CN116069044B - Multi-robot cooperative transportation capacity hybrid control method - Google Patents
Multi-robot cooperative transportation capacity hybrid control method Download PDFInfo
- Publication number
- CN116069044B CN116069044B CN202310321732.XA CN202310321732A CN116069044B CN 116069044 B CN116069044 B CN 116069044B CN 202310321732 A CN202310321732 A CN 202310321732A CN 116069044 B CN116069044 B CN 116069044B
- Authority
- CN
- China
- Prior art keywords
- robot
- error
- model
- end effector
- dynamics model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 239000012636 effector Substances 0.000 claims abstract description 107
- 238000006243 chemical reaction Methods 0.000 claims abstract description 55
- 238000012546 transfer Methods 0.000 claims abstract description 41
- 230000007613 environmental effect Effects 0.000 claims abstract description 29
- 238000004088 simulation Methods 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 5
- 239000011159 matrix material Substances 0.000 claims description 37
- 239000013598 vector Substances 0.000 claims description 26
- 230000001133 acceleration Effects 0.000 claims description 9
- 238000013016 damping Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims 5
- 230000008569 process Effects 0.000 abstract description 29
- 230000005540 biological transmission Effects 0.000 description 34
- 238000010586 diagram Methods 0.000 description 11
- 238000013461 design Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 238000009877 rendering Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0219—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及多机器人协同搬运控制技术领域,尤其是涉及一种多机器人协同搬运力位混合控制方法。The present invention relates to the technical field of multi-robot collaborative handling control, and in particular to a multi-robot collaborative handling force-position hybrid control method.
背景技术Background Art
近年来,以机器人为代表的智能制造技术正逐渐成为重大装备大型复杂部件高品质制造的新趋势。相比于数控机床,机器人或机器人化装备具有运动灵活、工作空间大、并行协调作业能力强等优点,且易于集成多类型传感器,能够适应复杂的加工环境,由一定规模的单体机器人化装备组成的多机器人制造系统能够进一步增加机器人作业的工作空间与灵巧度,因此设计多机器人高精度、高安全性自主控制方法对智能制造具有重要意义。In recent years, intelligent manufacturing technology represented by robots is gradually becoming a new trend in high-quality manufacturing of large and complex components of major equipment. Compared with CNC machine tools, robots or robotized equipment have the advantages of flexible movement, large workspace, strong parallel and coordinated operation capabilities, and are easy to integrate multiple types of sensors and can adapt to complex processing environments. A multi-robot manufacturing system composed of a certain scale of single robotized equipment can further increase the workspace and dexterity of robot operations. Therefore, designing a high-precision, high-safety autonomous control method for multiple robots is of great significance to intelligent manufacturing.
多移动机器人实现无人驾驶的方式从遥控驾驶,到机载计算机自主控制。移动机器人已经是成熟的移动平台,可以在移动平台上搭载不同的组件应用在不同领域。比如,状态检测、目标跟踪等领域都有移动机器人应用的潜能。其中,这些应用需要在移动平台上搭载机械臂,将二者结合起来就是移动机器人,如此高端的设备可使工业获得很大的便利。随着研究人员对这块领域的深入,已经有学者实现了移动机器人搭载机械臂在实际中的应用。例如灵活的完成抓取和装配作业任务、代替力传感器完成接触力测量工作、借助并联机械臂完成仿生工作。The ways to achieve unmanned driving of multiple mobile robots range from remote control to autonomous control by onboard computers. Mobile robots are already mature mobile platforms, and different components can be installed on the mobile platform for application in different fields. For example, there is potential for the application of mobile robots in fields such as state detection and target tracking. Among them, these applications require the installation of a robotic arm on the mobile platform. Combining the two is a mobile robot. Such high-end equipment can greatly facilitate the industry. As researchers delve deeper into this field, some scholars have realized the practical application of mobile robots equipped with robotic arms. For example, flexible completion of grasping and assembly tasks, replacement of force sensors to complete contact force measurement, and use of parallel robotic arms to complete bionic work.
多机器人协同搬运作为智能制造产业中必不可少的一个环节,尽管已经有一些学者对其进行了一定程度的研究,但是仍然存在一些技术难点需要攻克。在机器人运动过程中,外部扰动作用环境下机器人之间的相互干涉问题无疑是当今的研究热点之一;其次,在仅有位置控制下机械臂对搬运物体产生的挤压等也会对物体与机器人本身产生一定程度的损害。Multi-robot collaborative handling is an indispensable part of the intelligent manufacturing industry. Although some scholars have conducted some research on it, there are still some technical difficulties to be overcome. During the robot movement, the mutual interference between robots in the external disturbance environment is undoubtedly one of the current research hotspots; secondly, the squeezing of the robot arm on the object under position control alone will also cause a certain degree of damage to the object and the robot itself.
发明内容Summary of the invention
本发明要解决的技术问题在于考虑到多个机器人协同搬运过程的精度需要和安全性,提供了一种多机器人协同搬运力位混合控制方法。The technical problem to be solved by the present invention is to provide a multi-robot collaborative handling force-position hybrid control method taking into account the accuracy requirements and safety of the multi-robot collaborative handling process.
一种多机器人协同搬运力位混合控制方法,包括如下步骤:A multi-robot collaborative handling force-position hybrid control method comprises the following steps:
S1、建立机器人的搬运动力学模型,根据机器人的搬运动力学模型建立多个机器人组成的机器人系统的协同搬运动力学模型;S1. Establish a robot handling dynamics model, and establish a collaborative handling dynamics model of a robot system composed of multiple robots based on the robot handling dynamics model;
S2、设置机器人位置误差,引入误差转换函数对机器人位置误差进行转换,得到机器人转换后位置误差,根据机器人转换后位置误差和协同搬运动力学模型得到误差传递动力学模型;S2. Set the robot position error, introduce the error conversion function to convert the robot position error, obtain the robot position error after conversion, and obtain the error transfer dynamics model according to the robot position error after conversion and the collaborative handling dynamics model;
S3、重写误差传递动力学模型,得到重写后的误差传递动力学模型,设置滑模函数和扰动估计误差,根据重写后的误差传递动力学模型、滑模函数和扰动估计误差设计规定性能控制器,根据规定性能控制器计算出机器人系统的输入力矩;S3, rewriting the error transfer dynamics model to obtain the rewritten error transfer dynamics model, setting a sliding mode function and a disturbance estimation error, designing a specified performance controller according to the rewritten error transfer dynamics model, the sliding mode function and the disturbance estimation error, and calculating the input torque of the robot system according to the specified performance controller;
S4、预设阻抗模型、弹簧模型和环境刚度估计,根据阻抗模型、弹簧模型和环境刚度估计设计阻抗控制方法,计算出机器人系统末端执行器的接触力估计和位置;S4, presetting an impedance model, a spring model and an estimated environmental stiffness, designing an impedance control method according to the impedance model, the spring model and the estimated environmental stiffness, and calculating a contact force estimate and a position of an end effector of the robot system;
S5、根据协同搬运动力学模型、误差传递动力学模型和规定性能控制器搭建数学仿真模型,将计算出的机器人系统的输入力矩、机器人系统末端执行器的接触力估计以及位置输入至仿真模型中,验证机器人系统的协同搬运控制方法的有效性。S5. Build a mathematical simulation model based on the collaborative handling dynamics model, error transmission dynamics model and specified performance controller, input the calculated input torque of the robot system, the contact force estimation of the end effector of the robot system and the position into the simulation model to verify the effectiveness of the collaborative handling control method of the robot system.
优选地,S1中的协同搬运动力学模型具体为:Preferably, the collaborative transport dynamics model in S1 is specifically:
其中, in,
式中,为机器人系统的对称正定惯性矩阵,为机器人系统的离心项和克利奥利项矩阵,为机器人系统在建模过程产生的总摩擦力,为从机器人系统的关节矢量至工作空间的速度雅可比矩阵,为重力加速度矩阵,为机器人系统的关节矢量,和分别为机器人系统的关节矢量的一阶导数和二阶导数,为机器人系统的自由度,,为第个机器人的自由度,为机器人系统末端执行器的实际接触力,为机器人系统的输入力矩。In the formula, is the symmetric positive definite inertia matrix of the robot system, is the centrifugal and Creole term matrices of the robot system, is the total friction force generated by the robot system during the modeling process, is the velocity Jacobian matrix from the joint vectors of the robot system to the workspace, is the gravitational acceleration matrix, is the joint vector of the robot system, and are the joint vectors of the robot system The first and second derivatives of is the degree of freedom of the robot system, , For the degrees of freedom of the robot, is the actual contact force of the end effector of the robot system, is the input torque of the robot system.
优选地,S2具体包括:Preferably, S2 specifically includes:
S21、设置机器人的规定性能和性能函数,根据规定性能和性能函数确定机器人的位置误差;S21, setting the prescribed performance and performance function of the robot, and determining the position error of the robot according to the prescribed performance and performance function;
S22、设置误差转换函数,使用误差转换函数对机器人的位置误差进行转换,得到机器人转换后位置误差;S22, setting an error conversion function, and using the error conversion function to convert the position error of the robot to obtain the position error of the robot after conversion;
S23、根据机器人转换后位置误差建立机器人系统转换后位置误差,对机器人系统转换后位置误差进行处理,并结合协同搬运动力学模型,得到误差传递动力学模型。S23. Establishing the position error of the robot system after conversion according to the position error of the robot after conversion, processing the position error of the robot system after conversion, and combining it with the collaborative handling dynamics model to obtain the error transfer dynamics model.
优选地,S23中的误差传递动力学模型,具体公式为:Preferably, the error transmission dynamics model in S23 has a specific formula:
其中, in,
式中,为机器人系统转换后位置误差的二阶导数,为机器人系统的对称正定惯性矩阵,为机器人系统的离心项和克利奥利项矩阵,为从机器人系统的关节矢量至工作空间的速度雅可比矩阵,为重力加速度矩阵,和表示第i个机器人系统规定性能的上下界,表示第i个机器人的性能函数,为机器人系统的输入力矩,为机器人系统的位置误差的一阶导数,为第i个机器人的位置误差,为机器人系统的关节矢量的一阶导数,为第i个机器人的关节矢量,为机器人系统的期望位置的二阶导数,为第i个机器人的希望位置,为机器人系统末端执行器的实际接触力,、、、为误差传递动力学模型的中间变量。In the formula, is the position error of the robot system after conversion The second-order derivative of is the symmetric positive definite inertia matrix of the robot system, is the centrifugal and Creole term matrices of the robot system, is the velocity Jacobian matrix from the joint vectors of the robot system to the workspace, is the gravitational acceleration matrix, and represents the upper and lower bounds of the performance requirements of the ith robot system, represents the performance function of the ith robot, is the input torque of the robot system, is the position error of the robot system The first-order derivative of is the position error of the ith robot, is the joint vector of the robot system The first-order derivative of is the joint vector of the ith robot, is the desired position of the robot system The second-order derivative of is the desired position of the ith robot, is the actual contact force of the end effector of the robot system, , , , It is the intermediate variable of the error transfer dynamics model.
优选地,S3具体包括:Preferably, S3 specifically includes:
S31、对误差传递动力学模型进行重写,得到重写后的误差传递动力学模型,重写后的误差传递动力学模型中包含规定性能控制器;S31, rewriting the error transmission dynamics model to obtain a rewritten error transmission dynamics model, wherein the rewritten error transmission dynamics model includes a specified performance controller;
S32、根据步骤S23中机器人系统转换后位置误差设置滑模函数;S32, setting a sliding mode function according to the position error after the robot system conversion in step S23;
S33、设置扰动估计误差,根据滑模函数和扰动估计误差设置第一李雅普诺夫函数;S33, setting a disturbance estimation error, and setting a first Lyapunov function according to the sliding mode function and the disturbance estimation error;
S34、根据第一李雅普诺夫函数判定误差传递动力学模型的稳定性,并设计误差传递动力学模型稳定时对应的规定性能控制器。S34. Determine the stability of the error transmission dynamics model according to the first Lyapunov function, and design a controller with a specified performance corresponding to the stability of the error transmission dynamics model.
优选地,S34中的规定性能控制器,具体可用公式表示为:Preferably, the specified performance controller in S34 can be specifically expressed by the formula:
式中,为机器人系统的输入力矩,为机器人系统的对称正定惯性矩阵,为滑模函数,为规定性能控制器增益,为扰动估计,也就是实际扰动的估计值,为机器人系统转换后位置误差的一阶导数,为对角增益矩阵,为机器人系统的位置误差的一阶导数,为机器人系统转换后位置误差的一阶导数,、为误差传递动力学模型的中间变量。In the formula, is the input torque of the robot system, is the symmetric positive definite inertia matrix of the robot system, is the sliding mode function, To specify the performance controller gain, is the disturbance estimate, that is, the actual disturbance The estimated value of is the first-order derivative of the position error of the robot system after conversion, is the diagonal gain matrix, is the position error of the robot system The first-order derivative of is the position error of the robot system after conversion The first-order derivative of , It is the intermediate variable of the error transfer dynamics model.
优选地,S4具体包括:Preferably, S4 specifically includes:
S41、预设阻抗模型和弹簧模型,根据阻抗模型和弹簧模型推导出末端执行器的接触力误差;S41, presetting an impedance model and a spring model, and deriving a contact force error of the end effector according to the impedance model and the spring model;
S42、根据末端执行器的接触力误差和阻抗模型得到力跟踪误差传递动力学模型;S42, obtaining a force tracking error transmission dynamics model according to the contact force error and impedance model of the end effector;
S43、设计环境刚度估计,根据力跟踪误差传递动力学模型和环境刚度估计设计第二和第三李雅普诺夫函数,通过第二和第三李雅普诺夫函数推导出环境刚度估计的一阶导数;S43, designing an environmental stiffness estimation, designing a second and a third Lyapunov function according to a force tracking error transmission dynamics model and the environmental stiffness estimation, and deriving a first-order derivative of the environmental stiffness estimation through the second and the third Lyapunov function;
S44、根据环境刚度估计的一阶导数和弹簧模型得出机器人系统末端执行器的接触力估计;S44, deriving a contact force estimate of the end effector of the robot system based on the first-order derivative of the environmental stiffness estimate and the spring model;
S45、根据末端执行器的接触力误差和阻抗模型得到机器人系统末端执行器的位置。S45. Obtain the position of the end effector of the robot system according to the contact force error and impedance model of the end effector.
优选地,S42中的力跟踪误差传递动力学模型具体为:Preferably, the force tracking error transmission dynamics model in S42 is specifically:
式中,、、分别为第i个机器人的阻抗模型的惯性、阻尼和刚度,为第i个机器人环境刚度的估计值,为第i个机器人末端执行器的接触力误差,和分别为第i个机器人末端执行器的接触力误差的一阶导数和二阶导数,。In the formula, , , are the inertia, damping and stiffness of the impedance model of the ith robot, is the stiffness of the environment of the ith robot The estimated value of is the contact force error of the i-th robot end effector, and are the contact force errors of the i-th robot end effector The first and second derivatives of .
优选地,S44中机器人系统末端执行器的接触力估计,具体公式为:Preferably, the contact force estimation of the end effector of the robot system in S44 is specifically formulated as follows:
式中,为第i个机器人末端执行器的接触力估计,为第i个机器人环境刚度的估计,为第i个机器人末端执行器的位置,为目标物体的位置。In the formula, is the contact force estimate of the i-th robot end effector, is the stiffness of the environment of the ith robot The estimate, is the position of the i-th robot end effector, is the position of the target object.
优选地,S45中机器人系统末端执行器的位置,具体公式为:Preferably, the position of the end effector of the robot system in S45 is specifically calculated as follows:
式中,为阻抗模型输出的第i个机器人末端执行器的位置,为阻抗模型输出的第i个机器人末端执行器位置的一阶导数,为阻抗模型输入的第i个机器人末端执行器位置,,、分别为第i个阻抗模型的惯性、阻尼和刚度,和分别为阻抗模型输入的第i个机器人末端执行器位置的一阶导数和二阶导数,为第i个机器人末端执行器的位置误差,为第i个机器人环境刚度的估计。In the formula, is the position of the i-th robot end effector output by the impedance model, is the first-order derivative of the position of the i-th robot end effector output by the impedance model, is the position of the i-th robot end effector input to the impedance model, , , are the inertia, damping and stiffness of the ith impedance model, and are the first-order derivative and second-order derivative of the position of the i-th robot end effector input to the impedance model, respectively. is the position error of the i-th robot end effector, is the stiffness of the environment of the ith robot Estimates.
上述一种多机器人协同搬运力位混合控制方法,通过设计规定性能控制器,实现多个机器人相互之间严格的误差控制,保证在协同搬运过程中的精度;采用自适应阻抗力控制方法设计机器人末端执行器的接触力估计方法以及阻抗控制,保证了机器人在搬运过程中的安全性。The above-mentioned multi-robot collaborative handling force-position hybrid control method realizes strict error control between multiple robots by designing a specified performance controller, thereby ensuring the accuracy during the collaborative handling process; and adopts an adaptive impedance force control method to design the contact force estimation method and impedance control of the robot end effector, thereby ensuring the safety of the robot during the handling process.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明一实施例中一种多机器人协同搬运力位混合控制方法的流程图;FIG1 is a flow chart of a multi-robot collaborative handling force-position hybrid control method according to an embodiment of the present invention;
图2是本发明一实施例中多机器人协同搬运的俯视图;FIG2 is a top view of multi-robot collaborative handling in one embodiment of the present invention;
图3是本发明一实施例中多机器人协同搬运的场景图;FIG3 is a scene diagram of multi-robot collaborative handling in one embodiment of the present invention;
图4是本发明一实施例中一种多机器人协同搬运力位混合控制方法示意图;FIG4 is a schematic diagram of a multi-robot collaborative handling force-position hybrid control method according to an embodiment of the present invention;
图5是本发明一实施例中三台机器人协同搬运过程中机器人1的x轴分量控制误差;FIG5 is a diagram showing the x-axis component control error of
图6是本发明一实施例中三台机器人协同搬运过程中机器人2的x轴分量控制误差;FIG6 is a diagram showing the x-axis component control error of
图7是本发明一实施例中三台机器人协同搬运过程中机器人3的x轴分量控制误差;7 is a diagram showing the x-axis component control error of
图8是本发明一实施例中三台机器人协同搬运过程的效果图;FIG8 is a diagram showing the effect of a collaborative handling process of three robots in one embodiment of the present invention;
图9是本发明一实施例中三台机器人协同搬运过程机器人1的力跟踪效果图;FIG9 is a diagram showing the force tracking effect of
图10是本发明一实施例中三台机器人协同搬运过程机器人2的力跟踪效果图;10 is a diagram showing the force tracking effect of
图11是本发明一实施例中三台机器人协同搬运过程机器人3的力跟踪效果图。FIG. 11 is a diagram showing the force tracking effect of
具体实施方式DETAILED DESCRIPTION
为了使本技术领域的人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步的详细说明。In order to enable those skilled in the art to better understand the technical solution of the present invention, the present invention is further described in detail below in conjunction with the accompanying drawings.
一种多机器人协同搬运力位混合控制方法,具体包括:A multi-robot collaborative handling force-position hybrid control method specifically includes:
S1、建立机器人的搬运动力学模型,根据机器人的搬运动力学模型建立多个机器人组成的机器人系统的协同搬运动力学模型;S1. Establish a robot handling dynamics model, and establish a collaborative handling dynamics model of a robot system composed of multiple robots based on the robot handling dynamics model;
S2、设置机器人位置误差,引入误差转换函数对机器人位置误差进行转换,得到机器人转换后位置误差,根据机器人转换后位置误差和协同搬运动力学模型得到误差传递动力学模型;S2. Set the robot position error, introduce the error conversion function to convert the robot position error, obtain the robot position error after conversion, and obtain the error transfer dynamics model according to the robot position error after conversion and the collaborative handling dynamics model;
S3、重写误差传递动力学模型,得到重写后的误差传递动力学模型,设置滑模函数和扰动估计误差,根据重写后的误差传递动力学模型、滑模函数和扰动估计误差设计规定性能控制器,根据规定性能控制器计算出机器人系统的输入力矩;S3, rewriting the error transfer dynamics model to obtain the rewritten error transfer dynamics model, setting a sliding mode function and a disturbance estimation error, designing a specified performance controller according to the rewritten error transfer dynamics model, the sliding mode function and the disturbance estimation error, and calculating the input torque of the robot system according to the specified performance controller;
S4、预设阻抗模型、弹簧模型和环境刚度估计,根据阻抗模型、弹簧模型和环境刚度估计设计阻抗控制方法,计算出机器人系统末端执行器的接触力估计和位置;S4, presetting an impedance model, a spring model and an estimated environmental stiffness, designing an impedance control method according to the impedance model, the spring model and the estimated environmental stiffness, and calculating a contact force estimate and a position of an end effector of the robot system;
S5、根据协同搬运动力学模型、误差传递动力学模型和规定性能控制器搭建数学仿真模型,将计算出的机器人系统的输入力矩、机器人系统末端执行器的接触力估计以及位置输入至仿真模型中,验证机器人系统的协同搬运控制方法的有效性。S5. Build a mathematical simulation model based on the collaborative handling dynamics model, error transmission dynamics model and specified performance controller, input the calculated input torque of the robot system, the contact force estimation of the end effector of the robot system and the position into the simulation model to verify the effectiveness of the collaborative handling control method of the robot system.
具体地,参见图1、图2、图3和图4,图1为本发明一实施例中的多机器人协同搬运力位混合控制方法流程图;图2为本发明一实施例中多机器人协同搬运的俯视图;图3为本发明一实施例中多机器人协同搬运的场景图;图4为本发明一实施例中一种多机器人协同搬运力位混合控制方法示意图。Specifically, referring to Figures 1, 2, 3 and 4, Figure 1 is a flow chart of a force-position hybrid control method for multi-robot collaborative handling in one embodiment of the present invention; Figure 2 is a top view of multi-robot collaborative handling in one embodiment of the present invention; Figure 3 is a scene diagram of multi-robot collaborative handling in one embodiment of the present invention; Figure 4 is a schematic diagram of a force-position hybrid control method for multi-robot collaborative handling in one embodiment of the present invention.
一种多机器人协同搬运力位混合控制方法,首先建立单个机器人的搬动动力学模型,在此基础上建立多个机器人组成的机器人系统的协同搬运动力学模型;然后设置机器人位置误差,并引入误差转换函数对机器人位置误差进行转换,根据机器人转换后位置误差和协同搬运动力学模型设计误差传递方法,建立误差传递动力学模型;接着对误差传递动力学模型进行重写,设置滑模函数和扰动估计误差,根据重写后的误差传递动力学模型、滑模函数和扰动估计误差设计规定性能控制器并计算得出输入力矩;接着预设阻抗模型、弹簧模型和环境刚度估计,根据阻抗模型、弹簧模型和环境刚度估计设计阻抗控制方法,计算得出阻抗位置输出,阻抗位置输出包括机器人系统末端执行器的接触力估计和位置;最后根据协同搬运动力学模型、误差传递动力学模型、规定性能控制器以及阻抗控制器搭建数学仿真模型,验证多机器人的协同搬运方法的有效性。A hybrid force-position control method for collaborative handling of multiple robots is disclosed. First, a handling dynamics model of a single robot is established, and on this basis, a collaborative handling dynamics model of a robot system composed of multiple robots is established; then, the robot position error is set, and an error conversion function is introduced to convert the robot position error, an error transfer method is designed according to the position error after the robot conversion and the collaborative handling dynamics model, and an error transfer dynamics model is established; then, the error transfer dynamics model is rewritten, a sliding mode function and a disturbance estimation error are set, and a specified performance controller is designed according to the rewritten error transfer dynamics model, the sliding mode function and the disturbance estimation error, and the input torque is calculated; then, an impedance model, a spring model and an environmental stiffness estimate are preset, and an impedance control method is designed according to the impedance model, the spring model and the environmental stiffness estimate, and the impedance position output is calculated, and the impedance position output includes the contact force estimate and position of the end effector of the robot system; finally, a mathematical simulation model is built according to the collaborative handling dynamics model, the error transmission dynamics model, the specified performance controller and the impedance controller to verify the effectiveness of the collaborative handling method of multiple robots.
在一个实施例中,S1中的协同搬运动力学模型具体为:In one embodiment, the collaborative transport dynamics model in S1 is specifically:
其中, in,
式中,为机器人系统的对称正定惯性矩阵,为机器人系统的离心项和克利奥利项矩阵,为机器人系统在建模过程产生的总摩擦力,为从机器人系统的关节矢量至工作空间的速度雅可比矩阵,为重力加速度矩阵,为机器人系统的关节矢量,和分别为机器人系统的关节矢量的一阶导数和二阶导数,为机器人系统的自由度,,为第个机器人的自由度,为机器人系统末端执行器的实际接触力,为机器人系统的输入力矩。In the formula, is the symmetric positive definite inertia matrix of the robot system, is the centrifugal and Creole term matrices of the robot system, is the total friction force generated by the robot system during the modeling process, is the velocity Jacobian matrix from the joint vectors of the robot system to the workspace, is the gravitational acceleration matrix, is the joint vector of the robot system, and are the joint vectors of the robot system The first and second derivatives of is the degree of freedom of the robot system, , For the degrees of freedom of the robot, is the actual contact force of the end effector of the robot system, is the input torque of the robot system.
具体地,建立机器人系统的协同搬运动力学模型包括如下步骤:Specifically, establishing the collaborative handling dynamics model of the robot system includes the following steps:
1)建立单个机器人的动力学模型:1) Establish a dynamic model of a single robot:
(1) (1)
其中, in,
式中,为第i个机器人的对称正定惯性矩阵,为第i个机器人的离心项和克利奥利项矩阵,为第i个机器人建模过程产生的摩擦力,第i个机器人的重力加速度矩阵,为第i个机器人的重力加速度矢量,为第i个机器人的关节矢量(包括移动端和机械臂),和分别为第i个机器人的关节矢量的一阶导数和二阶导数,为第i个机器人的输入力矩,为第i个机器人的末端执行器受到的力,为从第i个机器人的关节矢量到工作空间的速度雅可比矩阵,可由力传递过程得到,具体如下:In the formula, is the symmetric positive definite inertia matrix of the ith robot, is the centrifugal term and Creole term matrix of the ith robot, The friction generated by the modeling process of the i-th robot, The gravity acceleration matrix of the ith robot, is the gravity acceleration vector of the ith robot, is the joint vector of the ith robot (including the mobile terminal and the robotic arm), and are the joint vectors of the i-th robot The first and second derivatives of is the input torque of the ith robot, is the force on the end effector of the ith robot, is the joint vector from the ith robot To Workspace The velocity Jacobian matrix of can be obtained from the force transfer process, as follows:
,为第i个机器人末端执行器坐标,也就是第i个机器人的工作空间,一般情况下,通过对第i个机器人末端执行器坐标求一阶导数可以得到: , is the coordinate of the end effector of the ith robot, that is, the workspace of the ith robot. Generally, , by calculating the coordinates of the end effector of the i-th robot Taking the first-order derivative we get:
,因此,取。 , therefore, take .
则机器人系统的工作空间为:。Then the working space of the robot system is: .
2)建立由多个机器人组成机器人系统的协同搬运动力学模型:2) Establish a collaborative handling dynamics model of a robot system consisting of multiple robots:
(2) (2)
其中, in,
式中,为机器人系统的对称正定惯性矩阵,为机器人系统的离心项和克利奥利项矩阵,为机器人系统在建模过程产生的总摩擦力,为机器人系统的关节矢量,为从机器人系统的关节矢量至工作空间的速度雅可比矩阵,为机器人系统的总自由度,为第个机器人的自由度,表示实数域。In the formula, is the symmetric positive definite inertia matrix of the robot system, is the centrifugal and Creole term matrices of the robot system, is the total friction force generated by the robot system during the modeling process, is the joint vector of the robot system, is the velocity Jacobian matrix from the joint vectors of the robot system to the workspace, is the total degree of freedom of the robot system, For the degrees of freedom of the robot, Represents the field of real numbers.
在一个实施例中,S2具体包括:In one embodiment, S2 specifically includes:
S21、设置机器人的规定性能和性能函数,根据规定性能和性能函数确定机器人的位置误差;S21, setting the prescribed performance and performance function of the robot, and determining the position error of the robot according to the prescribed performance and performance function;
S22、设置误差转换函数,使用误差转换函数对机器人的位置误差进行转换,得到机器人转换后位置误差;S22, setting an error conversion function, and using the error conversion function to convert the position error of the robot to obtain the position error of the robot after conversion;
S23、根据机器人转换后位置误差建立机器人系统转换后位置误差,对机器人系统转换后位置误差进行处理,并结合协同搬运动力学模型,得到误差传递动力学模型。S23. Establishing the position error of the robot system after conversion according to the position error of the robot after conversion, processing the position error of the robot system after conversion, and combining it with the collaborative handling dynamics model to obtain the error transfer dynamics model.
在一个实施例中,S23中的误差传递动力学模型,具体公式为:In one embodiment, the error transmission dynamics model in S23 is specifically formulated as follows:
其中, in,
式中,为机器人系统转换后位置误差的二阶导数,为机器人系统的对称正定惯性矩阵,为机器人系统的离心项和克利奥利项矩阵,为从机器人系统的关节矢量至工作空间的速度雅可比矩阵,为重力加速度矩阵,和表示第i个机器人系统规定性能的上下界,表示第i个机器人的性能函数,为机器人系统的输入力矩,为机器人系统的位置误差的一阶导数,为第i个机器人的位置误差,为机器人系统的关节矢量的一阶导数,为第i个机器人的关节矢量,为机器人系统的期望位置的二阶导数,为第i个机器人的希望位置,为机器人系统末端执行器的实际接触力,、、、为误差传递动力学模型的中间变量。In the formula, is the position error of the robot system after conversion The second-order derivative of is the symmetric positive definite inertia matrix of the robot system, is the centrifugal and Creole term matrices of the robot system, is the velocity Jacobian matrix from the joint vectors of the robot system to the workspace, is the gravitational acceleration matrix, and represents the upper and lower bounds of the performance requirements of the ith robot system, represents the performance function of the ith robot, is the input torque of the robot system, is the position error of the robot system The first-order derivative of is the position error of the ith robot, is the joint vector of the robot system The first-order derivative of is the joint vector of the ith robot, is the desired position of the robot system The second-order derivative of is the desired position of the ith robot, is the actual contact force of the end effector of the robot system, , , , It is the intermediate variable of the error transfer dynamics model.
具体地,由于每个机器人的期望位置是有界的,可基于此定义机器人的位置误差:Specifically, since the desired position of each robot is bounded, the position error of the robot can be defined based on this:
(3) (3)
式中,为第i个机器人的位置误差,为第i个机器人的关节矢量,为第i个机器人的期望位置。In the formula, is the position error of the ith robot, is the joint vector of the ith robot, is the expected position of the ith robot.
定义机器人规定性能的上、下界和性能函数,根据规定性能的上下界以及性能函数设置机器人的位置误差范围:Define the upper and lower bounds of the robot's specified performance and the performance function, and set the robot's position error range according to the upper and lower bounds of the specified performance and the performance function:
(4) (4)
其中, in,
式中,和分别为第i个机器人规定性能的上、下界,为第i个机器人的性能函数,、、均为正常数,和分别表示性能函数在和时的值,且,表示第i个机器人的性能函数的逼近速度。In the formula, and are the upper and lower bounds of the performance of the ith robot, is the performance function of the ith robot, , , are all normal numbers, and Represents performance function exist and The value of , represents the approximation speed of the performance function of the ith robot.
为了实现对多个机器人的规定性能控制,需要设计误差传递动力学模型,设计过程如下:In order to achieve the specified performance control of multiple robots, it is necessary to design an error transmission dynamics model. The design process is as follows:
1)首先引入误差转换函数对每个机器人的位置误差进行误差转换,得到机器人转换后位置误差:1) First, the error conversion function is introduced to convert the position error of each robot to obtain the position error of the robot after conversion:
设置误差转换函数,,该误差转换函数满足。Setting the error transfer function , , the error transfer function satisfies .
经过误差转换,得到机器人转换后位置误差:After error conversion, the position error of the robot after conversion is obtained:
(5) (5)
其中, in,
式中,为第i个机器人转换后位置误差,和分别为第i个机器人规定性能的上、下界,为第i个机器人的位置误差,为第i个机器人的性能函数,为中间变量。In the formula, is the position error of the i-th robot after transformation, and are the upper and lower bounds of the performance of the ith robot, is the position error of the ith robot, is the performance function of the ith robot, is an intermediate variable.
在此基础上,机器人系统转换后位置误差可表示为:On this basis, the position error of the robot system after conversion can be expressed as:
(6) (6)
2)对机器人系统转换后位置误差求一阶导数:2) Calculate the first-order derivative of the position error after the robot system conversion:
(7) (7)
其中, in,
式中,、为中间变量。In the formula, , is an intermediate variable.
3)对机器人系统转换后位置误差求二阶导数,并结合协同搬运动力学模型得到误差传递动力学模型:3) Calculate the second-order derivative of the position error after the robot system conversion, and combine it with the collaborative handling dynamics model to obtain the error transmission dynamics model:
对机器人系统转换后位置误差求二阶导数:Calculate the second-order derivative of the position error after the robot system transformation:
(8) (8)
将协同搬运动力学模型公式(2)代入上式(8),可以得出误差传递动力学模型,具体公式如下:Substituting the cooperative transport dynamics model formula (2) into the above formula (8), the error transmission dynamics model can be obtained. The specific formula is as follows:
(9) (9)
其中, in,
式中,为机器人系统转换后位置误差的二阶导数,为机器人系统的对称正定惯性矩阵,为重力加速度矩阵,为机器人系统的输入力矩,为机器人系统的期望位置的二阶导数,为中间变量。In the formula, is the second-order derivative of the position error of the robot system after transformation, is the symmetric positive definite inertia matrix of the robot system, is the gravitational acceleration matrix, is the input torque of the robot system, is the second-order derivative of the desired position of the robot system, is an intermediate variable.
在一个实施例中,S3具体包括:In one embodiment, S3 specifically includes:
S31、对误差传递动力学模型进行重写,得到重写后的误差传递动力学模型,重写后的误差传递动力学模型中包含规定性能控制器;S31, rewriting the error transmission dynamics model to obtain a rewritten error transmission dynamics model, wherein the rewritten error transmission dynamics model includes a specified performance controller;
S32、根据步骤S23中机器人系统转换后位置误差设置滑模函数;S32, setting a sliding mode function according to the position error after the robot system conversion in step S23;
S33、设置扰动估计误差,根据滑模函数和扰动估计误差设置第一李雅普诺夫函数;S33, setting a disturbance estimation error, and setting a first Lyapunov function according to the sliding mode function and the disturbance estimation error;
S34、根据第一李雅普诺夫函数判定误差传递动力学模型的稳定性,并设计误差传递动力学模型稳定时对应的规定性能控制器。S34. Determine the stability of the error transmission dynamics model according to the first Lyapunov function, and design a controller with a specified performance corresponding to the stability of the error transmission dynamics model.
在一个实施例中,S34中的规定性能控制器,具体可用公式表示为:In one embodiment, the specified performance controller in S34 can be specifically expressed by the formula:
式中,为机器人系统的输入力矩,为机器人系统的对称正定惯性矩阵,为滑模函数,为规定性能控制器增益,为扰动估计,也就是实际扰动的估计值,为机器人系统转换后位置误差的一阶导数,为对角增益矩阵,为机器人系统的位置误差的一阶导数,为机器人系统转换后位置误差的一阶导数,、为误差传递动力学模型的中间变量。In the formula, is the input torque of the robot system, is the symmetric positive definite inertia matrix of the robot system, is the sliding mode function, To specify the performance controller gain, is the disturbance estimate, that is, the actual disturbance The estimated value of is the first-order derivative of the position error of the robot system after conversion, is the diagonal gain matrix, is the position error of the robot system The first-order derivative of is the position error of the robot system after conversion The first-order derivative of , It is the intermediate variable of the error transfer dynamics model.
具体地,根据误差传递动力学模型设计规定性能控制器,过程如下:Specifically, the specified performance controller is designed according to the error transmission dynamics model, and the process is as follows:
1)对误差传递动力学模型公式进行重写,得到重写后的误差传递动力学模型1) Rewrite the error transmission dynamics model formula to obtain the rewritten error transmission dynamics model
(10) (10)
其中,(11)in, (11)
(12) (12)
式中,为控制输入,是一个中间变量,用来通过公式(11)进行的解算。为实际扰动,即操纵过程中机器人末端执行器受到的力和内外扰动力之和。In the formula, is the control input, which is an intermediate variable used to perform The solution. is the actual disturbance, that is, the sum of the force on the robot end effector and the internal and external disturbance forces during the manipulation process.
2)根据机器人系统转换后位置误差及其一阶导数设置滑模函数2) Set the sliding mode function according to the position error and its first-order derivative after the robot system conversion
(13) (13)
式中,为滑模函数,为对角增益矩阵,为机器人系统转换后位置误差,为机器人系统转换后位置误差的一阶导数。In the formula, is the sliding mode function, is the diagonal gain matrix, is the position error of the robot system after conversion, is the first-order derivative of the position error of the robot system after conversion.
3)对滑模函数求一阶导数,结合重写后的误差传递动力学模型(10),得到滑模函数的一阶导数:3) Calculate the first-order derivative of the sliding mode function and combine it with the rewritten error transmission dynamics model (10) to obtain the first-order derivative of the sliding mode function:
(14) (14)
式中,为滑模函数的一阶导数。In the formula, is the first-order derivative of the sliding mode function.
4)根据外部扰动、扰动估计计算扰动估计误差:4) According to external disturbance , disturbance estimation Calculate the perturbation estimate error :
(15) (15)
为了验证误差传递动力学模型、重写后的误差传递动力学模型以及误差扰动估计误差模型的稳定性,引入李雅普诺夫函数并对相关参数进行求解,具体过程如下:In order to verify the stability of the error propagation dynamics model, the rewritten error propagation dynamics model and the error disturbance estimation error model, the Lyapunov function is introduced and the relevant parameters are solved. The specific process is as follows:
1)在重写后的误差传递动力学模型(10)的基础上,考虑滑模函数与扰动估计误差,设置第一李雅普诺夫函数:1) Based on the rewritten error propagation dynamics model (10), the sliding mode function is considered and disturbance estimation error , set the first Lyapunov function:
(16) (16)
式中,为第一李雅普诺夫函数,为扰动估计误差,为滑模函数。In the formula, is the first Lyapunov function, is the disturbance estimation error, is a sliding mode function.
对公式(16)中的第一李雅普诺夫函数求一阶导数,并将公式(14)代入可得:Taking the first-order derivative of the first Lyapunov function in formula (16) and substituting formula (14) into it, we can obtain:
(17) (17)
式中,为第一李雅普诺夫函数的一阶导数,为实际扰动,为扰动估计误差,为控制输入,是一个中间变量,为扰动估计误差的一阶导数,为滑模函数。In the formula, is the first derivative of the first Lyapunov function, is the actual disturbance, is the disturbance estimation error, is the control input, an intermediate variable, is the first-order derivative of the disturbance estimation error, is a sliding mode function.
2)根据第一李雅普诺夫函数的一阶导数设计规定性能控制器:2) Design a controller with specified performance based on the first derivative of the first Lyapunov function:
当第一李雅普诺夫函数的一阶导数不大于0,即时,说明前面得到的误差传递动力学模型、重写后的误差传递动力学模型以及扰动估计误差是稳定性的。因此,通过计算得出在时,需要将对应的规定性能控制器设计为:When the first derivative of the first Lyapunov function is not greater than 0, that is , it shows that the error transmission dynamics model obtained previously, the rewritten error transmission dynamics model and the disturbance estimation error are stable. Therefore, it is calculated that When , the corresponding specified performance controller needs to be designed as:
(18) (18)
因此可以通过公式(18)进行的解算,在此基础上,通过公式(11)计算出机器人系统的输入力矩,其中,可使用干扰观测器得出,具体公式如下:Therefore, we can use formula (18) to On this basis, the input torque of the robot system is calculated by formula (11): ,in, It can be obtained by using the disturbance observer, the specific formula is as follows:
(19) (19)
式中,为滑模函数,为规定性能控制器增益,为扰动估计,也就是实际扰动的估计值,为正增益矩阵。In the formula, is the sliding mode function, To specify the performance controller gain, is the disturbance estimate, that is, the actual disturbance The estimated value of is a positive gain matrix.
3)根据公式(19)求扰动估计的一阶导数:3) According to formula (19), the disturbance estimate is obtained The first derivative of :
(20) (20)
式中,为扰动估计的一阶导数。In the formula, is the first derivative of the disturbance estimate.
4)根据公式(15)和公式(20),通过扰动估计误差和扰动估计的一阶导数计算扰动估计误差的一阶导数,具体公式为:4) According to formula (15) and formula (20), the error is estimated by perturbation and the first derivative of the perturbation estimate Calculate the first-order derivative of the disturbance estimation error. The specific formula is:
(21) (twenty one)
式中,为扰动估计误差,为扰动估计误差的一阶导数,为正增益矩阵。In the formula, is the disturbance estimation error, is the first-order derivative of the disturbance estimation error, is a positive gain matrix.
5)将公式(18)和(21)代入公式(17),计算得到第一李雅普诺夫函数的一阶导数:5) Substitute formula (18) and (21) into formula (17) to calculate the first-order derivative of the first Lyapunov function:
(22) (twenty two)
通过分析公式(22)可知,为了使,就应该使。假设由于机器人的性能约束,即使在搬运过程中,外部扰动的变化率仍然可以认为是未知有界的,即。由不等式可以得出:By analyzing formula (22), we can know that in order to make , we should make Assume that due to the performance constraints of the robot, even during the handling process, the rate of change of the external disturbance It can still be considered as unknown and bounded, that is, . From the inequality we can conclude that:
(23) (twenty three)
将上式(23)代入到公式(22),可以得出:Substituting the above formula (23) into formula (22), we can get:
(24) (twenty four)
其中, in,
式中,为规定性能控制器增益,为正增益矩阵,为单位向量。In the formula, To specify the performance controller gain, is the positive gain matrix, is a unit vector.
由上述可以得出:当第一李雅普诺夫函数导数小于零,就意味着机器人系统转换后位置误差趋向于0,渐近稳定。From the above, we can conclude that when the first Lyapunov function derivative Less than zero, it means that the position error of the robot system after conversion tends to 0 and is asymptotically stable.
由以及公式(18)计算得到规定性能控制器,具体可用公式表示为:Depend on And formula (18) is used to calculate the specified performance controller, which can be expressed by the formula:
(25) (25)
式中,为机器人系统的输入力矩。In the formula, is the input torque of the robot system.
在一个实施例中,S4具体包括:In one embodiment, S4 specifically includes:
S41、预设阻抗模型和弹簧模型,根据阻抗模型和弹簧模型推导出末端执行器的接触力误差;S41, presetting an impedance model and a spring model, and deriving a contact force error of the end effector according to the impedance model and the spring model;
S42、根据末端执行器的接触力误差和阻抗模型得到力跟踪误差传递动力学模型;S42, obtaining a force tracking error transmission dynamics model according to the contact force error and impedance model of the end effector;
S43、设计环境刚度估计,根据力跟踪误差传递动力学模型和环境刚度估计设计第二和第三李雅普诺夫函数,通过第二和第三李雅普诺夫函数推导出环境刚度估计的一阶导数;S43, designing an environmental stiffness estimation, designing a second and a third Lyapunov function according to a force tracking error transmission dynamics model and the environmental stiffness estimation, and deriving a first-order derivative of the environmental stiffness estimation through the second and the third Lyapunov function;
S44、根据环境刚度估计的一阶导数和弹簧模型得出机器人系统末端执行器的接触力估计;S44, deriving a contact force estimate of the end effector of the robot system based on the first-order derivative of the environmental stiffness estimate and the spring model;
S45、根据末端执行器的接触力误差和阻抗模型得到机器人系统末端执行器的位置。S45. Obtain the position of the end effector of the robot system according to the contact force error and impedance model of the end effector.
在一个实施例中,S42中的力跟踪误差传递动力学模型具体为:In one embodiment, the force tracking error transmission dynamics model in S42 is specifically:
式中,、、分别为第i个机器人的阻抗模型的惯性、阻尼和刚度,为第i个机器人环境刚度的估计值,为第i个机器人末端执行器的接触力误差,和分别为第i个机器人末端执行器的接触力误差的一阶导数和二阶导数,。In the formula, , , are the inertia, damping and stiffness of the impedance model of the ith robot, is the stiffness of the environment of the ith robot The estimated value of is the contact force error of the i-th robot end effector, and are the contact force errors of the i-th robot end effector The first and second derivatives of .
在一个实施例中,S44中机器人系统末端执行器的接触力估计,具体公式为:In one embodiment, the contact force of the end effector of the robot system in S44 is estimated by the following formula:
式中,为第i个机器人末端执行器的接触力估计,为第i个机器人环境刚度的估计,为第i个机器人末端执行器的位置,为目标物体的位置。In the formula, is the contact force estimate of the i-th robot end effector, is the stiffness of the environment of the ith robot The estimate, is the position of the i-th robot end effector, is the position of the target object.
在一个实施例中,S45中机器人系统末端执行器的位置,具体公式为:In one embodiment, the position of the end effector of the robot system in S45 is specifically expressed as:
式中,为阻抗模型输出的第i个机器人末端执行器的位置,为阻抗模型输出的第i个机器人末端执行器位置的一阶导数,为阻抗模型输入的第i个机器人末端执行器位置,,、分别为第i个阻抗模型的惯性、阻尼和刚度,和分别为阻抗模型输入的第i个机器人末端执行器位置的一阶导数和二阶导数,为第i个机器人末端执行器的位置误差,为第i个机器人环境刚度的估计。In the formula, is the position of the i-th robot end effector output by the impedance model, is the first-order derivative of the position of the i-th robot end effector output by the impedance model, is the position of the i-th robot end effector input to the impedance model, , , are the inertia, damping and stiffness of the ith impedance model, and are the first-order derivative and second-order derivative of the position of the i-th robot end effector input to the impedance model, respectively. is the position error of the i-th robot end effector, is the stiffness of the environment of the ith robot Estimates.
具体地,考虑机器人系统末端执行器的搬运安全性,设计阻抗控制方法,计算得出机器人系统末端执行器的接触力估计与机器人系统末端执行器的位置,过程如下:Specifically, considering the handling safety of the end effector of the robot system, an impedance control method is designed to calculate the contact force estimation of the end effector of the robot system and the position of the end effector of the robot system. The process is as follows:
1)定义广义目标阻抗模型1) Define the generalized target impedance model
(26) (26)
式中,为第i个机器人阻抗模型输出的末端执行器位置,也就是阻抗参考位置输出,为第i个机器人阻抗模型输入的末端执行器位置,,、分别为第i个阻抗模型的惯性、阻尼和刚度,为第i个机器人末端执行器的接触力误差。In the formula, is the end effector position output by the impedance model of the ith robot, that is, the impedance reference position output, is the end effector position input to the impedance model of the ith robot, , , are the inertia, damping and stiffness of the ith impedance model, is the contact force error of the i-th robot end effector.
2)定义末端执行器的接触力误差:2) Define the contact force error of the end effector:
(27) (27)
式中,为第i个机器人末端执行器的接触力误差,为第i个机器人末端执行器的参考接触力(简称为参考力),为第i个机器人末端执行器的实际接触力(简称为实际力)。在实际应用中,末端执行器的实际力可以从弹簧模型中获得,弹簧模型可以表示为:In the formula, is the contact force error of the i-th robot end effector, is the reference contact force of the i-th robot end effector (referred to as reference force), is the actual contact force of the end effector of the ith robot (referred to as actual force). In practical applications, the actual force of the end effector It can be obtained from the spring model, which can be expressed as:
(28) (28)
式中,为第i个机器人末端执行器的位置,为目标物体的位置,第i个机器人的环境刚度,。In the formula, is the position of the i-th robot end effector, is the position of the target object, The environmental stiffness of the ith robot, .
3)由公式(27)和(28)计算得出机器人末端执行器的位置:3) The position of the robot end effector is calculated by formulas (27) and (28):
(29) (29)
假设机器人末端执行器的位置达到阻抗模型输出的末端执行器的位置,即,根据公式(28)和(29)可以得出:Assume that the position of the robot end effector reaches the position of the end effector output by the impedance model, that is, According to formulas (28) and (29), we can get:
(30) (30)
式中,为第i个机器人末端执行器的接触力误差,为第i个阻抗模型的刚度,为第i个机器人末端执行器的参考力,为阻抗模型输入的第i个机器人末端执行器位置,为第i个机器人环境刚度。In the formula, is the contact force error of the i-th robot end effector, is the stiffness of the ith impedance model, is the reference force of the i-th robot end effector, is the position of the i-th robot end effector input to the impedance model, is the environmental stiffness of the ith robot.
由上式(30)可知,一旦机器人系统达到稳态,为了使稳态时第i个机器人末端执行器的接触力误差等于0(即),必须满足以下条件:From the above formula (30), it can be seen that once the robot system reaches a steady state, in order to make the contact force error of the i-th robot end effector in the steady state Equal to 0 (i.e. ), the following conditions must be met:
(31) (31)
设为第i个机器人环境刚度的估计值,用环境刚度估计值分别取代公式(29)和(31)中的环境刚度:set up is the stiffness of the environment of the ith robot The estimated value of the environmental stiffness is Replace the ambient stiffness in formulas (29) and (31) respectively:
(32) (32)
(33) (33)
定义为第i个机器人末端执行器的位置误差,,将上述公式(32)和(33)相减可以得出末端执行器的接触力误差与末端执行器的位置误差的关系: definition is the position error of the i-th robot end effector, , subtracting the above formulas (32) and (33) can yield the relationship between the contact force error of the end effector and the position error of the end effector:
(34) (34)
式中,为第i个机器人末端执行器的接触力误差,为第i个机器人末端执行器的位置误差,为第i个机器人环境刚度的估计值。In the formula, is the contact force error of the i-th robot end effector, is the position error of the i-th robot end effector, is the estimated value of the stiffness of the environment of the ith robot.
将公式(34)代入公式(26)中的阻抗模型,得到力跟踪误差传递动力学模型:Substituting formula (34) into the impedance model in formula (26), the force tracking error transmission dynamic model is obtained:
(35) (35)
定义环境刚度估计误差:Define the environmental stiffness estimation error:
(36) (36)
式中,为第i个机器人环境刚度估计误差。In the formula, is the estimation error of the stiffness of the environment of the i-th robot.
基于公式(35)中的力跟踪误差传递动力学模型,考虑第i个机器人末端执行器的接触力误差与环境刚度估计误差,设置第二李雅普诺夫函数:Based on the force tracking error transmission dynamics model in formula (35), the contact force error of the i-th robot end effector is considered Estimation error of stiffness with environment , set the second Lyapunov function:
(37) (37)
式中,为第二李雅普诺夫函数,为数学符号,表示求矩阵里面的对角线上元素的和。In the formula, is the second Lyapunov function, It is a mathematical symbol, which means to find the sum of the elements on the diagonal of the matrix.
求解第二李雅普诺夫函数的一阶导数:Solve for the first derivative of the second Lyapunov function:
(38) (38)
设置第三李雅普诺夫函数:Set up the third Lyapunov function:
(39) (39)
式中,为第三李雅普诺夫函数。In the formula, is the third Lyapunov function.
求解第三李雅普诺夫函数的一阶导数:Solve for the first derivative of the third Lyapunov function:
(40) (40)
对第二李雅普诺夫函数的一阶导数和第三李雅普诺夫函数的一阶导数求和可以得出:The first derivative of the second Lyapunov function and the first derivative of the third Lyapunov function The sum gives:
(41) (41)
通过分析公式(41)可知,为了使末端执行器的接触力误差收敛,应当使,因此设计环境刚度估计的一阶导数如下:By analyzing formula (41), it can be seen that in order to make the contact force error of the end effector Convergence should be , so the first-order derivative of the design environment stiffness estimate is as follows:
(42) (42)
将公式(42)代入公式(41),可以得出:Substituting formula (42) into formula (41), we can obtain:
(43) (43)
综上,随着时间趋于无穷,第i个机器人末端执行器的接触力误差 In summary, as time approaches infinity, the contact force error of the i-th robot end effector
根据公式(42)设计的环境刚度估计的一阶导数和公式(28)中的弹簧模型,可以得出机器人末端执行器的接触力估计:According to the first-order derivative of the estimated environmental stiffness designed by equation (42) and the spring model in equation (28), the contact force estimate of the robot end effector can be obtained:
(42) (42)
根据公式(26)中的阻抗模型和公式(34)中的末端执行器的接触力误差,可以计算机器人末端执行器的位置,具体公式为:According to the impedance model in formula (26) and the contact force error of the end effector in formula (34), , the position of the robot end effector can be calculated. The specific formula is:
(43) (43)
式中,为阻抗模型输出的第i个机器人末端执行器的位置,也就是阻抗参考位置输出,为阻抗模型输出的第i个机器人末端执行器位置的一阶导数,为阻抗模型输入的第i个机器人末端执行器位置,,、分别为第i个阻抗模型的惯性、阻尼和刚度,和分别为阻抗模型输入的第i个机器人末端执行器位置的一阶导数和二阶导数,为第i个机器人末端执行器的位置误差,为第i个机器人环境刚度的估计。In the formula, is the position of the i-th robot end effector output by the impedance model, that is, the impedance reference position output, is the first-order derivative of the position of the i-th robot end effector output by the impedance model, is the position of the i-th robot end effector input to the impedance model, , , are the inertia, damping and stiffness of the ith impedance model, and are the first-order derivative and second-order derivative of the position of the i-th robot end effector input to the impedance model, respectively. is the position error of the i-th robot end effector, is the stiffness of the environment of the ith robot Estimates.
最后,根据协同搬运动力学模型、误差传递动力学模型和规定性能控制器搭建数学仿真模型,将计算得出的机器人系统的输入力矩、机器人末端执行器的接触力估计以及位置输入至仿真模型中,验证机器人系统的协同搬运控制方法的有效性。主要步骤为:Finally, a mathematical simulation model is built based on the collaborative handling dynamics model, error transmission dynamics model and specified performance controller, and the calculated input torque of the robot system, the contact force estimation of the robot end effector and the position are input into the simulation model to verify the effectiveness of the collaborative handling control method of the robot system. The main steps are:
在机器人自由运动过程中,由机器人的参考位置与实际位置计算机器人位置误差,通过误差转换函数对机器人位置误差进行转换,得到机器人系统转换后位置误差,根据机器人系统转换后位置误差和协同搬运动力学模型得到误差传递动力学模型,设计规定性能控制器并计算得出机器人系统运动需要的输入力矩,之后将输入力矩输入到协同搬运动力学模型中,使多个机器人进行协同搬运,在协同搬运过程,由机器人末端执行器的位置计算公式计算出机器人末端执行器的位置,将其输入到机器人系统计算位置误差,从而实现机器人位置控制。During the free motion of the robot, the robot position error is calculated from the reference position and actual position of the robot. , the robot position error is converted through the error conversion function to obtain the position error of the robot system after conversion. The error transmission dynamics model is obtained based on the position error of the robot system after conversion and the collaborative handling dynamics model. The specified performance controller is designed and the input torque required for the robot system movement is calculated. , then input the torque Input it into the collaborative handling dynamics model to enable multiple robots to perform collaborative handling. During the collaborative handling process, the position of the robot end effector is calculated by the position calculation formula of the robot end effector, and it is input into the robot system to calculate the position error. , thereby realizing the robot position control.
具体地,仿真曲线验证了位置跟踪性能与力估计性能。参见图5至图11,图5、图6和图7分别为本发明一实施例中三台机器人协同搬运过程中机器人1、机器人2和机器人3的x轴分量控制误差;图8是本发明一实施例中三台机器人协同搬运过程的效果图;图9、图10和图11分别为本发明一实施例中三台机器人协同搬运过程机器人1、机器人2和机器人3的力跟踪效果图。Specifically, the simulation curve verifies the position tracking performance and force estimation performance. Referring to Figures 5 to 11, Figures 5, 6 and 7 are respectively the x-axis component control errors of
由图5至图7可以看出,机器人移动平台在搬运过程中被严格限制在误差安全范围内,保证了搬运过程的精度和安全性;图8为三台机器人协同搬运过程效果图,由图8可以看出,机器人可以在较小的误差下完成轨迹跟踪;在图9至图11中,机械臂可以完成对期望力的跟踪控制,保证了在搬运中的安全性。It can be seen from Figures 5 to 7 that the robot mobile platform is strictly limited within the error safety range during the handling process, ensuring the accuracy and safety of the handling process; Figure 8 is a rendering of the collaborative handling process of three robots. It can be seen from Figure 8 that the robot can complete trajectory tracking with a smaller error; in Figures 9 to 11, the robotic arm can complete the tracking control of the desired force, ensuring safety during handling.
采用上述一种多机器人协同搬运力位混合控制方法,具有如下优点:The above-mentioned multi-robot collaborative handling force-position hybrid control method has the following advantages:
1.通过设计规定性能控制器,实现多个机器人相互之间严格的误差控制,保证了搬运过程中的精度;1. By designing a specified performance controller, strict error control between multiple robots is achieved to ensure the accuracy of the handling process;
2.采用自适应阻抗力控制方法设计机器人末端执行器的接触力估计以及阻抗控制,保证了机器人在搬运过程中的安全性能。2. The adaptive impedance force control method is used to design the contact force estimation and impedance control of the robot's end effector, ensuring the safety performance of the robot during the handling process.
以上对本发明所提供的一种多机器人协同搬运力位混合控制方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。The above is a detailed introduction to a multi-robot collaborative handling force-position hybrid control method provided by the present invention. This article uses specific examples to illustrate the principles and implementation methods of the present invention. The description of the above embodiments is only used to help understand the core idea of the present invention. It should be pointed out that for ordinary technicians in this technical field, without departing from the principles of the present invention, several improvements and modifications can be made to the present invention, and these improvements and modifications also fall within the scope of protection of the claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310321732.XA CN116069044B (en) | 2023-03-29 | 2023-03-29 | Multi-robot cooperative transportation capacity hybrid control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310321732.XA CN116069044B (en) | 2023-03-29 | 2023-03-29 | Multi-robot cooperative transportation capacity hybrid control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116069044A CN116069044A (en) | 2023-05-05 |
CN116069044B true CN116069044B (en) | 2023-06-16 |
Family
ID=86182257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310321732.XA Active CN116069044B (en) | 2023-03-29 | 2023-03-29 | Multi-robot cooperative transportation capacity hybrid control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116069044B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117601117B (en) * | 2023-11-02 | 2024-05-24 | 同济大学 | A multi-robot coordinated handling control method based on cooperative impedance |
CN117921666B (en) * | 2024-01-31 | 2024-07-23 | 广东工业大学 | A variable impedance safe interaction method for a robotic arm |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110434858B (en) * | 2019-09-11 | 2020-11-17 | 青岛大学 | Force/position hybrid control method of multi-mechanical-arm system based on command filtering |
CN113427483A (en) * | 2021-05-19 | 2021-09-24 | 广州中国科学院先进技术研究所 | Double-machine manpower/bit multivariate data driving method based on reinforcement learning |
CN114115248B (en) * | 2021-11-12 | 2024-10-25 | 湖南大学 | Multi-robot cooperative transportation method and system in warehouse environment |
CN115533915B (en) * | 2022-10-21 | 2024-12-06 | 湖南大学 | An active contact detection and control method for aerial working robots in uncertain environments |
CN115625711B (en) * | 2022-11-08 | 2024-04-30 | 沈阳工业大学 | A collaborative control method for dual-arm robots considering end force |
-
2023
- 2023-03-29 CN CN202310321732.XA patent/CN116069044B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN116069044A (en) | 2023-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116069044B (en) | Multi-robot cooperative transportation capacity hybrid control method | |
CN110275436B (en) | RBF neural network self-adaptive control method of multi-single-arm manipulator | |
CN110154028A (en) | A Model-Free Adaptive Integral Terminal Sliding Mode Control Method for Manipulators | |
CN115157238B (en) | A dynamic modeling and trajectory tracking method for multi-degree-of-freedom robots | |
CN115625711B (en) | A collaborative control method for dual-arm robots considering end force | |
CN113103237B (en) | A reconfigurable manipulator control method and system for unknown environmental constraints | |
CN114571444A (en) | Q-learning-based impedance control method for slagging-off robot | |
CN115890735B (en) | Robotic arm system, robotic arm and control method thereof, controller and storage medium | |
CN113814983A (en) | Multi-single-arm manipulator system control method and system | |
CN114942593A (en) | An adaptive sliding mode control method for manipulator based on disturbance observer compensation | |
CN112809666A (en) | 5-DOF mechanical arm force and position tracking algorithm based on neural network | |
CN113954077B (en) | Underwater swimming mechanical arm trajectory tracking control method and device with energy optimization function | |
Raouf et al. | Workspace trajectory tracking control for two-flexible-link manipulator through output redefinition | |
CN111427264B (en) | A Neural Adaptive Fixed Time Control Method for Complex Telemanipulation Technology | |
CN111590561B (en) | Robustness preset performance control method for distributed mechanical arm system | |
CN117733860A (en) | Sliding mode control method of tail end track of double-arm robot based on position dynamics | |
CN116000919B (en) | A full-state constraint control method for a single-link manipulator system with dead zone | |
CN116945229A (en) | Robot high-precision shaft hole assembly method, system, terminal and storage medium | |
CN118544363B (en) | A collaborative handling control method for multiple mobile robots based on adaptive impedance | |
CN110480641B (en) | A Recursive Distributed Fast Convergence Robust Control Method for Manipulators | |
CN113927591A (en) | A finite-time adaptive robot force-position hybrid control method | |
CN119089665B (en) | Multi-branch spacecraft design evaluation system and method for on-orbit servicing | |
CN115582838B (en) | H∞ Consistency Control Method for Predefined Time of Multi-manipulator Based on Preset Performance | |
Sun et al. | Model-Free Non-Singular Fast Terminal Sliding Mode Controller Using Extended Sliding Mode Observer for Series Elastic Actuator-Based Robotic Arm | |
Wang et al. | Dynamic Modelling and Continuous Trajectory Tracking Control of Space Robots Based on Lie Group SE (3) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |