CN116046191A - Temperature measuring device, temperature measuring method and aerosol generating device - Google Patents
Temperature measuring device, temperature measuring method and aerosol generating device Download PDFInfo
- Publication number
- CN116046191A CN116046191A CN202310141205.0A CN202310141205A CN116046191A CN 116046191 A CN116046191 A CN 116046191A CN 202310141205 A CN202310141205 A CN 202310141205A CN 116046191 A CN116046191 A CN 116046191A
- Authority
- CN
- China
- Prior art keywords
- current value
- value
- resonant circuit
- inductor
- inductance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Current Or Voltage (AREA)
Abstract
Description
技术领域technical field
本申请涉及温度测量技术领域,尤其涉及一种测温装置、测温方法和气溶胶生成设备。The present application relates to the technical field of temperature measurement, in particular to a temperature measuring device, a temperature measuring method and an aerosol generating device.
背景技术Background technique
目前,通常确定感受器的温度的方法包括有线测温方法和无线测温方法;其中,有线测温方法是将温度传感器贴附于感受器上,之后将温度传感器产生的电气信号通过导线连接到对应的控制电路,控制电路中的微控制器再对电气信号进行计算来确定感受器的温度;无线测温方法主要包括基于发热体红外光波特性的测温方法和基于E类功率放大电路视在阻抗的测温方法等;但是,上述有线测温方法中感受器与控制电路无法分离,上述无线测温应用容易受场景限制,且只能适用于特定的电路结构中,导致适用性较低。At present, the methods for usually determining the temperature of the susceptor include wired temperature measurement method and wireless temperature measurement method; wherein, the wired temperature measurement method is to attach the temperature sensor to the susceptor, and then connect the electrical signal generated by the temperature sensor to the corresponding The control circuit, the microcontroller in the control circuit calculates the electrical signal to determine the temperature of the sensor; the wireless temperature measurement method mainly includes the temperature measurement method based on the infrared light wave characteristics of the heating element and the apparent impedance measurement method based on the E-class power amplifier circuit. However, in the above-mentioned wired temperature measurement method, the sensor and the control circuit cannot be separated, and the above-mentioned wireless temperature measurement application is easily limited by the scene, and can only be applied to a specific circuit structure, resulting in low applicability.
发明内容Contents of the invention
为解决上述技术问题,本申请实施例期望提供一种测温装置、测温方法和气溶胶生成设备,可以解决相关技术中测量感受器的温度时存在感受器与控制电路无法分离、应用容易受限制、且只能适用于特定电路结构的问题,提高了测温方案的普遍适用性。In order to solve the above technical problems, the embodiment of the present application expects to provide a temperature measuring device, a temperature measuring method, and an aerosol generating device, which can solve the problem that the sensor cannot be separated from the control circuit when measuring the temperature of the sensor in the related art, and the application is easily limited. It can only be applied to the problem of a specific circuit structure, which improves the universal applicability of the temperature measurement scheme.
本申请实施例的技术方案是这样实现的:The technical scheme of the embodiment of the application is realized in this way:
本申请实施例提供了一种测温装置,所述装置包括:感受器、谐振电路和控制器,其中:An embodiment of the present application provides a temperature measuring device, the device includes: a sensor, a resonant circuit and a controller, wherein:
所述感受器与所述谐振电路耦合连接;The susceptor is coupled and connected to the resonant circuit;
所述控制器的控制端与所述谐振电路的开关单元连接;The control terminal of the controller is connected to the switching unit of the resonant circuit;
所述控制器,用于在控制所述谐振电路处于零状态的情况下,控制所述开关单元导通第一时间,获得所述第一时间内所述谐振电路中电感的电参数,并基于所述电感的电参数确定所述感受器的温度。The controller is configured to control the switching unit to be turned on for a first time when the resonant circuit is controlled to be in a zero state, to obtain an electrical parameter of the inductance in the resonant circuit within the first time, and based on The electrical parameter of the inductance determines the temperature of the susceptor.
上述测温装置中,所述电参数至少包括电感值,其中:In the above temperature measuring device, the electrical parameters include at least an inductance value, wherein:
所述控制器,具体用于获得所述谐振电路中目标采样点的电流值和所述谐振电路中的电源的电压值,并基于所述谐振电路中电感的电流值和所述电源的电压值确定所述电感的电感值,基于所述电感的电感值确定所述感受器的温度;其中,所述目标采样点的电流值用于表征所述电感的电流值。The controller is specifically configured to obtain the current value of the target sampling point in the resonant circuit and the voltage value of the power supply in the resonant circuit, and based on the current value of the inductor in the resonant circuit and the voltage value of the power supply An inductance value of the inductor is determined, and a temperature of the susceptor is determined based on the inductance value of the inductor; wherein, the current value at the target sampling point is used to characterize the current value of the inductor.
上述测温装置中,所述开关单元还用于以第二时间为周期导通,以控制所述感受器产生加热电流。In the above-mentioned temperature measuring device, the switch unit is further configured to be turned on with the second time as a cycle, so as to control the susceptor to generate a heating current.
上述测温装置中,所述开关单元包括加热控制开关和测温控制开关,其中:In the above temperature measuring device, the switch unit includes a heating control switch and a temperature measurement control switch, wherein:
所述控制器,具体用于在所述加热控制开关关断使所述谐振电路处于零状态的情况下,控制所述测温控制开关导通第一时间,获得所述第一时间内所述谐振电路中电感的电流值。The controller is specifically configured to control the temperature measurement control switch to be turned on for a first time when the heating control switch is turned off so that the resonant circuit is in a zero state, and obtain the The current value of the inductor in the resonant circuit.
上述测温装置中,所述目标采样点的电流值包括所述目标采样点在第一测量时间的第一电流值和所述目标采样点在第二测量时间的第二电流值,其中:In the above temperature measuring device, the current value of the target sampling point includes the first current value of the target sampling point at the first measurement time and the second current value of the target sampling point at the second measurement time, wherein:
所述控制器,具体用于接收所述采样单元采集的所述第一电流值、所述第二电流值以及所述电源的电压值;The controller is specifically configured to receive the first current value, the second current value, and the voltage value of the power source collected by the sampling unit;
所述控制器,具体用于根据所述谐振电路的零状态响应,基于所述第一电流值、所述第二电流值、第一时间、所述电源的电压值和所述谐振电路中电阻的电阻值,确定所述电感的电感值,并基于所述电感的电感值确定所述感受器的温度;其中,所述第一时间是基于所述第一测量时间和所述第二测量时间确定的。The controller is specifically configured to respond to the zero state of the resonant circuit based on the first current value, the second current value, the first time, the voltage value of the power supply and the resistance in the resonant circuit the resistance value of the inductor, determine the inductance value of the inductor, and determine the temperature of the susceptor based on the inductance value of the inductor; wherein, the first time is determined based on the first measurement time and the second measurement time of.
上述测温装置中,所述目标采样点的电流值包括所述目标采样点的预设电流值,其中:In the above temperature measuring device, the current value of the target sampling point includes the preset current value of the target sampling point, wherein:
所述控制器,具体用于获得所述谐振电路中所述预设电流值,并接收所述采样单元采集的所述电源的电压值;The controller is specifically configured to obtain the preset current value in the resonant circuit, and receive the voltage value of the power source collected by the sampling unit;
所述控制器,具体用于根据所述谐振电路的零状态响应,基于所述预设电流值、第一时间、所述电源的电压值和所述谐振电路中电阻的电阻值,确定所述电感的电感值,并基于所述电感的电感值确定所述感受器的温度;其中,所述第一时间是基于第一测量时间和第二测量时间确定的,所述第二测量时间是通过所述采样单元从第一测量时间起采集所述目标采样点的电流值,并在采集的电流值满足所述预设电流值时确定的时间。The controller is specifically configured to determine the resonant circuit based on the preset current value, the first time, the voltage value of the power supply and the resistance value of the resistor in the resonant circuit according to the zero-state response of the resonant circuit. the inductance value of the inductor, and determine the temperature of the susceptor based on the inductance value of the inductor; wherein the first time is determined based on a first measurement time and a second measurement time, and the second measurement time is determined by the The sampling unit collects the current value of the target sampling point from the first measurement time, and determines the time when the collected current value satisfies the preset current value.
本申请实施例提供了一种测温方法,所述测温方法包括:The embodiment of the present application provides a temperature measurement method, the temperature measurement method includes:
在与感受器耦合连接的谐振电路处于零状态的情况下,控制开关单元导通,确定所述谐振电路中电感的电参数;When the resonant circuit coupled with the susceptor is in a zero state, the control switch unit is turned on to determine the electrical parameters of the inductance in the resonant circuit;
基于所述电感的电参数,确定所述感受器的温度。Based on the electrical parameter of the inductance, the temperature of the susceptor is determined.
上述测温方法中,所述电感的电参数至少包括所述电感的电感值,所述确定所述谐振电路中电感的电参数,包括:In the above temperature measurement method, the electrical parameters of the inductance at least include the inductance value of the inductance, and the determination of the electrical parameters of the inductance in the resonant circuit includes:
确定所述谐振电路中所述电感的电流值和所述谐振电路中的电源的电压值;determining a current value of the inductor in the resonant circuit and a voltage value of a power supply in the resonant circuit;
基于所述电感的电流值和所述电源的电压值,确定所述电感的电感值。An inductance value of the inductor is determined based on a current value of the inductor and a voltage value of the power supply.
上述测温方法中,所述确定所述谐振电路中所述电感的电流值和所述电源的电压值,包括:In the above temperature measurement method, the determination of the current value of the inductor in the resonant circuit and the voltage value of the power supply includes:
确定所述谐振电路中目标采样点的电流值得到所述电感的电流值,并通过采样单元确定所述电源的电压值;其中,所述目标采样点是与所述电感相关的采样点。determining the current value of the target sampling point in the resonant circuit to obtain the current value of the inductor, and determining the voltage value of the power supply through a sampling unit; wherein the target sampling point is a sampling point related to the inductor.
上述测温方法中,所述目标采样点的电流值包括所述目标采样点在第一测量时间的第一电流值和所述目标采样点在第二测量时间的第二电流值,所述确定所述谐振电路中目标采样点的电流值得到所述电感的电流值,包括:In the above temperature measurement method, the current value of the target sampling point includes the first current value of the target sampling point at the first measurement time and the second current value of the target sampling point at the second measurement time, and the determination The current value of the target sampling point in the resonant circuit is obtained to obtain the current value of the inductor, including:
确定第一测量时间和第二测量时间;determining a first measurement time and a second measurement time;
在所述第一测量时间下,通过采样单元采集所述第一电流值,并在时间到达所述第二测量时间时,通过所述采样单元采集所述第二电流值;At the first measurement time, the first current value is collected by the sampling unit, and when the time reaches the second measurement time, the second current value is collected by the sampling unit;
基于所述第一电流值和所述第二电流值确定所述电感的电流值。A current value of the inductor is determined based on the first current value and the second current value.
上述测温方法中,所述目标采样点的电流值包括所述目标采样点的预设电流值,所述确定所述谐振电路中目标采样点的电流值得到所述电感的电流值,包括:In the above temperature measurement method, the current value of the target sampling point includes the preset current value of the target sampling point, and the determination of the current value of the target sampling point in the resonant circuit to obtain the current value of the inductor includes:
获得所述谐振电路中目标采样点的预设电流值得到所述电感的电流值。The preset current value of the target sampling point in the resonant circuit is obtained to obtain the current value of the inductor.
上述测温方法中,所述基于所述电感的电流值和所述电源的电压值,确定所述电感的电感值,包括:In the above temperature measurement method, the determination of the inductance value of the inductor based on the current value of the inductor and the voltage value of the power supply includes:
确定所述谐振电路中电阻的电阻值;determining the resistance value of the resistance in the resonant circuit;
基于所述电感的电流值、所述电源的电压值、第一时间和所述电阻值,确定所述电感值。The inductance value is determined based on the current value of the inductor, the voltage value of the power supply, the first time and the resistance value.
上述测温方法中,所述基于所述电感的电流值、所述电源的电压值、第一时间和所述电阻值,确定所述电感值,包括:In the above temperature measurement method, the determination of the inductance value based on the current value of the inductance, the voltage value of the power supply, the first time and the resistance value includes:
基于第一测量时间和第二测量时间,确定所述第一时间;determining said first time based on a first measured time and a second measured time;
对所述第一时间、所述电感的电流值、所述电源的电压值和所述电阻值进行运算,得到所述电感值。The first time, the current value of the inductor, the voltage value of the power supply and the resistance value are calculated to obtain the inductance value.
上述测温方法中,所述目标采样点的电流值包括所述目标采样点的预设电流值,所述基于第一测量时间和第二测量时间,确定所述第一时间之前,还包括:In the above temperature measurement method, the current value of the target sampling point includes the preset current value of the target sampling point, and before determining the first time based on the first measurement time and the second measurement time, further includes:
确定所述第一测量时间;determining said first measurement time;
通过采样单元持续的采集所述目标采样点的电流值,并在采集的电流值满足所述预设电流值时,通过所述采样单元确定所述采集的电流值满足所述预设电流值时对应的所述第二测量时间。The current value of the target sampling point is continuously collected by the sampling unit, and when the collected current value satisfies the preset current value, it is determined by the sampling unit that the collected current value satisfies the preset current value corresponding to the second measurement time.
上述测温方法中,所述基于所述电感的电参数,确定所述感受器的温度,包括:In the above temperature measurement method, the determination of the temperature of the susceptor based on the electrical parameters of the inductance includes:
确定电感值与温度之间的对应关系;Determine the correspondence between the inductance value and temperature;
基于所述电感值与温度之间的对应关系和所述电感的电感值,确定所述感受器的温度。The temperature of the susceptor is determined based on the correspondence between the inductance value and temperature and the inductance value of the inductor.
本申请实施例提供了一种气溶胶生成设备,所述气溶胶生成设备包括上述的测温装置。An embodiment of the present application provides an aerosol generating device, and the aerosol generating device includes the above-mentioned temperature measuring device.
本申请实施例所提供的测温装置、测温方法和气溶胶生成设备,感受器与谐振电路耦合连接,控制器的控制端与谐振电路的开关单元连接,且控制器可以在控制谐振电路处于零状态的情况下,控制开关单元导通第一时间,获得第一时间内谐振电路中电感的电参数,并基于电感的电参数确定感受器的温度,如此,通过将感受器与谐振电路耦合连接,使得感受器与谐振电路相分离,解决了相关技术中存在感受器与控制电路无法分离的问题;同时,在谐振电路处于零状态时,相当于谐振电路等效为电阻-电感电路,此时获得开关单元在导通第一时间内谐振电路中电感的电参数,即通过电阻-电感电路来确定感受器的温度,可以将谐振电路中的电感和电容进行解耦,减少了确定感受器温度过程中的限制条件,从而提高了测温方案的普遍适用性。In the temperature measuring device, the temperature measuring method and the aerosol generating device provided in the embodiments of the present application, the sensor is coupled and connected to the resonant circuit, the control terminal of the controller is connected to the switch unit of the resonant circuit, and the controller can control the resonant circuit to be in a zero state In the case of , control the switch unit to turn on for the first time, obtain the electrical parameters of the inductance in the resonant circuit in the first time, and determine the temperature of the susceptor based on the electrical parameters of the inductance. In this way, by coupling the susceptor with the resonant circuit, the susceptor It is separated from the resonant circuit, which solves the problem that the sensor and the control circuit cannot be separated in the related art; at the same time, when the resonant circuit is in the zero state, the resonant circuit is equivalent to a resistance-inductance circuit. Through the electrical parameters of the inductor in the resonant circuit in the first time, that is, the temperature of the susceptor is determined through the resistance-inductance circuit, the inductance and capacitance in the resonant circuit can be decoupled, and the limiting conditions in the process of determining the temperature of the susceptor are reduced. The general applicability of the temperature measurement scheme has been improved.
附图说明Description of drawings
图1为本申请实施例提供的一种测温装置的结构示意图;FIG. 1 is a schematic structural diagram of a temperature measuring device provided in an embodiment of the present application;
图2为本申请实施例提供的另一种测温装置的电路示意图;FIG. 2 is a schematic circuit diagram of another temperature measuring device provided in the embodiment of the present application;
图3为本申请实施例提供的又一种测温装置的电路示意图;FIG. 3 is a schematic circuit diagram of another temperature measuring device provided in the embodiment of the present application;
图4为本申请另一实施例提供的一种测温装置的电路示意图;FIG. 4 is a schematic circuit diagram of a temperature measuring device provided in another embodiment of the present application;
图5为本申请另一实施例提供的另一种测温装置的电路示意图;FIG. 5 is a schematic circuit diagram of another temperature measuring device provided in another embodiment of the present application;
图6为本申请实施例提供的一种测温装置的等效电路图;FIG. 6 is an equivalent circuit diagram of a temperature measuring device provided in an embodiment of the present application;
图7为本申请实施例提供的一种测温装置中目标采样点的设置位置的电路示意图;Fig. 7 is a schematic circuit diagram of the setting position of the target sampling point in a temperature measuring device provided by the embodiment of the present application;
图8为本申请实施例提供的一种测温装置中开关单元的控制逻辑示意图;Fig. 8 is a control logic diagram of a switch unit in a temperature measuring device provided by an embodiment of the present application;
图9为本申请实施例提供的一种测温装置中测量目标采样点的电流的电路示意图;FIG. 9 is a schematic circuit diagram of measuring the current of a target sampling point in a temperature measuring device provided in an embodiment of the present application;
图10为本申请实施例提供的另一种测温装置中测量目标采样点的电流的电路示意图;FIG. 10 is a schematic circuit diagram of measuring the current of the target sampling point in another temperature measuring device provided in the embodiment of the present application;
图11为本申请实施例提供的另一种测温装置中开关单元的控制逻辑示意图;Fig. 11 is a schematic diagram of the control logic of the switch unit in another temperature measuring device provided by the embodiment of the present application;
图12为本申请实施例提供的一种测温装置中电感的电流的示意图;FIG. 12 is a schematic diagram of the current of an inductor in a temperature measuring device provided in an embodiment of the present application;
图13(a)为本申请实施例提供的一种测温装置中的无线测温的电路示意图;Fig. 13(a) is a schematic circuit diagram of a wireless temperature measurement in a temperature measurement device provided in an embodiment of the present application;
图13(b)为本申请实施例提供的另一种测温装置中的无线测温的电路示意图;Figure 13(b) is a schematic circuit diagram of wireless temperature measurement in another temperature measurement device provided in the embodiment of the present application;
图13(c)为本申请实施例提供的又一种测温装置中的无线测温的电路图;Figure 13(c) is a circuit diagram of wireless temperature measurement in another temperature measurement device provided in the embodiment of the present application;
图13(d)为本申请另一实施例提供的一种测温装置中的无线测温的电路图;Fig. 13(d) is a circuit diagram of wireless temperature measurement in a temperature measurement device provided by another embodiment of the present application;
图14为本申请实施例提供的一种测温装置中确定电感的电感值的流程图;FIG. 14 is a flow chart of determining the inductance value of an inductor in a temperature measuring device provided in an embodiment of the present application;
图15为本申请实施例提供的另一种测温装置中确定电感的电感值的流程图;Fig. 15 is a flow chart of determining the inductance value of the inductor in another temperature measuring device provided in the embodiment of the present application;
图16为本申请实施例提供的又一种测温装置中确定电感的电感值的流程图;Fig. 16 is a flow chart of determining the inductance value of the inductor in another temperature measuring device provided in the embodiment of the present application;
图17为本申请实施例提供的一种测温方法的流程示意图;Fig. 17 is a schematic flow chart of a temperature measuring method provided in the embodiment of the present application;
图18为本申请实施例提供的另一种测温方法的流程示意图;Figure 18 is a schematic flow chart of another temperature measurement method provided in the embodiment of the present application;
图19为本申请实施例提供的又一种测温方法的流程示意图;Fig. 19 is a schematic flow chart of another temperature measuring method provided in the embodiment of the present application;
图20(a)为本申请实施例提供的一种测温方法中的无线测温的基本原理示意图;Fig. 20(a) is a schematic diagram of the basic principle of wireless temperature measurement in a temperature measurement method provided by the embodiment of the present application;
图20(b)为本申请实施例提供的另一种测温方法的基本原理示意图。Fig. 20(b) is a schematic diagram of the basic principle of another temperature measurement method provided in the embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。The technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application.
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。It should be understood that the specific embodiments described here are only used to explain the present application, and are not intended to limit the present application.
本申请实施例提供一种测温装置,参照图1所示,该测温装置可以包括:感受器11、谐振电路12和控制器13,其中:The embodiment of the present application provides a temperature measuring device. Referring to FIG. 1, the temperature measuring device may include: a
感受器11与谐振电路12耦合连接。The
具体的,谐振电路12可以是并联谐振电路、串联谐振电路、单管并联谐振电路、半桥串联谐振电路、全桥串联谐振谐振电路或E类功放谐振电路;当然,谐振电路12也可以是其他类型的谐振电路;需要说明的是,谐振电路12的组成并不唯一,通常谐振电路12可以包括电容和电感,且电容和电感之间可以采用并联的连接方式,也可以采用串联的连接方式,电容和电感之间采用并联的连接方式组成的电路称为并联谐振电路,电容和电感之间采用串联的连接方式组成的电路称为串联谐振电路。Specifically, the
在本申请实施例中,如图2所示,并联谐振电路可以是由电容C1、电容C2、开关单元S1、电感线圈L1和感受器11组成的电路,且电容C1、电容C2、开关单元S1、电感线圈L1和感受器11之间的具体连接关系可以参照图2所示。同时,如图3所示,串联谐振电路可以由电容C1、电容C2、开关单元S1、开关单元S2、电感L1和感受器11组成的电路,且电容C1、电容C2、开关单元S1、开关单元S2、电感L1和感受器11之间的具体连接关系可以参照图3所示;或者,如图4所示,串联谐振电路也可以是由电容C1、电容C2、电容C3、开关单元S1、开关单元S2、电感L1和感受器11组成的电路,且电容C1、电容C2、电容C3、开关单元S1、开关单元S2、电感L1和感受器11之间的具体连接关系可以参照图4所示;或者,如图5所示,串联谐振电路也可以是由电容C1、电容C2、电容Cp、开关单元S1、电感L1、电感L2和感受器11组成的电路,且电容C1、电容C2、电容Cp、开关单元S1、电感L1和感受器11之间的具体连接关系可以参照图5所示。In the embodiment of the present application, as shown in Figure 2, the parallel resonant circuit may be a circuit composed of capacitor C1, capacitor C2, switch unit S1, inductance coil L1 and
其中,耦合连接可以指的是感受器11与谐振电路12不直接连接,且在感受器11中的参数发生变化时,谐振电路12中的电参数也将发生相应的变化,或者,在谐振电路12中的电参数发生变化时,感受器11中的参数也将发生相应的变化,如此,可以实现感受器11与谐振电路12之间实现非接触式测温。Wherein, coupling connection may refer to that the
控制器13的控制端与谐振电路12的开关单元连接。A control terminal of the
控制器13,用于在控制谐振电路12处于零状态的情况下,控制开关单元导通第一时间,获得第一时间内谐振电路12中电感的电参数,并基于电感的电参数确定感受器11的温度。The
在本申请实施例中,谐振电路12还包括开关单元,控制器13可以通过控制端对谐振电路12中的开关单元进行控制,以谐振电路12是如图1所示的并联谐振电路为例,控制器13通过控制端来控制谐振电路12中的开关单元S1周期性导通和关断,使得谐振电路12中的L1、C2工作于谐振状态,此时L1中周期性的交变电流产生交变磁场,处于交变磁场中的感受器11因电磁感应产生出涡电流,涡电流能够生成焦耳热,由此就能够实现并联谐振电路感应加热的目的;需要说明的是,当图2所示的并联谐振电路中的开关单元S1处于断开状态时,电感L1的电流为0,电容C2两端电压为0,即L1和C2处于“零状态”;当图2所示的并联谐振电路中的开关单元S1处于闭合状态时,由于S1导通时S1自身的电阻远远小于电感与感受器组合后所形成的等效电阻值,所以S1的电阻可以近似忽略不计,电容C2两端电压可以指的是电源两端的电压,因此图2所示的并联谐振电路可以等效为如图6所示的电阻-电感电路(Resistor-inductor circuit),即RL电路;其中,RL电路中的电阻R1为电感与感受器组合后所形成的等效电阻值,电感Lr为电感与感受器组合后所形成的等效电感值。In the embodiment of the present application, the
需要说明的是,第一时间可以用ton来表示,且第一时间通常为微秒(us)级的,电感的电参数可以指的是电感的电感值;控制器可以在控制谐振电路处于零状态时,控制开关单元导通ton,获得ton内谐振电路中电感的电感值,并基于电感的电感值与感受器的温度之间的对应关系来确定感受器的温度。It should be noted that the first time can be represented by t on , and the first time is usually at the microsecond (us) level, and the electrical parameter of the inductor can refer to the inductance value of the inductor; the controller can control the resonant circuit at In the zero state, the switch unit is controlled to turn on t on , the inductance value of the inductor in the resonant circuit in t on is obtained, and the temperature of the susceptor is determined based on the corresponding relationship between the inductance value of the inductor and the temperature of the susceptor.
控制器13,具体用于获得谐振电路12中目标采样点的电流值和谐振电路12中的电源的电压值,并基于谐振电路12中电感的电流值和电源的电压值确定电感的电感值,基于电感的电感值确定感受器11的温度;The
其中,目标采样点的电流值用于表征电感的电流值。Wherein, the current value of the target sampling point is used to represent the current value of the inductor.
在本本申请实施例中,可以在谐振电路12中设置多个目标采样点,通过获取目标采样点的电流值来得到电感的电流值;在一种可行的实现方式中,以在图2所示的并联谐振电路设置多个目标采样点进行说明:目标采样点的设置位置可以参照图7所示,具体可以在电容C1两端设置目标采样点,即目标采样点1(即电感电流取样点1);可以在电感L1两端分别设置目标采样点,即目标采样点2(即电感电流取样点2)、目标采样点3(即电感电流取样点3);也可以在开关单元S1两端分别设置目标采样点,即目标采样点4(即电感电流取样点4)和目标采样点5(即电感电流取样点5);当然,也可以在并联谐振电路的其他位置中设置目标采样点。需要说明的是,通过获取的任一目标采样点处的电流值即可确定电感的电流值。In the embodiment of the present application, multiple target sampling points can be set in the
具体的,电感的电感值可以指的是等效电感值,控制器可以通过对电感的电流值和电源的电压值进行运算得到等效电感值,并基于等效电感值与感受器之间的对应关系来确定感受器的温度。Specifically, the inductance value of the inductor can refer to the equivalent inductance value, and the controller can obtain the equivalent inductance value by calculating the current value of the inductor and the voltage value of the power supply, and based on the correspondence between the equivalent inductance value and the sensor relationship to determine the temperature of the sensor.
在本申请其他实施例中,开关单元还用于以第二时间为周期导通,以控制感受器11产生加热电流。In other embodiments of the present application, the switch unit is further configured to be turned on at a period of the second time, so as to control the
具体的,第二时间通常为毫秒级的,开关单元在以第二时间为周期导通的情况下,感受器11可以产生加热电流,如此,开关单元既可以用于控制加热,也可以用于控制测温;此时,开关单元的控制逻辑可以参照图8所示,可以控制开关单元导通第一时间(即开关单元控制测温时间),以及控制开关单元导通第二时间(即开关单元控制加热时间);需要说明的是,第二时间与第一时间不同。Specifically, the second time is usually on the order of milliseconds. When the switch unit is turned on at the second time period, the
控制器13,具体用于在加热控制开关关断使谐振电路12处于零状态的情况下,控制测温控制开关导通第一时间,获得第一时间内谐振电路12中电感的电流值。The
需要说明的是,虽然电感的电流值的测量有多种方式,但是考虑到气溶胶生成设备的成本和体积,通常选用电阻分流器(即在电路中串连一个采样电阻)的方式对电感的电流值进行测量;且在图7所示的电路图中,测量目标采样点2和目标采样点3的电流值的方案中,不管在加热还是在测温的过程中,采样电阻Rs始终接入,导致功耗较大;但是,测量目标采样点1、目标采样点4和目标采样点5的电流值的方案中,只有在S1导通时采样电阻Rs才接入,功耗相对较低。It should be noted that although there are many ways to measure the current value of the inductance, considering the cost and volume of the aerosol generating equipment, the method of resistive shunt (that is, a sampling resistor connected in series in the circuit) is usually used to measure the inductance. The current value is measured; and in the circuit diagram shown in Figure 7, in the scheme of measuring the current value of the
在一种优选的实现方式中,以电阻分流器的电路形式对目标采样点4和目标采样点5处的电流值进行测量为例,在进行测量时,考虑到降低电阻分流器带来的额外能耗,可以在图2所示的电路中与目标采样点4对应的位置增加采样电阻Rs和加热控制开关S2,从而形成图9所示的电路结构;当然,也可以在图2所示的电路中与目标采样点5对应的位置增加采样电阻Rs和加热控制开关S2,从而形成图10所示的电路。其中,图9所示的电路和图10所示的电路中均是由电容C1、电容C2、测温控制开关S1、加热控制开关S2、采样电阻Rs、电感L1和感受器组成的。在一种可行的实现方式中,在图9所示的电路图中,当控制器13控制S2断开,且控制S1以第一时间导通时,可以获得第一时间内目标采样点4的电流值,从而得到电感的电流值;在另一种可行的实现方式中,在图10所示的电路图中,当控制器13控制S2断开,且控制S1以第一时间导通时,可以获得第一时间内目标采样点5的电流值,从而得到电感的电流值。In a preferred implementation, take the circuit form of a resistor shunt to measure the current values at the target sampling point 4 and the target sampling point 5 as an example. energy consumption, the sampling resistor Rs and the heating control switch S2 can be added to the position corresponding to the target sampling point 4 in the circuit shown in Figure 2 to form the circuit structure shown in Figure 9; The position corresponding to the target sampling point 5 in the circuit is added with a sampling resistor Rs and a heating control switch S2 to form the circuit shown in FIG. 10 . Wherein, the circuit shown in FIG. 9 and the circuit shown in FIG. 10 are composed of capacitor C1, capacitor C2, temperature measurement control switch S1, heating control switch S2, sampling resistor Rs, inductor L1 and a sensor. In a feasible implementation, in the circuit diagram shown in FIG. 9 , when the
具体的,开关单元的控制逻辑可以参照图11所示,控制加热控制开关周期性导通第二时间,控制测温控制开关导通第一时间;测温控制开关导通第一时间的波形图与第一时间内谐振电路12中电感的电流波形图可以参照图12所示,可以看出,在测温控制开关S1导通第一时间ton的情况下,电感的电流值呈近似线性变化,且在第一测量时间t0和第二测量时间t1下电感的电流变化量为I。Specifically, the control logic of the switch unit can refer to that shown in Figure 11, which controls the heating control switch to be turned on periodically for the second time, and controls the temperature measurement control switch to be turned on for the first time; the waveform diagram of the temperature measurement control switch for the first time to be turned on Refer to FIG. 12 for the current waveform diagram of the inductor in the
需要说明的是,在通过增加控制开关单元使得电容短路,从而组成RL电路实现无线测温的方案中,参照图13(a)、图13(b)、图13(c)和图13(d)所示的电路图,均可以通过对开关单元的控制来组成RL电路进行无线测温。其中,在通过如图13(a)所示的电路图实现无线测温时,可以控制开关单元S0和开关单元S1处于闭合状态;在通过如图13(b)所示的电路图实现无线测温时,可以控制开关单元S0和开关单元S1处于闭合状态;在通过如图13(c)所示的电路图实现无线测温时,可以控制开关单元S0和开关单元S2处于闭合状态;在通过如图13(d)所示的电路图实现无线测温时,可以控制开关单元S0处于闭合状态,控制开关单元S1处于断开状态。It should be noted that, in the scheme of realizing wireless temperature measurement by adding a control switch unit to short-circuit the capacitance to form an RL circuit, refer to Figure 13(a), Figure 13(b), Figure 13(c) and Figure 13(d) ) shown in the circuit diagram, can be composed of RL circuit through the control of the switch unit for wireless temperature measurement. Among them, when wireless temperature measurement is realized through the circuit diagram shown in Figure 13(a), the switch unit S0 and switch unit S1 can be controlled to be in a closed state; when wireless temperature measurement is realized through the circuit diagram shown in Figure 13(b) , the switch unit S0 and the switch unit S1 can be controlled to be in the closed state; when the wireless temperature measurement is realized through the circuit diagram shown in Figure 13(c), the switch unit S0 and the switch unit S2 can be controlled to be in the closed state; When the circuit diagram shown in (d) realizes wireless temperature measurement, the switch unit S0 can be controlled to be in the closed state, and the switch unit S1 can be controlled to be in the open state.
在本申请的一实施例中,当开关单元的导通时间(即第一时间)为根据历史经验提前预设(即第一时间为已知量)的情况下,控制器13具体用于接收采样单元采集的第一电流值、第二电流值以及电源的电压值。In an embodiment of the present application, when the conduction time of the switch unit (that is, the first time) is preset in advance according to historical experience (that is, the first time is a known amount), the
控制器13,具体用于根据谐振电路12的零状态响应,基于第一电流值、第二电流值、第一时间、电源的电压值和谐振电路12中电阻的电阻值,确定电感的电感值,并基于电感的电感值确定感受器11的温度;The
其中,第一时间是基于第一测量时间和第二测量时间确定的。Wherein, the first time is determined based on the first measurement time and the second measurement time.
具体的,可以通过采样单元采集目标采样点处的电流值,以得到电感的电流值;第一电流值为采样单元采集的目标采样点在第一测量时间测量的电流值,第二电流值为采样单元采集的目标采样点在第二测量时间测量的电流值;在一种可行的实现方式中,采样单元可以指的是A/D采样单元,也可以指的是微程序控制器(Microprogrammed ControlUnit,MCU)。Specifically, the current value at the target sampling point can be collected by the sampling unit to obtain the current value of the inductor; the first current value is the current value measured at the first measurement time at the target sampling point collected by the sampling unit, and the second current value is The target sampling point collected by the sampling unit is the current value measured at the second measurement time; in a feasible implementation, the sampling unit may refer to an A/D sampling unit, or may refer to a microprogrammed control unit (Microprogrammed ControlUnit , MCU).
具体的,第一测量时间和第二测量时间是根据实验数据提前预设的,可以通过对预设的第一测量时间和预设的第二测量时间进行数学逻辑运算,得到第一时间;其中,第一测量时间可以用t0来表示,第二测量时间可以用t1来表示;之后根据谐振电路12的零状态响应,对第一电流值、第二电流值、第一时间、电源的电压值和谐振电路12中电阻的电阻值进行数学逻辑运算,得到电感的电感值;在一种可行的实现方式中,可以对预设的第一测量时间和预设的第二测量时间求差值得到第一时间。Specifically, the first measurement time and the second measurement time are preset in advance according to the experimental data, and the first time can be obtained by performing mathematical logic operations on the preset first measurement time and the preset second measurement time; wherein , the first measurement time can be represented by t0, and the second measurement time can be represented by t1; then according to the zero-state response of the
在开关单元的导通时间(即第一时间)是根据历史实验数据提前预设的情况下,控制器13确定电感的电流值的具体过程可以参照图14所示,控制器13可以在开关单元导通第一时间的情况下,将第一测量时间逐渐递增,当控制器13监测到第一测量时间未递增到第二测量时间的情况下,继续对第一测量时间进行递增;当控制器13监测到第一测量时间递增到第二测量时间的情况下,控制器13通过软件触发采样单元采集第二测量时间下的第二电流值,采集电源的电压值;之后,采样单元根据电感计算公式对第一电流值、第二电流值、第一时间、电源的电压值和谐振电路12中电阻的电阻值进行数学逻辑运算,得到电感的电感值。In the case that the conduction time (i.e. the first time) of the switch unit is preset in advance according to the historical experimental data, the specific process for the
在本申请的另一实施例中,在目标采样点的电流值是根据历史实验数据提前预设(即预设电流值为已知量)的情况下,控制器13具体用于获得谐振电路12中预设电流值,并接收采样单元采集的电源的电压值;In another embodiment of the present application, when the current value of the target sampling point is preset in advance according to historical experimental data (that is, the preset current value is known), the
控制器13,具体用于根据谐振电路12的零状态响应,基于预设电流值、第一时间、电源的电压值和谐振电路12中电阻的电阻值,确定电感的电感值,并基于电感的电感值确定感受器11的温度;The
其中,第一时间是基于第一测量时间和第二测量时间确定的,第二测量时间是通过采样单元从第一测量时间起采集目标采样点的电流值,并在采集的电流值满足预设电流值时确定的时间。Wherein, the first time is determined based on the first measurement time and the second measurement time, and the second measurement time is to collect the current value of the target sampling point from the first measurement time through the sampling unit, and when the collected current value satisfies the preset The time at which the current value is determined.
在一种可行的实现方式中,在目标采样点的预设电流值已知的情况下,控制器确定电感的电流值的具体过程可以参照图15所示,控制器可以在开关单元第一时间导通的情况下,将第一测量时间逐渐递增,此时,控制器通过软件触发采样单元开始采集目标采样点的电流值,当目标采样点的电流值不满足预设电流值时,继续采集目标采样点的电流值;当目标采样点的电流值满足预设电流值时,停止第一测量时间的递增,且采样单元通过软件方式采集此刻的时间得到第二测量时间,并采集电源的电压值;之后,将预设电流值I、第一时间ton、电源的电压值Vin和谐振电路中电阻的电阻值R1代入电感计算公式中进行运算,得到电感的电感值。In a feasible implementation, when the preset current value of the target sampling point is known, the specific process for the controller to determine the current value of the inductor can be shown in FIG. In the case of conduction, the first measurement time is gradually increased. At this time, the controller triggers the sampling unit to start collecting the current value of the target sampling point through software. When the current value of the target sampling point does not meet the preset current value, continue to collect The current value of the target sampling point; when the current value of the target sampling point satisfies the preset current value, the increment of the first measurement time is stopped, and the sampling unit collects the time at this moment by software to obtain the second measurement time, and collects the voltage of the power supply value; after that, the preset current value I, the first time t on , the voltage value V in of the power supply and the resistance value R 1 of the resistor in the resonant circuit are substituted into the inductance calculation formula Perform calculations to obtain the inductance value of the inductor.
在另一种可行的实现方式中,在目标采样点的预设电流值已知的情况下,控制器13确定电感的电流值的具体过程也可以参照图16所示,控制器13可以在开关单元第一时间导通的情况下,将第一测量时间逐渐递增,此时,电感电流信号与预设电流值通过硬件比较器电路进行比较,当目标采样点的电流值不满足预设电流值时,硬件比较器无采样触发信号输出,继续递增第一测量时间;当目标采样点的电流值满足预设电流值时,硬件比较器输出采样触发信号,停止第一测量时间的递增,且采样单元通过软件方式采集预设电流值对应的第二测量时间,采集电源的电压值;之后,采样单元将预设电流值I、第一时间ton、电源的电压值Vin和谐振电路中电阻的电阻值R1带入电感计算公式中进行运算,得到电感的电感值。In another feasible implementation, when the preset current value of the target sampling point is known, the specific process for the
本申请实施例所提供的测温装置,通过将感受器与谐振电路电磁耦合,且以无线测温方式确定感受器温度,使得感受器与谐振电路相分离,解决了相关技术中存在感受器与控制电路无法分离的问题;同时,在谐振电路处于零状态时,相当于谐振电路等效为电阻-电感电路,此时获得开关单元在导通第一时间内谐振电路中电感的电参数,即通过电阻-电感电路来确定感受器的温度,可以将谐振电路中的电感和电容进行解耦,减少了确定感受器温度过程中的限制条件,从而提高了测温方案的普遍适用性。The temperature measuring device provided in the embodiment of the present application electromagnetically couples the susceptor to the resonant circuit, and determines the temperature of the susceptor by means of wireless temperature measurement, so that the susceptor and the resonant circuit are separated, which solves the problem that the susceptor and the control circuit cannot be separated in the related art At the same time, when the resonant circuit is in the zero state, the resonant circuit is equivalent to a resistance-inductance circuit. At this time, the electrical parameters of the inductance in the resonant circuit of the switch unit in the first time of conduction are obtained, that is, through the resistance-inductance The circuit is used to determine the temperature of the susceptor, and the inductance and capacitance in the resonant circuit can be decoupled, which reduces the limiting conditions in the process of determining the temperature of the susceptor, thereby improving the general applicability of the temperature measurement scheme.
本申请实施例提供一种气溶胶生成设备,该气溶胶生成设备包括图1对应的测温装置。An embodiment of the present application provides an aerosol generating device, and the aerosol generating device includes the temperature measuring device corresponding to FIG. 1 .
本申请实施例提供一种测温方法,该方法可以应用于测温装置中,参照图17所示,该方法包括以下步骤:The embodiment of the present application provides a temperature measurement method, which can be applied to a temperature measurement device, as shown in Figure 17, the method includes the following steps:
步骤101、在与感受器耦合连接的谐振电路处于零状态的情况下,控制开关单元导通,确定谐振电路中电感的电参数。
其中,电感的电参数可以指的是电感的电感值。Wherein, the electrical parameter of the inductor may refer to an inductance value of the inductor.
在本申请实施例中,在与感受器耦合连接的谐振电路处于零状态的情况下,可以控制开关单元导通第一时间,进而先获取谐振电路中电感的电流值和谐振电路中的电源的电压值,然后基于电感的电流值和谐振电路中的电源的电压值,得到第一时间内电感的电感值;其中,可以将谐振电路基于电路等效原理等效为RL电路,并基于等效后的电路确定电感的电参数。需要说明的是,控制器还可以控制开关单元以第二时间为周期导通,以控制感受器产生加热电流,进而对感受器进行加热。In the embodiment of the present application, when the resonant circuit coupled with the susceptor is in the zero state, the switch unit can be controlled to turn on for the first time, and then the current value of the inductor in the resonant circuit and the voltage of the power supply in the resonant circuit can be obtained first value, and then based on the current value of the inductor and the voltage value of the power supply in the resonant circuit, the inductance value of the inductor in the first time is obtained; wherein, the resonant circuit can be equivalent to an RL circuit based on the circuit equivalent principle, and based on the equivalent The circuit determines the electrical parameters of the inductor. It should be noted that the controller can also control the switch unit to be turned on at the second time period, so as to control the susceptor to generate a heating current, and then heat the susceptor.
步骤102、基于电感的电参数,确定感受器的温度。
在本申请实施例中,可以基于电感的电参数,以及电感的电参数与感受器的温度之间的对应的关系,确定感受器的温度。In the embodiment of the present application, the temperature of the susceptor may be determined based on the electrical parameter of the inductor and the corresponding relationship between the electrical parameter of the inductor and the temperature of the susceptor.
本申请实施例所提供的测温方法,通过在与感受器耦合连接的谐振电路处于零状态的情况下,控制开关单元导通,确定谐振电路中电感的电参数,之后基于电感的电参数确定感受器的温度,如此,通过将感受器与谐振电路耦合连接,使得感受器与谐振电路相分离,解决了相关技术中存在感受器与控制电路无法分离的问题;同时,在谐振电路处于零状态时,相当于谐振电路等效为电阻-电感电路,此时获得开关单元在导通第一时间内谐振电路中电感的电参数,即通过电阻-电感电路来确定感受器的温度,可以将谐振电路中的电感和电容进行解耦,减少了确定感受器温度过程中的限制条件,从而提高了测温方案的普遍适用性。In the temperature measurement method provided in the embodiment of the present application, when the resonant circuit coupled with the susceptor is in a zero state, the switching unit is controlled to conduct, so as to determine the electrical parameters of the inductance in the resonant circuit, and then determine the susceptor based on the electrical parameters of the inductance In this way, by coupling the susceptor to the resonant circuit, the susceptor is separated from the resonant circuit, which solves the problem that the susceptor and the control circuit cannot be separated in the related art; at the same time, when the resonant circuit is in a zero state, it is equivalent to a resonance The circuit is equivalent to a resistance-inductance circuit. At this time, the electrical parameters of the inductance in the resonant circuit of the switch unit in the first time of conduction are obtained, that is, the temperature of the sensor is determined through the resistance-inductance circuit, and the inductance and capacitance in the resonant circuit can be Decoupling reduces the restrictive conditions in the process of determining the temperature of the susceptor, thereby improving the general applicability of the temperature measurement scheme.
基于前述实施例,本申请的实施例提供一种测温方法,应用于测温装置中,参照图18所示,该方法包括以下步骤:Based on the foregoing embodiments, the embodiments of the present application provide a temperature measurement method, which is applied to a temperature measurement device, as shown in FIG. 18 , the method includes the following steps:
步骤201、在与感受器耦合连接的谐振电路处于零状态的情况下,控制开关单元导通,确定谐振电路中电感的电流值和谐振电路中的电源的电压值。
在本申请实施例中,在谐振电路处于零状态且控制开关单元导通的情况下,可以通过采集单元采集谐振电路中目标采样点的电流值,从而得到谐振电路中电感的电流值,且可以通过采集单元采集谐振电路中电源的电压值。In the embodiment of the present application, when the resonant circuit is in the zero state and the control switch unit is turned on, the current value of the target sampling point in the resonant circuit can be collected by the acquisition unit, so as to obtain the current value of the inductor in the resonant circuit, and can The voltage value of the power supply in the resonant circuit is collected by the collection unit.
需要说明的是,步骤201可以通过以下方式来实现:It should be noted that
步骤201a、确定谐振电路中目标采样点的电流值得到电感的电流值,并通过采样单元确定电源的电压值。Step 201a, determine the current value of the target sampling point in the resonant circuit to obtain the current value of the inductor, and determine the voltage value of the power supply through the sampling unit.
其中,目标采样点是与电感相关的采样点。Wherein, the target sampling point is a sampling point related to the inductance.
在本申请实施例中,可以用目标采样点的电流值来表征电感的电流值,理由是:在如图7所示的电路图中,对于目标采样点2和目标采样点3,其电流值为流经电感的电流,对于目标采样点1、目标采样点4和目标采样点5,其电流值为流经整个谐振电路12的电流(即电感与电容两端电流之和),但是电容只有在0时刻附近有一个瞬时的充电电流值,充电完成后,电容的两端的电流值为0,整个谐振电路的电流值等于电感两端的电流,因此,可以用目标采样点的电流值来表征电感的电流值。In the embodiment of this application, the current value of the target sampling point can be used to characterize the current value of the inductor. The reason is that in the circuit diagram shown in FIG. 7, for the
在本申请实施例中,可以采用电流互感器、霍尔传感器,或电阻分流器等电路形式,在如图7所示的电路图中的目标采样点处进行电流值的测量。In the embodiment of the present application, a circuit form such as a current transformer, a Hall sensor, or a resistor shunt may be used to measure the current value at the target sampling point in the circuit diagram shown in FIG. 7 .
步骤202、基于电感的电流值和电源的电压值,确定电感的电感值。Step 202: Determine the inductance value of the inductor based on the current value of the inductor and the voltage value of the power supply.
在本申请实施例中,可以对电感的电流值和电源的电压值进行数学逻辑运算,得到电感的电感值。In the embodiment of the present application, a mathematical logic operation may be performed on the current value of the inductor and the voltage value of the power supply to obtain the inductance value of the inductor.
需要说明的是,步骤202可以通过以下方式来实现:It should be noted that
步骤202b1、确定谐振电路中电阻的电阻值。Step 202b1, determine the resistance value of the resistor in the resonant circuit.
在本申请实施例中,谐振电路中电阻的电阻值是与感受器和电感组合后形成的电阻值有关的一个常量,且电阻的电阻值可以通过实验测试数据计算得到;需要说明的是,谐振电路中的电阻为等效电阻。In the embodiment of the present application, the resistance value of the resistor in the resonant circuit is a constant related to the resistance value formed by the combination of the susceptor and the inductance, and the resistance value of the resistor can be calculated through experimental test data; it should be noted that the resonant circuit The resistance in is the equivalent resistance.
步骤202b2、基于电感的电流值、电源的电压值、第一时间和电阻值,确定电感值。Step 202b2, determine the inductance value based on the current value of the inductance, the voltage value of the power supply, the first time and the resistance value.
在本申请实施例中,可以将第一时间与电阻值进行第一逻辑运算,并将电感的电流值、电源的电压值和电阻值进行第二逻辑运算,之后基于第一逻辑运算的结果和第二逻辑运算的结果得到电感的电感值。需要说明的是,可以先对第二逻辑运算的结果进行处理,并基于处理后的第二逻辑运算的结果和第一逻辑运算的结果共同来确定电感的电感值。In the embodiment of the present application, the first logical operation can be performed on the first time and the resistance value, and the second logical operation can be performed on the current value of the inductor, the voltage value of the power supply and the resistance value, and then based on the result of the first logical operation and The result of the second logical operation obtains the inductance value of the inductor. It should be noted that the result of the second logic operation may be processed first, and the inductance value of the inductor may be determined based on the processed result of the second logic operation and the result of the first logic operation.
步骤203、确定电感值与温度之间的对应关系。
在本申请实施例中,电感的电感值与感受器的温度之间的对应关系可以是基于实验数据预先设置的,可以将预先设置的对应关系存储在控制器中;在一种可行的实现方式中,当电感的电感值为L1时,对应感受器的温度为T1;当电感的电感值为L2时,对应感受器的温度为T2;当电感的电感值为L3时,对应感受器的温度为T3。In the embodiment of the present application, the correspondence between the inductance value of the inductor and the temperature of the susceptor may be preset based on experimental data, and the preset correspondence may be stored in the controller; in a feasible implementation , when the inductance value of the inductor is L1, the temperature of the corresponding sensor is T1; when the inductance value of the inductor is L2, the temperature of the corresponding sensor is T2; when the inductance value of the inductor is L3, the temperature of the corresponding sensor is T3.
步骤204、基于电感值与温度之间的对应关系和电感的电感值,确定感受器的温度。Step 204: Determine the temperature of the susceptor based on the correspondence between the inductance value and the temperature and the inductance value of the inductor.
在本申请实施例中,在确定出电感的电感值后,可以在存储在控制器中的对应关系中查找与电感的电感值对应的温度,得到感受器的温度,从而实现感受器温度的无线检测;在一种可行的实现方式中,对应关系可以是以列表的形式存储。In the embodiment of the present application, after the inductance value of the inductor is determined, the temperature corresponding to the inductance value of the inductor can be searched in the corresponding relationship stored in the controller to obtain the temperature of the susceptor, thereby realizing the wireless detection of the susceptor temperature; In a feasible implementation manner, the corresponding relationship may be stored in the form of a list.
本申请实施例所提供的测温方法,通过将感受器与谐振电路耦合连接,使得感受器与谐振电路相分离,解决了相关技术中存在感受器与控制电路无法分离的问题;同时,在谐振电路处于零状态时,相当于谐振电路等效为电阻-电感电路,此时获得开关单元在导通第一时间内谐振电路中电感的电参数,即通过电阻-电感电路来确定感受器的温度,可以将谐振电路中的电感和电容进行解耦,减少了确定感受器温度过程中的限制条件,从而提高了测温方案的普遍适用性。The temperature measuring method provided in the embodiment of the present application, by coupling the susceptor to the resonant circuit, separates the susceptor from the resonant circuit, which solves the problem that the susceptor and the control circuit cannot be separated in the related art; at the same time, when the resonant circuit is at zero state, the resonant circuit is equivalent to a resistance-inductance circuit. At this time, the electrical parameters of the inductance in the resonant circuit of the switch unit in the first time of conduction are obtained, that is, the temperature of the susceptor is determined through the resistance-inductance circuit, and the resonance The inductance and capacitance in the circuit are decoupled, which reduces the restriction conditions in the process of determining the temperature of the sensor, thereby improving the general applicability of the temperature measurement scheme.
基于前述实施例,本申请的实施例提供一种测温方法,应用于测温装置中,参照图19所示,该方法包括以下步骤:Based on the aforementioned embodiments, the embodiments of the present application provide a method for measuring temperature, which is applied to a temperature measuring device. Referring to FIG. 19 , the method includes the following steps:
步骤301、通过采样单元确定电源的电压值。
需要说明的是,当第一测量时间和第二测量时间是预设的情况下,在步骤301之后可以执行步骤302~304;当目标采样点的预设电流值是预设的情况下,在步骤301之后可以执行步骤305~307:It should be noted that, when the first measurement time and the second measurement time are preset, steps 302-304 can be executed after
步骤302、确定第一测量时间和第二测量时间。Step 302. Determine a first measurement time and a second measurement time.
在本申请实施例中,可以基于实验数据预先设置第一测量时间和第二测量时间。In the embodiment of the present application, the first measurement time and the second measurement time may be preset based on experimental data.
步骤303、在第一测量时间下,通过采样单元采集第一电流值,并在时间到达第二测量时间时,通过采样单元采集第二电流值。Step 303: Collect the first current value through the sampling unit at the first measurement time, and collect the second current value through the sampling unit when the time reaches the second measurement time.
在本申请实施例中,在第一测量时间下,通过采集单元采集第一测量时间下电感的第一电流值,之后对第一测量时间逐渐递增,当第一测量时间递增至第二测量时间的情况下,通过采集单元采集第二测量时间下电感的第二电流值;在一种可行的实现方式中,第一测量时间可以是以固定步长逐渐递增的;当然,第一测量时间也可以是以其他方式逐渐递增。In the embodiment of the present application, at the first measurement time, the acquisition unit collects the first current value of the inductor at the first measurement time, and then gradually increases the first measurement time, when the first measurement time is incremented to the second measurement time In the case of , the second current value of the inductor at the second measurement time is collected by the acquisition unit; in a feasible implementation, the first measurement time can be gradually increased by a fixed step; of course, the first measurement time can also be It can be incrementally increased in other ways.
步骤304、基于第一电流值和第二电流值确定电感的电流值。
在本申请实施例中,可以对第一电流值和第二电流值进行数学逻辑运算,得到电感的电流值;第一电流值可以用I1来表示,第二电流值可以用I2来表示;在一种可行的实现方式中,可以通过I2-I1得到电感的电流值;当第一测量时间对应的第一电流值为0的情况下,电感的电流值即为第二测量时间对应的第二电流值。In the embodiment of the present application, a mathematical logic operation can be performed on the first current value and the second current value to obtain the current value of the inductor; the first current value can be represented by I 1 , and the second current value can be represented by I 2 ; In a feasible implementation, the current value of the inductor can be obtained through I 2 -I 1 ; when the first current value corresponding to the first measurement time is 0, the current value of the inductor is the second measurement time corresponding to the second current value.
步骤305、获得谐振电路中目标采样点的预设电流值得到电感的电流值。
在本申请实施例中,可以基于实验数据预先设置目标采样点的电流值(即预设电流值),即目标采样点的预设电流值是已知的,从而得到电感的电流值。In the embodiment of the present application, the current value of the target sampling point (ie, the preset current value) can be preset based on experimental data, that is, the preset current value of the target sampling point is known, so as to obtain the current value of the inductor.
步骤306、确定第一测量时间。
在本申请实施例中,可以基于实验数据预先设置第一测量时间,即第一测量时间是已知的。In the embodiment of the present application, the first measurement time may be preset based on experimental data, that is, the first measurement time is known.
步骤307、通过采样单元持续的采集目标采样点的电流值,并在采集的电流值满足预设电流值时,通过采样单元确定采集的电流值满足预设电流值时对应的第二测量时间。Step 307: The sampling unit continuously collects the current value of the target sampling point, and when the collected current value satisfies the preset current value, the sampling unit determines the corresponding second measurement time when the collected current value satisfies the preset current value.
在本申请实施例中,可以将第一测量时间逐渐递增,此时,控制器通过软件触发采样单元开始持续采集目标采样点的电流值,当目标采样点的电流值不满足预设电流值时,继续对第一测量时间进行递增并继续采集目标采样点的电流值,直到目标采样点的电流值满足预设电流值时,停止第一测量时间的递增,通过采样单元采集预设电流值对应的第二测量时间。In the embodiment of the present application, the first measurement time can be gradually increased. At this time, the controller triggers the sampling unit to start continuously collecting the current value of the target sampling point through software. When the current value of the target sampling point does not meet the preset current value , continue to increment the first measurement time and continue to collect the current value of the target sampling point until the current value of the target sampling point meets the preset current value, stop the increment of the first measurement time, and collect the preset current value corresponding to The second measurement time of .
需要说明的是,在步骤303~304和305~307之后均可以执行步骤308。It should be noted that
步骤308、基于第一测量时间和第二测量时间,确定第一时间。Step 308: Determine a first time based on the first measurement time and the second measurement time.
在本申请实施例中,可以对第一测量时间和第二测量时间进行数学逻辑运算,得到第一时间;第一测量时间可以用t1来表示,第二测量时间可以用t2来表示;在一种可行的实现方式中,可以通过t2-t1得到第一时间。In the embodiment of the present application, a mathematical logic operation can be performed on the first measurement time and the second measurement time to obtain the first time; the first measurement time can be represented by t1 , and the second measurement time can be represented by t2 ; In a feasible implementation manner, the first time can be obtained through t 2 -t 1 .
步骤309、确定谐振电路中电阻的电阻值。
步骤310、对第一时间、电感的电流值、电源的电压值和电阻值进行运算,得到电感值。
在本申请实施例中,可以对第一测量时间与第二测量时间的差值(即第一时间)和电阻的电阻值进行运算,得到第一值,再对第一电流值与第二电流值的差值、电压值和电阻的电阻值进行运算,得到第二值,再对第二值进行处理,并对第一值和处理后的第二值进行运算得到电感的电感值。在一种可行的实现方式中,可以采用如下公式(1)对电感的电流值、电源的电压值、第一时间和电阻值进行计算,得到电感的电感值。In the embodiment of the present application, the difference between the first measurement time and the second measurement time (that is, the first time) and the resistance value of the resistor can be calculated to obtain the first value, and then the first current value and the second current The difference of the value, the voltage value and the resistance value of the resistor are calculated to obtain the second value, and then the second value is processed, and the first value and the processed second value are calculated to obtain the inductance value of the inductor. In a feasible implementation manner, the following formula (1) may be used to calculate the current value of the inductor, the voltage value of the power supply, the first time and the resistance value to obtain the inductance value of the inductor.
其中,Lr表示谐振电路中的电感,ton表示第一时间,R1表示谐振电路中电阻,I表示电感的电流,Vin表示电源的电压;需要说明的是,在该实施例中,第一时间是基于实验数据预先设置的,为已知量。Wherein, Lr represents the inductance in the resonant circuit, t on represents the first time, R1 represents the resistance in the resonant circuit, I represents the current of the inductance, V in represents the voltage of the power supply; it should be noted that, in this embodiment, The first time is preset based on experimental data and is a known quantity.
需要说明的是,公式(1)是对如图2所示的并联谐振电路中的开关单元S1施加一个脉冲宽度为ton的控制信号,再根据RL电路的零状态响应分析得到电感Lr的计算公式;需要说明的是,公式(1)是通过对零状态响应下的公式(2)和公式(3)推导得到的,其中,公式(2)和公式(3)分别为:It should be noted that the formula (1) is to apply a control signal with a pulse width of t on to the switch unit S1 in the parallel resonant circuit shown in Figure 2, and then calculate the inductance Lr according to the zero-state response analysis of the RL circuit Formula; It should be noted that formula (1) is derived from formula (2) and formula (3) under zero state response, where formula (2) and formula (3) are respectively:
其中,iLr(t)为t时刻下电感的电流值。Among them, iL r (t) is the current value of the inductor at time t.
步骤311、确定电感值与温度之间的对应关系。
步骤312、基于电感值与温度之间的对应关系和电感的电感值,确定感受器的温度。Step 312: Determine the temperature of the susceptor based on the correspondence between the inductance value and the temperature and the inductance value of the inductor.
在本申请的其他实施例中,可以依据电感值与温度之间的对应关系,以及和电感的电感值来确定感受器的温度。In other embodiments of the present application, the temperature of the susceptor may be determined according to the corresponding relationship between the inductance value and the temperature, and the inductance value of the inductor.
在另一种可行的实现方式中,如图20(a)所示当感受器的温度发生变化时,感受器的磁导率Ur随之变化,感受器的磁导率变化使得感受器与电感组合后形成的等效电感Lr发生变化,即感受器的温度的变化将会反映在等效电感Lr上;因此,如图20(b)所示,可以先通过上述方案进行相关的检测,并基于检测结果计算得到等效电感Lr,再通过等效电感Lr与感受器的磁导率Ur之间的关系得到磁导率Ur,之后通过磁导率Ur与感受器温度之间的关系得到感受器的温度。In another feasible implementation, as shown in Figure 20(a), when the temperature of the susceptor changes, the magnetic permeability Ur of the susceptor changes accordingly, and the change of the magnetic permeability of the susceptor makes the susceptor and the inductance combined to form The equivalent inductance Lr changes, that is, the temperature change of the susceptor will be reflected on the equivalent inductance Lr; therefore, as shown in Figure 20(b), the relevant detection can be carried out through the above scheme first, and calculated based on the detection results The equivalent inductance Lr, and then the magnetic permeability Ur is obtained through the relationship between the equivalent inductance Lr and the magnetic permeability Ur of the susceptor, and then the temperature of the susceptor is obtained through the relationship between the magnetic permeability Ur and the susceptor temperature.
本申请实施例所提供的测温方法,通过将感受器与谐振电路耦合连接,使得感受器与谐振电路相分离,解决了相关技术中存在感受器与控制电路无法分离的问题;同时,在谐振电路处于零状态时,相当于谐振电路等效为电阻-电感电路,此时获得开关单元在导通第一时间内谐振电路中电感的电参数,即通过电阻-电感电路来确定感受器的温度,可以将谐振电路中的电感和电容进行解耦,减少了确定感受器温度过程中的限制条件,从而提高了测温方案的普遍适用性。The temperature measuring method provided in the embodiment of the present application, by coupling the susceptor to the resonant circuit, separates the susceptor from the resonant circuit, which solves the problem that the susceptor and the control circuit cannot be separated in the related art; at the same time, when the resonant circuit is at zero state, the resonant circuit is equivalent to a resistance-inductance circuit. At this time, the electrical parameters of the inductance in the resonant circuit of the switch unit in the first time of conduction are obtained, that is, the temperature of the susceptor is determined through the resistance-inductance circuit, and the resonance The inductance and capacitance in the circuit are decoupled, which reduces the restriction conditions in the process of determining the temperature of the sensor, thereby improving the general applicability of the temperature measurement scheme.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, in this document, the term "comprising", "comprising" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。The serial numbers of the above embodiments of the present application are for description only, and do not represent the advantages and disadvantages of the embodiments.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所描述的方法。Through the description of the above embodiments, those skilled in the art can clearly understand that the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation. Based on such an understanding, the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to make a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in various embodiments of the present application.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowcharts and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor, or processor of other programmable data processing equipment to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing equipment produce a An apparatus for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions The device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process, thereby The instructions provide steps for implementing the functions specified in the flow chart or blocks of the flowchart and/or the block or blocks of the block diagrams.
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。The above are only preferred embodiments of the present application, and are not intended to limit the patent scope of the present application. All equivalent structures or equivalent process transformations made by using the description of the application and the accompanying drawings are directly or indirectly used in other related technical fields. , are all included in the patent protection scope of the present application in the same way.
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310141205.0A CN116046191A (en) | 2023-02-16 | 2023-02-16 | Temperature measuring device, temperature measuring method and aerosol generating device |
PCT/CN2024/072286 WO2024169487A1 (en) | 2023-02-16 | 2024-01-15 | Temperature measurement apparatus, temperature measurement method, and aerosol generation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310141205.0A CN116046191A (en) | 2023-02-16 | 2023-02-16 | Temperature measuring device, temperature measuring method and aerosol generating device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116046191A true CN116046191A (en) | 2023-05-02 |
Family
ID=86131449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310141205.0A Pending CN116046191A (en) | 2023-02-16 | 2023-02-16 | Temperature measuring device, temperature measuring method and aerosol generating device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116046191A (en) |
WO (1) | WO2024169487A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023207317A1 (en) * | 2022-04-28 | 2023-11-02 | 深圳麦时科技有限公司 | Temperature measurement apparatus and method, computer device and storage medium |
WO2024169487A1 (en) * | 2023-02-16 | 2024-08-22 | 思摩尔国际控股有限公司 | Temperature measurement apparatus, temperature measurement method, and aerosol generation device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110169596A (en) * | 2019-04-26 | 2019-08-27 | 惠州市沛格斯科技有限公司 | Vortex induction heater circuit and electronic smoking set |
US20200278707A1 (en) * | 2019-03-01 | 2020-09-03 | Rai Strategic Holdings, Inc. | Temperature control circuitry for an aerosol delivery device |
WO2021228116A1 (en) * | 2020-05-12 | 2021-11-18 | 佛山市顺德区美的电热电器制造有限公司 | Heating circuit and cooking apparatus |
CN113993405A (en) * | 2019-06-28 | 2022-01-28 | 尼科创业贸易有限公司 | Apparatus for an aerosol-generating device |
CN114766740A (en) * | 2022-04-28 | 2022-07-22 | 深圳麦时科技有限公司 | Temperature measuring device and method |
CN115435907A (en) * | 2021-06-01 | 2022-12-06 | 佛山市顺德区美的电热电器制造有限公司 | A temperature measuring circuit and cooking device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2722869B2 (en) * | 1991-06-11 | 1998-03-09 | ヤマハ株式会社 | Power circuit |
EP0534379A3 (en) * | 1991-09-27 | 1993-09-08 | Yamaha Corporation | Power supply circuit |
CN112714516B (en) * | 2019-10-25 | 2023-04-21 | 佛山市顺德区美的电热电器制造有限公司 | Electromagnetic heating equipment and temperature measuring system and temperature measuring method thereof |
JP6923771B1 (en) * | 2021-03-31 | 2021-08-25 | 日本たばこ産業株式会社 | Induction heating device |
CN116046191A (en) * | 2023-02-16 | 2023-05-02 | 思摩尔国际控股有限公司 | Temperature measuring device, temperature measuring method and aerosol generating device |
-
2023
- 2023-02-16 CN CN202310141205.0A patent/CN116046191A/en active Pending
-
2024
- 2024-01-15 WO PCT/CN2024/072286 patent/WO2024169487A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200278707A1 (en) * | 2019-03-01 | 2020-09-03 | Rai Strategic Holdings, Inc. | Temperature control circuitry for an aerosol delivery device |
CN110169596A (en) * | 2019-04-26 | 2019-08-27 | 惠州市沛格斯科技有限公司 | Vortex induction heater circuit and electronic smoking set |
CN113993405A (en) * | 2019-06-28 | 2022-01-28 | 尼科创业贸易有限公司 | Apparatus for an aerosol-generating device |
WO2021228116A1 (en) * | 2020-05-12 | 2021-11-18 | 佛山市顺德区美的电热电器制造有限公司 | Heating circuit and cooking apparatus |
CN115435907A (en) * | 2021-06-01 | 2022-12-06 | 佛山市顺德区美的电热电器制造有限公司 | A temperature measuring circuit and cooking device |
CN114766740A (en) * | 2022-04-28 | 2022-07-22 | 深圳麦时科技有限公司 | Temperature measuring device and method |
Non-Patent Citations (1)
Title |
---|
孙成胜 等: "一种新型的程控多频雾化电路设计方案", 《电子技术应用》, vol. 45, no. 05, 6 May 2019 (2019-05-06), pages 102 - 104 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023207317A1 (en) * | 2022-04-28 | 2023-11-02 | 深圳麦时科技有限公司 | Temperature measurement apparatus and method, computer device and storage medium |
WO2024169487A1 (en) * | 2023-02-16 | 2024-08-22 | 思摩尔国际控股有限公司 | Temperature measurement apparatus, temperature measurement method, and aerosol generation device |
Also Published As
Publication number | Publication date |
---|---|
WO2024169487A9 (en) | 2024-09-19 |
WO2024169487A1 (en) | 2024-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116046191A (en) | Temperature measuring device, temperature measuring method and aerosol generating device | |
EP2807589B1 (en) | Method and system for calculating model parameters for a coil to be modelled | |
CN106340974A (en) | Resistor-inductance load online identification algorithm applied to radio electric energy transmission primary side control | |
CN103954872B (en) | Transformer temperature rise measuring device and measuring method thereof | |
JP2024023567A (en) | Heating circuit and cooking utensils | |
CN109039208A (en) | A kind of switched reluctance machines incremental inductance characteristic online test method | |
Ben-Yaakov | SPICE simulation of ferrite core losses and hot spot temperature estimation | |
CN107482786B (en) | A wireless charging system load estimation method | |
CN110361592A (en) | A kind of detection circuit and detection method of inductive current | |
JP2020010433A (en) | Motor control device | |
CN112600272A (en) | Constant-current and constant-voltage control method and system based on wireless charging system | |
EP3780381A1 (en) | Voice coil actuator driver signal generator | |
JP2015038428A (en) | Temperature controller of furnace body for analyzer, and heat analyzer | |
WO2024109264A1 (en) | Aerosol generating device, and temperature control method and device therefor | |
NL2020660B1 (en) | Determining system parameters of a contactless electrical energy transfer system | |
EP4043847B1 (en) | Heating temperature measurement circuit and temperature measurement method therefor, and cooking apparatus and storage medium | |
JP6707526B2 (en) | Converter and power receiving device | |
CN114158149B (en) | Induction cooker power estimation method, device, induction cooker and storage medium | |
Heo et al. | Vessel Temperature Estimation Method using Equivalent Resistance Difference | |
Yao et al. | Analysis and Research on Core Losses Model Under PWM Waveform Voltage Excitation with DC Bias | |
CN117553932A (en) | Temperature detection method and cooking equipment | |
TWI888887B (en) | Heating device and detecting method using the same | |
JPS6342831B2 (en) | ||
CN118999820A (en) | Temperature measuring method, device, temperature measuring assembly, readable storage medium and chip | |
CN119012427A (en) | Temperature measurement control method and device for cooking equipment, medium and cooking equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |