CN116088188B - Laser intensity homogenizing device - Google Patents
Laser intensity homogenizing device Download PDFInfo
- Publication number
- CN116088188B CN116088188B CN202310363633.8A CN202310363633A CN116088188B CN 116088188 B CN116088188 B CN 116088188B CN 202310363633 A CN202310363633 A CN 202310363633A CN 116088188 B CN116088188 B CN 116088188B
- Authority
- CN
- China
- Prior art keywords
- sub
- lens
- light
- lenses
- installation surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
- G02B27/0966—Cylindrical lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/095—Refractive optical elements
- G02B27/0955—Lenses
- G02B27/0961—Lens arrays
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Head (AREA)
Abstract
本发明提出一种激光强度均匀化装置,光源的出射光沿第一方向延伸并依次穿过准直扩束透镜、啁啾阵列透镜组件及聚焦透镜;透光介质朝向聚焦透镜的一侧具有第一安装面,透光介质朝向准直扩束透镜的一侧具有第二安装面;多个第一子透镜沿第二方向依次设置在第一安装面上;多个第二子透镜沿第二方向依次设置在第二安装面上;第二方向与第一方向垂直,透光介质在第一方向上的宽度朝第二方向呈渐缩设置。本发明技术方案采用啁啾阵列透镜组件的非周期性结构,抑制多光束干涉效应,提高平顶光束光强的均匀程度,更适用于相干性较强的光源普适性强。
The invention proposes a laser intensity homogenization device. The outgoing light of the light source extends along the first direction and passes through the collimating beam expander lens, the chirped array lens assembly and the focusing lens in sequence; the side of the light-transmitting medium facing the focusing lens has a second An installation surface, the light-transmitting medium has a second installation surface on the side facing the collimating beam expander lens; a plurality of first sub-lenses are sequentially arranged on the first installation surface along the second direction; a plurality of second sub-lenses are arranged along the second The directions are sequentially arranged on the second installation surface; the second direction is perpendicular to the first direction, and the width of the light-transmitting medium in the first direction is tapered toward the second direction. The technical scheme of the invention adopts the non-periodic structure of the chirped array lens assembly, suppresses the multi-beam interference effect, improves the uniformity of the light intensity of the top-hat beam, and is more suitable for light sources with strong coherence and strong universality.
Description
技术领域technical field
本发明涉及激光设备技术领域,特别涉及一种激光强度均匀化装置。The invention relates to the technical field of laser equipment, in particular to a laser intensity homogenizing device.
背景技术Background technique
激光光源的辐射强度一般符合高斯分布,中心区域能量高,光强较强,边缘强度相对较低。在激光精密加工领域,尤其使用高能激光光源的情况,激光与材料物质相互作用过程中,会出现损坏材料、烧蚀不均匀等问题。常用的解决办法是将高斯光束整形为平顶光束,使光斑的能量密度分布趋于均匀。The radiation intensity of a laser light source generally conforms to a Gaussian distribution, with high energy in the central area, strong light intensity, and relatively low edge intensity. In the field of laser precision machining, especially when high-energy laser light sources are used, problems such as damage to materials and uneven ablation will occur during the interaction between the laser and the material. A common solution is to shape the Gaussian beam into a flat-hat beam, so that the energy density distribution of the spot tends to be uniform.
目前现有技术中,较为普遍的方法是采用微透镜阵列,对入射光束进行分割,结合聚焦透镜,在焦面多个子光束叠加,实现光束匀化。但是由于光源相干性的影响,不同子光束之间存在干涉现象,干涉条纹使聚焦光斑均匀度降低。In the current prior art, a more common method is to use a microlens array to split the incident beam, and combine with a focusing lens to superimpose multiple sub-beams on the focal plane to achieve beam homogenization. However, due to the influence of the coherence of the light source, there is interference between different sub-beams, and the interference fringes reduce the uniformity of the focused spot.
发明内容Contents of the invention
本发明的主要目的是提供一种激光强度均匀化装置,旨在解决现有技术中光源相干性影响导致多光束干涉,聚焦光斑受光强尖峰调制影响均匀性的技术问题。The main purpose of the present invention is to provide a laser intensity homogenization device, which aims to solve the technical problems in the prior art that multi-beam interference is caused by the coherence of the light source, and the uniformity of the focused spot is affected by the light intensity peak modulation.
为实现上述目的,本发明提出一种激光强度均匀化装置,所述激光强度均匀化装置包括沿第一方向依次间隔设置的光源、准直扩束透镜、啁啾阵列透镜组件及聚焦透镜,所述光源的出射光沿第一方向射出并依次穿过所述准直扩束透镜、所述啁啾阵列透镜组件及所述聚焦透镜;In order to achieve the above object, the present invention proposes a laser intensity homogenization device, which includes a light source, a collimator beam expander lens, a chirped array lens assembly, and a focusing lens arranged at intervals along the first direction. The outgoing light of the light source is emitted along the first direction and sequentially passes through the collimating beam expander lens, the chirped array lens assembly and the focusing lens;
所述啁啾阵列透镜组件包括:The chirped array lens assembly includes:
透光介质,所述透光介质朝向所述聚焦透镜的一侧具有第一安装面,所述透光介质朝向所述准直扩束透镜的一侧具有第二安装面;A light-transmitting medium, the light-transmitting medium has a first installation surface on the side facing the focusing lens, and the light-transmitting medium has a second installation surface on the side facing the collimating beam expander lens;
多个第一子透镜,多个所述第一子透镜沿第二方向依次设置在所述第一安装面上;A plurality of first sub-lenses, the plurality of first sub-lenses are sequentially arranged on the first installation surface along the second direction;
多个第二子透镜,多个所述第二子透镜沿所述第二方向依次设置在所述第二安装面上;A plurality of second sub-lenses, the plurality of second sub-lenses are sequentially arranged on the second installation surface along the second direction;
其中,所述第二方向与所述第一方向垂直,所述透光介质在所述第一方向上的宽度朝所述第二方向呈渐缩设置,所述第一子透镜的数量与所述第二子透镜的数量一致且一一对应设置。Wherein, the second direction is perpendicular to the first direction, the width of the light-transmitting medium in the first direction is tapered toward the second direction, and the number of the first sub-lenses is the same as the number of the first sub-lenses. The number of the second sub-lenses is consistent and set in one-to-one correspondence.
可选地,所述第一安装面与所述第二方向平行;Optionally, the first installation surface is parallel to the second direction;
所述第二安装面与所述第二方向之间具有夹角,所述夹角大于所述透光介质的临界角;或者,There is an included angle between the second installation surface and the second direction, and the included angle is larger than the critical angle of the light-transmitting medium; or,
所述第二安装面与所述第二方向平行、且所述第二安装面呈阶梯状设置,所述第二安装面的每个阶梯侧壁上各对应设有一个所述第二子透镜,多个所述第二子透镜的几何中心点均位于同一条直线上,且多个所述第二子透镜的几何中心点的连线与所述第二方向之间具有夹角,所述夹角大于所述透光介质的临界角。The second installation surface is parallel to the second direction, and the second installation surface is arranged in a step shape, and each step side wall of the second installation surface is respectively provided with a second sub-lens , the geometric center points of the plurality of second sub-lenses are all located on the same straight line, and there is an included angle between the line connecting the geometric center points of the plurality of second sub-lenses and the second direction, the The included angle is greater than the critical angle of the light-transmitting medium.
可选地,多个所述第一子透镜的数值孔径相同,记所述数值孔径为NA,所述透光介质的折射率为nindex,所述临界角αc、所述数值孔径为NA与所述透光介质的折射率为nindex满足以下关系;Optionally, the multiple first sub-lenses have the same numerical aperture, denote the numerical aperture as NA, the refractive index of the light-transmitting medium n index , the critical angle α c , and the numerical aperture as NA and the refractive index n index of the light-transmitting medium satisfy the following relationship;
。 .
可选地,所述第一子透镜为柱透镜,所述第一子透镜上与所述透光介质连接的一侧侧壁为矩形侧壁,所述矩形侧壁上与所述第二方向平行的一个棱边边长为2an;所述第一子透镜的焦距为fn;所述棱边边长2an、所述第一子透镜的焦距为fn及所述数值孔径为NA满足以下关系;Optionally, the first sub-lens is a cylindrical lens, the side wall of the first sub-lens connected with the light-transmitting medium is a rectangular side wall, and the side wall of the rectangular side wall is connected with the second direction The length of a parallel edge is 2a n ; the focal length of the first sub-lens is f n ; the length of the edge is 2a n , the focal length of the first sub-lens is f n and the numerical aperture is NA Satisfy the following relationship;
NA=an/fn。NA=a n /f n .
可选地,所述第一子透镜的数量为N个,n=N-1;其中,记所述夹角为α,所述透光介质由第一端至第二端呈渐缩设置,靠近所述第二端的一个所述第一子透镜的焦距为f0,靠近所述第二端的一个所述第一子透镜的棱边边长为a0,其余所述第一子透镜的棱边边长ai满足以下关系:Optionally, the number of the first sub-lens is N, n=N-1; wherein, the included angle is α, and the light-transmitting medium is tapered from the first end to the second end, The focal length of one of the first sub-lenses near the second end is f 0 , the edge length of one of the first sub-lenses near the second end is a 0 , and the edges of the other first sub-lenses are The side length a i satisfies the following relationship:
; ;
其余所述第一子透镜的焦距fi满足以下关系:The focal length fi of the other first sub-lenses satisfies the following relationship:
; ;
其中n为大于1的任意整数,i为1~n中的任意整数,i表示当前所述第一子透镜在所述第二端向所述第一端方向上所述第一子透镜的次序。Where n is any integer greater than 1, i is any integer from 1 to n, and i represents the order of the first sub-lens in the direction from the second end to the first end of the current first sub-lens. .
可选地,所述第一子透镜与其对应的所述第二子透镜的数值孔径、焦距及棱边边长均相同。Optionally, the first sub-lens and the corresponding second sub-lens have the same numerical aperture, focal length and edge length.
可选地,当所述第二安装面与所述第二方向之间具有夹角时,所述第一子透镜的几何中心点与其对应的所述第二子透镜的几何中心点之间的连线与所述第一方向平行。Optionally, when there is an included angle between the second installation surface and the second direction, the geometric center point of the first sub-lens and the corresponding geometric center point of the second sub-lens The connecting line is parallel to the first direction.
可选地,当所述第二安装面与所述第二方向平行、且所述第二安装面呈阶梯状设置时,所述第二子透镜与其对应的所述第一子透镜的光轴重叠。Optionally, when the second installation surface is parallel to the second direction and the second installation surface is arranged in a stepped shape, the optical axis of the second sub-lens and its corresponding first sub-lens overlapping.
可选地,所述第一子透镜、所述第二子透镜以及所述透光介质一体成型设置。Optionally, the first sub-lens, the second sub-lens and the light-transmitting medium are integrally formed.
可选地,所述第一子透镜位于与其对应的所述第二子透镜的后焦面上。Optionally, the first sub-lens is located on the back focal plane of the corresponding second sub-lens.
本发明技术方案采用所述啁啾阵列透镜组件的非周期性结构,以抑制多光束干涉效应,在最终聚焦光斑受到非等间隔光强尖峰调制,提高平顶光束光强的均匀程度,且能量利用率高,更适用于相干性较强的光源,而且无需考虑入射光源的初始强度分布,普适性强。The technical scheme of the present invention adopts the non-periodic structure of the chirped array lens assembly to suppress the multi-beam interference effect, and the final focused spot is modulated by non-equally spaced light intensity peaks to improve the uniformity of the flat-top beam intensity, and the energy The utilization rate is high, and it is more suitable for light sources with strong coherence, and it does not need to consider the initial intensity distribution of the incident light source, so it has strong universality.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to the structures shown in these drawings without creative effort.
图1为本发明激光强度均匀化装置的主视图;Fig. 1 is the front view of laser intensity homogenization device of the present invention;
图2为本发明激光强度均匀化装置的俯视图;Fig. 2 is the top view of laser intensity homogenization device of the present invention;
图3为本发明激光强度均匀化装置中啁啾阵列透镜组件第一实施例的结构示意图;Fig. 3 is a structural schematic diagram of the first embodiment of the chirped array lens assembly in the laser intensity homogenization device of the present invention;
图4为本发明激光强度均匀化装置中啁啾阵列透镜组件第二实施例的结构示意图;Fig. 4 is a schematic structural diagram of the second embodiment of the chirped array lens assembly in the laser intensity homogenization device of the present invention;
图5为本发明激光强度均匀化装置第三实施例的仿真效果图;5 is a simulation effect diagram of the third embodiment of the laser intensity homogenization device of the present invention;
图6为本发明激光强度均匀化装置第四实施例的仿真效果图。FIG. 6 is a simulation effect diagram of the fourth embodiment of the laser intensity homogenization device of the present invention.
附图标号说明:Explanation of reference numbers:
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization of the purpose of the present invention, functional characteristics and advantages will be further described in conjunction with the embodiments and with reference to the accompanying drawings.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。It should be noted that all directional indications (such as up, down, left, right, front, back...) in the embodiments of the present invention are only used to explain the relationship between the components in a certain posture (as shown in the figure). Relative positional relationship, movement conditions, etc., if the specific posture changes, the directional indication will also change accordingly.
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, in the present invention, descriptions such as "first", "second" and so on are used for description purposes only, and should not be understood as indicating or implying their relative importance or implicitly indicating the quantity of indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise specifically defined.
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise specified and limited, the terms "connection" and "fixation" should be understood in a broad sense, for example, "fixation" can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。In addition, the technical solutions of the various embodiments of the present invention can be combined with each other, but it must be based on the realization of those skilled in the art. When the combination of technical solutions is contradictory or cannot be realized, it should be considered as a combination of technical solutions. Does not exist, nor is it within the scope of protection required by the present invention.
本发明提出一种激光强度均匀化装置,请参照图1及图2,所述激光强度均匀化装置包括沿第一方向依次间隔设置的光源40、准直扩束透镜10、啁啾阵列透镜组件20及聚焦透镜30,所述光源40的出射光沿第一方向延伸并依次穿过所述准直扩束透镜10、所述啁啾阵列透镜组件20及所述聚焦透镜30。The present invention proposes a laser intensity homogenization device, please refer to Fig. 1 and Fig. 2, the laser intensity homogenization device includes a
所述啁啾阵列透镜组件20包括透光介质23、多个第一子透镜21及多个第二子透镜22,所述透光介质23朝向所述聚焦透镜30的一侧具有第一安装面231,所述透光介质23朝向所述准直扩束透镜10的一侧具有第二安装面232;多个所述第一子透镜21沿第二方向依次设置在所述第一安装面231上;多个所述第二子透镜22沿所述第二方向依次设置在所述第二安装面232上;其中,所述第二方向与所述第一方向垂直,所述透光介质23的宽度沿所述第二方向呈渐缩设置,所述第一子透镜21的数量与所述第二子透镜22的数量一致且一一对应设置。The chirped
所述准直扩束透镜10、所述啁啾阵列透镜组件20及所述聚焦透镜30均位于所述光源40的光路上。所述光源40的沿所述第一方向A射出光束,也即所述光源40的出射光沿第一方向A延伸。The collimating
所述准直扩束透镜10用于对所述光源40的出射光进行准直扩束。本实施例中,以所述第一方向A为Z轴建立三维坐标系,所述准直扩束透镜10能够在所述Y轴和/或X轴方向上对所述光源40的出射光进行准直扩束,从而使得该出射光能够在所述Y轴和/或X轴方向实现一定倍率的扩束。The collimator and
其中,Y轴以及X轴方向上的扩束倍率可以相同,也可以不同,具体可以通过调整所述准直扩束透镜10的透镜结构进行调整。Wherein, the beam expansion magnifications in the Y-axis and X-axis directions can be the same or different, and can be adjusted specifically by adjusting the lens structure of the collimator
所述准直扩束透镜10包括至少一个调节子透镜11,调节子透镜11为半圆柱体结构的柱透镜。当调节子透镜11的数量为一个时,调节子透镜11的顶面与底面垂直于X轴设置,从而能够改变出射在Y轴上的扩束倍率,也即出射光的尺寸大小;同理,调节子透镜11的顶面与底面垂直于Y轴设置,从而能够改变出射在X轴上的扩束倍率。The collimating
当设置有两个调节子透镜11时,两个调节子透镜11沿所述第一方向A间隔设置。通过调整两个所述调节子透镜11之间的间距,以及顶面和底面的设置方向,从而能够实现同时改变出射光在X轴和/或Y轴上的扩束倍率,也即出射光的尺寸大小。When two adjusting
出射光从所述准直扩束透镜10射出后,再射入所述啁啾阵列透镜组件20,所述啁啾阵列透镜组件20无论是在Y轴以及X轴方向上均具有光学作用。After exiting the collimating
调整所述啁啾阵列透镜组件20的摆放位置,以使出射光垂直射入所述啁啾阵列透镜组件20。The arrangement position of the chirped
入射光在通过所述啁啾阵列透镜组件20后,所述啁啾阵列透镜组件20对所述出射光进行分割,非周期结构可降低多光束干涉的影响,则能够提高聚焦光斑的均匀性。After the incident light passes through the chirped
在正常安装时,所述第一安装面231与所述第二安装面232均垂直于所述第一方向A,从而保证入射光垂直射入。During normal installation, both the
所述透光介质23的顶面以及底面均为平整的平面,且均与坐标系中Z轴与X轴构成的平面平行,所述第二方向B与上述三维坐标系中的Y轴平行。The top surface and the bottom surface of the light-transmitting
所述第一子透镜21与所述第二子透镜22一一对应设置是指,以所述透光介质23的底面的高度为0,高度沿所述第二方向B向顶面逐渐增大,所述第一子透镜21和与其对应的所述第二子透镜22高度相同。The one-to-one corresponding arrangement of the first sub-lens 21 and the second sub-lens 22 means that the height of the bottom surface of the light-transmitting
并且,所述第一安装面231上的多个所述第一子透镜21和所述第二安装面232上的多个所述第二子透镜22的排布方向、排布位置均对应相同。Moreover, the arrangement directions and arrangement positions of the plurality of first sub-lenses 21 on the
所述透光介质23的宽度朝所述第二方向呈渐缩或渐扩设置,呈渐缩时所述透光介质23顶部窄、底部宽;将所述透光介质23倒置时,则朝所述第二方向呈渐扩设置。The width of the light-transmitting
通过采用渐缩或者渐扩的方式设置,多个所述第一子透镜21的光学参数不同,同时为了保证所述第一子透镜21能够位于所述第二子透镜22的后焦面上,从而调整所述透光介质23的尺寸,使得对应的所述第一子透镜21和所述第二子透镜22位置对应,从而形成非周期性结构。从而可降低多光束干涉的影响,则能够提高聚焦光斑的均匀性。The optical parameters of the plurality of first sub-lenses 21 are different by adopting a tapered or tapered mode, and at the same time, in order to ensure that the first sub-lens 21 can be located on the back focal plane of the second sub-lens 22, Therefore, the size of the light-transmitting
出射光从所述啁啾阵列透镜组件20射出后,再射入所述聚焦透镜30。The outgoing light enters the focusing
所述聚焦透镜30用于对所述光源40的出射光进行会聚。所述聚焦透镜30的后焦面位于所述聚焦透镜30背离所述啁啾阵列透镜组件20的一侧。该出射光在穿过所述聚焦透镜30后,则在所述聚焦透镜30的后焦面上形成均匀的光斑50。The focusing
所述第一子透镜21位于与其对应的所述第二子透镜22的后焦面上,保证最终光斑的成像效果。The
通过所述激光强度均匀化装置的光学结构后,出射光光强更加均匀,也即使光斑50的能量密度分布趋于均匀,不再受到等间距光强尖峰调制,可适用于类高斯、无规则等强度分布的单波长激光光源。After passing through the optical structure of the laser intensity homogenizing device, the intensity of the outgoing light is more uniform, that is, even if the energy density distribution of the
因此,本实施例中,所述光源40可以采用单波长、光谱范围远小于中心波长等的激光光源。其光强分布包括类高斯、反高斯、无规则等多种分布。其中,所述光源40优选波长355nm激光光源。Therefore, in this embodiment, the
本发明技术方案采用所述啁啾阵列透镜组件20的非周期性结构,以抑制多光束干涉效应,在最终聚焦光斑受到非等间隔光强尖峰调制,提高平顶光束光强的均匀程度,且能量利用率高,更适用于相干性较强的光源40,而且无需考虑入射光源的初始强度分布,普适性强。The technical solution of the present invention adopts the non-periodic structure of the chirped
所述第一子透镜21和所述第二子透镜22可采用刻蚀的方式设置在所述第一安装面231和所述第二安装面232上,也即所述第一子透镜21、所述第二子透镜22以及所述透光介质23之间为一体成型设置。The
进一步地,作为一种实施例,所述第一安装面231与所述第二方向平行,所述第二安装面232与所述第二方向之间具有夹角,所述夹角大于所述透光介质23的临界角。Further, as an embodiment, the
本实施例中,所述第二安装面232为平整的平面,且所述第二安装面232倾斜设置,从而与所述第二方向之间形成所述夹角α。In this embodiment, the
所述第二子透镜22连续设置在平整且倾斜的所述第二安装面232上。The second sub-lenses 22 are continuously disposed on the flat and inclined
为保证所述啁啾阵列透镜组件20对所述出射光进行分割及重排,所述夹角α应当设置为大于所述透光介质23的临界角αc,以提高出射光的均匀化效果。In order to ensure that the chirped
所述透光介质23的临界角αc可以通过所述透光介质23的折射率,以及所述第一子透镜21的光学参数计算得出。The critical angle α c of the transparent medium 23 can be calculated from the refractive index of the
具体的,所述第一子透镜21的光学参数包括有数值孔径,多个所述第一子透镜21的数值孔径相同,记所述数值孔径为NA,所述透光介质23的折射率为nindex,根据以下公式计算所述临界角αc;Specifically, the optical parameters of the first sub-lens 21 include a numerical aperture, the numerical apertures of a plurality of the first sub-lenses 21 are the same, and the numerical aperture is denoted as NA, and the refractive index of the light-transmitting
公式1:。Formula 1: .
进一步地,所述第一子透镜21为柱透镜,则所述第一子透镜21与所述透光介质23连接的一侧侧壁为矩形侧壁。Further, the
所述第一子透镜21的光学参数还包括棱边边长以及焦距,记所述矩形侧壁上与所述第二方向平行的棱边边长为2an;所述第一子透镜21的焦距为fn;根据以下公式计算所述第一子透镜21的数值孔径;The optical parameters of the first sub-lens 21 also include edge length and focal length, note that the edge length on the rectangular side wall parallel to the second direction is 2a n ; the
公式2:NA=an/fn。Formula 2: NA=a n /f n .
进一步地,在所述图3中,所述第一端为所述透光介质23的底部,所述第二端为所述透光介质23的顶部,所述第一端至所述第二端方向即为所述第二方向B。Further, in the FIG. 3 , the first end is the bottom of the light-transmitting
所述第一子透镜21的总数量为N个,其中n=N-1,所述夹角记为α,靠近所述第二端的一个所述第一子透镜21的焦距为f0,也即位于顶部的第一个所述第一子透镜21的焦距记为f0;其余所述第一子透镜21的棱边边长ai满足以下关系:The total number of the first sub-lenses 21 is N, where n=N-1, the included angle is denoted as α, and the focal length of one of the first sub-lenses 21 near the second end is f 0 , also That is, the focal length of the first
公式3:;Formula 3: ;
其余所述第一子透镜21的焦距fi满足以下关系:The focal length fi of the remaining
公式4:。Formula 4: .
可以理解,其中n为大于1的任意整数,i为1~n中的任意整数,i表示当前所述第一子透镜21在所述第二端向所述第一端方向上所述第一子透镜21的次序。It can be understood that, wherein n is any integer greater than 1, i is any integer from 1 to n, and i represents that the first sub-lens 21 currently moves from the second end to the first end. The order of the sub-lenses 21.
具体请参照图3,例如沿所述二段至所述第一端,由上至下所述第一子透镜21的次序依次编为0、1、2、3…n。位于顶部的第一个所述第一子透镜21的次序则为0,向下依次为第1、2、3…n个。则i表示当前的所述第一子透镜21为向下的第i个所述第一子透镜21。Please refer to FIG. 3 for details. For example, along the two sections to the first end, the order of the first sub-lenses 21 from top to bottom is sequentially coded as 0, 1, 2, 3...n. The order of the first
N取值优选23,所述透光介质23的折射率为1.5,子透镜的数值孔径NA为0.05,位于靠近所述透光介质23第二端的所述第一子透镜21的焦距设定为1mm、直径0.1mm,所述聚焦透镜30焦距为30mm。通过仿真结果显示,多光束干涉效应明显,聚焦光斑受光强尖峰调制。The value of N is preferably 23, the refractive index of the
需要说明的是,将第i个所述第一子透镜21的焦距定义为fi,棱边边长定义为ai,数值孔径定义为NA。当i取值不同时,fi、ai不同,NA始终相同。也即多个所述第一子透镜21的数值孔径相同。而在对应的所述第一子透镜21和所述第二子透镜22之间,其之间的数值孔径、焦距及棱边边长均相同,也即所述第一子透镜21与其对应的所述第二子透镜22的数值孔径、焦距及棱边边长均相同。It should be noted that, the focal length of the i-th
具体的,为了保证呈现效果,所述第一子透镜21和与其对应的所述第二子透镜22应当保持同一高度,也即所述第一子透镜21的几何中心点与其对应的所述第二子透镜22的几何中心点之间的连线与所述第一方向平行。Specifically, in order to ensure the presentation effect, the first sub-lens 21 and the corresponding
子透镜的几何中心点是指:子透镜的矩形侧壁的几何中心,也即该矩形侧壁两条对角线的交点位置。The geometric center point of the sub-lens refers to: the geometric center of the rectangular side wall of the sub-lens, that is, the position of the intersection of two diagonal lines of the rectangular side wall.
在上述过程中,若多个所述第二子透镜22是连续、倾斜设置的,由于光的折射原理,出射光的光轴不再保持与所述第一方向A平行,而是倾斜向下,经过所述聚焦透镜30之后,光斑50则在视场下方。In the above process, if the plurality of second sub-lenses 22 are arranged continuously and obliquely, due to the refraction principle of light, the optical axis of the outgoing light is no longer kept parallel to the first direction A, but obliquely downward , after passing through the focusing
因此,本发明提出另一种实施例,所述第二安装面232与所述第二方向平行、且所述第二安装面232呈阶梯状设置,所述第二安装面232的每个阶梯侧壁233上各对应设有一个所述第二子透镜22,多个所述第二子透镜22的几何中心点均位于同一条直线上,且多个所述第二子透镜22的几何中心点的连线与所述第二方向之间具有夹角,所述夹角大于所述透光介质23的临界角。Therefore, the present invention proposes another embodiment, the
本实施例中,多个所述第二子透镜22的几何中心点的连线与所述第二方向之间具有夹角与夹角α相等。In this embodiment, an included angle between the geometric center points of the plurality of second sub-lenses 22 and the second direction is equal to the included angle α.
所述阶梯侧壁233则为朝向所述准直扩束透镜10或者聚焦透镜30的一侧的侧壁。The stepped
所述第二安装面232上的每个阶梯侧壁233各对应设有一个所述第二子透镜22,Each stepped
为保证所述第一子透镜21和与其对应的所述第二子透镜22处于同一高度,所述第二子透镜22与其对应的所述第一子透镜21的光轴重叠。To ensure that the first sub-lens 21 and the corresponding
本实施例中,所述第二子透镜22的矩形侧壁的尺寸与其对应的所述阶梯侧壁233的尺寸相适配,即所述第二子透镜22铺设满整个所述阶梯侧壁233,从而保证最终的光斑50效果。In this embodiment, the size of the rectangular sidewall of the
同理,子透镜的几何中心点是指:子透镜的矩形侧壁的几何中心,也即该矩形侧壁两条对角线的交点位置。Similarly, the geometric center point of the sub-lens refers to the geometric center of the rectangular side wall of the sub-lens, that is, the position of the intersection of two diagonal lines of the rectangular side wall.
需要说明的是,在上述方案中,无论采用倾斜设置的方式,还是阶梯设置的方式,所述第一安装面231与所述第二安装面232的位置可以相互置换,也即所述第一安装面231可以朝向所述准直扩束透镜10一侧设置,也可以朝向所述聚焦透镜30一侧设置。It should be noted that, in the above-mentioned solution, no matter adopting the way of inclined setting or stepped setting, the positions of the
所述夹角α可以设置为7°~14°。当所述夹角α设置为7°时,光斑50中心线的归一化光强仿真结果如图5所示;当所述夹角α设置为14°时,光斑50中心线的归一化光强仿真结果如图6所示;光斑50不再受到等间隔光强尖峰调制,均匀度有所提高。The included angle α may be set at 7°-14°. When the included angle α is set to 7°, the normalized light intensity simulation result of the centerline of the
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。The above is only a preferred embodiment of the present invention, and does not therefore limit the patent scope of the present invention. Under the inventive concept of the present invention, the equivalent structural transformation made by using the description of the present invention and the contents of the accompanying drawings, or direct/indirect use All other relevant technical fields are included in the patent protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310363633.8A CN116088188B (en) | 2023-04-07 | 2023-04-07 | Laser intensity homogenizing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310363633.8A CN116088188B (en) | 2023-04-07 | 2023-04-07 | Laser intensity homogenizing device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116088188A CN116088188A (en) | 2023-05-09 |
CN116088188B true CN116088188B (en) | 2023-06-16 |
Family
ID=86210560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310363633.8A Active CN116088188B (en) | 2023-04-07 | 2023-04-07 | Laser intensity homogenizing device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116088188B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100033829A1 (en) * | 2006-10-10 | 2010-02-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device for Homogenizing Radiation by Means of Irregular Microlens Arrays |
CN102253493A (en) * | 2011-06-27 | 2011-11-23 | 广东工业大学 | Laser beam uniform radiation optical system |
CN103336366A (en) * | 2013-06-06 | 2013-10-02 | 西北大学 | Device capable of generating uniform linear laser beams based on high-numerical aperture cylindrical lens focusing |
CN113138524A (en) * | 2020-01-19 | 2021-07-20 | 深圳光峰科技股份有限公司 | Compound eye lens group, light source device and projection equipment |
CN114514085A (en) * | 2020-05-26 | 2022-05-17 | Limo显示有限责任公司 | Apparatus for homogenizing laser light and arrangement system comprising a plurality of such apparatuses |
-
2023
- 2023-04-07 CN CN202310363633.8A patent/CN116088188B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100033829A1 (en) * | 2006-10-10 | 2010-02-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device for Homogenizing Radiation by Means of Irregular Microlens Arrays |
CN102253493A (en) * | 2011-06-27 | 2011-11-23 | 广东工业大学 | Laser beam uniform radiation optical system |
CN103336366A (en) * | 2013-06-06 | 2013-10-02 | 西北大学 | Device capable of generating uniform linear laser beams based on high-numerical aperture cylindrical lens focusing |
CN113138524A (en) * | 2020-01-19 | 2021-07-20 | 深圳光峰科技股份有限公司 | Compound eye lens group, light source device and projection equipment |
CN114514085A (en) * | 2020-05-26 | 2022-05-17 | Limo显示有限责任公司 | Apparatus for homogenizing laser light and arrangement system comprising a plurality of such apparatuses |
Also Published As
Publication number | Publication date |
---|---|
CN116088188A (en) | 2023-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101547714B1 (en) | Beam forming device | |
EP1927880B1 (en) | Laser optical device | |
TWI452338B (en) | Device for beam shaping | |
CN111338089A (en) | Optical system with annular light spots | |
CN107112707B (en) | Line beam forming device | |
CN112059415A (en) | Optical system for outputting combined annular light spots | |
CN116047777B (en) | Variable multiple uniform laser generating device | |
CN114460740B (en) | Single-mirror annular light spot optical system | |
CN103199439A (en) | Semiconductor laser device | |
US9547176B2 (en) | Device for generating laser radiation having a linear intensity distribution | |
CN105182546B (en) | Even optical element and light-source system | |
CN211956009U (en) | Optical system with annular light spots | |
CN101797666A (en) | Laser cutting head with extended depth of focus | |
CN116088188B (en) | Laser intensity homogenizing device | |
CN104516117A (en) | Laser collimation and beam expansion system for deep ultraviolet lithography | |
CN203150902U (en) | Semiconductor laser apparatus | |
CN118091965A (en) | Optical assembly and optical system | |
CN103887707B (en) | A kind of semiconductor laser with high-power high light beam quality laser | |
CN103048789B (en) | Optical system producing long-distance light with similar non-diffraction grating type linear structure | |
CN112952549B (en) | Semiconductor laser coupling system | |
CN209896437U (en) | A semiconductor laser single-tube beam combiner based on regular polygonal pyramid | |
CN218275508U (en) | Linear optical module and optical equipment | |
KR102425179B1 (en) | Line beam forming device | |
CN216956535U (en) | Linear laser module | |
KR102283288B1 (en) | Line beam forming device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |