[go: up one dir, main page]

CN116075402A - Robot control method and robot control device - Google Patents

Robot control method and robot control device Download PDF

Info

Publication number
CN116075402A
CN116075402A CN202280006109.9A CN202280006109A CN116075402A CN 116075402 A CN116075402 A CN 116075402A CN 202280006109 A CN202280006109 A CN 202280006109A CN 116075402 A CN116075402 A CN 116075402A
Authority
CN
China
Prior art keywords
increment
actuator
δθd
emergency stop
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280006109.9A
Other languages
Chinese (zh)
Inventor
岩谷正义
桥本敦实
中田广之
本内保义
山本良祐
上田纮义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of CN116075402A publication Critical patent/CN116075402A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

In the robot control method of the present disclosure, the positional deviation increment (Δθd- Δθ) is calculated based on the positional command increment (Δθd) and the positional increment (Δθ). The positional deviation (e) is calculated based on the positional deviation increment (Δθd- Δθ). The speed command (ωd) is calculated based on the position deviation (e) and the gain (K). The actuator 30 is driven by being supplied with a current (i) corresponding to the speed command (ωd). When an emergency stop command is output, the positional deviation increment (Δθd- Δθ) is multiplied by a predetermined coefficient (C) that becomes C > 1.0.

Description

机器人控制方法以及机器人控制装置Robot control method and robot control device

技术领域technical field

本公开涉及机器人控制方法以及机器人控制装置。The present disclosure relates to a robot control method and a robot control device.

背景技术Background technique

专利文献1中公开了一种数值控制装置,在紧急停止时从通常的增益切换为紧急停止用中计算的较高的增益,通过保持位置控制进行紧急停止,缩短电机停止距离。Patent Document 1 discloses a numerical control device that switches from a normal gain to a higher gain calculated for emergency stop at the time of emergency stop, performs emergency stop by maintaining position control, and shortens the motor stop distance.

现有技术文献prior art literature

专利文献patent documents

专利文献1:日本特开2016-082850号公报Patent Document 1: Japanese Patent Laid-Open No. 2016-082850

发明内容Contents of the invention

然而,专利文献1的数值控制装置构成为通过在紧急停止时(紧迫停止时)增大位置控制的增益来实现停止时间的缩短。However, the numerical controller of Patent Document 1 is configured to shorten the stop time by increasing the gain of the position control at the time of emergency stop (emergency stop).

但是,若增大增益,则担心速度指令、致动器的速度变得不稳定,在机器人的各轴的致动器或者减速机等产生冲击(shock)。However, if the gain is increased, the speed command and the speed of the actuator may become unstable, and a shock may be generated in the actuator of each axis of the robot, the reducer, or the like.

本公开的目的在于,抑制机器人的紧急停止时在致动器产生冲击并且缩短停止时间。An object of the present disclosure is to suppress the occurrence of an impact on an actuator during an emergency stop of a robot and shorten the stop time.

本公开的第1方式是一种机器人控制方法,对具有多个致动器的机器人的动作进行控制,所述机器人控制方法具备:第1工序,基于用于驱动所述致动器的位置指令增量(Δθd)和该致动器的驱动后被反馈的位置增量(Δθ),运算位置偏差增量(Δθd-Δθ);第2工序,基于所述位置偏差增量(Δθd-Δθ),运算位置偏差(e);第3工序,基于所述位置偏差(e)和增益(K),运算速度指令(ωd);第4工序,将与所述速度指令(ωd)相应的电流(i)提供给所述致动器来驱动所述致动器;和第5工序,在反复执行所述第1工序至所述第4工序的期间,在输出紧急停止指令的情况下,对所述位置偏差增量(Δθd-Δθ)乘以成为C>1.0的规定的系数(C)。A first aspect of the present disclosure is a robot control method for controlling the motion of a robot having a plurality of actuators, the robot control method including: a first step of: Increment (Δθd) and the position increment (Δθ) fed back after the actuator is driven, calculate the position deviation increment (Δθd-Δθ); the second process, based on the position deviation increment (Δθd-Δθ) , calculate the position deviation (e); the third process, based on the position deviation (e) and the gain (K), calculate the speed command (ωd); the fourth process, the current corresponding to the speed command (ωd) ( i) supplying the actuator to drive the actuator; and a fifth step, when an emergency stop command is output during the repeated execution of the first step to the fourth step, The aforementioned positional deviation increment (Δθd-Δθ) is multiplied by a predetermined coefficient (C) such that C>1.0.

在本公开的第1方式中,位置偏差增量(Δθd-Δθ)是基于位置指令增量(Δθd)和位置增量(Δθ)而运算的。位置偏差(e)是基于位置偏差增量(Δθd-Δθ)而运算的。速度指令(ωd)是基于位置偏差(e)和增益(K)而运算的。致动器通过被提供与速度指令(ωd)相应的电流(i)而进行驱动。在输出紧急停止指令的情况下,对位置偏差增量(Δθd-Δθ)乘以成为C>1.0的规定的系数(C)。In the first aspect of the present disclosure, the position deviation increment (Δθd-Δθ) is calculated based on the position command increment (Δθd) and the position increment (Δθ). The positional deviation (e) is calculated based on the positional deviation increment (Δθd-Δθ). The speed command (ωd) is calculated based on the position deviation (e) and gain (K). The actuator is driven by being supplied with a current (i) corresponding to a speed command (ωd). When an emergency stop command is output, the positional deviation increment (Δθd-Δθ) is multiplied by a predetermined coefficient (C) such that C>1.0.

这样,在输出紧急停止指令的情况下,仅对输出紧急停止指令后的位置偏差增量(Δθd-Δθ)乘以系数(C)来增大速度指令(ωd)。由此,能够抑制在致动器产生冲击,并且缩短到致动器停止为止的时间。In this way, when the emergency stop command is output, the speed command (ωd) is increased by simply multiplying the position deviation increment (Δθd-Δθ) after the emergency stop command is output by the coefficient (C). Accordingly, it is possible to reduce the time until the actuator stops while suppressing the occurrence of a shock in the actuator.

本公开的第2方式是一种机器人控制装置,具备对具有多个致动器的机器人的动作进行控制的控制部,所述控制部进行如下动作:第1动作,基于用于驱动所述致动器的位置指令增量(Δθd)和该致动器的驱动后被反馈的位置增量(△θ),运算位置偏差增量(Δθd-Δθ);第2动作,基于所述位置偏差增量(Δθd-Δθ),运算位置偏差(e);第3动作,基于所述位置偏差(e)和增益(K),运算速度指令(ωd);第4动作,将与所述速度指令(ωd)相应的电流(i)提供给所述致动器来驱动所述致动器;和第5动作,在反复执行所述第1动作至所述第4动作的期间,在输出紧急停止指令的情况下,对所述位置偏差增量(Δθd-Δθ)乘以成为C>1.0的规定的系数(C)。A second aspect of the present disclosure is a robot control device including a control unit that controls the movement of a robot having a plurality of actuators, and the control unit operates as follows: The position command increment (Δθd) of the actuator and the position increment (Δθ) fed back after the actuator is driven are used to calculate the position deviation increment (Δθd-Δθ); the second action is based on the position deviation increment amount (Δθd-Δθ), calculate the position deviation (e); the third action, based on the position deviation (e) and gain (K), calculate the speed command (ωd); the fourth action, combine the speed command ( ωd) the corresponding current (i) is supplied to the actuator to drive the actuator; and the fifth action is to output an emergency stop command during the period of repeatedly performing the first action to the fourth action In the case of , the positional deviation increment (Δθd-Δθ) is multiplied by a predetermined coefficient (C) such that C>1.0.

在本公开的第2方式中,位置偏差增量(Δθd-Δθ)是基于位置指令增量(Δθd)和位置增量(△θ)而运算的。位置偏差(e)是基于位置偏差增量(Δθd-Δθ)而运算的。速度指令(ωd)是基于位置偏差(e)和增益(K)而运算的。致动器通过被提供与速度指令(ωd)相应的电流(i)而进行驱动。在输出紧急停止指令的情况下,对位置偏差增量(Δθd-Δθ)乘以成为C>1.0的规定的系数(C)。In the second aspect of the present disclosure, the position deviation increment (Δθd-Δθ) is calculated based on the position command increment (Δθd) and the position increment (Δθ). The positional deviation ( e ) is calculated based on the positional deviation increment (Δθd-Δθ). The speed command (ωd) is calculated based on the position deviation (e) and gain (K). The actuator is driven by being supplied with a current (i) corresponding to a speed command (ωd). When an emergency stop command is output, the positional deviation increment (Δθd-Δθ) is multiplied by a predetermined coefficient (C) such that C>1.0.

这样,在输出紧急停止指令的情况下,仅对输出紧急停止指令后的位置偏差增量(Δθd-Δθ)乘以系数(C)来增大速度指令(ωd)。由此,能够抑制在致动器产生冲击,并且缩短到致动器停止为止的时间。In this way, when the emergency stop command is output, the speed command (ωd) is increased by simply multiplying the position deviation increment (Δθd-Δθ) after the emergency stop command is output by the coefficient (C). Accordingly, it is possible to reduce the time until the actuator stops while suppressing the occurrence of a shock in the actuator.

根据本公开,在机器人的紧急停止时,能够抑制在致动器产生冲击并且缩短停止时间。According to the present disclosure, at the time of emergency stop of the robot, it is possible to reduce the stop time while suppressing the shock from being generated in the actuator.

附图说明Description of drawings

图1是表示本公开的实施方式所涉及的机器人控制装置的结构的侧视图。FIG. 1 is a side view showing the configuration of a robot controller according to an embodiment of the present disclosure.

图2是本公开的实施方式所涉及的机器人控制装置的框线图。FIG. 2 is a block diagram of a robot controller according to an embodiment of the present disclosure.

图3是表示在比较例1中在紧急停止时将增益设为恒定的情况下的速度变化的图表。FIG. 3 is a graph showing changes in speed when a gain is kept constant during an emergency stop in Comparative Example 1. FIG.

图4是表示在比较例2中在紧急停止时增大增益的情况下的速度变化的图表。FIG. 4 is a graph showing changes in speed when the gain is increased during an emergency stop in Comparative Example 2. FIG.

图5是表示在本公开的实施方式中在紧急停止时将系数设为恒定的情况下的速度变化的图表。FIG. 5 is a graph showing changes in speed when the coefficient is constant at the time of an emergency stop in the embodiment of the present disclosure.

图6是表示在本公开的实施方式中在紧急停止时增大系数的情况下的速度变化的图表。FIG. 6 is a graph showing changes in speed when the coefficient is increased at the time of emergency stop in the embodiment of the present disclosure.

具体实施方式Detailed ways

以下,基于附图来说明本公开的实施方式。另外,以下的优选的实施方式的说明本质上仅仅为示例,并不意图限制本公开、其应用物或者其用途。Embodiments of the present disclosure will be described below based on the drawings. In addition, the description of the following preferred embodiments is merely an example in nature, and is not intended to limit the present disclosure, its application, or its use.

<机器人的结构><Robot Structure>

图1是表示本公开的实施方式所涉及的机器人控制装置1的结构的侧视图。如图1所示,机器人控制装置1具备:机器人5、控制部20。机器人5具有6轴的多关节型的机器人臂10。控制部20对机器人臂10的动作进行控制。机器人5例如对作业台6交接工件W。FIG. 1 is a side view showing the configuration of a robot controller 1 according to an embodiment of the present disclosure. As shown in FIG. 1 , the robot control device 1 includes a robot 5 and a control unit 20 . The robot 5 has a 6-axis articulated robot arm 10 . The control unit 20 controls the operation of the robot arm 10 . The robot 5 delivers the workpiece W to the workbench 6, for example.

机器人臂10具有:底座部11、肩部12、下臂部13、第1上臂部14、第2上臂部15、手腕部16、安装部17。The robot arm 10 has a base portion 11 , a shoulder portion 12 , a lower arm portion 13 , a first upper arm portion 14 , a second upper arm portion 15 , a wrist portion 16 , and a mounting portion 17 .

肩部12相对于底座部11被支承为以第1关节部J1为中心在水平方向可回转。下臂部13相对于肩部12被支承为以第2关节部J2为中心在上下方向可回转。The shoulder portion 12 is supported by the base portion 11 so as to be rotatable in the horizontal direction around the first joint portion J1. The lower arm portion 13 is supported by the shoulder portion 12 so as to be rotatable in the vertical direction around the second joint portion J2.

第1上臂部14相对于下臂部13被支承为以第3关节部J3为中心在上下方向可回转。第2上臂部15相对于第1上臂部14的前端部,被支承为以第4关节部J4为中心可扭转旋转。The first upper arm portion 14 is supported by the lower arm portion 13 so as to be rotatable in the vertical direction around the third joint portion J3. The second upper arm portion 15 is supported so as to be twistable and rotatable about the fourth joint portion J4 with respect to the front end portion of the first upper arm portion 14 .

手腕部16相对于第2上臂部15,被支承为以第5关节部J5为中心在上下方向可回转。安装部17相对于手腕部16,被支承以第6关节部J6为中心可扭转旋转。在安装部17,安装把持工件W的手部18。The wrist portion 16 is supported by the second upper arm portion 15 so as to be rotatable in the vertical direction around the fifth joint portion J5. The attachment part 17 is supported by the wrist part 16 so that it can twist and rotate around the sixth joint part J6. A hand 18 for holding the workpiece W is attached to the mounting portion 17 .

在第1关节部J1至第6关节部J6,内置致动器30(参照图2)。控制部20基于通过示教等而预先输入的动作程序,对第1关节部J1至第6关节部J6的致动器30的驱动进行控制,以使得第1关节部J1至第6关节部J6分别达到目标位置(指令角度)。Actuators 30 are built in the first joint J1 to the sixth joint J6 (see FIG. 2 ). The control unit 20 controls the driving of the actuators 30 of the first joint part J1 to the sixth joint part J6 so that the first joint part J1 to the sixth joint part J6 Reach the target position (command angle) respectively.

<控制部><control department>

图2是机器人控制装置1的框线图。如图2所示,控制部20具有:系数块21、积分算子块22、增益块23、速度以及电流控制块24。控制部20与机器人5的致动器30连接。在致动器30设置各种传感器31。FIG. 2 is a block diagram of the robot controller 1 . As shown in FIG. 2 , the control unit 20 has: a coefficient block 21 , an integral operator block 22 , a gain block 23 , and a speed and current control block 24 . The control unit 20 is connected to the actuator 30 of the robot 5 . Various sensors 31 are provided on the actuator 30 .

向控制部20输入用于驱动致动器30的位置指令增量(Δθd)和致动器30的驱动后被反馈的位置增量(Δθ)。A position command increment (Δθd) for driving the actuator 30 and a position increment (Δθ) fed back after the actuator 30 is driven are input to the control unit 20 .

控制部20基于位置指令增量(Δθd)和位置增量(Δθ),进行运算位置偏差增量(Δθd-Δθ)的第1动作。The control unit 20 performs a first operation of calculating a position deviation increment (Δθd−Δθ) based on the position command increment (Δθd) and the position increment (Δθ).

在系数块21中,对位置偏差增量(Δθd-Δθ)乘以规定的系数(C)。在通常控制时,系数(C)设定为C=1.0。换句话说,在通常控制时,系数(C)对位置偏差增量(Δθd-Δθ)的增减没有影响。In the coefficient block 21, the positional deviation increment (Δθd-Δθ) is multiplied by a predetermined coefficient (C). During normal control, the coefficient (C) is set to C=1.0. In other words, during normal control, the coefficient (C) has no effect on the increase or decrease of the position deviation increment (Δθd-Δθ).

在积分算子块22中,到当前时刻为止的位置偏差增量(Δθd-Δθ)被积分。控制部20基于位置偏差增量(Δθd-Δθ),进行运算位置偏差(e)的第2动作。In the integrator block 22, the positional deviation increment (Δθd−Δθ) up to the present time is integrated. The control unit 20 performs the second operation of calculating the positional deviation (e) based on the positional deviation increment (Δθd−Δθ).

在增益块23中,对位置偏差(e)乘以增益(K)。增益(K)是针对位置控制的响应的系数,若提高增益(K)的值则位置控制的响应性提升。控制部20基于位置偏差(e)和增益(K),进行运算速度指令(ωd)的第3动作。In the gain block 23, the positional deviation (e) is multiplied by the gain (K). The gain (K) is a coefficient for the response of the position control, and when the value of the gain (K) is increased, the responsiveness of the position control is improved. The control unit 20 performs a third operation of calculating the speed command (ωd) based on the positional deviation (e) and the gain (K).

具体地,速度指令(ωd)基于以下的式而运算。Specifically, the speed command (ωd) is calculated based on the following equation.

[式1][Formula 1]

Figure BDA0004113509960000051
Figure BDA0004113509960000051

在此,t是当前时刻,te是紧急停止指令被输出的时刻。另外,后面叙述紧急停止指令被输出的情况下的控制部(20)的动作。Here, t is the current time, and te is the time when the emergency stop command was output. In addition, the operation of the control unit (20) when an emergency stop command is output will be described later.

向速度以及电流控制块24输入速度指令(ωd)、电流反馈信号(FB)、速度反馈信号(FBω)。电流反馈信号(FB)以及速度反馈信号(FBω)在致动器30的驱动后从各种传感器31被反馈。A speed command (ωd), a current feedback signal (FB), and a speed feedback signal (FBω) are input to the speed and current control block 24 . The current feedback signal (FB) and the speed feedback signal (FBω) are fed back from various sensors 31 after the actuator 30 is driven.

在速度以及电流控制块24中,运算与速度指令(ωd)相应的电流(i)。控制部20进行将与速度指令(ωd)相应的电流(i)提供给致动器30来驱动致动器30的第4动作。In the speed and current control block 24, the current (i) corresponding to the speed command (ωd) is calculated. The control unit 20 performs a fourth operation of driving the actuator 30 by supplying the current (i) corresponding to the speed command (ωd) to the actuator 30 .

致动器30根据被提供的电流(i),以规定的速度进行驱动。控制部20通过反复执行第1动作至第4动作,控制机器人5的动作。The actuator 30 is driven at a predetermined speed according to the supplied current (i). The control unit 20 controls the operation of the robot 5 by repeatedly executing the first operation to the fourth operation.

控制部(20)在反复执行第1动作至第4动作的期间,紧急停止开关8被按压等而输出了紧急停止指令的情况下,进行对位置偏差增量(Δθd-Δθ)乘以规定的系数(C)的第5动作。在紧急停止时,系数(C)被设定为C>1.0。例如,系数(C)被设定为C=3.0。The control unit (20) multiplies the positional deviation increment (Δθd-Δθ) by a predetermined value when the emergency stop switch 8 is pressed or the like and an emergency stop command is output during the repeated execution of the first operation to the fourth operation. The 5th action of the coefficient (C). At the time of emergency stop, the coefficient (C) is set so that C>1.0. For example, the coefficient (C) is set to C=3.0.

然而,在紧急停止指令被输出的情况下,需要使致动器30的动作紧急停止。但是,若缩短到致动器30停止为止的时间,例如增大增益(K),则担心速度指令、致动器30的速度变得不稳定,在机器人5的各轴的致动器30产生冲击。However, when an emergency stop command is output, it is necessary to stop the operation of the actuator 30 urgently. However, if the time until the actuator 30 stops is shortened, for example, the gain (K) is increased, the speed command and the speed of the actuator 30 may become unstable, and the actuators 30 of each axis of the robot 5 may be unstable. shock.

以下,作为比较例1,说明在紧急停止时将增益(K)设为恒定的情况下的致动器30的速度变化。图3是表示比较例1中紧急停止时使增益恒定的情况下的速度变化的图表。Hereinafter, as Comparative Example 1, the change in the speed of the actuator 30 in the case where the gain (K) is constant at the time of emergency stop will be described. 3 is a graph showing changes in speed when a gain is kept constant during an emergency stop in Comparative Example 1. FIG.

如图3的比较例1所示,在使增益(K)恒定的状态下,输出了紧急停止指令的情况下,速度指令(ωd)、位置增量(Δθ)、实际的速度(ω)逐渐降低。As shown in Comparative Example 1 in Fig. 3, when the emergency stop command is output with the gain (K) constant, the speed command (ωd), position increment (Δθ), and actual speed (ω) gradually increase. reduce.

在图3所示的比较例1中,在输出了紧急停止指令后,增益( K)的值也约为600,是恒定的。在通常控制时,以最高速度4800rpm进行动作的致动器30被控制为在紧急停止时速度为0rpm。在此,在图3所示的例子中,紧急停止指令被输出起到速度为0rpm为止的时间为360ms。In Comparative Example 1 shown in FIG. 3, the value of the gain (K) is also constant at approximately 600 even after the emergency stop command is output. During normal control, the actuator 30 operating at a maximum speed of 4800 rpm is controlled so that the speed is 0 rpm during an emergency stop. Here, in the example shown in FIG. 3 , the time from when the emergency stop command is output until the speed reaches 0 rpm is 360 ms.

接下来,作为比较例2,对紧急停止时增大增益(K)的情况下的致动器30的速度变化进行说明。图4是表示比较例2中紧急停止时增大增益的情况下的速度变化的图表。Next, as Comparative Example 2, a change in the speed of the actuator 30 when the gain (K) is increased at the time of emergency stop will be described. FIG. 4 is a graph showing changes in speed when the gain is increased during an emergency stop in Comparative Example 2. FIG.

在图4的比较例2中,输出紧急停止指令之后,逐渐增大增益(K)。在输出紧急停止指令的情况下,速度指令(ωd)、位置增量(Δθ)、实际的速度(ω)逐渐降低。In Comparative Example 2 in FIG. 4 , after the emergency stop command is output, the gain (K) is gradually increased. When an emergency stop command is output, the speed command (ωd), the position increment (Δθ), and the actual speed (ω) gradually decrease.

在图4所示的比较例2中,在通常控制时,增益(K)的值约为600,是恒定的。在紧急停止时,增益(K)的值逐渐变大,在约1100成为恒定。在比较例2中,速度指令(ωd)是基于以下的式而运算的。In Comparative Example 2 shown in FIG. 4 , the value of the gain (K) is approximately 600 during normal control, which is constant. During an emergency stop, the value of the gain (K) gradually increases and becomes constant at about 1100. In Comparative Example 2, the speed command (ωd) is calculated based on the following equation.

[式2][Formula 2]

Figure BDA0004113509960000061
Figure BDA0004113509960000061

在此,ΔK是增益增加量。Here, ΔK is the gain increase amount.

这样,在图4的比较例2中,在运算速度指令(ωd)时,对位置偏差增量(Δθd-Δθ)的整体乘以增益增加量(ΔK),因此位置控制的响应性提高。因此,在比较例2中,紧急停止指令被输出起到速度为0rpm为止的时间为277ms,相比于使增益(K)恒定的比较例1,能够缩短致动器30停止为止的时间。In this way, in Comparative Example 2 of FIG. 4 , when calculating the speed command (ωd), the entire position deviation increment (Δθd-Δθ) is multiplied by the gain increase amount (ΔK), so the responsiveness of the position control is improved. Therefore, in Comparative Example 2, the time from when the emergency stop command is output until the speed reaches 0 rpm is 277 ms, and the time until the actuator 30 stops can be shortened compared to Comparative Example 1 in which the gain (K) is kept constant.

但是,若增益(K)的值过高则成为不稳定的动作。具体地,在图4的比较例2中,在紧急停止指令刚刚被输出之后,在致动器30产生冲击,成为致动器30的速度比最高速度更加上升等不稳定的动作。However, if the value of the gain (K) is too high, the operation becomes unstable. Specifically, in Comparative Example 2 in FIG. 4 , immediately after the emergency stop command is output, a shock occurs in the actuator 30 , and the actuator 30 becomes an unstable operation such that the speed of the actuator 30 rises further than the maximum speed.

对此,在本实施方式中,通过针对紧急停止指令被输出后的控制部(20)的动作进行研究,抑制在致动器30产生冲击。On the other hand, in the present embodiment, by studying the operation of the control unit (20) after the emergency stop command is output, the occurrence of a shock in the actuator 30 is suppressed.

首先,如图5所示,对将系数(C)设定为C=1.0的情况进行说明。图5是表示本公开的实施方式中紧急停止时使系数恒定的情况下的速度变化的图表。First, as shown in FIG. 5 , a case where the coefficient (C) is set to C=1.0 will be described. FIG. 5 is a graph showing changes in speed when a coefficient is kept constant at the time of an emergency stop in the embodiment of the present disclosure.

在图5所示的例子中,在紧急停止指令被输出的情况下,速度指令(ωd)、位置增量(Δθ)、实际的速度(ω)逐渐降低。In the example shown in FIG. 5 , when the emergency stop command is output, the speed command (ωd), the position increment (Δθ), and the actual speed (ω) gradually decrease.

在图5所示的例子中,在紧急停止指令被输出后,系数(C)也在C=1.0恒定。在通常控制时,以最高速度为4800rpm进行动作的致动器30被控制为在紧急停止时速度为0rpm。在此,在图5所示的例子中,紧急停止指令被输出起到速度为0rpm为止的时间为356ms。In the example shown in FIG. 5, the coefficient (C) is also constant at C=1.0 even after the emergency stop command is output. During normal control, the actuator 30 operating at a maximum speed of 4800 rpm is controlled so that the speed is 0 rpm during an emergency stop. Here, in the example shown in FIG. 5 , the time from when the emergency stop command is output until the speed reaches 0 rpm is 356 ms.

接下来,对紧急停止时增大系数(C)的情况下的致动器30的速度变化进行说明。图6是表示本公开的实施方式中紧急停止时增大系数的情况下的速度变化的图表。Next, a change in the speed of the actuator 30 when the coefficient (C) is increased at the time of emergency stop will be described. 6 is a graph showing changes in speed when the coefficient is increased at the time of emergency stop in the embodiment of the present disclosure.

如图6所示,在紧急停止指令被输出后,将系数(C)设定为大于1.0(C>1.0)。在图6所示的例子中,设定为C=3.0。并且,如上述的式1所示,仅对紧急停止指令输出后的位置偏差增量(Δθd-Δθ)乘以系数(C),从而增大速度指令(ωd)。As shown in FIG. 6, after the emergency stop command is output, the coefficient (C) is set to be larger than 1.0 (C>1.0). In the example shown in FIG. 6, C=3.0 is set. Then, as shown in the above-mentioned formula 1, the speed command (ωd) is increased only by multiplying the position deviation increment (Δθd-Δθ) after the emergency stop command is output by the coefficient (C).

由此,在本实施方式中,紧急停止指令被输出起到速度成为0rpm为止的时间为258ms,相比于将系数(C)设为C=1.0恒定的情况,能够缩短到致动器30停止为止的时间。Therefore, in the present embodiment, the time from when the emergency stop command is output until the speed reaches 0 rpm is 258 ms, which can be shortened until the actuator 30 stops when compared with the case where the coefficient (C) is constant at C=1.0. time so far.

此外,在图6所示的例子中可知,紧急停止指令被输出后,在致动器30也不会产生冲击,致动器30的速度顺畅降低。In addition, in the example shown in FIG. 6 , it can be seen that the speed of the actuator 30 decreases smoothly without causing a shock to the actuator 30 even after the emergency stop command is output.

如以上那样,在本实施方式所涉及的机器人控制装置1中,在紧急停止指令被输出的情况下,仅对紧急停止指令被输出后的位置偏差增量(Δθd-Δθ)乘以成为C>1.0的系数(C)来增大速度指令(ωd)。由此,能够抑制在致动器30产生冲击,并且缩短到致动器30停止为止的时间。As described above, in the robot controller 1 according to the present embodiment, when the emergency stop command is output, only the position deviation increment (Δθd-Δθ) after the emergency stop command is output is multiplied by C> A coefficient (C) of 1.0 is used to increase the speed command (ωd). Accordingly, it is possible to suppress the occurrence of a shock in the actuator 30 and shorten the time until the actuator 30 stops.

产业上的可利用性Industrial availability

如以上说明那样,本公开能够得到在紧急停止时能够抑制在致动器产生冲击这一实用性高的效果,因此极其有用且产业上的可利用性高。As described above, the present disclosure can obtain the highly practical effect of suppressing the shock generated by the actuator during an emergency stop, and thus is extremely useful and has high industrial applicability.

-符号说明--Symbol Description-

1 机器人控制装置1 Robot controller

5 机器人5 robots

8 紧急停止开关8 Emergency stop switch

10 机器人臂10 robotic arms

11 底座部11 base part

12 肩部12 shoulders

13 下臂部13 lower arm

14 第1上臂部14 1st upper arm

15 第2上臂部15 2nd upper arm

16 手腕部16 Wrist

17 安装部17 Installation Department

18 手部18 hands

20 控制部20 Control Department

21 系数块21 coefficient blocks

22 积分算子块22 integral operator block

23 增益块23 gain block

24 电流控制块24 Current control block

30 致动器30 actuator

31 各种传感器31 various sensors

J1 第1关节部J1 Joint #1

J2 第2关节部J2 Joint #2

J3 第3关节部J3 Joint 3

J4 第4关节部J4 Joint 4

J5 第5关节部J5 Joint 5

J6 第6关节部J6 Joint 6

W 工件。W Workpiece.

Claims (2)

1. A robot control method for controlling an operation of a robot having a plurality of actuators, the robot control method comprising:
a 1 st step of calculating a positional deviation increment (Δθd- Δθ) based on a positional command increment (Δθd) for driving the actuator and a positional increment (Δθ) fed back after driving the actuator;
step 2, calculating a position deviation (e) based on the position deviation increment (delta theta d-delta theta);
a step 3 of calculating a speed command (ωd) based on the positional deviation (e) and the gain (K);
a 4 th step of supplying a current (i) corresponding to the speed command (ωd) to the actuator to drive the actuator; and
and a 5 th step of multiplying the positional deviation increment (Δθd- Δθ) by a predetermined coefficient C that is C > 1.0 when an emergency stop command is output while repeating the 1 st step to the 4 th step.
2. A robot control device is provided with a control unit for controlling the operation of a robot having a plurality of actuators,
the control unit performs the following operations:
1 st operation of calculating a positional deviation increment (Δθd- Δθ) based on a positional command increment (Δθd) for driving the actuator and a positional increment (Δθ) fed back after driving the actuator;
2 nd operation of calculating a positional deviation (e) based on the positional deviation increment (Δθd- Δθ);
a 3 rd operation of calculating a speed command (ωd) based on the position deviation (e) and the gain (K);
a 4 th operation of supplying a current (i) corresponding to the speed command (ωd) to the actuator to drive the actuator; and
and an operation 5 in which, while repeating the operations 1 to 4, when an emergency stop command is output, the positional deviation increment (Δθd- Δ0) is multiplied by a predetermined coefficient C that is C > 1.0.
CN202280006109.9A 2021-06-10 2022-05-26 Robot control method and robot control device Pending CN116075402A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021-097526 2021-06-10
JP2021097526 2021-06-10
PCT/JP2022/021498 WO2022259874A1 (en) 2021-06-10 2022-05-26 Robot control method and robot control device

Publications (1)

Publication Number Publication Date
CN116075402A true CN116075402A (en) 2023-05-05

Family

ID=84425971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280006109.9A Pending CN116075402A (en) 2021-06-10 2022-05-26 Robot control method and robot control device

Country Status (3)

Country Link
JP (1) JP7474935B2 (en)
CN (1) CN116075402A (en)
WO (1) WO2022259874A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163112A (en) * 1986-01-13 1987-07-18 Nissan Motor Co Ltd Control method for industrial robot
JPH08229864A (en) * 1995-03-01 1996-09-10 Daikin Ind Ltd Collision detection method and apparatus for industrial robot
CN103069713A (en) * 2011-07-06 2013-04-24 松下电器产业株式会社 Motor control device
JP2016082850A (en) * 2014-10-22 2016-05-16 ファナック株式会社 Numerical control device for reducing motor stopping distance
CN107921620A (en) * 2015-08-25 2018-04-17 川崎重工业株式会社 Tele-manipulator system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163112A (en) * 1986-01-13 1987-07-18 Nissan Motor Co Ltd Control method for industrial robot
JPH08229864A (en) * 1995-03-01 1996-09-10 Daikin Ind Ltd Collision detection method and apparatus for industrial robot
CN103069713A (en) * 2011-07-06 2013-04-24 松下电器产业株式会社 Motor control device
JP2016082850A (en) * 2014-10-22 2016-05-16 ファナック株式会社 Numerical control device for reducing motor stopping distance
CN107921620A (en) * 2015-08-25 2018-04-17 川崎重工业株式会社 Tele-manipulator system

Also Published As

Publication number Publication date
WO2022259874A1 (en) 2022-12-15
JP7474935B2 (en) 2024-04-26
JPWO2022259874A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
US10751874B2 (en) Method of teaching robot and robotic arm control device
US9156164B2 (en) Method for adjusting parameters of impedance control
CN107848114B (en) Industrial robot and its operation method
KR101864062B1 (en) Robot control device
JP5916583B2 (en) Weaving control device for articulated robot
CN110621446B (en) Robot system and control method for robot system
JPH02310609A (en) Manipulator position and force coordination control device
JP5144035B2 (en) Industrial robot tool position / posture control method and control system
JP2011206886A (en) Device and method for controlling robot
US7842904B2 (en) Welding system and consumable electrode welding method
JP2010231575A (en) Device and method for instruction of off-line of robot, and robot system
JP2019202406A (en) Robot hand, robot hand control method, robot device, program and recording medium
JP2016221661A (en) Robot control method, assembly manufacturing method, robot device, program, and recording medium
CN116075402A (en) Robot control method and robot control device
JP2020015124A (en) Robot control method, article manufacturing method, robot control device, robot, program and recording medium
US9827673B2 (en) Robot controller inhibiting shaking of tool tip in robot equipped with travel axis
JP2010012544A (en) Robot control method and robot control device
CN112060094A (en) Impedance control-based robotic arm control method
EP4067012B1 (en) Method for controlling robot, robot system, and program for controlling robot
JP2771458B2 (en) Industrial robot deflection correction method
JP6429977B2 (en) Robot apparatus and robot control method
JP7657097B2 (en) Robot control method and control device
JP7133757B2 (en) Robot control method
JP7658142B2 (en) ROBOT CONTROL METHOD, ROBOT SYSTEM, AND ROBOT CONTROL PROGRAM
JP7563407B2 (en) Remote operation system and method for remotely operating a manipulator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination