CN116014249B - Electrolyte, sodium ion battery and electricity utilization device - Google Patents
Electrolyte, sodium ion battery and electricity utilization device Download PDFInfo
- Publication number
- CN116014249B CN116014249B CN202310289538.8A CN202310289538A CN116014249B CN 116014249 B CN116014249 B CN 116014249B CN 202310289538 A CN202310289538 A CN 202310289538A CN 116014249 B CN116014249 B CN 116014249B
- Authority
- CN
- China
- Prior art keywords
- sodium
- electrolyte
- electrolytic solution
- solution according
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
本申请提供了一种电解液、钠离子电池以及用电装置。电解液包括含S阴离子和含B阴离子,含S阴离子包括N(FSO2)2 ‑和N(CF3SO2)2 ‑中的至少一种,含B阴离子包括B(F2C2O4)‑和BF4 ‑中的至少一种,电解液中S元素和B元素的摩尔比为(2~20):1。当将该电解液应用到钠离子电池中时,会在电池的负极表面形成含S元素和含B元素的固体电解质界面膜(SEI膜),该SEI膜能够兼顾较高效的钠离子传输速率和较好的韧性,有助于改善钠离子电池的存储容量保持率。
The application provides an electrolyte, a sodium ion battery and an electrical device. The electrolyte solution includes S-containing anions and B-containing anions, the S-containing anions include at least one of N(FSO 2 ) 2 ‑ and N(CF 3 SO 2 ) 2 ‑ , and the B-containing anions include B(F 2 C 2 O 4 ) ‑ and BF 4 ‑ , the molar ratio of S element to B element in the electrolyte is (2~20):1. When the electrolyte is applied to a sodium-ion battery, a solid electrolyte interfacial film (SEI film) containing S elements and B elements will be formed on the surface of the negative electrode of the battery. Better toughness helps to improve the storage capacity retention rate of sodium-ion batteries.
Description
技术领域Technical Field
本申请涉及二次电池技术领域,尤其涉及一种电解液、钠离子电池以及用电装置。The present application relates to the technical field of secondary batteries, and in particular to an electrolyte, a sodium ion battery and an electrical device.
背景技术Background Art
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。The statements herein merely provide background information related to the present application and do not necessarily constitute prior art.
钠离子电池作为一种二次电池主要依靠钠离子在正极和负极之间的移动来工作。在二次电池领域,钠离子电池具有较好的成本优势,这有利于拓宽钠离子电池的使用范围,然而,钠离子电池的存储容量保持率有待进一步提高。As a secondary battery, sodium-ion batteries mainly rely on the movement of sodium ions between the positive and negative electrodes to work. In the field of secondary batteries, sodium-ion batteries have a good cost advantage, which is conducive to broadening the scope of use of sodium-ion batteries. However, the storage capacity retention rate of sodium-ion batteries needs to be further improved.
发明内容Summary of the invention
本申请的提供一种电解液。所述电解液包括含S阴离子和含B阴离子,所述含S阴离子包括N(FSO2)2 -和N(CF3SO2)2 -中的至少一种,所述含B阴离子包括B(F2C2O4)-和BF4 -中的至少一种,所述电解液中S元素和B元素的摩尔比为(2~20):1。The present application provides an electrolyte. The electrolyte includes S-containing anions and B-containing anions, the S-containing anions include at least one of N(FSO 2 ) 2 - and N(CF 3 SO 2 ) 2 - , the B-containing anions include at least one of B(F 2 C 2 O 4 ) - and BF 4 - , and the molar ratio of the S element to the B element in the electrolyte is (2-20):1.
本申请电解液中包括相应含S阴离子和含B阴离子,以及相应摩尔比的S元素和B元素,当将该电解液应用到钠离子电池中时,会在电池的负极表面形成含S元素和含B元素的固体电解质界面膜(SEI膜),该SEI膜能够兼顾较高效的钠离子传输速率和较好的韧性,有助于改善钠离子电池的存储容量保持率。The electrolyte of the present application includes corresponding S-containing anions and B-containing anions, as well as S elements and B elements in corresponding molar ratios. When the electrolyte is applied to a sodium ion battery, a solid electrolyte interface film (SEI film) containing S elements and B elements is formed on the negative electrode surface of the battery. The SEI film can take into account both a more efficient sodium ion transmission rate and better toughness, which helps to improve the storage capacity retention rate of the sodium ion battery.
在其中一些实施方式中,在所述电解液中,S元素的摩尔浓度为1mol/L~4mol/L。In some embodiments, in the electrolyte, the molar concentration of S element is 1 mol/L~4 mol/L.
在其中一些实施方式中,在所述电解液中,B元素的摩尔浓度为0.1mol/L~1mol/L。In some embodiments, in the electrolyte, the molar concentration of element B is 0.1 mol/L to 1 mol/L.
在其中一些实施方式中,所述电解液还含有F元素和N元素中的至少一种。In some embodiments, the electrolyte further contains at least one of F element and N element.
在其中一些实施方式中,所述电解液含有F元素和N元素,其中,F元素和N元素的摩尔比为(2.2~10):1。In some embodiments, the electrolyte contains F element and N element, wherein the molar ratio of F element to N element is (2.2~10):1.
在其中一些实施方式中,在所述电解液中,F元素的摩尔浓度为1.4mol/L~6.8mol/L。In some of the embodiments, in the electrolyte, the molar concentration of the F element is 1.4 mol/L to 6.8 mol/L.
在其中一些实施方式中,在所述电解液中,N元素的摩尔浓度为0.5mol/L~2mol/L。In some embodiments, in the electrolyte, the molar concentration of N element is 0.5 mol/L~2 mol/L.
在其中一些实施方式中,电解液包括含S钠盐和含B钠盐。In some embodiments, the electrolyte includes a S-containing sodium salt and a B-containing sodium salt.
在其中一些实施方式中,所述含S钠盐包括双氟磺酰亚胺钠和双(三氟甲基磺酰基)酰亚胺钠中的至少一种。In some embodiments, the S-containing sodium salt includes at least one of sodium bis(trifluoromethylsulfonyl)imide and sodium bis(trifluoromethylsulfonyl)imide.
在其中一些实施方式中,所述含B钠盐包括二氟草酸硼酸钠和四氟硼酸钠中的至少一种。In some embodiments, the B-containing sodium salt includes at least one of sodium difluorooxalatoborate and sodium tetrafluoroborate.
在其中一些实施方式中,电解液还包括添加剂,所述添加剂包括烷基钠盐。In some embodiments, the electrolyte further includes an additive, wherein the additive includes an alkyl sodium salt.
在其中一些实施方式中,所述烷基钠盐包括十二烷基硫酸钠和聚二硫二丙烷磺酸钠中的至少一种。In some embodiments, the alkyl sodium salt includes at least one of sodium lauryl sulfate and sodium poly(dipropylene glycol disulfide) sulfonate.
在其中一些实施方式中,所述添加剂的摩尔浓度为0.001mol/L~0.015mol/L。In some embodiments, the molar concentration of the additive is 0.001 mol/L to 0.015 mol/L.
在其中一些实施方式中,所述电解液中的溶剂包括碳酸乙烯酯、碳酸丙烯酯、碳酸亚乙酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、乙酸乙酯、丙酸乙酯、丙酸甲酯、乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、聚乙二醇二甲醚、乙二醇二乙醚、乙二醇二丁醚、四氢呋喃以及甲基四氢呋喃中的至少一种。In some embodiments, the solvent in the electrolyte includes at least one of ethylene carbonate, propylene carbonate, ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl acetate, ethyl propionate, methyl propionate, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, tetrahydrofuran and methyltetrahydrofuran.
本申请还提供一种钠离子电池,包括上述电解液。The present application also provides a sodium ion battery, comprising the above-mentioned electrolyte.
本申请还提供一种用电装置,包括上述钠离子电池。The present application also provides an electrical device, comprising the above-mentioned sodium ion battery.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本申请一实施方式的二次电池的示意图。FIG. 1 is a schematic diagram of a secondary battery according to an embodiment of the present application.
图2是图1所示的本申请一实施方式的二次电池的分解图。FIG. 2 is an exploded view of the secondary battery according to the embodiment of the present application shown in FIG. 1 .
图3是本申请一实施方式的二次电池用作电源的用电装置的示意图。FIG. 3 is a schematic diagram of an electric device using a secondary battery as a power source according to an embodiment of the present application.
附图标记说明:Description of reference numerals:
1、二次电池;11、壳体;12、电极组件;13、顶盖组件;2、用电装置。1. Secondary battery; 11. Shell; 12. Electrode assembly; 13. Top cover assembly; 2. Electrical device.
具体实施方式DETAILED DESCRIPTION
以下,适当地参照附图详细说明具体公开了本申请的电池组件、电池单体、二次电池和用电装置的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。Below, the battery assembly, battery cell, secondary battery and electric device of the present application are described in detail with appropriate reference to the accompanying drawings. However, there are cases where unnecessary detailed descriptions are omitted. For example, there are cases where detailed descriptions of well-known matters and repeated descriptions of actually the same structure are omitted. This is to avoid the following description from becoming unnecessarily lengthy and to facilitate the understanding of those skilled in the art. In addition, the drawings and the following description are provided for those skilled in the art to fully understand the present application and are not intended to limit the subject matter described in the claims.
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60~120和80~110的范围,理解为60~110和80~120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1~3、1~4、1~5、2~3、2~4和2~5。在本申请中,除非有其他说明,数值范围“a~b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0~5”表示本文中已经全部列出了“0~5”之间的全部实数,“0~5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。The "range" disclosed in the present application is defined in the form of a lower limit and an upper limit, and a given range is defined by selecting a lower limit and an upper limit, and the selected lower limit and upper limit define the boundaries of a particular range. The range defined in this way can be inclusive or exclusive of end values, and can be arbitrarily combined, i.e., any lower limit can be combined with any upper limit to form a range. For example, if a range of 60 to 120 and 80 to 110 is listed for a particular parameter, it is understood that a range of 60 to 110 and 80 to 120 is also expected. In addition, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4 and 5 are listed, the following ranges can all be expected: 1 to 3, 1 to 4, 1 to 5, 2 to 3, 2 to 4 and 2 to 5. In the present application, unless otherwise specified, the numerical range "a to b" represents an abbreviation of any real number combination between a and b, wherein a and b are both real numbers. For example, the numerical range "0-5" means that all real numbers between "0-5" are listed in this document, and "0-5" is just an abbreviation of these numerical combinations. In addition, when a parameter is expressed as an integer ≥ 2, it is equivalent to disclosing that the parameter is, for example, an integer of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, etc.
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。Unless otherwise specified, all embodiments and optional embodiments of the present application can be combined with each other to form a new technical solution.
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。Unless otherwise specified, all technical features and optional technical features of this application can be combined with each other to form a new technical solution.
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,优选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。If there is no special explanation, all steps of the present application can be performed sequentially or randomly, preferably sequentially. For example, the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed sequentially, or may include steps (b) and (a) performed sequentially. For example, the method may further include step (c), which means that step (c) may be added to the method in any order. For example, the method may include steps (a), (b) and (c), or may include steps (a), (c) and (b), or may include steps (c), (a) and (b), etc.
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。If there is no special explanation, the "include" and "comprising" mentioned in this application represent open-ended or closed-ended expressions. For example, the "include" and "comprising" may represent that other components not listed may also be included or only the listed components may be included or only the listed components may be included.
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真或存在,并且B为假或不存在;A为假或不存在,而B为真或存在;或A和B都为真,或A和B都存在。If not specifically stated, in this application, the term "or" is inclusive. For example, the phrase "A or B" means "A, B, or both A and B". More specifically, any of the following conditions satisfies the condition "A or B": A is true or exists, and B is false or does not exist; A is false or does not exist, and B is true or exists; or both A and B are true, or both A and B exist.
如果没有特别的说明,在本申请中,术语“正极片”、“正极极片”具有相同的含义,可以互换使用。术语“负极片”、“负极极片”具有相同的含义,可以互换使用。术语“隔膜”、“隔离膜”具有相同的含义,可以互换使用。If there is no special explanation, in this application, the terms "positive electrode sheet" and "positive electrode sheet" have the same meaning and can be used interchangeably. The terms "negative electrode sheet" and "negative electrode sheet" have the same meaning and can be used interchangeably. The terms "diaphragm" and "separation membrane" have the same meaning and can be used interchangeably.
本申请一实施方式提供了一种电解液。该电解液包括含S阴离子和含B阴离子,含S阴离子包括N(FSO2)2 -和N(CF3SO2)2 -中的至少一种,含B阴离子包括B(F2C2O4)-和BF4 -中的至少一种,电解液中S元素和B元素的摩尔比为(2~20):1。该电解液中包括相应含S阴离子和含B阴离子,以及相应摩尔比的S元素和B元素,当将该电解液应用到钠离子电池中时,会在电池的负极表面形成含S元素和含B元素的固体电解质界面膜(SEI膜),该SEI膜能够兼顾较高效的钠离子传输速率和较好的韧性,有助于改善钠离子电池的存储容量保持率。当S元素和B元素的摩尔比过大时,可能导致SEI膜的韧性较差,在循环过程中容易出现破裂损坏,导致电性能变差。当S元素和B元素的摩尔比过小时,可能导致钠离子在SEI膜中的传输速率变差,导致阻抗增加,极化增大,进而导致电性能下降。An embodiment of the present application provides an electrolyte. The electrolyte includes S-containing anions and B-containing anions, the S-containing anions include at least one of N(FSO 2 ) 2 - and N(CF 3 SO 2 ) 2 - , the B-containing anions include at least one of B(F 2 C 2 O 4 ) - and BF 4 - , and the molar ratio of S element to B element in the electrolyte is (2~20):1. The electrolyte includes corresponding S-containing anions and B-containing anions, as well as S element and B element in corresponding molar ratios. When the electrolyte is applied to a sodium ion battery, a solid electrolyte interface film (SEI film) containing S element and B element will be formed on the negative electrode surface of the battery. The SEI film can take into account both a more efficient sodium ion transmission rate and better toughness, which helps to improve the storage capacity retention rate of the sodium ion battery. When the molar ratio of the S element to the B element is too large, the toughness of the SEI film may be poor, and it is easy to rupture and damage during the cycle, resulting in poor electrical performance. When the molar ratio of S element to B element is too small, the transmission rate of sodium ions in the SEI film may deteriorate, resulting in increased impedance and polarization, which in turn leads to a decrease in electrical performance.
可以理解的是,电解液中的S元素和B元素可以由S阴离子和B阴离子提供。进一步可选地,S阴离子作为S元素的来源,B阴离子作为B元素的来源。还可以理解的是,电解液中可能含有其他含S元素和/或含B元素的物质,这些物质也可以提供一定量的S元素和B元素。It is understood that the S element and the B element in the electrolyte can be provided by S anions and B anions. Further optionally, the S anions serve as the source of the S element, and the B anions serve as the source of the B element. It is also understood that the electrolyte may contain other substances containing the S element and/or the B element, and these substances can also provide a certain amount of the S element and the B element.
作为S元素和B元素的摩尔比的一些可选示例,S元素和B元素的摩尔比可以是但不限定为2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1、10:1、11:1、12:1、13:1、14:1、15:1、16:1、17:1、18:1、19:1、20:1等。可以理解的是,S元素和B元素的摩尔比还可以在(2~20):1范围内进行其他选择。进一步地,S元素和B元素的摩尔比可以在本申请下文实施例中记载的S元素和B元素的摩尔比中进行选择。As some optional examples of the molar ratio of the S element and the B element, the molar ratio of the S element and the B element can be, but is not limited to, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1, 15:1, 16:1, 17:1, 18:1, 19:1, 20:1, etc. It is understood that the molar ratio of the S element and the B element can also be selected in the range of (2 to 20): 1. Further, the molar ratio of the S element and the B element can be selected from the molar ratios of the S element and the B element described in the embodiments below in this application.
作为S元素在电解液中的摩尔浓度示例,在电解液中,S元素的摩尔浓度为1mol/L~4mol/L。可选地,在电解液中,S元素的摩尔浓度为1mol/L、1.2mol/L、1.5mol/L、1.8mol/L、2mol/L、2.2mol/L、2.5mol/L、2.8mol/L、3mol/L、3.2mol/L、3.5mol/L、3.8mol/L、4mol/L等。As an example of the molar concentration of the S element in the electrolyte, in the electrolyte, the molar concentration of the S element is 1 mol/L to 4 mol/L. Optionally, in the electrolyte, the molar concentration of the S element is 1 mol/L, 1.2 mol/L, 1.5 mol/L, 1.8 mol/L, 2 mol/L, 2.2 mol/L, 2.5 mol/L, 2.8 mol/L, 3 mol/L, 3.2 mol/L, 3.5 mol/L, 3.8 mol/L, 4 mol/L, etc.
作为B元素在电解液中的摩尔浓度示例,在电解液中,B元素的摩尔浓度为0.1mol/L~1mol/L。可选地,在电解液中,B元素的摩尔浓度为0.1mol/L、0.2mol/L、0.3mol/L、0.4mol/L、0.5mol/L、0.6mol/L、0.7mol/L、0.8mol/L、0.9mol/L、1mol/L等。As an example of the molar concentration of element B in the electrolyte, in the electrolyte, the molar concentration of element B is 0.1 mol/L to 1 mol/L. Optionally, in the electrolyte, the molar concentration of element B is 0.1 mol/L, 0.2 mol/L, 0.3 mol/L, 0.4 mol/L, 0.5 mol/L, 0.6 mol/L, 0.7 mol/L, 0.8 mol/L, 0.9 mol/L, 1 mol/L, etc.
可以理解的是,在电解液中,S元素的摩尔浓度还可以在1mol/L~4mol/L范围内进行其他选择。在电解液中,B元素的摩尔浓度还可以在0.1mol/L~1mol/L范围内进行其他选择。进一步地,在电解液中,S元素的摩尔浓度还可以在本申请下文实施例中记载的S元素的摩尔浓度中进行选择。在电解液中,B元素的摩尔浓度还可以在本申请下文实施例中记载的B元素的摩尔浓度中进行选择。It is understood that, in the electrolyte, the molar concentration of the S element can also be selected in the range of 1 mol/L to 4 mol/L. In the electrolyte, the molar concentration of the B element can also be selected in the range of 0.1 mol/L to 1 mol/L. Further, in the electrolyte, the molar concentration of the S element can also be selected from the molar concentrations of the S element described in the embodiments below in this application. In the electrolyte, the molar concentration of the B element can also be selected from the molar concentrations of the B element described in the embodiments below in this application.
可以理解的是,本申请中对于元素的种类和摩尔浓度可以参考电感耦合等离子体原子发射光谱(EPA 6010D-2018)、电感耦合等离子体原子发射光谱法通则(JY/T 0567-2020)或者六氟磷酸锂产品分析方法(GBT19282-2014)测得。比如,将样品经前处理后,采用电感耦合等离子体原子发射光谱仪测试得到元素的种类和摩尔浓度,可选地,测试方法包括:(1)准确量取5mL新鲜电解液样品于消解罐中,待天平数字稳定后记录样品重量;(2)缓慢加入10mL浓HNO3,内壁上的样品冲入罐底,并轻轻晃动消解罐;(3)将消解罐放入赶酸仪中180℃消解约30min;(4)待溶液蒸至1~2mL时,取下消解罐冷却至室温,用超纯水冲洗罐子3次,冲洗液倒入50mL塑料容量瓶中定容后摇匀;(5)采用电感耦合等离子体原子发射光谱仪测试定容后的溶液。It can be understood that the types and molar concentrations of elements in this application can be measured by reference to Inductively Coupled Plasma Atomic Emission Spectrometry (EPA 6010D-2018), Inductively Coupled Plasma Atomic Emission Spectrometry General Rules (JY/T 0567-2020) or Lithium Hexafluorophosphate Product Analysis Method (GBT19282-2014). For example, after the sample is pre-treated, the type and molar concentration of the element are obtained by testing with an inductively coupled plasma atomic emission spectrometer. Optionally, the testing method includes: (1) accurately measuring 5 mL of fresh electrolyte sample into a digestion tank, and recording the sample weight after the balance number is stable; (2) slowly adding 10 mL of concentrated HNO 3 , flushing the sample on the inner wall into the bottom of the tank, and gently shaking the digestion tank; (3) placing the digestion tank in an acid remover and digesting at 180°C for about 30 minutes; (4) when the solution evaporates to 1~2 mL, remove the digestion tank and cool it to room temperature, rinse the tank with ultrapure water 3 times, pour the rinse solution into a 50 mL plastic volumetric flask to make up the volume, and shake it evenly; (5) testing the solution after making up the volume with an inductively coupled plasma atomic emission spectrometer.
可以理解的是,本申请中对于离子的种类和摩尔浓度可以参考标准JY/T 020-1996和GB/T36240-2018,通过离子色谱分析方法对电解液中的离子成分进行定量分析。It can be understood that the types and molar concentrations of ions in this application can refer to standards JY/T 020-1996 and GB/T36240-2018, and the ion components in the electrolyte are quantitatively analyzed by ion chromatography analysis.
进一步地,电解液还含有F元素和N元素中的至少一种。可选地,F元素和N元素的摩尔比为(2.2~10):1。比如,F元素和N元素的摩尔比可以是但不限定为2.2:1、2.5:1、3:1、3.5:1、4:1、4.5:1、5:1、5.5:1、6:1、6.5:1、7:1、7.5:1、8:1、8.5:1、9:1、9.5:1、10:1等。可以理解的是,F元素和N元素的摩尔比还可以在(2.2~10):1范围内进行其他选择。可选地,F元素和N元素的摩尔比为(2.2~6.8):1。进一步地,F元素和N元素的摩尔比还可以在本申请下文实施例中记载的F元素和N元素的摩尔比中进行其他选择。Further, the electrolyte also contains at least one of the F element and the N element. Optionally, the molar ratio of the F element to the N element is (2.2~10):1. For example, the molar ratio of the F element to the N element can be but is not limited to 2.2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5.5:1, 6:1, 6.5:1, 7:1, 7.5:1, 8:1, 8.5:1, 9:1, 9.5:1, 10:1, etc. It is understood that the molar ratio of the F element to the N element can also be selected in the range of (2.2~10):1. Optionally, the molar ratio of the F element to the N element is (2.2~6.8):1. Further, the molar ratio of the F element to the N element can also be selected in the molar ratio of the F element to the N element described in the embodiments below in this application.
具体可选地,在电解液中,F元素的摩尔浓度为1.4mol/L~6.8mol/L。可选地,在电解液中,F元素的摩尔浓度为1.4mol/L、1.5mol/L、1.8mol/L、2mol/L、2.5mol/L、3mol/L、3.5mol/L、4mol/L、4.5mol/L、5mol/L、5.5mol/L、6mol/L、6.5mol/L、6.8mol/L等。当然,在电解液中,F元素的摩尔浓度还可以在本申请下文实施例中记载的F元素的摩尔浓度中进行其他选择。Specifically, in the electrolyte, the molar concentration of the F element is 1.4mol/L to 6.8mol/L. Optionally, in the electrolyte, the molar concentration of the F element is 1.4mol/L, 1.5mol/L, 1.8mol/L, 2mol/L, 2.5mol/L, 3mol/L, 3.5mol/L, 4mol/L, 4.5mol/L, 5mol/L, 5.5mol/L, 6mol/L, 6.5mol/L, 6.8mol/L, etc. Of course, in the electrolyte, the molar concentration of the F element can also be selected from the molar concentration of the F element described in the embodiments below in this application.
可选地,N元素的摩尔浓度为0.5mol/L~2mol/L。可选地,在电解液中,N元素的摩尔浓度为0.5mol/L、0.6mol/L、0.7mol/L、0.8mol/L、0.9mol/L、1mol/L、1.1mol/L、1.2mol/L、1.3mol/L、1.4mol/L、1.5mol/L、1.6mol/L、1.7mol/L、1.8mol/L、1.9mol/L、2mol/L等。可以理解的是,在电解液中,N元素的摩尔浓度还可以在0.5mol/L~2mol/L范围内进行其他选择。当然,在电解液中,N元素的摩尔浓度还可以在本申请下文实施例中记载的N元素的摩尔浓度中进行其他选择。Optionally, the molar concentration of N element is 0.5mol/L~2mol/L. Optionally, in the electrolyte, the molar concentration of N element is 0.5mol/L, 0.6mol/L, 0.7mol/L, 0.8mol/L, 0.9mol/L, 1mol/L, 1.1mol/L, 1.2mol/L, 1.3mol/L, 1.4mol/L, 1.5mol/L, 1.6mol/L, 1.7mol/L, 1.8mol/L, 1.9mol/L, 2mol/L, etc. It is understood that in the electrolyte, the molar concentration of N element can also be selected in the range of 0.5mol/L~2mol/L. Of course, in the electrolyte, the molar concentration of N element can also be selected in the molar concentration of N element recorded in the embodiments below in the present application.
在一些实施方式中,电解液包括含S钠盐和含B钠盐。可选地,含S钠盐包括双氟磺酰亚胺钠(N(FSO2)2Na)和双(三氟甲基磺酰基)酰亚胺钠(N(CF3SO2)2Na)中的至少一种,含B钠盐包括二氟草酸硼酸钠(B(F2C2O4)Na)和四氟硼酸钠(BF4Na)中的至少一种。In some embodiments, the electrolyte includes a sodium salt containing S and a sodium salt containing B. Optionally, the sodium salt containing S includes at least one of sodium bis(fluorosulfonyl)imide (N(FSO 2 ) 2 Na) and sodium bis(trifluoromethylsulfonyl)imide (N(CF 3 SO 2 ) 2 Na), and the sodium salt containing B includes at least one of sodium difluorooxalatoborate (B(F 2 C 2 O 4 )Na) and sodium tetrafluoroborate (BF 4 Na).
可选地,在电解液中,含S钠盐和含B钠盐的摩尔比为(1~10):1。进一步可选地,在电解液中,含S钠盐和含B钠盐的摩尔比为1:1、1.5:1、2:1、2.5:1、3:1、3.5:1、4:1、4.5:1、5:1、5.5:1、6:1、6.5:1、7:1、7.5:1、8:1、8.5:1、9:1、9.5:1、10:1等。可以理解的是,在电解液中,含S钠盐和含B钠盐的摩尔比还可以在(1~10):1范围内进行其他选择。当然,含S钠盐和含B钠盐的摩尔比还可以在本申请下文实施例中记载的含S钠盐和含B钠盐的摩尔比中进行其他选择。Optionally, in the electrolyte, the molar ratio of the sodium salt containing S to the sodium salt containing B is (1-10):1. Further optionally, in the electrolyte, the molar ratio of the sodium salt containing S to the sodium salt containing B is 1:1, 1.5:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5.5:1, 6:1, 6.5:1, 7:1, 7.5:1, 8:1, 8.5:1, 9:1, 9.5:1, 10:1, etc. It is understood that in the electrolyte, the molar ratio of the sodium salt containing S to the sodium salt containing B can also be selected in the range of (1-10):1. Of course, the molar ratio of the sodium salt containing S to the sodium salt containing B can also be selected in the molar ratio of the sodium salt containing S to the sodium salt containing B described in the embodiments below in this application.
可选地,在电解液中,含S钠盐的摩尔浓度为0.5mol/L~2mol/L。可选地,含S钠盐的摩尔浓度为0.5mol/L、0.6mol/L、0.7mol/L、0.8mol/L、0.9mol/L、1mol/L、1.1mol/L、1.2mol/L、1.3mol/L、1.4mol/L、1.5mol/L、1.6mol/L、1.7mol/L、1.8mol/L、1.9mol/L、2mol/L等。Optionally, in the electrolyte, the molar concentration of the sodium salt containing S is 0.5mol/L to 2mol/L. Optionally, the molar concentration of the sodium salt containing S is 0.5mol/L, 0.6mol/L, 0.7mol/L, 0.8mol/L, 0.9mol/L, 1mol/L, 1.1mol/L, 1.2mol/L, 1.3mol/L, 1.4mol/L, 1.5mol/L, 1.6mol/L, 1.7mol/L, 1.8mol/L, 1.9mol/L, 2mol/L, etc.
可选地,在电解液中,含B钠盐的摩尔浓度为0.1mol/L~1mol/L。可选地,在电解液中,含B钠盐的摩尔浓度为0.1mol/L、0.2mol/L、0.3mol/L、0.4mol/L、0.5mol/L、0.6mol/L、0.7mol/L、0.8mol/L、0.9mol/L、1mol/L等。Optionally, in the electrolyte, the molar concentration of the sodium salt containing B is 0.1mol/L to 1mol/L. Optionally, in the electrolyte, the molar concentration of the sodium salt containing B is 0.1mol/L, 0.2mol/L, 0.3mol/L, 0.4mol/L, 0.5mol/L, 0.6mol/L, 0.7mol/L, 0.8mol/L, 0.9mol/L, 1mol/L, etc.
在一些实施方式中,电解液还包括添加剂,添加剂包括烷基钠盐。烷基钠盐添加剂可以促进电解液在负极表面的浸润,进而降低电池的内容,进一步改善电池的存储容量保持率。可选地,烷基钠盐包括十二烷基硫酸钠和聚二硫二丙烷磺酸钠中的至少一种。进一步可选地,添加剂的摩尔浓度为0.001mol/L~0.015mol/L。比如,添加剂的摩尔浓度可以是但不限定为0.001mol/L、0.0015 mol/L、0.0018 mol/L、0.002 mol/L、0.0025mol/L、0.003mol/L、0.0035mol/L、0.004 mol/L、0.0045 mol/L、0.005 mol/L、0.0055 mol/L、0.006 mol/L、0.0065 mol/L、0.007 mol/L、0.0075mol/L、0.008mol/L、0.0085mol/L、0.009mol/L、0.0095 mol/L、0.01 mol/L、0.012 mol/L、0.015 mol/L等。可以理解的是,添加剂的摩尔浓度还可以在0.0015mol/L~0.015mol/L范围内进行其他选择。当然,添加剂的摩尔浓度还可以在本申请下文实施例中记载的添加剂的摩尔浓度中进行其他选择。In some embodiments, the electrolyte further comprises an additive, and the additive comprises an alkyl sodium salt. The alkyl sodium salt additive can promote the wetting of the electrolyte on the surface of the negative electrode, thereby reducing the content of the battery and further improving the storage capacity retention rate of the battery. Optionally, the alkyl sodium salt comprises at least one of sodium dodecyl sulfate and sodium polydisulfide dipropane sulfonate. Further optionally, the molar concentration of the additive is 0.001 mol/L to 0.015 mol/L. For example, the molar concentration of the additive can be but is not limited to 0.001 mol/L, 0.0015 mol/L, 0.0018 mol/L, 0.002 mol/L, 0.0025 mol/L, 0.003 mol/L, 0.0035 mol/L, 0.004 mol/L, 0.0045 mol/L, 0.005 mol/L, 0.0055 mol/L, 0.006 mol/L, 0.0065 mol/L, 0.007 mol/L, 0.0075 mol/L, 0.008 mol/L, 0.0085 mol/L, 0.009 mol/L, 0.0095 mol/L, 0.01 mol/L, 0.012 mol/L, 0.015 mol/L, etc. It is understood that the molar concentration of the additive can also be selected in the range of 0.0015 mol/L to 0.015 mol/L. Of course, the molar concentration of the additive can also be selected in the molar concentration of the additive described in the examples below.
在一些实施方式中,电解液还包括溶剂,溶剂包括碳酸乙烯酯、碳酸丙烯酯、碳酸亚乙酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、乙酸乙酯、丙酸乙酯、丙酸甲酯、乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、聚乙二醇二甲醚、乙二醇二乙醚、乙二醇二丁醚、四氢呋喃以及甲基四氢呋喃中的至少一种。可选地,溶剂包括碳酸丙烯酯和碳酸二甲酯。进一步可选地,碳酸丙烯酯和碳酸二甲酯的体积比为(0.5~1.5):1。比如,碳酸丙烯酯和碳酸二甲酯的体积比可以是但不限定为0.5:1、0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1。可选地,聚乙二醇二甲醚的分子量为250~320。In some embodiments, the electrolyte further includes a solvent, and the solvent includes at least one of ethylene carbonate, propylene carbonate, ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl acetate, ethyl propionate, methyl propionate, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, tetrahydrofuran, and methyltetrahydrofuran. Optionally, the solvent includes propylene carbonate and dimethyl carbonate. Further optionally, the volume ratio of propylene carbonate and dimethyl carbonate is (0.5~1.5):1. For example, the volume ratio of propylene carbonate and dimethyl carbonate can be, but is not limited to, 0.5:1, 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1. Optionally, the molecular weight of polyethylene glycol dimethyl ether is 250-320.
本申请还有一实施方式提供了一种钠离子电池。该钠离子电池包括上述电解液。Another embodiment of the present application provides a sodium ion battery. The sodium ion battery includes the above-mentioned electrolyte.
本申请还有一实施方式提供了一种用电装置。该用电装置包括上述钠离子电池。Another embodiment of the present application provides an electrical device, which includes the sodium ion battery.
以下将参照相关附图对二次电池进行说明。Hereinafter, the secondary battery will be described with reference to the relevant drawings.
通常情况下,二次电池包括正极极片、负极极片、电解质和隔离膜。在电池充放电过程中,活性离子在正极极片和负极极片之间往返嵌入和脱出。电解质在正极极片和负极极片之间起到传导离子的作用。隔离膜设置在正极极片和负极极片之间,主要起到防止正负极短路的作用,同时可以使离子通过。Generally, a secondary battery includes a positive electrode sheet, a negative electrode sheet, an electrolyte and a separator. During the battery charging and discharging process, active ions are embedded and released back and forth between the positive electrode sheet and the negative electrode sheet. The electrolyte plays the role of conducting ions between the positive electrode sheet and the negative electrode sheet. The separator is set between the positive electrode sheet and the negative electrode sheet, mainly to prevent the positive and negative electrodes from short-circuiting, while allowing ions to pass through.
[正极极片][Positive electrode]
正极极片包括正极集流体以及设置在正极集流体至少一个表面的正极膜层,所述正极膜层包括正极活性材料。The positive electrode sheet includes a positive electrode current collector and a positive electrode film layer disposed on at least one surface of the positive electrode current collector, wherein the positive electrode film layer includes a positive electrode active material.
作为示例,正极集流体具有在其自身厚度方向相对的两个表面,正极膜层设置在正极集流体相对的两个表面的其中任意一者或两者上。As an example, the positive electrode current collector has two surfaces opposite to each other in its thickness direction, and the positive electrode film layer is disposed on any one or both of the two opposite surfaces of the positive electrode current collector.
在一些实施方式中,所述正极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可采用铝箔。复合集流体可包括高分子材料基层和形成于高分子材料基层至少一个表面上的金属层。复合集流体可通过将金属材料形成在高分子材料基材上而形成。可选地,金属材料可以包括但不限定于铝、铝合金、镍、镍合金、钛、钛合金、银及银合金中的一种或多种。可选地,高分子材料基材可以包括但不限定于聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)及聚乙烯(PE)中的一种或多种。In some embodiments, the positive electrode current collector may be a metal foil or a composite current collector. For example, as the metal foil, aluminum foil may be used. The composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material base layer. The composite current collector may be formed by forming a metal material on a polymer material substrate. Optionally, the metal material may include but is not limited to one or more of aluminum, aluminum alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy. Optionally, the polymer material substrate may include but is not limited to one or more of polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polystyrene (PS) and polyethylene (PE).
在一些实施方式中,当二次电池为锂离子电池时,正极活性材料可采用本领域公知的用于锂离子电池的正极活性材料。作为示例,正极活性材料可包括以下材料中的至少一种:橄榄石结构的含锂磷酸盐、锂过渡金属氧化物及其各自的改性化合物。但本申请并不限定于这些材料,还可以使用其他可被用作电池正极活性材料的传统材料。这些正极活性材料可以仅单独使用一种,也可以将两种以上组合使用。其中,锂过渡金属氧化物的示例可包括但不限于锂钴氧化物、锂镍氧化物、锂锰氧化物、锂镍钴氧化物、锂锰钴氧化物、锂镍锰氧化物、锂镍钴锰氧化物、锂镍钴铝氧化物及它们的改性化合物等中的至少一种。可选地,锂钴氧化物包括LiCoO2。锂镍氧化物包括LiNiO2。锂锰氧化物包括LiMnO2和LiMn2O4中的至少一种。锂镍钴锰氧化物包括LiNi1/3Co1/3Mn1/3O2(NCM333)、LiNi0.5Co0.2Mn0.3O2(NCM523)、LiNi0.5Co0.25Mn0.25O2(NCM211)、LiNi0.6Co0.2Mn0.2O2(NCM622)以及LiNi0.8Co0.1Mn0.1O2(NCM811)中的至少一种。锂镍钴铝氧化物包括LiNi0.85Co0.15Al0.05O2。橄榄石结构的含锂磷酸盐的示例可包括但不限于磷酸铁锂、磷酸铁锂与碳的复合材料、磷酸锰锂、磷酸锰锂与碳的复合材料、磷酸锰铁锂、磷酸锰铁锂与碳的复合材料中的至少一种。可选地,磷酸铁锂包括LiFePO4(LFP)。磷酸锰锂包括LiMnPO4。In some embodiments, when the secondary battery is a lithium ion battery, the positive electrode active material may be a positive electrode active material for lithium ion batteries known in the art. As an example, the positive electrode active material may include at least one of the following materials: lithium phosphates containing olivine structure, lithium transition metal oxides and their respective modified compounds. However, the present application is not limited to these materials, and other traditional materials that can be used as positive electrode active materials for batteries can also be used. These positive electrode active materials can be used alone or in combination of two or more. Among them, examples of lithium transition metal oxides may include but are not limited to at least one of lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel cobalt oxide, lithium manganese cobalt oxide, lithium nickel manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide and their modified compounds. Optionally, lithium cobalt oxide includes LiCoO 2. Lithium nickel oxide includes LiNiO 2. Lithium manganese oxide includes at least one of LiMnO 2 and LiMn 2 O 4 . Lithium nickel cobalt manganese oxide includes at least one of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM 333 ), LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM 523 ), LiNi 0.5 Co 0.25 Mn 0.25 O 2 (NCM 211 ), LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM 622 ), and LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM 811 ). Lithium nickel cobalt aluminum oxide includes LiNi 0.85 Co 0.15 Al 0.05 O 2. Examples of lithium-containing phosphates of olivine structure may include, but are not limited to, at least one of lithium iron phosphate, a composite material of lithium iron phosphate and carbon, lithium manganese phosphate, a composite material of lithium manganese phosphate and carbon, lithium iron manganese phosphate, and a composite material of lithium iron manganese phosphate and carbon. Optionally, the lithium iron phosphate includes LiFePO 4 (LFP). The lithium manganese phosphate includes LiMnPO 4 .
在一些实施方式中,当二次电池为钠离子电池时,正极活性材料可采用本领域公知的用于钠离子电池的正极活性材料。作为示例,正极活性材料可以仅单独使用一种,也可以将两种以上组合。其中,正极活性物质可选自钠铁复合氧化物、钠钴复合氧化物、钠铬复合氧化物、钠锰复合氧化物、钠镍复合氧化物、钠镍钛复合氧化物、钠镍锰复合氧化物、钠铁锰复合氧化物、钠镍钴锰复合氧化物、钠铁磷酸化合物、钠锰磷酸化合物、钠钴磷酸化合物、钠镍铁锰复合氧化物、普鲁士蓝类材料、聚阴离子材料等,但本申请并不限定于这些材料,本申请还可以使用其他可被用作钠离子电池正极活性物质的传统公知的材料。可选地,钠铁复合氧化物包括NaFeO2。钠钴复合氧化物包括NaCoO2。钠铬复合氧化物包括NaCrO2。钠锰复合氧化物包括NaMnO2。钠镍复合氧化物包括NaNiO2。钠镍钛复合氧化物包括NaNi1/2Ti1/ 2O2。钠镍锰复合氧化物包括NaNi1/2Mn1/2O2。钠铁锰复合氧化物包括Na2/3Fe1/3Mn2/3O2。钠镍钴锰复合氧化物包括NaNi1/3Co1/3Mn1/3O2。钠铁磷酸化合物包括NaFePO4。钠锰磷酸化合物包括NaMnPO4。钠钴磷酸化合物包括NaCoPO4。聚阴离子材料包括磷酸盐、氟磷酸盐、焦磷酸盐以及硫酸盐中的至少一种。In some embodiments, when the secondary battery is a sodium ion battery, the positive electrode active material may be a positive electrode active material for sodium ion batteries known in the art. As an example, the positive electrode active material may be used alone or in combination of two or more. Among them, the positive electrode active material may be selected from sodium iron composite oxide, sodium cobalt composite oxide, sodium chromium composite oxide, sodium manganese composite oxide, sodium nickel composite oxide, sodium nickel titanium composite oxide, sodium nickel manganese composite oxide, sodium iron manganese composite oxide, sodium nickel cobalt manganese composite oxide, sodium iron phosphate compound, sodium manganese phosphate compound, sodium cobalt phosphate compound, sodium nickel iron manganese composite oxide, Prussian blue materials, polyanion materials, etc., but the present application is not limited to these materials, and the present application may also use other conventionally known materials that can be used as positive electrode active materials for sodium ion batteries. Optionally, the sodium iron composite oxide includes NaFeO 2. The sodium cobalt composite oxide includes NaCoO 2. The sodium chromium composite oxide includes NaCrO 2. The sodium manganese composite oxide includes NaMnO 2. The sodium nickel composite oxide includes NaNiO 2 . The sodium nickel titanium composite oxide includes NaNi 1/2 Ti 1/2 O 2. The sodium nickel manganese composite oxide includes NaNi 1/2 Mn 1/2 O 2. The sodium iron manganese composite oxide includes Na 2/3 Fe 1/3 Mn 2/3 O 2. The sodium nickel cobalt manganese composite oxide includes NaNi 1/3 Co 1/3 Mn 1/3 O 2. The sodium iron phosphate includes NaFePO 4. The sodium manganese phosphate includes NaMnPO 4. The sodium cobalt phosphate includes NaCoPO 4. The polyanion material includes at least one of phosphate, fluorophosphate, pyrophosphate and sulfate.
在一些实施方式中,正极膜层还可选地包括粘结剂。作为示例,所述粘结剂可以包括聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、偏氟乙烯-四氟乙烯-丙烯三元共聚物、偏氟乙烯-六氟丙烯-四氟乙烯三元共聚物、四氟乙烯-六氟丙烯共聚物及含氟丙烯酸酯树脂中的至少一种。In some embodiments, the positive electrode film layer may further optionally include a binder. As an example, the binder may include at least one of polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), vinylidene fluoride-tetrafluoroethylene-propylene terpolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, tetrafluoroethylene-hexafluoropropylene copolymer, and fluorine-containing acrylate resin.
在一些实施方式中,正极膜层还可选地包括导电剂。作为示例,所述导电剂可以包括超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。In some embodiments, the positive electrode film layer may further include a conductive agent, which may include, for example, at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, and carbon nanofibers.
在一些实施方式中,可以通过以下方式制备正极极片:将上述用于制备正极极片的组分,例如正极活性材料、导电剂、粘结剂和任意其他的组分分散于溶剂中,形成正极浆料;将正极浆料涂覆在正极集流体上,经烘干、冷压等工序后,即可得到正极极片。可选地,溶剂包括N-甲基吡咯烷酮。In some embodiments, the positive electrode sheet can be prepared by the following method: the components for preparing the positive electrode sheet, such as the positive electrode active material, the conductive agent, the binder and any other components are dispersed in a solvent to form a positive electrode slurry; the positive electrode slurry is coated on the positive electrode current collector, and the positive electrode sheet can be obtained after drying, cold pressing and other processes. Optionally, the solvent includes N-methylpyrrolidone.
[负极极片][Negative electrode]
负极极片包括负极集流体以及设置在负极集流体至少一个表面上的负极膜层,负极膜层包括负极活性材料。The negative electrode plate includes a negative electrode current collector and a negative electrode film layer arranged on at least one surface of the negative electrode current collector, and the negative electrode film layer includes a negative electrode active material.
作为示例,负极集流体具有在其自身厚度方向相对的两个表面,负极膜层设置在负极集流体相对的两个表面中的任意一者或两者上。As an example, the negative electrode current collector has two surfaces opposite to each other in its thickness direction, and the negative electrode film layer is disposed on any one or both of the two opposite surfaces of the negative electrode current collector.
在一些实施方式中,所述负极集流体可采用金属箔片或复合集流体。例如,作为金属箔片,可以采用铜箔。复合集流体可包括高分子材料基层和形成于高分子材料基材至少一个表面上的金属层。复合集流体可通过将金属材料形成在高分子材料基材上而形成。可选地,金属材料包括铜、铜合金、镍、镍合金、钛、钛合金、银及银合金中的至少一种。高分子材料包括聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚苯乙烯(PS)以及聚乙烯(PE)中的至少一种。In some embodiments, the negative electrode current collector may be a metal foil or a composite current collector. For example, as the metal foil, a copper foil may be used. The composite current collector may include a polymer material base layer and a metal layer formed on at least one surface of the polymer material substrate. The composite current collector may be formed by forming a metal material on a polymer material substrate. Optionally, the metal material includes at least one of copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, silver and silver alloy. The polymer material includes at least one of polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polystyrene (PS) and polyethylene (PE).
在一些实施方式中,负极活性材料可采用本领域公知的用于电池的负极活性材料。作为示例,负极活性材料可包括以下材料中的至少一种:人造石墨、天然石墨、软炭、硬炭、硅基材料、锡基材料和钛酸锂等。所述硅基材料可选自单质硅、硅氧化合物、硅碳复合物、硅氮复合物以及硅合金中的至少一种。所述锡基材料可选自单质锡、锡氧化合物以及锡合金中的至少一种。但本申请并不限定于这些材料,还可以使用其他可被用作电池负极活性材料的传统材料。这些负极活性材料可以仅单独使用一种,也可以将两种以上组合使用。In some embodiments, the negative electrode active material may adopt the negative electrode active material for the battery known in the art. As an example, the negative electrode active material may include at least one of the following materials: artificial graphite, natural graphite, soft carbon, hard carbon, silicon-based materials, tin-based materials, lithium titanate, etc. The silicon-based material may be selected from at least one of elemental silicon, silicon oxide compounds, silicon-carbon composites, silicon-nitrogen composites, and silicon alloys. The tin-based material may be selected from at least one of elemental tin, tin oxide compounds, and tin alloys. However, the present application is not limited to these materials, and other traditional materials that can be used as negative electrode active materials for batteries may also be used. These negative electrode active materials may be used alone or in combination of two or more.
在一些实施方式中,负极膜层还可选地包括粘结剂。所述粘结剂可选自丁苯橡胶(SBR)、聚丙烯酸(PAA)、聚丙烯酸钠(PAAS)、聚丙烯酰胺(PAM)、聚乙烯醇(PVA)、海藻酸钠(SA)、聚甲基丙烯酸(PMAA)、羧甲基壳聚糖(CMCS)、聚酰胺酰亚胺(PAI)、聚乙烯亚胺(PEI)、聚酰亚胺(PI)、聚丙烯酸叔丁酯-三乙氧基乙烯基硅烷(TBATEVS)中的至少一种。In some embodiments, the negative electrode film layer may further include a binder. The binder may be selected from at least one of styrene-butadiene rubber (SBR), polyacrylic acid (PAA), sodium polyacrylate (PAAS), polyacrylamide (PAM), polyvinyl alcohol (PVA), sodium alginate (SA), polymethacrylic acid (PMAA), carboxymethyl chitosan (CMCS), polyamide-imide (PAI), polyethyleneimine (PEI), polyimide (PI), and polytert-butyl acrylate-triethoxyvinylsilane (TBATEVS).
在一些实施方式中,负极膜层还可选地包括导电剂。导电剂可选自超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯及碳纳米纤维中的至少一种。In some embodiments, the negative electrode film layer may further include a conductive agent, which may be selected from at least one of superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene and carbon nanofibers.
在一些实施方式中,负极膜层还可选地包括其他助剂,例如增稠剂。可选地,增稠剂包括羧甲基纤维素钠(CMC-Na)。In some embodiments, the negative electrode film layer may further include other additives, such as a thickener. Optionally, the thickener includes sodium carboxymethyl cellulose (CMC-Na).
在一些实施方式中,可以通过以下方式制备负极极片:将上述用于制备负极极片的组分,例如负极活性材料、导电剂、粘结剂和任意其他组分分散于溶剂中,形成负极浆料;将负极浆料涂覆在负极集流体上,经烘干、冷压等工序后,即可得到负极极片。可选地,溶剂包括去离子水。In some embodiments, the negative electrode sheet can be prepared by the following method: the components for preparing the negative electrode sheet, such as the negative electrode active material, the conductive agent, the binder and any other components are dispersed in a solvent to form a negative electrode slurry; the negative electrode slurry is coated on the negative electrode current collector, and the negative electrode sheet can be obtained after drying, cold pressing and other processes. Optionally, the solvent includes deionized water.
[电解质][Electrolytes]
电解质在正极极片和负极极片之间起到传导离子的作用。本申请对电解质的种类没有具体的限制,可根据需求进行选择。例如,电解质可以是液态的、凝胶态的或全固态的。The electrolyte plays the role of conducting ions between the positive electrode and the negative electrode. The present application has no specific restrictions on the type of electrolyte, which can be selected according to needs. For example, the electrolyte can be liquid, gel or all-solid.
在一些实施方式中,电解质采用电解液。In some embodiments, the electrolyte is an electrolytic solution.
在一些实施方式中,所述电解液还可选地包括添加剂。例如添加剂可以包括负极成膜添加剂、正极成膜添加剂,还可以包括能够改善电池某些性能的添加剂,例如改善电池过充性能的添加剂、改善电池高温或低温性能的添加剂等。In some embodiments, the electrolyte may further include additives, such as negative electrode film-forming additives, positive electrode film-forming additives, and additives that can improve certain battery properties, such as additives that improve battery overcharge performance, additives that improve battery high or low temperature performance, etc.
[隔离膜][Isolation film]
在一些实施方式中,二次电池中还包括隔离膜。本申请对隔离膜的种类没有特别的限制,可以选用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。In some embodiments, the secondary battery further includes a separator. The present application has no particular limitation on the type of separator, and any known porous separator with good chemical stability and mechanical stability can be selected.
在一些实施方式中,隔离膜的材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。In some embodiments, the material of the isolation membrane can be selected from at least one of glass fiber, non-woven fabric, polyethylene, polypropylene and polyvinylidene fluoride. The isolation membrane can be a single-layer film or a multi-layer composite film, without particular limitation. When the isolation membrane is a multi-layer composite film, the materials of each layer can be the same or different, without particular limitation.
在一些实施方式中,正极极片、负极极片和隔离膜可通过卷绕工艺或叠片工艺制成电极组件。In some embodiments, the positive electrode sheet, the negative electrode sheet, and the separator may be formed into an electrode assembly by a winding process or a lamination process.
在一些实施方式中,二次电池可包括外包装。该外包装可用于封装上述电极组件及电解液。In some embodiments, the secondary battery may include an outer package, which may be used to encapsulate the electrode assembly and the electrolyte.
在一些实施方式中,二次电池的外包装可以是硬壳,例如硬塑料壳、铝壳、钢壳等。二次电池的外包装也可以是软包,例如袋式软包。软包的材质可以是塑料,作为塑料,可列举出聚丙烯、聚对苯二甲酸丁二醇酯以及聚丁二酸丁二醇酯等。In some embodiments, the outer packaging of the secondary battery may be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, etc. The outer packaging of the secondary battery may also be a soft package, such as a bag-type soft package. The material of the soft package may be plastic, and examples of the plastic include polypropylene, polybutylene terephthalate, and polybutylene succinate.
本申请对二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。例如,图1是作为一个示例的方形结构的二次电池1。可理解的是,二次电池1可以是钠离子电池。The present application has no particular limitation on the shape of the secondary battery, which may be cylindrical, square or any other shape. For example, FIG1 is a secondary battery 1 of a square structure as an example. It is understood that the secondary battery 1 may be a sodium ion battery.
在一些实施方式中,参照图2,外包装可包括壳体11和顶盖组件13。其中,壳体11可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体11具有与容纳腔连通的开口,顶盖组件13能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和隔离膜可经卷绕工艺或叠片工艺形成电极组件12。电极组件12封装于所述容纳腔内。电解液浸润于电极组件12中。二次电池1所含电极组件12的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。In some embodiments, referring to FIG. 2 , the outer package may include a shell 11 and a top cover assembly 13. Among them, the shell 11 may include a bottom plate and a side plate connected to the bottom plate, and the bottom plate and the side plate enclose a receiving cavity. The shell 11 has an opening connected to the receiving cavity, and the top cover assembly 13 can be covered on the opening to close the receiving cavity. The positive electrode sheet, the negative electrode sheet and the isolation film can form an electrode assembly 12 through a winding process or a lamination process. The electrode assembly 12 is encapsulated in the receiving cavity. The electrolyte is infiltrated in the electrode assembly 12. The number of electrode assemblies 12 contained in the secondary battery 1 can be one or more, and those skilled in the art can select according to specific actual needs.
在一些实施方式中,二次电池可以组装成电池模块,电池模块所含二次电池的数量可以为一个或多个,具体数量本领域技术人员可根据电池模块的应用和容量进行选择。In some embodiments, secondary batteries may be assembled into a battery module. The number of secondary batteries contained in the battery module may be one or more, and the specific number may be selected by those skilled in the art according to the application and capacity of the battery module.
另外,本申请还提供一种用电装置,所述用电装置包括本申请提供的二次电池。所述二次电池可以用作所述用电装置的电源,也可以用作所述用电装置的能量存储单元。所述用电装置可以包括移动设备、电动车辆、电气列车、船舶及卫星、储能系统等,但不限于此。比如,移动设备包括手机、笔记本电脑等。电动车辆包括纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等。In addition, the present application also provides an electrical device, which includes a secondary battery provided in the present application. The secondary battery can be used as a power source for the electrical device, and can also be used as an energy storage unit for the electrical device. The electrical device may include mobile devices, electric vehicles, electric trains, ships and satellites, energy storage systems, etc., but is not limited thereto. For example, mobile devices include mobile phones, laptop computers, etc. Electric vehicles include pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf carts, electric trucks, etc.
作为所述用电装置,可以根据其使用需求来选择二次电池。As the electrical device, a secondary battery can be selected according to its usage requirements.
图3是作为一个示例的用电装置2。该用电装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。Fig. 3 shows an electric device 2 as an example. The electric device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用二次电池作为电源。As another example, the device may be a mobile phone, a tablet computer, a notebook computer, etc. Such a device is usually required to be light and thin, and a secondary battery may be used as a power source.
实施例Example
实施例1Example 1
本实施例中电解液包括含S钠盐、含B钠盐和溶剂,含S钠盐为双氟磺酰亚胺钠(NaFSI),含B钠盐为二氟草酸硼酸钠(NaDFOB)。其中,在电解液中,含S钠盐的摩尔浓度为0.5mol/L,含B钠盐的摩尔浓度为0.2mol/L,S元素和B元素的摩尔比为5:1。溶剂为碳酸丙烯酯(PC)和碳酸二甲酯(DMC)按体积比为1:1的混合溶剂。In this embodiment, the electrolyte includes a sodium salt containing S, a sodium salt containing B, and a solvent, wherein the sodium salt containing S is sodium bis(fluorosulfonyl)imide (NaFSI), and the sodium salt containing B is sodium difluorooxalate borate (NaDFOB). In the electrolyte, the molar concentration of the sodium salt containing S is 0.5 mol/L, the molar concentration of the sodium salt containing B is 0.2 mol/L, and the molar ratio of the S element to the B element is 5:1. The solvent is a mixed solvent of propylene carbonate (PC) and dimethyl carbonate (DMC) in a volume ratio of 1:1.
实施例2~11Embodiments 2 to 11
与实施例1相比,实施例2~4的不同之处在于,在电解液中,含S钠盐的摩尔浓度、含B钠盐的摩尔浓度,以及对应的S元素和B元素的摩尔比中的一个或多个有所不同。具体如表1中所示。Compared with Example 1, the difference between Examples 2 to 4 is that in the electrolyte, one or more of the molar concentration of the sodium salt containing S, the molar concentration of the sodium salt containing B, and the corresponding molar ratio of the S element to the B element are different. Specifically, as shown in Table 1.
实施例12~13Embodiment 12-13
与实施例2相比,实施例12~13的不同之处在于,电解液中溶剂不同。Compared with Example 2, the difference between Examples 12 and 13 is that the solvents in the electrolyte are different.
实施例14Embodiment 14
本实施例中电解液包括含S钠盐、含B钠盐、添加剂和溶剂,含S钠盐为双氟磺酰亚胺钠(NaFSI),含B钠盐为二氟草酸硼酸钠(NaDFOB)。其中,在电解液中,含S钠盐的摩尔浓度为0.5mol/L,含B钠盐的摩尔浓度为0.2mol/L,S元素和B元素的摩尔比为5:1。溶剂为碳酸丙烯酯和碳酸二甲酯按体积比为1:1的混合溶剂。添加剂为聚二硫二丙烷磺酸钠,添加剂占电解液的摩尔浓度为0.003mol/L。In this embodiment, the electrolyte includes a sodium salt containing S, a sodium salt containing B, an additive and a solvent, wherein the sodium salt containing S is sodium bis(fluorosulfonyl)imide (NaFSI), and the sodium salt containing B is sodium difluorooxalate borate (NaDFOB). In the electrolyte, the molar concentration of the sodium salt containing S is 0.5 mol/L, the molar concentration of the sodium salt containing B is 0.2 mol/L, and the molar ratio of the S element to the B element is 5:1. The solvent is a mixed solvent of propylene carbonate and dimethyl carbonate in a volume ratio of 1:1. The additive is sodium poly(disulfide dipropane sulfonate), and the molar concentration of the additive in the electrolyte is 0.003 mol/L.
实施例15~33Embodiments 15 to 33
与实施例14相比,实施例15~33的不同之处在于,含S钠盐的摩尔浓度、含B钠盐的摩尔浓度、S元素和B元素的摩尔比、添加剂及其摩尔浓度以及溶剂的种类中的一种或多种有所不同。具体如表1中所示。Compared with Example 14, the difference between Examples 15 to 33 is that one or more of the molar concentration of the sodium salt containing S, the molar concentration of the sodium salt containing B, the molar ratio of the S element to the B element, the additive and its molar concentration, and the type of solvent are different. The details are shown in Table 1.
对比例1~2Comparative Example 1~2
与实施例1相比,对比例1~2的不同之处在于,含S钠盐的摩尔浓度、含B钠盐的摩尔浓度以及S元素和B元素的摩尔比有所不同。Compared with Example 1, the difference between Comparative Examples 1 and 2 is that the molar concentration of the S sodium salt, the molar concentration of the B sodium salt, and the molar ratio of the S element to the B element are different.
对比例3~4Comparative Examples 3~4
与实施例14相比,对比例3~4的不同之处在于,含S钠盐的摩尔浓度、含B钠盐的摩尔浓度以及S元素和B元素的摩尔比有所不同。Compared with Example 14, the difference between Comparative Examples 3 and 4 is that the molar concentration of the S sodium salt, the molar concentration of the B sodium salt, and the molar ratio of the S element to the B element are different.
对比例5Comparative Example 5
与实施例1相比,对比例5的不同之处在于,电解液中将含S钠盐替换成等摩尔浓度的含B钠盐。Compared with Example 1, the difference of Comparative Example 5 is that the sodium salt containing S in the electrolyte is replaced by a sodium salt containing B in an equimolar concentration.
对比例6Comparative Example 6
与实施例1相比,对比例6的不同之处在于,电解液中将含B钠盐替换成等摩尔浓度的含S钠盐。Compared with Example 1, the difference of Comparative Example 6 is that the sodium salt containing B in the electrolyte is replaced by a sodium salt containing S in an equimolar concentration.
对比例7Comparative Example 7
与实施例14相比,对比例7的不同之处在于,电解液中将含S钠盐替换成等摩尔浓度的含B钠盐。Compared with Example 14, the difference in Comparative Example 7 is that the sodium salt containing S in the electrolyte is replaced by a sodium salt containing B in an equimolar concentration.
对比例8Comparative Example 8
与实施例14相比,对比例8的不同之处在于,电解液中将含B钠盐替换成等摩尔浓度的含S钠盐。Compared with Example 14, the difference in Comparative Example 8 is that the sodium salt containing B in the electrolyte is replaced by a sodium salt containing S in an equimolar concentration.
对比例9Comparative Example 9
与实施例1相比,对比例9的不同之处在于,电解液中将含S钠盐和含B钠盐替换成等摩尔浓度的六氟磷酸钠。Compared with Example 1, the difference of Comparative Example 9 is that the S-containing sodium salt and the B-containing sodium salt in the electrolyte are replaced by sodium hexafluorophosphate with equimolar concentrations.
对比例10Comparative Example 10
与实施例11相比,对比例10的不同之处在于,电解液中将含S钠盐和含B钠盐替换成等摩尔浓度的六氟磷酸钠。Compared with Example 11, the difference of Comparative Example 10 is that the S-containing sodium salt and the B-containing sodium salt in the electrolyte are replaced by sodium hexafluorophosphate with equimolar concentrations.
在表1中,摩尔浓度的单位为mol/L,表示占电解液的摩尔浓度。In Table 1, the unit of molar concentration is mol/L, which represents the molar concentration in the electrolyte.
测试例Test Case
(1)正极极片的制备。(1) Preparation of positive electrode.
将10wt%聚偏氟乙烯粘结剂充分溶解于N-甲基吡咯烷酮中,加入10wt%炭黑导电剂与80wt%钠镍铁锰氧化物正极活性材料制成分散均匀的浆料。将浆料均匀涂敷在60μm铝箔表面,然后转移到真空干燥箱中完全干燥。将得到的极片进行辊压,然后进行冲切,得到正极极片。10wt% polyvinylidene fluoride binder was fully dissolved in N-methylpyrrolidone, and 10wt% carbon black conductive agent and 80wt% sodium nickel iron manganese oxide positive electrode active material were added to prepare a uniformly dispersed slurry. The slurry was evenly coated on the surface of 60μm aluminum foil, and then transferred to a vacuum drying oven for complete drying. The obtained pole piece was rolled and then punched to obtain a positive pole piece.
(2)负极极片的制备。(2) Preparation of negative electrode sheets.
将负极活性材料硬碳、导电剂乙炔黑、粘结剂SBR与增稠剂CMC-Na按照重量比94:2:2.8:1.2溶于去离子水中,搅拌均匀制成负极浆料,经超声分散后制备成浆料,再将浆料涂布在12μm铜箔表面,然后转移到真空干燥箱中完全干燥,制备得到负极极片。The negative electrode active material hard carbon, the conductive agent acetylene black, the binder SBR and the thickener CMC-Na were dissolved in deionized water in a weight ratio of 94:2:2.8:1.2, and stirred evenly to form a negative electrode slurry. The slurry was prepared after ultrasonic dispersion, and then coated on the surface of a 12μm copper foil, and then transferred to a vacuum drying oven for complete drying to prepare a negative electrode sheet.
(3)电解液的制备。(3) Preparation of electrolyte.
在H2O<0.1ppm,O2<0.1ppm的氩气气氛手套箱中,将实施例和对比例中的电解液的制备原料混合,搅拌均匀,制备得到电解液。In an argon atmosphere glove box with H 2 O<0.1 ppm and O 2 <0.1 ppm, the raw materials for preparing the electrolyte in the example and the comparative example were mixed and stirred evenly to prepare an electrolyte.
(4)隔离膜。(4) Isolation film.
采用聚丙烯膜作为隔离膜。Polypropylene film is used as the isolation film.
(5)钠离子电池的制备。(5) Preparation of sodium ion batteries.
将(1)中的正极极片、(4)中的隔离膜、(2)中的负极极片按顺序叠好,使隔离膜处于正极极片和负极极片之间,起到隔离的作用,加入(3)中的电解液组装成叠片电池。The positive electrode sheet in (1), the separator in (4), and the negative electrode sheet in (2) are stacked in order, with the separator being located between the positive electrode sheet and the negative electrode sheet to play an isolating role, and the electrolyte in (3) is added to assemble a stacked battery.
(6)存储容量保持率测试。(6) Storage capacity retention rate test.
将(5)中制备的钠离子电池在25℃下以0.2C的恒定电流充电至4V,之后以4V恒压充电至电流降到0.05C,再以0.2C的恒定电流放电至2.5V,得到存储前放电容量(Cd1);然后将此电池再次以0.2C的恒定电流充电至4V,之后以4V恒压充电至电流降到0.05C。然后将电池至于60℃恒温箱中存储30天,取出后将电池放在25℃下以0.2C的恒定电流充电至4V,之后以4V恒压充电至电流降到0.05C,再以0.2C的恒定电流放电至2.5V,得到存储后放电容量(Cd2),并按照下式计算钠离子电池容量保持率:The sodium ion battery prepared in (5) was charged to 4V at a constant current of 0.2C at 25°C, then charged at a constant voltage of 4V until the current dropped to 0.05C, and then discharged to 2.5V at a constant current of 0.2C to obtain the discharge capacity before storage (Cd1); then the battery was charged to 4V at a constant current of 0.2C again, and then charged at a constant voltage of 4V until the current dropped to 0.05C. The battery was then stored in a 60°C constant temperature box for 30 days. After being taken out, the battery was placed at 25°C and charged to 4V at a constant current of 0.2C, then charged at a constant voltage of 4V until the current dropped to 0.05C, and then discharged to 2.5V at a constant current of 0.2C to obtain the discharge capacity after storage (Cd2), and the capacity retention rate of the sodium ion battery was calculated according to the following formula:
存储容量保持率=存储后的放电容量(Cd2)/存储前的放电容量(Cd1)×100%。结果如表1中所示。Storage capacity retention rate = discharge capacity after storage (Cd2) / discharge capacity before storage (Cd1) × 100%. The results are shown in Table 1.
(7)循环容量保持率。(7) Cycle capacity retention rate.
将(5)中制备的钠离子电池在25℃下以0.2C的恒定电流充电至3.7V,之后以3.7V恒压充电至电流降到0.05C,再以0.2C的恒定电流放电至2.5V,得到首圈放电容量(Cd3);如此反复充放电至第n圈,得钠离子电池循环n圈后的放电容量,记为Cdn,并按照下式计算钠离子电池容量保持率:The sodium ion battery prepared in (5) was charged to 3.7V at a constant current of 0.2C at 25°C, then charged at a constant voltage of 3.7V until the current dropped to 0.05C, and then discharged to 2.5V at a constant current of 0.2C to obtain the first cycle discharge capacity (Cd3); this charging and discharging was repeated until the nth cycle, and the discharge capacity of the sodium ion battery after n cycles was obtained, which was recorded as Cdn, and the capacity retention rate of the sodium ion battery was calculated according to the following formula:
循环容量保持率=循环n圈后的放电容量(Cdn)/首圈放电容量(Cd3)。循环20圈后的循环容量保持率如表1中所示。Cycle capacity retention rate = discharge capacity after n cycles (Cdn) / first cycle discharge capacity (Cd3). The cycle capacity retention rate after 20 cycles is shown in Table 1.
表1中,NaFSI表示双氟磺酰亚胺钠,NaTFSI表示双(三氟甲基磺酰基)酰亚胺钠,NaDFOB表示二氟草酸硼酸钠,NaBF4表示四氟硼酸钠。In Table 1, NaFSI represents sodium bis(trifluoromethylsulfonyl)imide, NaTFSI represents sodium bis(trifluoromethylsulfonyl)imide, NaDFOB represents sodium difluorooxalatoborate, and NaBF4 represents sodium tetrafluoroborate.
表1Table 1
可以理解的是,由于添加剂可能还有一定量的S元素,因此在电解液中,当存在添加剂时,S元素的含量可能会稍高于不存在添加剂的电解液中的S元素含量。It is understandable that, since the additive may also contain a certain amount of S element, in the electrolyte, when the additive is present, the content of S element may be slightly higher than the content of S element in the electrolyte without the additive.
由表1中实施例1~33和对比例5~8可以看出,当电解液中同时含有S元素和B元素时,对应的钠离子电池表现出更好的存储容量保持率和循环容量保持率。由实施例1~33和对比例1~4可以看出,当电解液中同时含有S元素和B元素,且S元素和B元素的摩尔比为(2~20):1时,对应的钠离子电池表现出更好的存储容量保持率和循环容量保持率。由实施例28~30可以看出,当电解液中含有添加剂时,对应的钠离子电池的存储容量保持率和循环容量保持率更佳,并且添加剂的摩尔浓度为0.001mol/L~0.015mol/L时,对应的钠离子电池表现出更好的存储容量保持率和循环容量保持率。It can be seen from Examples 1 to 33 and Comparative Examples 5 to 8 in Table 1 that when the electrolyte contains both S and B elements, the corresponding sodium ion battery exhibits better storage capacity retention and cycle capacity retention. It can be seen from Examples 1 to 33 and Comparative Examples 1 to 4 that when the electrolyte contains both S and B elements, and the molar ratio of S and B elements is (2 to 20): 1, the corresponding sodium ion battery exhibits better storage capacity retention and cycle capacity retention. It can be seen from Examples 28 to 30 that when the electrolyte contains additives, the storage capacity retention and cycle capacity retention of the corresponding sodium ion battery are better, and when the molar concentration of the additive is 0.001 mol/L to 0.015 mol/L, the corresponding sodium ion battery exhibits better storage capacity retention and cycle capacity retention.
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。It should be noted that the present application is not limited to the above-mentioned embodiments. The above-mentioned embodiments are only examples, and the embodiments having the same structure as the technical idea and exerting the same effect within the scope of the technical solution of the present application are all included in the technical scope of the present application. In addition, without departing from the scope of the main purpose of the present application, various modifications that can be thought of by those skilled in the art to the embodiments and other methods of combining some of the constituent elements in the embodiments are also included in the scope of the present application.
Claims (15)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310289538.8A CN116014249B (en) | 2023-03-23 | 2023-03-23 | Electrolyte, sodium ion battery and electricity utilization device |
PCT/CN2023/099446 WO2024192898A1 (en) | 2023-03-23 | 2023-06-09 | Electrolyte, sodium-ion battery and electric device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310289538.8A CN116014249B (en) | 2023-03-23 | 2023-03-23 | Electrolyte, sodium ion battery and electricity utilization device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116014249A CN116014249A (en) | 2023-04-25 |
CN116014249B true CN116014249B (en) | 2023-08-11 |
Family
ID=86037671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310289538.8A Active CN116014249B (en) | 2023-03-23 | 2023-03-23 | Electrolyte, sodium ion battery and electricity utilization device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116014249B (en) |
WO (1) | WO2024192898A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116014249B (en) * | 2023-03-23 | 2023-08-11 | 宁德时代新能源科技股份有限公司 | Electrolyte, sodium ion battery and electricity utilization device |
CN118117157B (en) * | 2024-04-28 | 2024-07-12 | 浙江华宇钠电新能源科技有限公司 | Solid electrolyte membrane, all-solid sodium ion battery and electric vehicle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102496737A (en) * | 2011-12-30 | 2012-06-13 | 天津力神电池股份有限公司 | Lithium ion battery electrolyte and lithium ion battery prepared therefrom |
CN104769765A (en) * | 2012-11-08 | 2015-07-08 | 住友化学株式会社 | Sodium secondary battery |
CN105119013A (en) * | 2015-07-28 | 2015-12-02 | 珠海市赛纬电子材料有限公司 | Flame retardation-type lithium ion battery electrolyte and lithium ion battery |
WO2017179682A1 (en) * | 2016-04-15 | 2017-10-19 | 国立大学法人東京大学 | Electrolyte solution and lithium ion secondary battery |
CN113597698A (en) * | 2019-03-26 | 2021-11-02 | 国立大学法人名古屋工业大学 | Solid electrolyte and method for producing the same |
CN114171796A (en) * | 2021-11-22 | 2022-03-11 | 中国电子科技集团公司第十八研究所 | Electrolyte, application method of electrolyte in lithium ion battery and lithium ion battery |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116014249B (en) * | 2023-03-23 | 2023-08-11 | 宁德时代新能源科技股份有限公司 | Electrolyte, sodium ion battery and electricity utilization device |
-
2023
- 2023-03-23 CN CN202310289538.8A patent/CN116014249B/en active Active
- 2023-06-09 WO PCT/CN2023/099446 patent/WO2024192898A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102496737A (en) * | 2011-12-30 | 2012-06-13 | 天津力神电池股份有限公司 | Lithium ion battery electrolyte and lithium ion battery prepared therefrom |
CN104769765A (en) * | 2012-11-08 | 2015-07-08 | 住友化学株式会社 | Sodium secondary battery |
CN105119013A (en) * | 2015-07-28 | 2015-12-02 | 珠海市赛纬电子材料有限公司 | Flame retardation-type lithium ion battery electrolyte and lithium ion battery |
WO2017179682A1 (en) * | 2016-04-15 | 2017-10-19 | 国立大学法人東京大学 | Electrolyte solution and lithium ion secondary battery |
CN113597698A (en) * | 2019-03-26 | 2021-11-02 | 国立大学法人名古屋工业大学 | Solid electrolyte and method for producing the same |
CN114171796A (en) * | 2021-11-22 | 2022-03-11 | 中国电子科技集团公司第十八研究所 | Electrolyte, application method of electrolyte in lithium ion battery and lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
WO2024192898A9 (en) | 2025-01-30 |
WO2024192898A1 (en) | 2024-09-26 |
CN116014249A (en) | 2023-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116231091B (en) | Electrolyte for lithium secondary battery, and electricity using device | |
CN116014249B (en) | Electrolyte, sodium ion battery and electricity utilization device | |
CN116387634B (en) | Electrode assembly, battery cell, battery and electric equipment | |
CN116759646B (en) | Secondary battery and electricity utilization device | |
WO2023070268A1 (en) | Electrochemical device and power consumption apparatus comprising same | |
CN115832180B (en) | Secondary batteries, battery modules, battery packs and electrical devices thereof | |
WO2024113992A1 (en) | Positive electrode sheet for sodium-ion battery, and sodium-ion battery | |
WO2025015923A1 (en) | Lithium secondary battery and electric device | |
WO2023122890A1 (en) | Secondary battery and electrical apparatus comprising same | |
CN116632320B (en) | Lithium ion battery and electricity utilization device comprising same | |
CN116154294A (en) | Lithium ion battery and electricity utilization device | |
WO2025113667A1 (en) | Electrolyte additive, electrolyte, battery and electric device | |
CN116799312A (en) | Secondary batteries, electrolytes and electrical devices | |
CN117335008B (en) | Electrolyte, lithium secondary battery and electric device | |
KR102807231B1 (en) | Electrolyte and secondary battery, battery module, battery pack and electric device containing the same | |
CN117594875A (en) | Electrolyte additive, electrolyte, battery and electricity utilization device | |
WO2023102917A1 (en) | Negative electrode active material and preparation method therefor, secondary battery, battery module, battery pack, and power device | |
WO2023070516A1 (en) | Secondary battery, battery module, battery pack, and electric device | |
WO2023082924A1 (en) | Electrode sheet, lithium ion battery, battery module, battery pack, and electrical device | |
CN118511315A (en) | Application of secondary batteries, electrical devices and silicate composite salts | |
WO2023133881A1 (en) | Positive electrode sheet, secondary battery, battery module, battery pack, and electrical device | |
JP7714023B2 (en) | Negative electrode active material and preparation method thereof, secondary battery, battery module, battery pack, and electric device | |
CN117219868B (en) | Electrolyte, sodium secondary battery and electricity utilization device | |
US20220407117A1 (en) | Electrolyte solution, secondary battery, battery module, battery pack and device | |
CN118630320A (en) | Electrolyte, secondary battery and electrical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |