereof | |
CN103881049B (en) | The preparation method of eleostearic acid monoglyceride modified aqueous polyurethane emulsion | |
CN108329452B (en) | Non-yellowing solvent-free polyurethane bonding layer resin for synthetic leather and preparation method and application thereof | |
CN115354505B (en) | Bio-based solvent-free polyurethane surface layer resin for synthetic leather and preparation method thereof | |
CN108517029B (en) | Non-yellowing modified solvent-free polyurethane interlayer resin for soft synthetic leather and preparation method and application thereof | |
CN115716904A (en) | Organic silicon modified bio-based polyurethane, preparation method thereof and synthetic leather containing organic silicon modified bio-based polyurethane | |
CN103130977A (en) | Polyol polyurethane dispersions of two-component waterborne wood lacquer and preparation method thereof | |
CN109160994B (en) | Polyurethane dispersion for dry coating primer, and preparation method and application thereof | |
CN109898342B (en) | Preparation method of scratch-resistant synthetic leather based on high-resilience waterborne polyurethane | |
CN116410433B (en) | Silicon-containing polyurethane resin, preparation method thereof and synthetic leather bass | |
CN103805122A (en) | Waterborne polyurethane patch adhesive and preparation method thereof | |
KR102631671B1 (en) | Synthetic Leather | |
JP2004300178A (en) | Aqueous polyurethane resin composition for nonporous film type moisture-permeable and waterproof fabric and coating agent comprising the same composition | |
CN114941245B (en) | Aqueous adhesive for synthetic leather and preparation method thereof | |
CN108252115B (en) | Solvent-free high-transparency and high-flexibility-resistant polyurethane resin for leather, and preparation method and application thereof | |
CN114456348A (en) | Preparation method of waterborne polyurethane for organic silicon modified polyester polyether type leather finishing | |
CN115536802B (en) | Water-based polylactic acid modified organic silicon polyurethane and preparation method and application thereof | |
CN108047414A (en) | Solvent-free leather polyurethane resin and preparation method and application | |
CN118109037A (en) | Water-based polyurethane film and preparation method and application thereof | |
CN115572365B (en) | Preparation method and application of crosslinkable polyurethane coating | |
CN112521581B (en) | Waterborne polyurethane surface layer resin for synthetic leather and preparation method and application thereof | |
TW202348669A (en) | Moisture-curable urethane hot melt resin composition, multilayer body and synthetic artificial leather | |
CN116023628B (en) | Bio-based silicon-containing polyurethane, preparation method thereof and microfiber leather |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |