CN116083329A - Method for producing gamma-butyrolactone or 1,4-butanediol by fermentation - Google Patents
Method for producing gamma-butyrolactone or 1,4-butanediol by fermentation Download PDFInfo
- Publication number
- CN116083329A CN116083329A CN202211176997.7A CN202211176997A CN116083329A CN 116083329 A CN116083329 A CN 116083329A CN 202211176997 A CN202211176997 A CN 202211176997A CN 116083329 A CN116083329 A CN 116083329A
- Authority
- CN
- China
- Prior art keywords
- gene
- corynebacterium glutamicum
- seq
- yqhd
- fermentation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 title claims abstract description 42
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 238000000855 fermentation Methods 0.000 title abstract description 46
- 230000004151 fermentation Effects 0.000 title abstract description 46
- 238000004519 manufacturing process Methods 0.000 title abstract description 17
- 241000186226 Corynebacterium glutamicum Species 0.000 claims abstract description 37
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 claims abstract description 20
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 19
- 239000008103 glucose Substances 0.000 claims abstract description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 17
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims abstract description 17
- 229930006000 Sucrose Natural products 0.000 claims abstract description 17
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 17
- 239000005720 sucrose Substances 0.000 claims abstract description 17
- 239000002994 raw material Substances 0.000 claims abstract description 14
- 108091022930 Glutamate decarboxylase Proteins 0.000 claims abstract description 13
- 101100098786 Bacillus subtilis (strain 168) tapA gene Proteins 0.000 claims abstract description 11
- 101100321116 Escherichia coli (strain K12) yqhD gene Proteins 0.000 claims abstract description 11
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims abstract description 11
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229960003692 gamma aminobutyric acid Drugs 0.000 claims abstract description 10
- 108090000340 Transaminases Proteins 0.000 claims abstract description 9
- 101150118940 gadB gene Proteins 0.000 claims abstract description 9
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 claims abstract description 8
- 101150116670 gabT gene Proteins 0.000 claims abstract description 8
- 108010021809 Alcohol dehydrogenase Proteins 0.000 claims abstract description 7
- 101150058049 car gene Proteins 0.000 claims abstract description 7
- 108010001814 phosphopantetheinyl transferase Proteins 0.000 claims abstract description 7
- 241000894006 Bacteria Species 0.000 claims description 10
- 102000008214 Glutamate decarboxylase Human genes 0.000 claims description 10
- 241000588724 Escherichia coli Species 0.000 claims description 5
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 claims description 4
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 claims description 4
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 claims description 4
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 claims description 4
- 238000012262 fermentative production Methods 0.000 claims description 4
- 244000063299 Bacillus subtilis Species 0.000 claims description 3
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 3
- 241001508003 Mycobacterium abscessus Species 0.000 claims description 3
- 241000187492 Mycobacterium marinum Species 0.000 claims description 3
- 241001197104 Nocardia iowensis Species 0.000 claims description 3
- 241000589776 Pseudomonas putida Species 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 5
- KNGQILZSJUUYIK-VIFPVBQESA-N [(2R)-4-hydroxy-3,3-dimethyl-1-oxo-1-[[3-oxo-3-(2-sulfanylethylamino)propyl]amino]butan-2-yl] dihydrogen phosphate Chemical compound OCC(C)(C)[C@@H](OP(O)(O)=O)C(=O)NCCC(=O)NCCS KNGQILZSJUUYIK-VIFPVBQESA-N 0.000 claims 1
- 244000005700 microbiome Species 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 8
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 abstract description 6
- 229940006015 4-hydroxybutyric acid Drugs 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract 1
- 239000012634 fragment Substances 0.000 description 16
- 239000013612 plasmid Substances 0.000 description 12
- 150000001413 amino acids Chemical group 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 230000037361 pathway Effects 0.000 description 6
- 235000013379 molasses Nutrition 0.000 description 5
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 4
- 241000759360 Corynebacterium glutamicum S9114 Species 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 3
- 229960005091 chloramphenicol Drugs 0.000 description 3
- 229920002961 polybutylene succinate Polymers 0.000 description 3
- 239000004631 polybutylene succinate Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241000660147 Escherichia coli str. K-12 substr. MG1655 Species 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 241000209149 Zea Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 101150063416 add gene Proteins 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920001896 polybutyrate Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 235000007682 pyridoxal 5'-phosphate Nutrition 0.000 description 2
- 239000011589 pyridoxal 5'-phosphate Substances 0.000 description 2
- 229960001327 pyridoxal phosphate Drugs 0.000 description 2
- 229960000344 thiamine hydrochloride Drugs 0.000 description 2
- 235000019190 thiamine hydrochloride Nutrition 0.000 description 2
- 239000011747 thiamine hydrochloride Substances 0.000 description 2
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- GEWWCWZGHNIUBW-UHFFFAOYSA-N 1-(4-nitrophenyl)propan-2-one Chemical compound CC(=O)CC1=CC=C([N+]([O-])=O)C=C1 GEWWCWZGHNIUBW-UHFFFAOYSA-N 0.000 description 1
- WSQZNZLOZXSBHA-UHFFFAOYSA-N 3,8-dioxabicyclo[8.2.2]tetradeca-1(12),10,13-triene-2,9-dione Chemical compound O=C1OCCCCOC(=O)C2=CC=C1C=C2 WSQZNZLOZXSBHA-UHFFFAOYSA-N 0.000 description 1
- 101710124383 Alcohol dehydrogenase YqhD Proteins 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 239000005997 Calcium carbide Substances 0.000 description 1
- 108030002325 Carboxylate reductases Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 101000794816 Pseudomonas putida Anthranilate synthase component 1 Proteins 0.000 description 1
- 101000847784 Pseudomonas putida Anthranilate synthase component 2 Proteins 0.000 description 1
- 102000003929 Transaminases Human genes 0.000 description 1
- 238000007171 acid catalysis Methods 0.000 description 1
- 229940124277 aminobutyric acid Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000012450 pharmaceutical intermediate Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- -1 polybutylene succinate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/77—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0008—Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1096—Transferases (2.) transferring nitrogenous groups (2.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1288—Transferases for other substituted phosphate groups (2.7.8)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/02—Oxygen as only ring hetero atoms
- C12P17/04—Oxygen as only ring hetero atoms containing a five-membered hetero ring, e.g. griseofulvin, vitamin C
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/18—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y102/00—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
- C12Y102/99—Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with other acceptors (1.2.99)
- C12Y102/99006—Carboxylate reductase (1.2.99.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y206/00—Transferases transferring nitrogenous groups (2.6)
- C12Y206/01—Transaminases (2.6.1)
- C12Y206/01019—4-Aminobutyrate—2-oxoglutarate transaminase (2.6.1.19)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/08—Transferases for other substituted phosphate groups (2.7.8)
- C12Y207/08007—Holo-[acyl-carrier-protein] synthase (2.7.8.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/01—Carboxy-lyases (4.1.1)
- C12Y401/01015—Glutamate decarboxylase (4.1.1.15)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/265—Micrococcus
- C12R2001/28—Micrococcus glutamicus ; Corynebacterium glutamicum
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明提供一种发酵生产γ‑丁内酯或1,4‑丁二醇的方法,通过合成生物学技术,以谷氨酸棒杆菌为底盘,通过引入外源的谷氨酸脱羧酶基因gadB*突变体、醇脱氢酶基因yqhD、强化内源或外源的γ‑氨基丁酸转氨酶基因gabT,实现了利用重组微生物发酵可再生的原料如葡萄糖、蔗糖等一步发酵生产4‑羟基丁酸,再对发酵液简单加热脱羧即可获得GBL。进一步在上述微生物中引入羧酸还原酶CAR基因及磷酸泛酰巯基乙胺基转移酶基因sfp,可实现利用重组微生物直接发酵葡萄糖、蔗糖等生产BDO。本发明实现了利用可再生原料到重要化学品GBL和BDO的直接发酵生产,生产过程清洁安全,碳排放量低,具有重要的工业应用价值。The invention provides a method for fermenting and producing γ-butyrolactone or 1,4-butanediol. Through synthetic biology technology, Corynebacterium glutamicum is used as a chassis, and an exogenous glutamic acid decarboxylase gene gadB is introduced. * Mutant, alcohol dehydrogenase gene yqhD, enhanced endogenous or exogenous γ-aminobutyric acid transaminase gene gabT, realized the production of 4-hydroxybutyric acid by one-step fermentation of renewable raw materials such as glucose and sucrose by recombinant microorganisms , and then decarboxylate the fermentation broth by simple heating to obtain GBL. Further introducing the carboxylic acid reductase CAR gene and the phosphopantetheinyl transferase gene sfp into the above-mentioned microorganisms can realize the direct fermentation of glucose, sucrose and the like to produce BDO by using the recombinant microorganisms. The invention realizes the direct fermentation production of important chemicals GBL and BDO by using renewable raw materials, the production process is clean and safe, the carbon emission is low, and has important industrial application value.
Description
技术领域technical field
本发明属于基因工程和生物发酵技术领域,具体地说,涉及一种发酵生产γ-丁内酯或1,4-丁二醇的方法。The invention belongs to the technical field of genetic engineering and biological fermentation, and in particular relates to a method for producing gamma-butyrolactone or 1,4-butanediol by fermentation.
背景技术Background technique
1,4-丁二醇(BDO)是一种重要的有机化工和精细化工原料,被广泛用于制造各种聚酯、聚氨酯和聚醚多元醇等高分子材料,例如其是合成工程塑料聚对苯二甲酸丁二醇酯(PBT)的关键单体,同时其也是合成生物可降解材料聚丁二酸丁二醇酯(PBS)和PBAT的关键单体。近年来,随着限塑令和碳中和相关政策的出台,生物可降解材料PBS和PBAT的需求呈现井喷式发展,从而带动全球市场对BDO需求的快速增长。BDO同时也是合成四氢呋喃、γ-丁内酯等化学品的重要前体。γ-丁内酯(GBL)也是一种重要有机和医药中间体,在医药、农药、石油化工等方面有着广泛的应用,是锂电池电解液主要成分之一,同时也是合成2-吡咯烷酮、N-甲基-2-吡咯烷酮(NMP)、聚乙烯吡咯烷酮(PVP)等化学品的重要原料。1,4-Butanediol (BDO) is an important organic chemical and fine chemical raw material, which is widely used in the manufacture of various polymer materials such as polyester, polyurethane and polyether polyols. For example, it is a synthetic engineering plastic polymer It is the key monomer of butylene terephthalate (PBT), and it is also the key monomer of synthesizing biodegradable materials polybutylene succinate (PBS) and PBAT. In recent years, with the introduction of plastic restrictions and carbon neutral policies, the demand for biodegradable materials PBS and PBAT has shown a blowout development, which has driven the rapid growth of the global market demand for BDO. BDO is also an important precursor for the synthesis of tetrahydrofuran, γ-butyrolactone and other chemicals. γ-butyrolactone (GBL) is also an important organic and pharmaceutical intermediate, which is widely used in medicine, pesticide, petrochemical industry, etc. It is one of the main components of lithium battery electrolyte, and it is also a -Important raw materials for chemicals such as methyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP).
目前,BDO的合成主要是通过化学法,以电石等为原料经过复杂的化学转化过程而合成,是一个极度高能耗的过程,因此开发环境友好、节能降耗的生物法技术,实现从可再生的生物质原料直接发酵生产BDO具有重要的工业应用价值。GBL的生产目前主要是以BDO为原料通过化学法生产,目前未见生物法直接合成GBL的相关报道。At present, the synthesis of BDO is mainly through chemical methods, using calcium carbide as raw materials through a complex chemical conversion process, which is an extremely high-energy-consuming process. The direct fermentation of biomass raw materials to produce BDO has important industrial application value. The production of GBL is currently mainly based on BDO as a raw material through chemical production, and there is no relevant report on the direct synthesis of GBL by biological methods.
发明内容Contents of the invention
本发明的目的是提供一种发酵生产γ-丁内酯或1,4-丁二醇的方法。The object of the present invention is to provide a method for fermentatively producing γ-butyrolactone or 1,4-butanediol.
本发明构思如下:通过合成生物学技术,以谷氨酸棒杆菌为底盘,通过在该底盘中引入外源的谷氨酸脱羧酶基因gadB*突变体、醇脱氢酶基因yqhD、强化内源或外源的γ-氨基丁酸转氨酶基因gabT,首次实现了利用重组微生物发酵可再生的原料如葡萄糖、蔗糖等一步发酵生产4-羟基丁酸,再通过对发酵液简单加热脱水即可以获得GBL。进一步在上述微生物中引入羧酸还原酶CAR基因及磷酸泛酰巯基乙胺基转移酶基因sfp,即可以实现利用重组微生物直接发酵葡萄糖、蔗糖等生产BDO。The concept of the present invention is as follows: through synthetic biology technology, using Corynebacterium glutamicum as the chassis, introducing exogenous glutamic acid decarboxylase gene gadB* mutant, alcohol dehydrogenase gene yqhD, and strengthening endogenous Or the exogenous γ-aminobutyric acid transaminase gene gabT, for the first time realized the use of recombinant microorganisms to ferment renewable raw materials such as glucose and sucrose to produce 4-hydroxybutyric acid in one step, and then simply heat and dehydrate the fermentation broth to obtain GBL . Further introducing the carboxylic acid reductase CAR gene and the phosphopantetheinyl transferase gene sfp into the above-mentioned microorganisms can realize the direct fermentation of glucose, sucrose and the like to produce BDO by using the recombinant microorganisms.
为了实现本发明目的,第一方面,本发明提供一种重组谷氨酸棒杆菌,所述重组谷氨酸棒杆菌是通过在谷氨酸棒杆菌中过表达谷氨酸脱羧酶突变体基因gadB*和醇脱氢酶基因yqhD构建得到的。In order to realize the object of the present invention, the first aspect, the present invention provides a kind of recombinant Corynebacterium glutamicum, described recombinant Corynebacterium glutamicum is by overexpressing glutamic acid decarboxylase mutant gene gadB in Corynebacterium glutamicum *Constructed with alcohol dehydrogenase gene yqhD.
本发明中,所述谷氨酸脱羧酶突变体基因gadB*和醇脱氢酶基因yqhD来源于大肠杆菌;基因gadB*和基因yqhD编码的氨基酸序列分别如SEQ ID NO:1和2所示。In the present invention, the glutamic acid decarboxylase mutant gene gadB* and the alcohol dehydrogenase gene yqhD are derived from Escherichia coli; the amino acid sequences encoded by the gene gadB* and the gene yqhD are shown in SEQ ID NO: 1 and 2, respectively.
进一步地,在所述重组谷氨酸棒杆菌中表达内源或外源的γ-氨基丁酸转氨酶基因gabT。Further, the endogenous or exogenous γ-aminobutyric acid transaminase gene gabT is expressed in the recombinant Corynebacterium glutamicum.
所述γ-氨基丁酸转氨酶基因gabT可以来源于谷氨酸棒杆菌、大肠杆菌或恶臭假单胞菌,它们编码的氨基酸序列分别如SEQ ID NO:3、SEQ ID NO:4或SEQ ID NO:5所示。The gamma-aminobutyric acid transaminase gene gabT can be derived from Corynebacterium glutamicum, Escherichia coli or Pseudomonas putida, and the amino acid sequences encoded by them are respectively as SEQ ID NO:3, SEQ ID NO:4 or SEQ ID NO :5 shown.
第二方面,本发明提供所述重组谷氨酸棒杆菌在发酵生产γ-丁内酯中的应用。In the second aspect, the present invention provides the application of the recombinant Corynebacterium glutamicum in fermentative production of γ-butyrolactone.
进一步地,利用所述重组谷氨酸棒杆菌,以廉价碳源为原料发酵生产γ-丁内酯。Further, the recombinant Corynebacterium glutamicum is used to ferment and produce γ-butyrolactone with cheap carbon source as raw material.
所述廉价碳源可选自葡萄糖、蔗糖、麦芽糖、纤维二糖等中的至少一种。The cheap carbon source can be selected from at least one of glucose, sucrose, maltose, cellobiose and the like.
第三方面,本发明提供一种谷氨酸棒杆菌工程菌,所述工程菌是在所述重组谷氨酸棒杆菌中表达羧酸还原酶CAR基因及磷酸泛酰巯基乙胺基转移酶基因sfp构建得到的。In a third aspect, the present invention provides a Corynebacterium glutamicum engineering bacterium, and the engineering bacterium expresses the carboxylic acid reductase CAR gene and the phosphopantetheinyl transferase gene in the recombinant Corynebacterium glutamicum sfp build got.
所述羧酸还原酶CAR基因可以来源于Mycobacterium marinum、Nocardiaiowensis、Mycolicibacterium smegmatis或Mycobacteroides abscessus,它们编码的氨基酸序列分别如SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8或SEQ ID NO:9所示。The carboxylic acid reductase CAR gene can be derived from Mycobacterium marinum, Nocardiaiowensis, Mycolicibacterium smegmatis or Mycobacteroides abscessus, and the amino acid sequences encoded by them are respectively as SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8 or SEQ ID NO : as shown in 9.
所述磷酸泛酰巯基乙胺基转移酶基因sfp可以来源于枯草芽胞杆菌,其编码的氨基酸序列如SEQ ID NO:10所示。The phosphopantetheinyl transferase gene sfp can be derived from Bacillus subtilis, and its encoded amino acid sequence is shown in SEQ ID NO:10.
第四方面,本发明提供所述谷氨酸棒杆菌工程菌在发酵生产1,4-丁二醇中的应用。In the fourth aspect, the present invention provides the application of the Corynebacterium glutamicum engineering bacteria in the fermentative production of 1,4-butanediol.
进一步地,利用所述谷氨酸棒杆菌工程菌,以廉价碳源为原料发酵生产γ-丁内酯。Further, the Corynebacterium glutamicum engineering bacteria are used to ferment and produce γ-butyrolactone with cheap carbon sources as raw materials.
所述廉价碳源可选自葡萄糖、蔗糖、麦芽糖、纤维二糖等中的至少一种。The cheap carbon source can be selected from at least one of glucose, sucrose, maltose, cellobiose and the like.
第五方面,本发明提供一种谷氨酸脱羧酶突变体,其氨基酸序列如SEQ ID NO:1所示。In a fifth aspect, the present invention provides a glutamic acid decarboxylase mutant whose amino acid sequence is shown in SEQ ID NO:1.
第六方面,本发明提供所述重组谷氨酸棒杆菌及所述谷氨酸棒杆菌工程菌的构建方法,可采用常规的基因工程方法对上述基因进行改造或修饰。In the sixth aspect, the present invention provides a method for constructing the recombinant Corynebacterium glutamicum and the Corynebacterium glutamicum engineering bacterium, and the above-mentioned genes can be transformed or modified by conventional genetic engineering methods.
借由上述技术方案,本发明至少具有下列优点及有益效果:By virtue of the above technical solutions, the present invention has at least the following advantages and beneficial effects:
本发明主要通过合成生物学技术,以谷氨酸棒杆菌为底盘,通过在该底盘中引入外源的谷氨酸脱羧酶基因gadB*突变体、醇脱氢酶基因yqhD、强化内源或外源的γ-氨基丁酸转氨酶基因gabT,开创性地实现了利用重组微生物发酵可再生的原料如葡萄糖、蔗糖等一步发酵生产4-羟基丁酸,再通过对发酵液简单加热脱羧即可以获得GBL。进一步在上述微生物中引入羧酸还原酶CAR基因及磷酸泛酰巯基乙胺基转移酶基因sfp,即可以实现利用重组微生物直接发酵葡萄糖、蔗糖等生产BDO。本发明实现了利用可再生原料到重要化学品GBL和BDO的直接发酵生产,生产过程清洁安全,碳排放比化学法降低60%以上,具有重要的工业应用价值。The present invention mainly adopts synthetic biology technology, uses Corynebacterium glutamicum as the chassis, and introduces exogenous glutamic acid decarboxylase gene gadB* mutant, alcohol dehydrogenase gene yqhD into the chassis, and strengthens endogenous or exogenous The original γ-aminobutyric acid transaminase gene gabT has pioneered the use of recombinant microorganisms to ferment renewable raw materials such as glucose and sucrose to produce 4-hydroxybutyric acid in one step, and then simply heat and decarboxylate the fermentation broth to obtain GBL . Further introducing the carboxylic acid reductase CAR gene and the phosphopantetheinyl transferase gene sfp into the above-mentioned microorganisms can realize the direct fermentation of glucose, sucrose and the like to produce BDO by using the recombinant microorganisms. The invention realizes the direct fermentation production of important chemicals GBL and BDO by using renewable raw materials, the production process is clean and safe, and the carbon emission is reduced by more than 60% compared with the chemical method, and has important industrial application value.
具体实施方式Detailed ways
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例均按照常规实验条件,如Sambrook等分子克隆实验手册(Sambrook J&Russell DW,Molecular Cloning:a Laboratory Manual,2001),或按照制造厂商说明书建议的条件。The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention. Unless otherwise specified, the examples are all in accordance with conventional experimental conditions, such as Sambrook et al. Molecular Cloning Experiment Manual (Sambrook J & Russell DW, Molecular Cloning: a Laboratory Manual, 2001), or in accordance with the conditions suggested by the manufacturer's instructions.
实施例1生产GBL的重组谷氨酸棒杆菌的构建方法Embodiment 1 produces the construction method of the recombinant Corynebacterium glutamicum of GBL
自然界没有微生物能够天然合成GBL。本发明通过在谷氨酸棒杆菌中引入谷氨酸脱羧酶gabB*,使得谷氨酸棒杆菌产生的谷氨酸首先被转化为γ-氨基丁酸,后者在自身或者外源引入的γ-氨基丁酸转氨酶gabT和外源引入的醇脱氢酶yqhD作用下进一步转化为4-羟基丁酸,发酵液中的4-羟基丁酸在酸催化下产生GBL。There are no microorganisms in nature that can synthesize GBL naturally. In the present invention, by introducing glutamic acid decarboxylase gabB* into Corynebacterium glutamicum, the glutamic acid produced by Corynebacterium glutamicum is first converted into γ-aminobutyric acid, and the latter is converted into γ-aminobutyric acid by itself or exogenously introduced γ-aminobutyric acid. -Aminobutyric acid transaminase gabT and exogenously introduced alcohol dehydrogenase yqhD are further converted into 4-hydroxybutyric acid, and 4-hydroxybutyric acid in the fermentation broth produces GBL under acid catalysis.
人工合成大肠杆菌的谷氨酸脱羧酶gabB*的基因片段(氨基酸序列如SEQ ID NO:1所示,基因序列如SEQ ID NO:11所示)。与野生型的谷氨酸脱羧酶相比,该谷氨酸脱羧酶具有在中性pH条件下更高的活性。以该基因片段为模板,以gadB-F(5′-attaagcttgcatgcctgcactttaagaaggagatataccatggataagaagcaagtaacg-3′)和gabB-R(5′-ggtatatctccttcttaaagttagtgatcgctgagatatt-3′)为引物进行PCR,获得约1.4kb的gabB片段并进行PCR纯化。以大肠杆菌MG1655的基因组为模板,以yqhD-F(5′-ctttaagaaggagatataccatgaacaactttaatctgcac-3′)和yqhD-R(5′-ggtacccggggatcctctagttagcgggcggcttcgtata-3′)为引物进行PCR,获得约1.2kb的yqhD片段并进行PCR纯化。将pXMJ19质粒(购自Addgene)用PstI和XbaI进行双酶切,利用Gibson Assembly试剂盒(NEB)将上述纯化获得的gabB片段和yqhD片段一步连接到pXMJ19上,获得的重组质粒命名为pXMJ-gabB-yqhD。The gene fragment of glutamic acid decarboxylase gabB* of Escherichia coli is artificially synthesized (the amino acid sequence is shown in SEQ ID NO: 1, and the gene sequence is shown in SEQ ID NO: 11). Compared with wild-type glutamic acid decarboxylase, the glutamic acid decarboxylase has higher activity under neutral pH conditions. Using the gene fragment as a template, PCR was performed with gabB-F (5'-attaagcttgcatgcctgcactttaagaaggagatataccatggataagaagcaagtaacg-3') and gabB-R (5'-ggtatatctccttcttaaagttagtgatcgctgagatatt-3') primers to obtain a gabB fragment of about 1.4 kb and perform PCR purification. Using the genome of Escherichia coli MG1655 as a template, PCR was performed with yqhD-F (5′-ctttaagaaggagatataccatgaacaactttaatctgcac-3′) and yqhD-R (5′-ggtacccggggatcctctagttagcgggcggcttcgtata-3′) as primers to obtain a yqhD fragment of about 1.2 kb and perform PCR purification. The pXMJ19 plasmid (purchased from Addgene) was double digested with PstI and XbaI, and the gabB fragment and yqhD fragment obtained above were ligated to pXMJ19 in one step using the Gibson Assembly kit (NEB), and the obtained recombinant plasmid was named pXMJ-gabB -yqhD.
以谷氨酸棒杆菌的基因组为模板,以gabT_cg-F(5′-ggatccccgggtaccgagctctttaagaaggagatataccgtggaagatctctcataccg-3′)和gabT_cg-R(5′-caaaacagccaagctgaattttagcccaccttctggtgcg-3′)为引物进行PCR,获得约1.35kb的gabT_cg片段并进行PCR纯化。以大肠杆菌MG1655的基因组为模板,以gabT_ec-F(5′-ggatccccgggtaccgagctctttaagaaggagatataccatgaacagcaataaagagtt-3′)和gabT_ec-R(5′-caaaacagccaagctgaattctactgcttcgcctcatcaa-3′)为引物进行PCR,获得约1.35kb的gabT_ec片段并进行PCR纯化。以恶臭假单胞杆菌的基因组为模板,以引物gabT_pp-F(5′-ggatccccgggtaccgagctctttaagaaggagatataccatgagcaagaccaacgaatc-3′)和gabT_pp-R(5′-caaaacagccaagctgaatttcaggcaagttcagcgaagc-3′)为引物进行PCR,获得约1.35kb的gabT_pp片段并进行PCR纯化。将质粒pXMJ-gabB-yqhD用KpnI和EcoRI进行双酶切,将上述纯化获得的gabT_cg片段、gabT_ec片段、gabT_pp片段分别利用Gibson Assembly试剂盒(NEB)连接到pXMJ-gabB-yqhD上,获得的重组质粒命名分别为pXMJ-gabB-yqhD-gabT_cg、pXMJ-gabB-yqhD-gabT_ec和pXMJ-gabB-yqhD-gabT_pp。Using the genome of Corynebacterium glutamicum as a template, PCR was performed with gabT_cg-F (5′-ggatccccgggtaccgagctctttaagaaggagatataccgtggaagatctctcataccg-3′) and gabT_cg-R (5′-caaaacagccaagctgaattttagcccaccttctggtgcg-3′) as primers to obtain a gab of about 1.35 kb T_cg fragment and Perform PCR purification. Using the genome of Escherichia coli MG1655 as a template, PCR was performed with gabT_ec-F (5′-ggatccccgggtaccgagctctttaagaaggagatataccatgaacagcaataaagagtt-3′) and gabT_ec-R (5′-caaaacagccaagctgaattctactgcttcgcctcatcaa-3′) as primers to obtain about 1.35kb gab T_ec fragment and perform PCR purification. Using the genome of Pseudomonas putida as a template, the primers gabT_pp-F (5′-ggatccccgggtaccgagctctttaagaaggagatataccatgagcaagaccaacgaatc-3′) and gabT_pp-R (5′-caaaacagccaagctgaatttcaggcaagttcagcgaagc-3′) were used as primers to perform PCR to obtain about 1.35kb gab T_pp fragment And perform PCR purification. The plasmid pXMJ-gabB-yqhD was double digested with KpnI and EcoRI, and the gabT_cg fragment, gabT_ec fragment, and gabT_pp fragment obtained from the above purification were respectively connected to pXMJ-gabB-yqhD using the Gibson Assembly kit (NEB), and the obtained recombinant The plasmids were named pXMJ-gabB-yqhD-gabT_cg, pXMJ-gabB-yqhD-gabT_ec and pXMJ-gabB-yqhD-gabT_pp, respectively.
通过电转化将质粒pXMJ-gabB-yqhD、pXMJ-gabB-yqhD-gabT_cg、pXMJ-gabB-yqhD-gabT_ec、和pXMJ-gabB-yqhD-gabT_pp转入到谷氨酸棒杆菌S9114中,在含10mg/L的氯霉素LB平板上筛选获得重组菌,分别命名为S9114/pXMJ-gabB-yqhD、S9114/pXMJ-gabB-yqhD-gabT_cg、S9114/pXMJ-gabB-yqhD-gabT_ec和S9114/pXMJ-gabB-yqhD-gabT_pp。同时将pXMJ19空质粒也转入到谷氨酸棒杆菌S9114中,获得对照菌株S9114/pXMJ。Plasmids pXMJ-gabB-yqhD, pXMJ-gabB-yqhD-gabT_cg, pXMJ-gabB-yqhD-gabT_ec, and pXMJ-gabB-yqhD-gabT_pp were transferred into Corynebacterium glutamicum S9114 by electroporation, in the presence of 10 mg/ The recombinant bacteria were screened on the chloramphenicol LB plate of L and named as S9114/pXMJ-gabB-yqhD, S9114/pXMJ-gabB-yqhD-gabT_cg, S9114/pXMJ-gabB-yqhD-gabT_ec and S9114/pXMJ-gabB- yqhD-gabT_pp. At the same time, the pXMJ19 empty plasmid was also transformed into Corynebacterium glutamicum S9114 to obtain the control strain S9114/pXMJ.
实施例2利用廉价糖原料发酵生产GBLExample 2 Production of GBL by Fermentation of Cheap Sugar Raw Materials
将菌株S9114/pXMJ-gabB-yqhD、S9114/pXMJ-gabB-yqhD-gabT_cg、S9114/pXMJ-gabB-yqhD-gabT_ec、S9114/pXMJ-gabB-yqhD-gabT_pp和对照菌株S9114/pXMJ接种到5L发酵罐中进行培养,发酵液的初始体积为2L,发酵温度为30℃,通气量为1vvm,发酵过程通过调整转速使得发酵过程的溶氧值维持在20%,通过自动流加25%氨水控制发酵液的pH为7.0,发酵4h时添加0.1mM IPTG进行诱导,发酵时间为48h。The strain S9114/PXMJ-Gabb-YQHD, S9114/PXMJ-Gabb-Yqhd-Gabt_cg, S9114/PXMJ-Gabb-Yqhd-Gabt_EC, S9114/PXMJ-Gabb-Gabt_pp and the control strain S9114 /pxmj to inoculate to 5L fermentation tank The initial volume of the fermentation broth is 2L, the fermentation temperature is 30°C, and the ventilation volume is 1vvm. During the fermentation process, the dissolved oxygen value in the fermentation process is maintained at 20% by adjusting the rotation speed, and the fermentation broth is controlled by automatically adding 25% ammonia water. The pH was 7.0, and 0.1mM IPTG was added for induction after 4 hours of fermentation, and the fermentation time was 48 hours.
发酵培养基配方包括(g/L):葡萄糖100,(NH4)2SO4 20,K2HPO4 1.0,MgSO4 0.5,MnSO4 0.2,FeSO4 0.2,玉米浆20,磷酸吡哆醛0.01,盐酸硫胺素0.001,氯霉素0.005。Fermentation medium formula includes (g/L): glucose 100, (NH 4 ) 2 SO 4 20, K 2 HPO 4 1.0, MgSO 4 0.5, MnSO 4 0.2, FeSO 4 0.2, corn steep liquor 20, pyridoxal phosphate 0.01 , thiamine hydrochloride 0.001, chloramphenicol 0.005.
发酵48小时后停止发酵,在发酵液中加入浓HCl将pH值调整到0.8,在室温下反应24h,然后利用高效液相色谱(HPLC)检测菌株的产物。菌株S9114/pXMJ-gabB-yqhD、S9114/pXMJ-gabB-yqhD-gabT_cg、S9114/pXMJ-gabB-yqhD-gabT_ec、S9114/pXMJ-gabB-yqhD-gabT_pp分别可以生产7.2g/L、11.3g/L、14.1g/L、13.7g/L的GBL,而对照菌株S9114/pXMJ不产GBL。说明在谷氨酸棒杆菌中引入人工途径可以成功实现葡萄糖到GBL的高效生产。Stop the fermentation after 48 hours of fermentation, add concentrated HCl to the fermentation broth to adjust the pH value to 0.8, react at room temperature for 24 hours, and then use high performance liquid chromatography (HPLC) to detect the product of the strain. Strains S9114/pXMJ-gabB-yqhD, S9114/pXMJ-gabB-yqhD-gabT_cg, S9114/pXMJ-gabB-yqhD-gabT_ec, S9114/pXMJ-gabB-yqhD-gabT_pp can produce 7.2g/L and 11.3g/L, respectively , 14.1g/L, 13.7g/L of GBL, while the control strain S9114/pXMJ did not produce GBL. It shows that the introduction of artificial pathway in Corynebacterium glutamicum can successfully realize the efficient production of glucose to GBL.
将发酵培养基的碳源从100g/L葡萄糖改为100g/L蔗糖,其他成分不变,发酵过程也保持完全一致。菌株S9114/pXMJ-gabB-yqhD、S9114/pXMJ-gabB-yqhD-gabT_cg、S9114/pXMJ-gabB-yqhD-gabT_ec、S9114/pXMJ-gabB-yqhD-gabT_pp分别可以生产7.4g/L、10.2g/L、13.3g/L、12.9g/L的GBL,而对照菌株S9114/pXMJ不产GBL。说明在谷氨酸棒杆菌中引入人工途径可以成功实现蔗糖到GBL的高效生产。The carbon source of the fermentation medium was changed from 100g/L glucose to 100g/L sucrose, other components remained unchanged, and the fermentation process remained completely the same. Strains S9114/pXMJ-gabB-yqhD, S9114/pXMJ-gabB-yqhD-gabT_cg, S9114/pXMJ-gabB-yqhD-gabT_ec, S9114/pXMJ-gabB-yqhD-gabT_pp can produce 7.4g/L and 10.2g/L, respectively , 13.3g/L, 12.9g/L of GBL, while the control strain S9114/pXMJ did not produce GBL. It shows that the introduction of artificial pathways in Corynebacterium glutamicum can successfully achieve the efficient production of sucrose to GBL.
将发酵培养基的碳源从100g/L葡萄糖改为糖蜜(其中蔗糖含量为100g/L),其他成分不变,发酵过程也保持完全一致。菌株S9114/pXMJ-gabB-yqhD、S9114/pXMJ-gabB-yqhD-gabT_cg、S9114/pXMJ-gabB-yqhD-gabT_ec、S9114/pXMJ-gabB-yqhD-gabT_pp分别可以生产6.7g/L、9.9g/L、12.1g/L、11.7g/L的GBL,而对照菌株S9114/pXMJ不产GBL。说明在谷氨酸棒杆菌中引入人工途径可以成功实现糖蜜到GBL的高效生产。The carbon source of the fermentation medium is changed from 100g/L glucose to molasses (wherein the sucrose content is 100g/L), other components remain unchanged, and the fermentation process also remains completely consistent. Strains S9114/pXMJ-gabB-yqhD, S9114/pXMJ-gabB-yqhD-gabT_cg, S9114/pXMJ-gabB-yqhD-gabT_ec, S9114/pXMJ-gabB-yqhD-gabT_pp can produce 6.7g/L and 9.9g/L, respectively , 12.1g/L, 11.7g/L of GBL, while the control strain S9114/pXMJ did not produce GBL. It shows that the introduction of artificial pathways in Corynebacterium glutamicum can successfully achieve the efficient production of molasses to GBL.
实施例3生产BDO的重组谷氨酸棒杆菌的构建方法Embodiment 3 produces the construction method of the recombinant Corynebacterium glutamicum of BDO
上述构建的菌株可以高效转化葡萄糖、蔗糖、糖蜜等廉价碳源生产GBL。本发明进一步通过引入羧酸还原酶,将GBL的前体4-羟基丁酸转化为BDO,从而实现利用廉价碳源直接发酵生产BDO。The strain constructed above can efficiently transform cheap carbon sources such as glucose, sucrose, and molasses to produce GBL. The invention further converts 4-hydroxybutyric acid, the precursor of GBL, into BDO by introducing carboxylic acid reductase, so as to realize the direct fermentation and production of BDO by using cheap carbon sources.
人工合成枯草芽胞杆菌的磷酸泛酰巯基乙胺基转移酶基因sfp(氨基酸序列如SEQID NO:10所示,基因序列如SEQ ID NO:20所示),该酶的主要功能是激活羧酸还原酶。以该基因片段为模板,以sfp-F(5′-atcctctagagtcgacctgcactttaagaaggagatataccaatgaaaatttacggcatcta-3′)和sfp-R(5′-cagtgccaagcttgcatgcctcaaagtaactcctcgtagg-3′)为引物进行PCR,获得约0.7kb的sfp片段并进行PCR纯化。将pEC-K18mob质粒(购自Addgene)用PstI进行单酶切,利用Gibson Assembly试剂盒(NEB)将上述纯化获得的sfp片段一步连接到pEC-K18mob上,获得的重组质粒命名为pEC-sfp。Artificially synthesized phosphopantetheinyl transferase gene sfp of Bacillus subtilis (the amino acid sequence is shown in SEQ ID NO: 10, and the gene sequence is shown in SEQ ID NO: 20), the main function of the enzyme is to activate carboxylic acid reduction enzyme. Using the gene fragment as a template, PCR was performed with primers sfp-F (5′-atcctctagagtcgacctgcactttaagaaggagatataccaatgaaaatttacggcatcta-3′) and sfp-R (5′-cagtgccaagcttgcatgcctcaaagtaactcctcgtagg-3′) to obtain a sfp fragment of about 0.7 kb and perform PCR purification. The pEC-K18mob plasmid (purchased from Addgene) was single-digested with PstI, and the sfp fragment obtained above was ligated to pEC-K18mob in one step using the Gibson Assembly kit (NEB), and the obtained recombinant plasmid was named pEC-sfp.
人工合成来源于Mycobacterium marinum、Nocardia iowensis、Mycolicibacterium smegmatis、Mycobacteroides abscessus的羧酸还原酶基因Car_mm、Car_ni、Car_ms、Car_ma(氨基酸序列分别如SEQ ID NO:6、SEQ ID NO:7、SEQ ID NO:8、SEQID NO:9所示,核苷酸序列分别为SEQ ID NO:16、SEQ ID NO:17、SEQ ID NO:18、SEQ ID NO:19所示)。将质粒pEC-sfp用EcoRI和KpnI进行双酶切,将上述合成的四个基因片段分别插入到质粒pEC-sfp里,获得的质粒分别命名为pEC-Car_mm-sfp、pEC-Car_ni-sfp、pEC-Car_ms-sfp、pEC-Car_ma-sfp。将质粒pEC-Car_mm-sfp、pEC-Car_ni-sfp、pEC-Car_ms-sfp、pEC-Car_ma-sfp分别转化到谷氨酸棒杆菌菌株S9114/pXMJ-gabB-yqhD-gabT_ec,获得的重组菌株分别命名为S9114-X-MM、S9114-X-NI、S9114-X-MS、S9114-X-MA。Carboxylate reductase genes Car_mm, Car_ni, Car_ms, and Car_ma derived from Mycobacterium marinum, Nocardia iowensis, Mycolicibacterium smegmatis, and Mycobacteroides abscessus (amino acid sequences are shown in SEQ ID NO: 6, SEQ ID NO: 7, and SEQ ID NO: 8, respectively) , SEQ ID NO: 9, the nucleotide sequences are shown in SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19 respectively). The plasmid pEC-sfp was double digested with EcoRI and KpnI, and the four gene fragments synthesized above were respectively inserted into the plasmid pEC-sfp, and the obtained plasmids were named pEC-Car_mm-sfp, pEC-Car_ni-sfp, pEC -Car_ms-sfp, pEC-Car_ma-sfp. The plasmids pEC-Car_mm-sfp, pEC-Car_ni-sfp, pEC-Car_ms-sfp, and pEC-Car_ma-sfp were transformed into Corynebacterium glutamicum strain S9114/pXMJ-gabB-yqhD-gabT_ec respectively, and the obtained recombinant strains were named respectively For S9114-X-MM, S9114-X-NI, S9114-X-MS, S9114-X-MA.
将菌株S9114-X-MM、S9114-X-NI、S9114-X-MS、S9114-X-MA和对照菌株S9114/pXMJ-gabB-yqhD-gabT_ec、S9114/pXMJ接种到5L发酵罐中进行培养,发酵液的初始体积为2L,发酵温度为30℃,通气量为1vvm,发酵过程通过调整转速使得发酵过程的溶氧值维持在20%,通过自动流加25%氨水控制发酵液的pH为7.0,发酵4h时添加0.1m MIPTG进行诱导,发酵时间为48h。Bacterial strains S9114-X-MM, S9114-X-NI, S9114-X-MS, S9114-X-MA and control bacterial strains S9114/pXMJ-gabB-yqhD-gabT_ec, S9114/pXMJ were inoculated into a 5L fermenter for cultivation, The initial volume of the fermentation broth is 2L, the fermentation temperature is 30°C, and the ventilation rate is 1vvm. During the fermentation process, the dissolved oxygen value during the fermentation process is maintained at 20% by adjusting the rotation speed, and the pH of the fermentation broth is controlled to 7.0 by automatically adding 25% ammonia water. , adding 0.1m MIPTG for induction at 4 hours of fermentation, and the fermentation time was 48 hours.
发酵培养基配方包括(g/L):葡萄糖100,(NH4)2SO4 20,K2HPO4 1.0,MgSO4 0.5,MnSO4 0.2,FeSO4 0.2,玉米浆20,磷酸吡哆醛0.01,盐酸硫胺素0.001,氯霉素0.005。Fermentation medium formula includes (g/L): glucose 100, (NH 4 ) 2 SO 4 20, K 2 HPO 4 1.0, MgSO 4 0.5, MnSO 4 0.2, FeSO 4 0.2, corn steep liquor 20, pyridoxal phosphate 0.01 , Thiamine hydrochloride 0.001, chloramphenicol 0.005.
发酵48小时后停止发酵,然后利用高效液相色谱(HPLC)检测菌株的产物。菌株S9114-X-MM、S9114-X-NI、S9114-X-MS、S9114-X-MA分别可以生产7.8g/L、6.9g/L、7.2g/L、7.7g/L的BDO,而对照菌株S9114/pXMJ-gabB-yqhD-gabT_ec和S9114/pXMJ均不产BDO。说明在谷氨酸棒杆菌中引入人工途径可以成功实现葡萄糖到BDO的高效生产。After 48 hours of fermentation, the fermentation was stopped, and the products of the strains were detected by high performance liquid chromatography (HPLC). Strains S9114-X-MM, S9114-X-NI, S9114-X-MS, and S9114-X-MA could produce 7.8g/L, 6.9g/L, 7.2g/L, and 7.7g/L of BDO, respectively, while The control strains S9114/pXMJ-gabB-yqhD-gabT_ec and S9114/pXMJ did not produce BDO. It shows that the introduction of artificial pathway in Corynebacterium glutamicum can successfully realize the efficient production of glucose to BDO.
将发酵培养基的碳源从100g/L葡萄糖改为100g/L蔗糖,其他成分不变,发酵过程也保持完全一致。菌株S9114-X-MM、S9114-X-NI、S9114-X-MS、S9114-X-MA分别可以生产6.4g/L、6.2g/L、6.3g/L、6.9g/L的BDO,而对照菌株S9114/pXMJ-gabB-yqhD-gabT_ec和S9114/pXMJ均不产BDO。说明在谷氨酸棒杆菌中引入人工途径可以成功实现蔗糖到BDO的高效生产。The carbon source of the fermentation medium was changed from 100g/L glucose to 100g/L sucrose, other components remained unchanged, and the fermentation process remained completely the same. Strains S9114-X-MM, S9114-X-NI, S9114-X-MS, and S9114-X-MA could produce 6.4g/L, 6.2g/L, 6.3g/L, and 6.9g/L of BDO, respectively, while The control strains S9114/pXMJ-gabB-yqhD-gabT_ec and S9114/pXMJ did not produce BDO. It shows that the introduction of artificial pathway in Corynebacterium glutamicum can successfully realize the efficient production of sucrose to BDO.
将发酵培养基的碳源从100g/L葡萄糖改为糖蜜(其中蔗糖含量为100g/L),其他成分不变,发酵过程也保持完全一致。菌株S9114-X-MM、S9114-X-NI、S9114-X-MS、S9114-X-MA分别可以生产5.7g/L、5.9g/L、5.1g/L、4.7g/L的BDO,而对照菌株S9114/pXMJ-gabB-yqhD-gabT_ec和S9114/pXMJ均不产BDO。说明在谷氨酸棒杆菌中引入人工途径可以成功实现糖蜜到BDO的高效生产。The carbon source of the fermentation medium is changed from 100g/L glucose to molasses (wherein the sucrose content is 100g/L), other components remain unchanged, and the fermentation process also remains completely consistent. Strains S9114-X-MM, S9114-X-NI, S9114-X-MS, and S9114-X-MA could produce 5.7g/L, 5.9g/L, 5.1g/L, and 4.7g/L of BDO, respectively, while The control strains S9114/pXMJ-gabB-yqhD-gabT_ec and S9114/pXMJ did not produce BDO. It shows that the introduction of artificial pathway in Corynebacterium glutamicum can successfully realize the efficient production of molasses to BDO.
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之做一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。Although the present invention has been described in detail with general descriptions and specific embodiments above, it is obvious to those skilled in the art that some modifications or improvements can be made on the basis of the present invention. Therefore, the modifications or improvements made on the basis of not departing from the spirit of the present invention all belong to the protection scope of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211176997.7A CN116083329A (en) | 2022-09-26 | 2022-09-26 | Method for producing gamma-butyrolactone or 1,4-butanediol by fermentation |
PCT/CN2023/114599 WO2024066822A1 (en) | 2022-09-26 | 2023-08-24 | METHOD FOR PRODUCING γ-BUTYROLACTONE OR 1,4-BUTANEDIOL BY FERMENTATION |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211176997.7A CN116083329A (en) | 2022-09-26 | 2022-09-26 | Method for producing gamma-butyrolactone or 1,4-butanediol by fermentation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116083329A true CN116083329A (en) | 2023-05-09 |
Family
ID=86199810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211176997.7A Pending CN116083329A (en) | 2022-09-26 | 2022-09-26 | Method for producing gamma-butyrolactone or 1,4-butanediol by fermentation |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116083329A (en) |
WO (1) | WO2024066822A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117089507A (en) * | 2023-09-28 | 2023-11-21 | 北京化工大学 | A genetically engineered Escherichia coli strain that uses cheap carbon sources to synthesize 1,4-butanediol and its application |
WO2024066822A1 (en) * | 2022-09-26 | 2024-04-04 | 北京绿色康成生物技术有限公司 | METHOD FOR PRODUCING γ-BUTYROLACTONE OR 1,4-BUTANEDIOL BY FERMENTATION |
WO2025135685A1 (en) * | 2023-12-21 | 2025-06-26 | 대상 주식회사 | Mutant microorganism having improved ability to produce 1,4-butanediol and method for producing 1,4-butanediol using same |
WO2025136008A1 (en) * | 2023-12-21 | 2025-06-26 | 대상 주식회사 | Mutant microorganism having improved ability to produce 1,4-butanediol and method for producing 1,4-butanediol using same |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101668861A (en) * | 2007-03-16 | 2010-03-10 | 基因组股份公司 | compositions and methods for the biosynthesis of 1,4-butanediol and its precursors |
US20100112654A1 (en) * | 2008-09-10 | 2010-05-06 | Burk Mark J | Microorganisms for the production of 1,4-butanediol |
US20110014669A1 (en) * | 2009-01-23 | 2011-01-20 | Microbia, Inc. | Production of 1,4 Butanediol in a Microorganism |
US20110129899A1 (en) * | 2009-10-13 | 2011-06-02 | Robert Haselbeck | Microorganisms for the production of 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-coa, putrescine and related compounds, and methods related thereto |
CN102498215A (en) * | 2009-06-04 | 2012-06-13 | 基因组股份公司 | Microorganisms for the production of 1,4-butanediol and related methods |
CN102781926A (en) * | 2010-02-11 | 2012-11-14 | 梅塔玻利克斯公司 | Process for gamma-butyrolactone production |
US20140030779A1 (en) * | 2012-06-04 | 2014-01-30 | Genomatica, Inc. | Microorganisms and methods for production of 4-hydroxybutyrate, 1,4-butanediol and related compounds |
US20140170714A1 (en) * | 2011-08-10 | 2014-06-19 | Metabolix, Inc. | Post process purification for gamma-butyrolactone production |
US20140371417A1 (en) * | 2013-04-26 | 2014-12-18 | Genomatica, Inc. | Microorganisms and methods for production of 4-hydroxybutyrate, 1,4-butanediol and related compounds |
CN105647912A (en) * | 2014-12-01 | 2016-06-08 | 清华大学 | Acid resistance expression cassette and screening method thereof |
US20160264978A1 (en) * | 2011-06-22 | 2016-09-15 | Genomatica, Inc. | Microorganisms for producing 1,4-butanediol and methods related thereto |
US20190276863A1 (en) * | 2009-11-25 | 2019-09-12 | Genomatica, Inc. | Microorganisms and methods for the coproduction 1,4-butanediol and gamma-butyrolactone |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101381002B1 (en) * | 2012-04-23 | 2014-04-04 | 동국대학교 산학협력단 | Method for gamma-aminobutyric acid with glycerol as substrate by biotransformation process |
US9920339B2 (en) * | 2014-06-16 | 2018-03-20 | Invista North America S.A.R.L. | Methods, reagents and cells for biosynthesizing compounds |
WO2015195707A1 (en) * | 2014-06-16 | 2015-12-23 | Invista Technologies S.A.R.L. | Methods, reagents and cells for biosynthesizing compounds |
CN116083329A (en) * | 2022-09-26 | 2023-05-09 | 北京绿色康成生物技术有限公司 | Method for producing gamma-butyrolactone or 1,4-butanediol by fermentation |
-
2022
- 2022-09-26 CN CN202211176997.7A patent/CN116083329A/en active Pending
-
2023
- 2023-08-24 WO PCT/CN2023/114599 patent/WO2024066822A1/en unknown
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101668861A (en) * | 2007-03-16 | 2010-03-10 | 基因组股份公司 | compositions and methods for the biosynthesis of 1,4-butanediol and its precursors |
US20100112654A1 (en) * | 2008-09-10 | 2010-05-06 | Burk Mark J | Microorganisms for the production of 1,4-butanediol |
US20110014669A1 (en) * | 2009-01-23 | 2011-01-20 | Microbia, Inc. | Production of 1,4 Butanediol in a Microorganism |
CN102498215A (en) * | 2009-06-04 | 2012-06-13 | 基因组股份公司 | Microorganisms for the production of 1,4-butanediol and related methods |
CN113528417A (en) * | 2009-06-04 | 2021-10-22 | 基因组股份公司 | Microorganisms for producing 1, 4-butanediol and related methods |
US20110129899A1 (en) * | 2009-10-13 | 2011-06-02 | Robert Haselbeck | Microorganisms for the production of 1,4-butanediol, 4-hydroxybutanal, 4-hydroxybutyryl-coa, putrescine and related compounds, and methods related thereto |
US20190276863A1 (en) * | 2009-11-25 | 2019-09-12 | Genomatica, Inc. | Microorganisms and methods for the coproduction 1,4-butanediol and gamma-butyrolactone |
CN102781926A (en) * | 2010-02-11 | 2012-11-14 | 梅塔玻利克斯公司 | Process for gamma-butyrolactone production |
US20160264978A1 (en) * | 2011-06-22 | 2016-09-15 | Genomatica, Inc. | Microorganisms for producing 1,4-butanediol and methods related thereto |
US20140170714A1 (en) * | 2011-08-10 | 2014-06-19 | Metabolix, Inc. | Post process purification for gamma-butyrolactone production |
US20140030779A1 (en) * | 2012-06-04 | 2014-01-30 | Genomatica, Inc. | Microorganisms and methods for production of 4-hydroxybutyrate, 1,4-butanediol and related compounds |
US20140371417A1 (en) * | 2013-04-26 | 2014-12-18 | Genomatica, Inc. | Microorganisms and methods for production of 4-hydroxybutyrate, 1,4-butanediol and related compounds |
CN105647912A (en) * | 2014-12-01 | 2016-06-08 | 清华大学 | Acid resistance expression cassette and screening method thereof |
Non-Patent Citations (12)
Title |
---|
JAE WOONG CHOI等: "Enhanced production of gamma-aminobutyrate(GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range", 《MICROBIAL CELL FACTORIES》, vol. 14, no. 21, 15 February 2015 (2015-02-15), pages 2, XP021211597, DOI: 10.1186/s12934-015-0205-9 * |
JIAN WANG等: "Bacterial synthesis of C3-C5 diols via extending amino acid catabolism", 《PNAS》, vol. 117, no. 32, 27 July 2020 (2020-07-27), pages 19160 - 19163 * |
无: "GenBank: HBP9016664.1", 《GENBANK》, 1 February 2022 (2022-02-01) * |
无: "GenBank: PNG88356.1", 《GENBANK》, 18 January 2018 (2018-01-18) * |
无: "NCBI Reference Sequence: WP_001058802.1", 《GENBANK》, 13 March 2021 (2021-03-13) * |
无: "NCBI Reference Sequence: WP_001087611.1", 《GENBANK》, 16 December 2020 (2020-12-16) * |
无: "NCBI Reference Sequence:005082584.1", 《GENBANK》, 7 January 2020 (2020-01-07) * |
无: "NCBI Reference Sequence:WP_ 011013682.1", 《GENBANK》, 25 May 2020 (2020-05-25) * |
无: "NCBI Reference Sequence:WP_003234549.1", 《GENBANK》, 10 July 2019 (2019-07-10) * |
无: "NCBI Reference Sequence:WP_011730755.1", 《GENBANK》, 6 January 2020 (2020-01-06) * |
无: "NCBI Reference Sequence:WP_012393886.1", 《GENBANK》, 15 June 2019 (2019-06-15) * |
无: "UniProtKB/Swiss-Prot:Q6RKB1.1", 《GENBANK》, 25 May 2022 (2022-05-25) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024066822A1 (en) * | 2022-09-26 | 2024-04-04 | 北京绿色康成生物技术有限公司 | METHOD FOR PRODUCING γ-BUTYROLACTONE OR 1,4-BUTANEDIOL BY FERMENTATION |
CN117089507A (en) * | 2023-09-28 | 2023-11-21 | 北京化工大学 | A genetically engineered Escherichia coli strain that uses cheap carbon sources to synthesize 1,4-butanediol and its application |
WO2025135685A1 (en) * | 2023-12-21 | 2025-06-26 | 대상 주식회사 | Mutant microorganism having improved ability to produce 1,4-butanediol and method for producing 1,4-butanediol using same |
WO2025136008A1 (en) * | 2023-12-21 | 2025-06-26 | 대상 주식회사 | Mutant microorganism having improved ability to produce 1,4-butanediol and method for producing 1,4-butanediol using same |
Also Published As
Publication number | Publication date |
---|---|
WO2024066822A1 (en) | 2024-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116083329A (en) | Method for producing gamma-butyrolactone or 1,4-butanediol by fermentation | |
CN101389752B (en) | Bacteria capable of producing organic acids and method for producing organic acids | |
KR100511734B1 (en) | Method for producing optically active compound | |
WO2023240794A1 (en) | Recombinant escherichia coli for producing l-homoserine and use thereof | |
CN105950529B (en) | Recombinant corynebacterium glutamicum producing 3-hydroxypropionic acid, and construction method and application thereof | |
CN105368766A (en) | Genetically engineered bacterium for producing pentamethylene diamine and method for preparing pentamethylene diamine | |
CN113234611A (en) | Saccharomyces cerevisiae engineering bacteria and application thereof in preparation of protocatechuic acid | |
US10760104B2 (en) | Method of producing D-xylonate and coryneform bacterium | |
WO2010032698A1 (en) | Method for producing lactic acid from plant-derived raw material, and lactic-acid-producing bacterium | |
CN116064345A (en) | High-efficiency production of fucosyllactose without genetically engineered bacteria and its application | |
CN117844728B (en) | A L-valine production strain and its construction method and application | |
CN108085288B (en) | Method for producing 1, 3-propylene glycol by utilizing recombinant microorganism fermentation | |
KR20210037448A (en) | Mass production method for poly(3-hydroxypropionate) | |
KR100447532B1 (en) | (R)-Hydroxycarboxylic Acid Producing Recombinant Microorganism and Process for Preparing (R)-Hydroxycarboxylic Acid Using the Same | |
CN116396914A (en) | Method for producing 3-hydroxy propionic acid and acrylic acid by fermentation | |
KR20070096347A (en) | 4―hydroxybutyrate (4HB) Variant and Production Method of 4HB Using the Same | |
DE10312775B4 (en) | Method and microorganism for the microbial production of L-alanine | |
WO2011034031A1 (en) | Isopropyl alcohol-producing bacterium and method for producing isopropyl alcohol | |
KR102782737B1 (en) | Novel CoA-acylating propionaldehyde dehydrogenase variant and uses thereof | |
CN118165907B (en) | Gamma-aminobutyric acid production strain and construction method and application thereof | |
CN115851566B (en) | Strain for producing 2-pyrrolidone by one-step method and application thereof | |
KR102377745B1 (en) | Novel promoter and use thereof | |
KR102598992B1 (en) | Isobutanol and polyhydroxybutyrate simultaneous production strain and use thereof | |
US12312608B2 (en) | D-xylose dehydrogenase from coryneform bacteria and process for preparing D-xylonate | |
KR20240147934A (en) | Mutant microorganism producing 1,4-butanediol and method for producing 1,4-butanediol using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20230509 |
|
WD01 | Invention patent application deemed withdrawn after publication |