CN116029315A - Artificial intelligence optical decoding system and method - Google Patents
Artificial intelligence optical decoding system and method Download PDFInfo
- Publication number
- CN116029315A CN116029315A CN202111245181.0A CN202111245181A CN116029315A CN 116029315 A CN116029315 A CN 116029315A CN 202111245181 A CN202111245181 A CN 202111245181A CN 116029315 A CN116029315 A CN 116029315A
- Authority
- CN
- China
- Prior art keywords
- image
- bar code
- barcode
- label
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Character Discrimination (AREA)
Abstract
Description
技术领域technical field
本发明系有关于一种人工智慧光学解码系统与方法,特别是有关于一种利用机器学习的人工智慧光学解码系统与方法。The present invention relates to an artificial intelligence optical decoding system and method, in particular to an artificial intelligence optical decoding system and method using machine learning.
背景技术Background technique
近年来光学条码(包含一维及二维条码)与光学辨识系统广泛的应用于产业及日常生活中,除了作为产品相关讯息的标示(包括但不限于产品序号,生产履历等)外,也常常应用于生产系统或物流系统的相关标示,以进行制造流程或传送流程的控管。由于光学条码标示具有容易产出与辨识的特性,且具备国际标准化,所以用光学条码标示的资讯也越来越多,经常一个物件上就有多个光学条码,以记录各种相关讯息。In recent years, optical barcodes (including one-dimensional and two-dimensional barcodes) and optical identification systems have been widely used in industry and daily life. In addition to being used as labels for product-related information (including but not limited to product serial numbers, production history, etc.), they are also often Relevant signs applied to the production system or logistics system to control the manufacturing process or transmission process. Since optical barcodes are easy to produce and identify, and have international standardization, more and more information is marked with optical barcodes. Often there are multiple optical barcodes on an object to record various related information.
习知光学条码标签资料的收集,大都是利用人工拿扫描器依序将光学条码资料读取,然而当物件上的光学条码为多个且紧密排列时,使用者需一一对准扫描,除了会造成使用者扫瞄上的困扰,也容易造成读取的错误,降低了操作的效率。The collection of conventional optical barcode label data mostly uses a manual scanner to read the optical barcode data sequentially. It will cause troubles for users to scan, and it is easy to cause reading errors, which reduces the efficiency of operations.
发明内容Contents of the invention
鉴于上述欲解决的问题及其原因,本发明提出一种人工智慧光学解码系统与方法利用机器学习,可以准确的自动媒合标签范本,以读取条码标签,并解码条码资料,且自动输出,进而馈入资料库中。In view of the above-mentioned problems to be solved and their reasons, the present invention proposes an artificial intelligence optical decoding system and method that uses machine learning to accurately and automatically match label templates to read barcode labels, decode barcode data, and automatically output, And then fed into the database.
因此,本发明一方面提出一种人工智慧光学解码系统,适用于一条码标签,包括:影像撷取模组,用以撷取条码标签的影像;影像辨识模组,电性连接影像撷取模组,接收并辨识影像,以产生多个字元辨识资料及多个条码资料。资料库,用以储存多个标签范本;机器学习模组,电性连接影像辨识模组及资料库,接收字元辨识资料及条码资料,建立字元辨识资料与条码资料的关系,以学习建立或修正标签范本,并媒合标签范本的其中之一;以及输出模组,电性连接机器学习模组,根据媒合的标签范本,将条码资料输出。Therefore, one aspect of the present invention proposes an artificial intelligence optical decoding system suitable for barcode labels, including: an image capture module for capturing images of barcode labels; an image recognition module electrically connected to the image capture module The group receives and recognizes images to generate a plurality of character recognition data and a plurality of barcode data. The database is used to store multiple label templates; the machine learning module is electrically connected to the image recognition module and the database, receives character recognition data and barcode data, establishes the relationship between character recognition data and barcode data, and learns to create Or modify the label template and match one of the label templates; and the output module is electrically connected to the machine learning module, and outputs the barcode data according to the matched label template.
根据本发明的一实施例,人工智慧光学解码系统还包括影像校正模组,电性连接影像撷取模组及影像辨识模组,自影像撷取模组接收影像后,进行影像校正,并将校正后的影像传送至影像辨识模组以进行辨识。According to an embodiment of the present invention, the artificial intelligence optical decoding system further includes an image correction module, which is electrically connected to the image capture module and the image recognition module, and performs image correction after receiving the image from the image capture module, and The corrected image is sent to the image recognition module for recognition.
根据本发明的另一实施例,人工智慧光学解码系统其中条码资料选自于由维条码、快速响应矩阵图码、PDF417条码及资料矩阵所组成的族群。According to another embodiment of the present invention, in the artificial intelligence optical decoding system, the barcode data is selected from the group consisting of dimensional barcode, quick response matrix code, PDF417 barcode and data matrix.
根据本发明的又一实施例,人工智慧光学解码系统其中字元辨识资料还包括多个条码相关字元及至少一特征字元,其中每一条码资料分别对应条码相关字元其中之一,且其中每一标签范本分别包括多个栏位及至少一范本特征字元,栏位分别与条码相关字元关联,且范本特征字元与特征字元关联。According to another embodiment of the present invention, the artificial intelligence optical decoding system wherein the character recognition data further includes a plurality of barcode-related characters and at least one characteristic character, wherein each barcode data corresponds to one of the barcode-related characters, and Each of the label templates includes a plurality of fields and at least one template characteristic character, the fields are respectively associated with barcode-related characters, and the template characteristic characters are associated with characteristic characters.
本发明另一方面提出一种人工智慧光学解码方法,适用于解码一条码标签,包括:撷取该条码标签的影像;辨识影像,以产生多个字元辨识资料及多个条码资料;连接资料库,其中资料库储存多个标签范本;建立字元辨识资料与条码资料的关系,以学习建立或修正标签范本,并媒合标签范本的其中之一;以及根据媒合的标签范本,将条码资料输出。Another aspect of the present invention proposes an artificial intelligence optical decoding method, which is suitable for decoding a barcode label, including: capturing the image of the barcode label; identifying the image to generate multiple character identification data and multiple barcode data; connecting the data library, wherein the database stores a plurality of label templates; establishes the relationship between the character recognition data and the barcode data to learn to create or modify the label templates, and matches one of the label templates; and according to the matched label templates, the barcode Data output.
根据本发明的一实施例,人工智慧光学解码方法中撷取条码标签的影像后还包括:对影像进行影像校正。According to an embodiment of the present invention, after capturing the image of the barcode label in the artificial intelligence optical decoding method, it further includes: performing image correction on the image.
根据本发明的另一实施例,人工智慧光学解码方法其中条码资料选自于由维条码、快速响应矩阵图码、PDF417条码及资料矩阵所组成的族群。According to another embodiment of the present invention, the artificial intelligence optical decoding method wherein the barcode data is selected from the group consisting of dimensional barcode, quick response matrix code, PDF417 barcode and data matrix.
根据本发明的另一实施例,人工智慧光学解码方法其中字元辨识资料还包括多个条码相关字元及至少一特征字元,其中每一条码资料分别对应条码相关字元其中之一,且其中每一标签范本分别包括多个栏位及至少一范本特征字元,栏位分别与条码相关字元关联,且范本特征字元与特征字元关联。According to another embodiment of the present invention, the artificial intelligence optical decoding method wherein the character recognition data further includes a plurality of barcode-related characters and at least one characteristic character, wherein each barcode data corresponds to one of the barcode-related characters, and Each of the label templates includes a plurality of fields and at least one template characteristic character, the fields are respectively associated with barcode-related characters, and the template characteristic characters are associated with characteristic characters.
附图说明Description of drawings
为让本发明的上述和其他目的、特征、优点与实施例能更明显易懂,所附附图的说明如下:In order to make the above and other objects, features, advantages and embodiments of the present invention more comprehensible, the accompanying drawings are described as follows:
图1所绘为根据本发明一实施例的一种人工智慧光学解码系统的装置示意图。FIG. 1 is a device schematic diagram of an artificial intelligence optical decoding system according to an embodiment of the present invention.
图2所绘为根据本发明一实施例的一种人工智慧光学解码系统的方块图。FIG. 2 is a block diagram of an artificial intelligence optical decoding system according to an embodiment of the present invention.
图3所绘为根据本发明一实施例的条码标签示意图。FIG. 3 is a schematic diagram of a barcode label according to an embodiment of the present invention.
图4所绘为根据本发明一实施例的一种人工智慧光学解码方法流程图。FIG. 4 is a flowchart of an artificial intelligence optical decoding method according to an embodiment of the present invention.
附图标记说明Explanation of reference signs
1:物流传送装置 2:货物输送平台1: Logistics transmission device 2: Cargo delivery platform
4:货物 41:上表面4: Goods 41: Upper surface
410:条码标签 11:电脑410: barcode label 11: computer
13:货物感测架 14:显示装置13: Cargo sensing frame 14: Display device
20:人工智慧光学解码系统20: Artificial intelligence optical decoding system
22:影像撷取模组 24:影像校正模组22: Image capture module 24: Image correction module
26:影像辨识模组 28:机器学习模组26: Image Recognition Module 28: Machine Learning Module
30:资料库 32:输出模组30: Database 32: Output module
34:目标媒体 100:条码标签34: target media 100: barcode label
110C,112C,114C,116C,118C,120C,122C,124C,126C, 128C:条码110C, 112C, 114C, 116C, 118C, 120C, 122C, 124C, 126C, 128C: Barcode
110A,112A,114A,116A,118A,120A,122A,124A,126A,128A:条码相关字元110A, 112A, 114A, 116A, 118A, 120A, 122A, 124A, 126A, 128A: Barcode related characters
110B,112B,114B,116B,118B,120B,122B,124B,126B, 128B:条码字元110B, 112B, 114B, 116B, 118B, 120B, 122B, 124B, 126B, 128B: barcode characters
102,104,106,108:特征字元102, 104, 106, 108: characteristic characters
S1,S2,S3,S4,S5,S6,S7:步骤S1, S2, S3, S4, S5, S6, S7: steps
具体实施方式Detailed ways
为了容易了解所述实施例之故,下面将会提供不少技术细节。当然,并不是所有的实施例皆需要这些技术细节。同时,一些广为人知的结构或元件,仅会以示意的方式在附图中绘出,以适当地简化附图内容。For the sake of easy understanding of the described embodiments, a number of technical details will be provided below. Of course, not all embodiments require these technical details. Meanwhile, some well-known structures or elements are only drawn schematically in the drawings to appropriately simplify the contents of the drawings.
为了使本揭示内容的叙述更加详尽与完备,下文针对本发明的实施方面与具体实施例提出了说明性的描述;但这并非实施或运用本发明具体实施例的唯一形式。实施方式中涵盖了多个具体实施例的特征以及用以建构与操作这些具体实施例的方法步骤与其顺序。然而,亦可利用其他具体实施例来达成相同或均等的功能与步骤顺序。In order to make the description of the disclosure more detailed and complete, the following provides illustrative descriptions of the implementation aspects and specific embodiments of the present invention; but this is not the only form of implementing or using the specific embodiments of the present invention. The description covers features of various embodiments as well as method steps and their sequences for constructing and operating those embodiments. However, other embodiments can also be used to achieve the same or equivalent functions and step sequences.
请参照图1,其所绘为根据本发明一实施例的一种人工智慧光学解码系统的装置示意图。本发明的人工智慧光学解码系统通常可以设置在一物流输送装置1中,物流输送装置1包括一货物输送平台2,用以放置一货物4,一般而言会将货物4具有条码标签410的上表面 41朝上放置。而物流输送装置1旁可以设置一电脑11,用以设置本发明的人工智慧光学解码系统。而货物输送平台2上方会设置一货物感测架13用以设置针对货物4侦测的相关装置,包括本发明人工智慧光学解码系统中的影像撷取模组(未绘示),红外线感测器或者动态感测器用以侦测货物4已输送到达其侦测范围,以致动本发明的人工智慧光学解码系统,还可以包括适当的照明以辅助影像撷取模组。另外,物流输送装置1还可以配置一显示装置14,可以显示货物的相关讯息,包括撷取的影像,条码标签读取结果,相关侦测的讯息等,显示装置包括液晶显示器(LCD display)。Please refer to FIG. 1 , which is a device schematic diagram of an artificial intelligence optical decoding system according to an embodiment of the present invention. The artificial intelligence optical decoding system of the present invention can usually be set in a logistics conveying device 1. The logistics conveying device 1 includes a
请参照图2,其所绘为根据本发明一实施例的一种人工智慧光学解码系统的方块图。本发明的人工智慧光学解码系统20,主要系用来解码条码标签,其包括一影像撷取模组22,包括数位摄影机,或其他可以用来撷取影像的感光耦合元件(CCD)模组。影像撷取模组22 用以撷取条码标签的影像,如图1所示影像撷取模组22可以架设在货物感测架13上,以撷取货物4上表面41的条码标签410的影像。一影像校正模组24电性连接影像撷取模组22,自影像撷取模组22 接收影像后,进行影像校正。一般而言,透过货物输送平台传送过来的货物摆放位置或角度,每次都不太一样,而货物的大小高低也不相同,因此影像撷取模组22所截取各货物的影像中,条码标签的影像大小,角度都不尽相同。透过影像校正模组24,可以将影像撷取模组22所截取的原始影像,经过裁切,缩放,旋转等影像校正,可以得到校正后的适当影像以利后续的辨识。Please refer to FIG. 2 , which is a block diagram of an artificial intelligence optical decoding system according to an embodiment of the present invention. The artificial intelligence
影像辨识模组26电性连接影像撷取模组24,接收上述校正后的影像进行辨识影像,以产生多个字元辨识资料及多个条码资料。而资料库30系用以储存多个标签范本,当然也可以储存条码标签解读的结果。机器学习模组28电性连接影像辨识模组26及资料库30,接收影像辨识模组26所传送的字元辨识资料及条码资料,建立字元辨识资料与条码资料的关系,以学习建立或修正资料库30中的标签范本,并媒合资料库30中标签范本的其中之一,以便将这些条码资料正确的输出。输出模组32电性连接机器学习模组28,根据媒合的标签范本,将条码资料准确的输出,如图所示,可以将输出结果储存于资料库30中,或者连接网际网路或乙太网路,将条码资料输出至目标媒体34,比如客户端的资料库。The
接下来,请参照图3,其所绘为根据本发明一实施例的条码标签示意图。透过本条码标签样本,将说明本发明的人工智慧光学解码系统如何透过机器学习,准确的解码及输出条码标签的条码资料。如图 3所示,一般来说,条码标签100通常印制许多讯息,包括条码110C, 112C,114C,116C,118C,120C,122C,124C,126C,128C;条码相关字元110A,112A,114A,116A,118A,120A,122A,124A, 126A,128A;条码字元110B,112B,114B,116B,118B,120B, 122B,124B,126B,128B,以及特征字元102,104,106,108。如前所述,本发明的人工智慧光学解码系统,透过影像撷取模组,影像校正模组及影像辨识模组,可以将条码标签中上述的条码 110C~128C,条码相关字元110A~128A,条码字元110B~128B及特征字元102,104,106,108一一辨识出来,而产生字元辨识资料(包含条码相关字元,条码字元及特征字元)及条码资料(条码)。字元辨识资料可以透过光学字元辨识方法(Optical CharacterRecognition,OCR) 进行辨识产生。而条码资料并不限于本实施例中的一维条码(IDBarcode),还包括快速响应矩阵图码(QR Code)、PDF417条码及资料矩阵(Data Matrix)等。Next, please refer to FIG. 3 , which is a schematic diagram of a barcode label according to an embodiment of the present invention. Through this barcode label sample, it will be explained how the artificial intelligence optical decoding system of the present invention can accurately decode and output the barcode data of the barcode label through machine learning. As shown in Figure 3, in general, barcode labels 100 usually print many messages, including
本发明的机器学习模组除了接受影像辨识模组所传送过来的字元辨识资料与条码资料外,也会纪录这字元辨识资料与条码资料在影像中的相关位置。根据本发明的一实施例,影像辨识模组在进行辨识的同时,会纪录辨识图像在影像中的位置,随同字元辨识资料与条码资料传送给机器学习模组。In addition to receiving the character recognition data and barcode data sent by the image recognition module, the machine learning module of the present invention also records the relative positions of the character recognition data and barcode data in the image. According to an embodiment of the present invention, when the image recognition module performs recognition, it will record the position of the recognized image in the image, and send it to the machine learning module along with character recognition data and barcode data.
由图3可知条码字元系与条码对应,亦即条码字元就是条码解读的内容,举例来说条码112C所解读出来的文字与数字即是条码字元 112B“CL8068403359524”。而条码相关字元通常会对应条码与条码字元,举例来说,条码相关字元110A为“(V)SUPPLIER”也就是供应商,而对应的条码110C及条码字元110B“04195”所表示的就是供应商的编号。再举例来说,条码相关字元120A为“(Q)QTY”代表是数量 Quantity,而对应的条码120C及条码字元120B“696”即显示数量为696。然而,条码相关字元各家公司有不同的格式或者不同的缩写代号,然而其共同特征是条码相关字元与条码或条码字元都会邻近排列。因此本发明的机器学习模组会将这些条码相关字元,条码,条码字元的内容与其相对位置建立关联,而建立成样本。而整个条码标签的这些条码/条码字元/条码相关字元的关联样本,还会跟特征字元进行关联,并建立样本。再则,本发明中的资料库中会先预设一些标签范本,也就是明确定义条码标签中,对应位置的条码所代表的意义,以及所解码后应该输出的资料栏位。举例来说,条码110C解码的数值就是代表供应商的编号,应该输出的资料栏位为“SUPPLIER No.”,条码120C解码的数值就是代表数量,应该输出的资料栏位为“Quantity”等诸如此类。对本发明的机器学习模组而言,每一个条码定义,对应位置,对应资料栏位都是一个样本,都是资料的关联,而每一个标签范本都是样本的集合。而这些标签范本除了纪录对应位置的条码所代表的意义,以及所解码后应该输出的资料栏位外,还会纪录一些标签范本的特征(范本特征字元),比如是那一家供应商或厂商的货物条码标签,哪一个区域货物的条码标签等。如图3所示,在本发明的一实施例中,条码标签上还会包括一些特征字元,比如特征字元102“INTEL”代表此条码标签所标示为INTEL公司的货物,而特征字元104“RoHs COMPLIANT,el”代表此货物符合欧洲RoHs环保标准,货物的目的地应该为欧洲。特征字元106“ASSEMBLED IN CHINA”代表此货物在中国组装。对本发明的机器学习模组来说,这些特征字元与标签范本的关联也是样本的一种,所以每一个标签范本都是诸多的样本组合,这些预设在资料库中的标签范本即是机器学习的样本资料库。而透过特征字元的样本与关联,可以让机器学习模组筛选出较接近的标签范本。It can be seen from Figure 3 that the barcode characters correspond to the barcode, that is, the barcode characters are the content of the barcode interpretation. For example, the characters and numbers decoded from the
熟习该技术者应知,上述的条码标签,各家厂商会因为不同时期,不同需求,可能会改变条码位置,甚至改变条码内容,如果每次变更就需要人工调整标签范本,会造成效率不彰,而且标签范本版本越累积越多,也不易管理。但所有条码解读系统的最终目的是要将条码解读输出到正确的资料栏位,而本发明的机器学习模组,透过机器学习的方法,可以将读取到字元辨识资料与条码资料建立关联与样本,再与资料库中预设标签范本的关联与样本,进行交叉学习,而能正确的媒合出条码标签所对应的标签范本,然后将解读的条码正确的输出。甚至对于厂商对于条码标签的变更,也可以透过本发明的机器学习模组修正资料库中的标签范本,甚至建立新的标签范本。根据本发明的一实施例,举例来说,如果INTEL公司因为需求,而变更条码120C/ 条码字元120B/条码相关字元120A与条码128C/条码字元128B/条码相关字元128A的相对位置,也就是二个条码位置颠倒,本发明的机器学习模组会由其他的条码/条码字元/条码相关字元,以及特征字元及其关联,而媒合到原来的标签范本是最接近,而识别出二个条码的位置改变,因此仍可以准确的输出条码解读的内容,并且可以修正原来的标签范本,或建立新版本的标签范本。根据本发明的另一实施例,再举例来说,如果INTEL公司因为需求,而变更条码120C所对应的条码相关字元120A,比如由“QTY”改成“NO.”,本发明的机器学习模组也会借由最接近的标签范本中的其他样本关联,推断出条码相关字元120A所对应的条码120C,其解码后的条码资料对应的栏位为“Quantity”。Those who are familiar with this technology should know that for the above-mentioned barcode labels, each manufacturer may change the position of the barcode or even change the content of the barcode due to different periods and different needs. If the label template needs to be manually adjusted every time it is changed, it will cause inefficiency. , and more and more label template versions are accumulated, and it is not easy to manage. However, the ultimate goal of all barcode reading systems is to output the barcode reading to the correct data field, and the machine learning module of the present invention, through the method of machine learning, can establish the read character recognition data and barcode data The correlation and samples are cross-learned with the correlation and samples of the preset label templates in the database, and the label template corresponding to the barcode label can be correctly matched, and then the decoded barcode is correctly output. Even for the manufacturer's changes to the barcode label, the machine learning module of the present invention can be used to modify the label template in the database, and even create a new label template. According to an embodiment of the present invention, for example, if INTEL company changes the relative position of
本发明中机器学习模组中可处理的机器学习模型包括但不限于:监督式学习(线性回归、逻辑回归、决策树、支援向量机、K-邻近算法)、聚类分析、图型识别(K-均值演算法,整合学习AdaBoost,贝叶斯分类器),降维与度量学习(主成分分析、自动编码器、线性判别分析)、结构预测、异常检测、人工神经网路(前馈神经网路、放射状基底函数网路、循环神经网路)、强化学习类型(玛尔卡夫链、 Q-学习、蒙地卡罗、SARSA(State Action RewardState Action Learning)、变分法)。Machine learning models that can be processed in the machine learning module of the present invention include but are not limited to: supervised learning (linear regression, logistic regression, decision tree, support vector machine, K-neighbor algorithm), cluster analysis, pattern recognition ( K-means algorithm, ensemble learning AdaBoost, Bayesian classifier), dimensionality reduction and metric learning (principal component analysis, autoencoder, linear discriminant analysis), structure prediction, anomaly detection, artificial neural network (feedforward neural network, radial basis function network, recurrent neural network), reinforcement learning type (Markafe chain, Q-learning, Monte Carlo, SARSA (State Action RewardState Action Learning), variational method).
接着请参照图4,其所绘为根据本发明一实施例的一种人工智慧光学解码方法流程图。如图4所示,本发明的人工智慧光学解码方法,系用来解码一条码标签,比如像图3所示的条码标签。如步骤S1,首先影像撷取模组会撷取条码标签的影像。接着如步骤S2,影像校正模组对影像进行影像校正,而将校正后的影像传送至影像辨识模组。如步骤S3,影像辨识模组针对校正后的影像进行影像辨识。如上所述,影像辨识包含了字元辨识(步骤S4)及条码辨识(步骤S5),以产生多个字元辨识资料及多个条码资料。如步骤S6,这些字元辨识资料及条码资料都会传送至机器学习模组,机器学习模组会连接一资料库,其中资料库储存多个标签范本;机器学习模组根据所接收的字元辨识资料及条码资料(包含其位置)建立字元辨识资料与条码资料的关系,以学习建立或修正标签范本,并自动媒合标签范本的其中之一。接着如步骤S7,根据媒合的标签范本,将条码资料输出标签范本中的正确栏位。Next, please refer to FIG. 4 , which is a flowchart of an artificial intelligence optical decoding method according to an embodiment of the present invention. As shown in FIG. 4 , the artificial intelligence optical decoding method of the present invention is used to decode a barcode label, such as the barcode label shown in FIG. 3 . As in step S1, firstly the image capture module captures the image of the barcode label. Next, in step S2, the image correction module performs image correction on the image, and sends the corrected image to the image recognition module. In step S3, the image recognition module performs image recognition on the corrected image. As mentioned above, the image recognition includes character recognition (step S4 ) and barcode recognition (step S5 ), so as to generate a plurality of character recognition data and a plurality of barcode data. As in step S6, these character recognition data and barcode data will be sent to the machine learning module, and the machine learning module will connect to a database, wherein the database stores a plurality of label templates; the machine learning module recognizes the data and barcode data (including its location) establishes the relationship between character recognition data and barcode data to learn to create or modify label templates, and automatically match one of the label templates. Next, as in step S7, output the barcode data to the correct field in the label template according to the matching label template.
如上所述,在本发明的一实施例中,人工智慧光学解码方法中的条码资料包括一维条码、快速响应矩阵图码、PDF417条码及资料矩阵其中之一或其组成。而根据本发明的另一实施例,其中字元辨识资料还包括条码相关字元及特征字元。其中,每一条码资料分别对应条码相关字元其中之一,且其中每一标签范本分别包括多个栏位及至少一范本特征字元,栏位分别与条码相关字元或条码关联,且范本特征字元与特征字元关联,并借由机器学习模组进行媒合。As mentioned above, in one embodiment of the present invention, the barcode data in the artificial intelligence optical decoding method includes one or a combination of one-dimensional barcode, quick response matrix image code, PDF417 barcode and data matrix. According to another embodiment of the present invention, the character identification data further includes barcode related characters and characteristic characters. Wherein, each barcode data corresponds to one of the barcode-related characters, and each label template includes a plurality of fields and at least one template characteristic character, the fields are respectively associated with the barcode-related characters or barcode, and the template The characteristic characters are associated with the characteristic characters, and are matched by the machine learning module.
综上所述,本发明的人工智慧光学解码系统与方法利用机器学习,可以准确的自动媒合标签范本,以读取条码标签,并解码条码资料,且自动输出,进而自动馈入资料库中,可以提高光学解码的效率。In summary, the artificial intelligence optical decoding system and method of the present invention utilizes machine learning to accurately and automatically match label templates to read barcode labels, decode barcode data, and automatically output and then automatically feed into the database , can improve the efficiency of optical decoding.
本发明在本文中仅以较佳实施例揭露,然任何熟习本技术领域者应能理解的是,上述实施例仅用于描述本发明,并非用以限定本发明所主张的专利权利范围。举凡与上述实施例均等或等效的变化或置换,皆应解读为涵盖于本发明的精神或范畴内。因此,本发明的保护范围应以权利要求书为准。The present invention is only disclosed in preferred embodiments herein, but anyone skilled in the art should understand that the above embodiments are only used to describe the present invention, and are not intended to limit the scope of patent rights claimed by the present invention. All changes or substitutions that are equal or equivalent to the above-mentioned embodiments should be interpreted as falling within the spirit or scope of the present invention. Therefore, the protection scope of the present invention should be determined by the claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111245181.0A CN116029315A (en) | 2021-10-26 | 2021-10-26 | Artificial intelligence optical decoding system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111245181.0A CN116029315A (en) | 2021-10-26 | 2021-10-26 | Artificial intelligence optical decoding system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116029315A true CN116029315A (en) | 2023-04-28 |
Family
ID=86076427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111245181.0A Pending CN116029315A (en) | 2021-10-26 | 2021-10-26 | Artificial intelligence optical decoding system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116029315A (en) |
-
2021
- 2021-10-26 CN CN202111245181.0A patent/CN116029315A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11449698B2 (en) | Scanner with control logic for resolving package labeling conflicts | |
CN112368657B (en) | Machine learning analysis of pipeline and instrumentation diagrams | |
CN109255271B (en) | Electro-optical code reader and method for reading optical codes | |
EP0852520B1 (en) | System and method for reading package information | |
US7293712B2 (en) | System and method to automatically discriminate between a signature and a dataform | |
EP3961477B1 (en) | Method for detecting and reading a matrix code marked on a glass substrate | |
CN107145810A (en) | An all-round barcode recognition device and method | |
GB2314658A (en) | Quality control system | |
KR102764938B1 (en) | Reading optical codes | |
JP2000511320A (en) | Optical character recognition (OCR) assisted bar code decoding system and method | |
CN111723640B (en) | Commodity information inspection system and computer control method | |
KR20100041177A (en) | The automatic physical distribution system and control method | |
CN107403179B (en) | Registration method and device for article packaging information | |
WO2022151460A1 (en) | Laser label identification device and method | |
US11557135B2 (en) | System and method to determine the authenticity of a seal | |
US20250078514A1 (en) | Ai based inventory control system | |
CN116029315A (en) | Artificial intelligence optical decoding system and method | |
TW202318260A (en) | Artificial intelligence optical decoding system and method thereof | |
CN118379747B (en) | Carry on bill sorting equipment of industry camera | |
CN117745187B (en) | AGV-based automatic drug delivery system and method | |
TWM622706U (en) | Artificial intelligence optical decoding system | |
CN117576617B (en) | Decoding system based on automatic adjustment of different environments | |
JP2007511342A (en) | Video coding method and apparatus using parity check matrix | |
CN112560523A (en) | Method and device for preventing repeated identification and entry of article bar code | |
US20090080030A1 (en) | Imaging system and business methodology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |