CN116002871A - Reinforced denitrification filler and preparation method and application thereof - Google Patents
Reinforced denitrification filler and preparation method and application thereof Download PDFInfo
- Publication number
- CN116002871A CN116002871A CN202211674366.8A CN202211674366A CN116002871A CN 116002871 A CN116002871 A CN 116002871A CN 202211674366 A CN202211674366 A CN 202211674366A CN 116002871 A CN116002871 A CN 116002871A
- Authority
- CN
- China
- Prior art keywords
- filler
- denitrification
- sulfur
- enhanced
- denitrification filler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000945 filler Substances 0.000 title claims abstract description 96
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000011593 sulfur Substances 0.000 claims abstract description 46
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 46
- 239000011435 rock Substances 0.000 claims abstract description 33
- 239000010865 sewage Substances 0.000 claims abstract description 27
- 239000002028 Biomass Substances 0.000 claims abstract description 21
- 239000000843 powder Substances 0.000 claims abstract description 19
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- 238000002844 melting Methods 0.000 claims abstract description 14
- 230000008018 melting Effects 0.000 claims abstract description 14
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims abstract description 3
- 238000003756 stirring Methods 0.000 claims abstract description 3
- 241000209094 Oryza Species 0.000 claims description 34
- 235000007164 Oryza sativa Nutrition 0.000 claims description 34
- 235000009566 rice Nutrition 0.000 claims description 34
- 239000002245 particle Substances 0.000 claims description 14
- 239000000725 suspension Substances 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 8
- 239000010903 husk Substances 0.000 claims description 8
- 238000011049 filling Methods 0.000 claims description 7
- 229920002635 polyurethane Polymers 0.000 claims description 7
- 239000004814 polyurethane Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 238000005728 strengthening Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 15
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000005086 pumping Methods 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 46
- 229910052757 nitrogen Inorganic materials 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 238000000034 method Methods 0.000 description 17
- 230000001651 autotrophic effect Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 244000005700 microbiome Species 0.000 description 11
- 239000010802 sludge Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 238000005469 granulation Methods 0.000 description 8
- 230000003179 granulation Effects 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000002195 synergetic effect Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000011573 trace mineral Substances 0.000 description 2
- 235000013619 trace mineral Nutrition 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- LLSDKQJKOVVTOJ-UHFFFAOYSA-L calcium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ca+2] LLSDKQJKOVVTOJ-UHFFFAOYSA-L 0.000 description 1
- 230000035425 carbon utilization Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 1
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
本发明公开了一种强化脱氮填料及其制备方法,包括:(1)将硫磺加热熔融后泵入反应釜;(2)向反应釜中加入生物质粉末和火山岩粉末,搅拌均匀后冷却造粒成型,得到强化脱氮填料;所述的强化脱氮填料中,各组分的质量百分数为:硫磺为50~80%,生物质为15~40%,火山岩为10~30%。本发明还公开了该强化脱氮填料在污水脱氮中的应用。本发明制备的强化脱氮填料能稳定系统的pH,降低硫的消耗量和硫酸盐的产生量,避免二次污染;本发明制备的强化脱氮填料机械强度高,使用寿命长;本发明制备的强化脱氮填料能高效用于农村生活污水反应装置的缺氧或厌氧池,显著提高装置的脱氮效果。
The invention discloses an enhanced denitrification filler and a preparation method thereof, comprising: (1) heating and melting sulfur and pumping it into a reaction kettle; (2) adding biomass powder and volcanic rock powder into the reaction kettle, stirring evenly, and cooling to produce In the described enhanced denitrification filler, the mass percent of each component is: 50-80% of sulfur, 15-40% of biomass, and 10-30% of volcanic rock. The invention also discloses the application of the enhanced denitrification filler in sewage denitrification. The enhanced denitrification filler prepared by the invention can stabilize the pH of the system, reduce the consumption of sulfur and the production of sulfate, and avoid secondary pollution; the enhanced denitrification filler prepared by the invention has high mechanical strength and long service life; The enhanced denitrification filler can be efficiently used in the anoxic or anaerobic tank of the rural domestic sewage reaction device, which can significantly improve the denitrification effect of the device.
Description
技术领域technical field
本发明涉及污水处理技术领域,尤其涉及一种强化脱氮填料及其制备方法和应用。The invention relates to the technical field of sewage treatment, in particular to an enhanced denitrification filler and its preparation method and application.
背景技术Background technique
农村环境治理近年来越来越受到重视,尤其以水环境治理最为突出和敏感。由于存在建设、运行维护资金保障困难,缺少专业技术人员,处理工艺选择不当等问题,农村生活污水治理成为当前农村人居环境整治的突出短板。尤其针对总氮去除要求较高的水质敏感区域的污水处理技术还比较缺乏。Rural environmental governance has received more and more attention in recent years, especially water environment governance is the most prominent and sensitive. Due to the difficulties in guaranteeing funds for construction, operation and maintenance, lack of professional and technical personnel, and improper selection of treatment processes, the treatment of rural domestic sewage has become a prominent shortcoming in the current improvement of the rural living environment. In particular, the sewage treatment technology for water quality-sensitive areas with high requirements for total nitrogen removal is still relatively lacking.
常规生物法去除总氮采用硝化反硝化方法,好氧条件下硝化,缺氧、厌氧条件下反硝化,反硝化阶段微生物需要消耗大量有机物。而目前我国应用的农村生活污水处理工艺、装置基本是城市生活污水处理工艺、装置的缩小版,如城市生活污水处理中常用的AAO、AO等工艺及装置,在农村生活污水处理中也常被应用。但是,农村生活污水,具有水质波动大,碳源少,碳氮(C/N)比低等特点。对C/N比低的生活污水,通过硝化反硝化实现强化脱氮,往往需额外投加碳源,或通过高度自动化控制、精细化管理等方式实现短程硝化反硝化、厌氧氨氧化等新的脱氮技术进行脱氮,系统维护管理复杂,精细度高、成本大,很难在农村地区推广。对于在农村地区已大量应用的AAO、AO工艺,如何通过简便的方法提高其脱氮性能是其中关键。Conventional biological methods use nitrification and denitrification to remove total nitrogen, nitrification under aerobic conditions, denitrification under anoxic and anaerobic conditions, and microorganisms in the denitrification stage need to consume a large amount of organic matter. At present, the rural domestic sewage treatment processes and devices used in my country are basically reduced versions of urban domestic sewage treatment processes and devices. For example, AAO, AO and other processes and devices commonly used in urban domestic sewage treatment are often used in rural domestic sewage treatment. application. However, rural domestic sewage has the characteristics of large fluctuations in water quality, less carbon sources, and low carbon-nitrogen (C/N) ratios. For domestic sewage with a low C/N ratio, to achieve enhanced denitrification through nitrification and denitrification, it is often necessary to add additional carbon sources, or to achieve short-range nitrification and denitrification, anaerobic ammonium oxidation and other new technologies through highly automated control and refined management. Nitrogen removal using advanced nitrogen removal technology requires complex system maintenance and management, high precision, and high cost, making it difficult to promote in rural areas. For the AAO and AO processes that have been widely used in rural areas, how to improve their denitrification performance through simple methods is the key.
生物脱氮,分为异养反硝化脱氮和自养反硝化脱氮技术,自养反硝化脱氮技术因其无需投加有机碳源、降低污泥产量、提高脱氮效率等优势逐渐成为新型生物脱氮工艺的主要研究方向。Biological denitrification can be divided into heterotrophic denitrification and autotrophic denitrification technology. Autotrophic denitrification technology has gradually become a popular technology due to its advantages of not needing to add organic carbon source, reducing sludge production and improving denitrification efficiency. The main research direction of the new biological denitrification process.
硫自养反硝化技术是以硫作为电子供体,在硫自养微生物作用下将硝态氮转化为氮气完成脱氮过程。该过程无需外加有机碳源,可节省运行费用,降低污泥产量。但反应过程消耗碱度,易使系统pH降低,一般需补充碱度,且单质硫容易流失,单独使用可能造成硫酸盐含量过高等问题。Sulfur autotrophic denitrification technology uses sulfur as an electron donor to convert nitrate nitrogen into nitrogen gas under the action of sulfur autotrophic microorganisms to complete the denitrification process. This process does not require an external organic carbon source, which can save operating costs and reduce sludge production. However, the reaction process consumes alkalinity, which easily reduces the pH of the system. Generally, alkalinity needs to be supplemented, and elemental sulfur is easy to lose. Using it alone may cause problems such as excessive sulfate content.
所以研发适合利于生物池利用避免二次污染的强化脱氮型含硫填料是硫自养反硝化技术友好利用的关键。且近来研究表明自养、异养协同脱氮比单独自养脱氮效果更好。Therefore, it is the key to the friendly utilization of sulfur autotrophic denitrification technology to develop an enhanced denitrification-type sulfur-containing filler that is suitable for the utilization of biological pools and avoids secondary pollution. And recent studies have shown that the synergistic denitrification effect of autotrophic and heterotrophic is better than that of autotrophic denitrification alone.
发明内容Contents of the invention
本发明提供了一种强化脱氮填料及其制备方法,该强化脱氮填料有利于脱氮过程中pH的调解,使硫磺的消耗量下降,硫酸盐的产生量降低,避免二次污染。The invention provides an enhanced denitrification filler and a preparation method thereof. The enhanced denitrification filler is beneficial to pH adjustment during the denitrification process, reduces sulfur consumption, reduces sulfate production, and avoids secondary pollution.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种强化脱氮填料的制备方法,包括:A method for preparing an enhanced denitrification filler, comprising:
(1)将硫磺加热熔融后泵入反应釜;(1) Sulfur is heated and melted and then pumped into the reactor;
(2)向反应釜中加入生物质粉末和火山岩粉末,搅拌均匀后冷却造粒成型,得到强化脱氮填料;(2) Adding biomass powder and volcanic rock powder to the reaction kettle, stirring evenly, cooling and granulating to obtain a strengthened denitrification filler;
所述的强化脱氮填料中,各组分的质量百分数为:硫磺为50~80%,生物质为15~40%,火山岩为10~30%。In the enhanced denitrification filler, the mass percentages of each component are: 50-80% of sulfur, 15-40% of biomass, and 10-30% of volcanic rock.
火山岩中含有丰富的钠、镁、铝、硅、钙、钛、锰、铁、磷、镍、钴和钼等几十种矿物质和微量元素,能稳定矿物质含量,火山石有释放矿物质元素和吸收水中杂质的双重特性,为微生物的生长提供营养,有利于微生物生长,缩短脱氮反应装置的启动时间,并为微生物的生长代谢提供矿物质和微量元素。Volcanic rocks are rich in dozens of minerals and trace elements such as sodium, magnesium, aluminum, silicon, calcium, titanium, manganese, iron, phosphorus, nickel, cobalt and molybdenum, which can stabilize mineral content, and volcanic rocks can release minerals The dual characteristics of elements and absorption of impurities in water provide nutrients for the growth of microorganisms, which is beneficial to the growth of microorganisms, shortens the start-up time of the denitrification reaction device, and provides minerals and trace elements for the growth and metabolism of microorganisms.
火山岩多孔性产生的高表面积是培养水中微生物的良好温床,并且其表面的正电荷有利于微生物固着生长,亲水性强,火山岩在吸附污染物的同时,为微生物提供理想的附着场地,有利于污染物降解。The high surface area produced by the porosity of volcanic rocks is a good hotbed for cultivating microorganisms in water, and the positive charge on the surface is conducive to the growth of microorganisms. With strong hydrophilicity, volcanic rocks provide ideal attachment sites for microorganisms while adsorbing pollutants, which is beneficial to Degradation of pollutants.
另外,在脱氮过程中,火山岩能稳定系统的pH,可以适当的将过于酸或者过于碱的水自动调整到接近中性,有利于中和硫磺自养反硝化产生的酸。In addition, during the denitrification process, volcanic rock can stabilize the pH of the system, and can properly adjust the water that is too acidic or too alkaline to be close to neutral, which is beneficial to neutralize the acid produced by sulfur autotrophic denitrification.
优选的,火山岩粉末的粒径为40-60目。Preferably, the particle size of the volcanic rock powder is 40-60 mesh.
强化脱氮填料中,硫磺和生物质组成自养和异养协同反硝化脱氮反应体系,有利于低碳氮比、高氮废水的脱氮,且生物质的加入,分担了硫磺的脱氮压力,有利于pH的调解,使硫磺的消耗量下降,硫酸盐的产生量降低,避免二次污染。In the enhanced denitrification filler, sulfur and biomass form an autotrophic and heterotrophic synergistic denitrification reaction system, which is beneficial to the denitrification of wastewater with low carbon-to-nitrogen ratio and high nitrogen, and the addition of biomass can share the denitrification of sulfur Pressure is conducive to the adjustment of pH, reducing the consumption of sulfur, reducing the production of sulfate, and avoiding secondary pollution.
优选的,所述的生物质粉末粒径为40-300目。Preferably, the particle size of the biomass powder is 40-300 mesh.
粉末状的生物质比表面更大,更有利于微生物利用。Powdered biomass is larger than the surface area, which is more conducive to microbial utilization.
优选的,所述的生物质为稻糠;所述的稻糠为稻壳和米皮的混合物;稻糠中,稻壳的质量分数为70-90%,米皮的质量分数为10-30%。Preferably, the biomass is rice bran; the rice bran is a mixture of rice husk and rice husk; in the rice bran, the mass fraction of rice husk is 70-90%, and the mass fraction of rice husk is 10-30%.
由稻壳、米皮组成的稻糠含维生素等微量营养,有利于微生物的附着生长,制备的填料在反应器中缩短挂膜时间。The rice bran composed of rice husk and rice skin contains micronutrients such as vitamins, which is conducive to the attachment and growth of microorganisms, and the prepared filler shortens the film-hanging time in the reactor.
优选的,所述的强化脱氮填料的粒径为6-9mm。Preferably, the particle size of the enhanced denitrification filler is 6-9 mm.
优选的,步骤(1)中,加热熔融温度为115-120℃。Preferably, in step (1), the heating and melting temperature is 115-120°C.
优选的,步骤(2)中,加入生物质粉末和火山岩粉末前,先将反应釜加热至135-200℃。Preferably, in step (2), before adding biomass powder and volcanic rock powder, the reactor is heated to 135-200°C.
通过熔硫,再到反应釜的更高温度下,加入生物质、火山岩与熔融的硫混合后速冷造粒,可以有效提高颗粒的机械强度,填料在水中长期不散,不用添加粘合剂、发泡剂,增加了填料的脱氮有效成分,提高了填料的使用寿命。Through melting sulfur, and then at a higher temperature of the reactor, adding biomass, volcanic rock and molten sulfur to mix and then quickly cooling and granulating can effectively improve the mechanical strength of the particles. The filler will not disperse in water for a long time without adding binders. , Foaming agent, increase the effective denitrification ingredients of the filler, and improve the service life of the filler.
生物质在135-200℃高温下部分碳化,生物质炭的官能团氧化还原性以及导电性,还有其高比表面积生物活性,可促进微生物的附着生长,促进填料、微生物和污染物之间的电子传递,提高填料的脱氮性能。Biomass is partially carbonized at a high temperature of 135-200°C. The functional group redox and electrical conductivity of biomass charcoal, as well as its high specific surface area biological activity, can promote the attachment and growth of microorganisms, and promote the interaction between fillers, microorganisms and pollutants. Electron transfer improves the denitrification performance of the filler.
进一步的,步骤(2)中,加入生物质粉末和火山岩粉末前,先将反应釜加热至135-180℃。Further, in step (2), before adding biomass powder and volcanic rock powder, the reactor is heated to 135-180°C.
反应釜温度过高,如超过180℃,制备的填料脱氮效果有所下降。If the temperature of the reaction kettle is too high, such as exceeding 180°C, the denitrification effect of the prepared packing will decrease.
本发明还提供了一种采用上述方法制备的强化脱氮填料。The present invention also provides an enhanced denitrification filler prepared by the method.
本发明还提供了上述强化脱氮填料在污水脱氮中的应用,包括:The present invention also provides the application of the above-mentioned enhanced denitrification filler in sewage denitrification, including:
将所述的强化脱氮填料与聚氨酯海绵填料混合,装入空心悬浮球中,制成复合悬挂填料;Mix the enhanced denitrification filler with polyurethane sponge filler, and put it into a hollow suspension ball to make a composite suspension filler;
将复合悬挂填料装入缺氧池或厌氧池,悬挂填料的填充率为50-80%。Put the composite hanging filler into the anoxic tank or anaerobic tank, and the filling rate of the hanging filler is 50-80%.
本发明的脱氮填料可用于缺氧池或厌氧池中,针对农村生活污水低碳氮比、高氮含量的特点,在强化脱氮效果的同时,污水的pH基本维持在中性,有利于微生物的挂膜生长,可充分利用污水中的有机质,自养异养协同脱氮,大大提高装置的抗冲击负荷。The denitrification filler of the present invention can be used in anoxic ponds or anaerobic ponds, aiming at the characteristics of low carbon-to-nitrogen ratio and high nitrogen content of rural domestic sewage, while strengthening the denitrification effect, the pH of sewage is basically maintained at neutral, and there is It is conducive to the growth of microbial film, can make full use of the organic matter in the sewage, and the autotrophic and heterotrophic synergistic denitrification greatly improves the impact load resistance of the device.
本发明的强化脱氮填料不仅能用于农村生活污水新的AO、AAO处理装置,也能用于现有大量农村生活污水处理装置的提质改造,大大提高装置总氮等出水水质的达标率。The enhanced denitrification filler of the present invention can not only be used in new AO and AAO treatment devices for rural domestic sewage, but also can be used for quality improvement of a large number of existing rural domestic sewage treatment devices, greatly improving the compliance rate of effluent water quality such as total nitrogen in the device .
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
本发明制备的强化脱氮填料能稳定系统的pH,降低硫的消耗量和硫酸盐的产生量,避免二次污染;本发明制备的强化脱氮填料机械强度高,使用寿命长;本发明制备的强化脱氮填料能高效用于农村生活污水反应装置的缺氧或厌氧池,显著提高装置的脱氮效果。The enhanced denitrification filler prepared by the invention can stabilize the pH of the system, reduce the consumption of sulfur and the production of sulfate, and avoid secondary pollution; the enhanced denitrification filler prepared by the invention has high mechanical strength and long service life; The enhanced denitrification filler can be efficiently used in the anoxic or anaerobic tank of the rural domestic sewage reaction device, which can significantly improve the denitrification effect of the device.
附图说明Description of drawings
图1为应用例1和应用对比例1总氮进出水水质情况。Figure 1 shows the water quality of total nitrogen inflow and outflow in Application Example 1 and Application Comparative Example 1.
具体实施方式Detailed ways
实施例1-9中,稻糠为稻壳粉和米皮按质量分数为80%:20%的混合物。In Examples 1-9, the rice bran is a mixture of rice husk powder and rice bran with a mass fraction of 80%:20%.
实施例1Example 1
填料1:纯度大于99%的硫磺在熔硫釜1中加热到120℃熔融,熔融成液体后泵入反应釜2,反应釜2温度为150℃,加入80目的稻糠,40目的火山岩粉,搅拌3h后,泵入造粒设备通过循环冷却水冷却造粒成形,粒径为6-9mm的球状。各组分的质量百分比:硫磺为60%,稻糠为20%,火山岩为20%。Filling 1: Sulfur with a purity greater than 99% is heated to 120°C in the sulfur melting kettle 1 to melt, and then pumped into the
既硫磺:稻糠:火山岩质量比为3:1:1。The mass ratio of sulfur: rice bran: volcanic rock is 3:1:1.
实施例2Example 2
填料2:纯度大于99%的硫磺在熔硫釜1中加热到120℃熔融,熔融成液体后泵入反应釜2,反应釜2温度为190℃,加入80目的稻糠,40目的火山岩粉,搅拌3h后,泵入造粒设备通过循环冷却水冷却造粒成形,粒径为6-9mm的球状。各组分的质量百分比:硫磺为60%,稻糠为20%,火山岩为20%。Filler 2: Sulfur with a purity greater than 99% is heated to 120°C in the sulfur melting kettle 1 to melt, and then pumped into the
实施例3Example 3
填料3:纯度大于99%的硫磺粉,80目的稻糠,40目的火山岩粉混匀后在熔硫釜1中加热到120℃,再搅拌3h后,泵入造粒设备通过循环冷却水冷却造粒成形,粒径为6-9mm的球状。各组分的质量百分比:硫磺为60%,生物质为20%,火山岩为20%。Filler 3: Sulfur powder with a purity greater than 99%, 80-mesh rice bran, and 40-mesh volcanic rock powder are mixed and heated to 120°C in the sulfur melting kettle 1, and then stirred for 3 hours, then pumped into the granulation equipment and cooled by circulating cooling water for granulation Shaped into a spherical shape with a particle size of 6-9mm. The mass percent of each component: sulfur is 60%, biomass is 20%, and volcanic rock is 20%.
对比例1Comparative example 1
填料4:纯度大于99%的6-9mm硫磺颗粒,80目的稻糠,40目的火山岩粉在常温下混合均匀,各组分的质量百分比:硫磺为60%,稻糠为20%,火山岩为20%。Filler 4: 6-9mm sulfur particles with a purity greater than 99%, 80-mesh rice bran, and 40-mesh volcanic rock powder are mixed evenly at room temperature, and the mass percentages of each component are: 60% sulfur, 20% rice bran, and 20% volcanic rock.
对比例2Comparative example 2
填料5:纯度大于99%的硫磺在熔硫釜1中加热到120℃熔融,熔融成液体后泵入反应釜2,反应釜2温度为150℃,加入80目的稻糠,搅拌3h后,泵入造粒设备通过循环冷却水冷却造粒成形,粒径为6-9mm的球状。Filler 5: Sulfur with a purity greater than 99% is heated to 120°C in the sulfur melting kettle 1 to melt, and then pumped into the
硫磺:稻糠的质量比为3:1,填料4和填料1相比,只是不加火山岩,其他都相同。The mass ratio of sulfur: rice bran is 3:1. Comparing
对比例3Comparative example 3
填料6:纯度大于99%的硫磺在熔硫釜1中加热到120℃熔融,熔融成液体后泵入反应釜2,反应釜2温度为150℃,加入40目的火山岩粉,搅拌3h后,泵入造粒设备通过循环冷却水冷却造粒成形,粒径为6-9mm的球状。Filler 6: Sulfur with a purity greater than 99% is heated to 120°C in the sulfur melting kettle 1 to melt, and then pumped into the
硫磺:火山岩的质量比为3:1,填料5和填料1相比,只是不加稻糠,其他都相同。The mass ratio of sulfur to volcanic rock is 3:1. Compared with filler 1, filler 5 does not add rice bran, and everything else is the same.
对比例4Comparative example 4
填料7:为粒径为6-9mm的颗粒硫磺(硫磺纯度大于99%)。Filler 7: granular sulfur with a particle size of 6-9mm (purity of sulfur is greater than 99%).
对比例5Comparative example 5
填料8:为40目火山岩。Filler 8: 40 mesh volcanic rock.
对比例6Comparative example 6
填料9:为80目稻糠。Filler 9: rice bran of 80 mesh.
脱氮试验1Nitrogen removal test 1
在9个250mL的厌氧瓶中,分别加入实施例1-3、对比例1-6制备的9种填料,重量都为5g,向上述9个厌氧瓶中都接种驯化的自养污泥5ml,生活污水处理厂厌氧池污泥5ml的混合污泥,加入人工配置的含硝酸盐废水200ml,放在气浴摇床上,摇床转速为120转/分钟,温度为25℃。培养期间,每隔24h,取出厌氧瓶,静置40分钟,倒去上清液,再加入新的配水200ml。经过12天的连续培养挂膜,再稳定3天后,更换配水时间为每隔24h,测定9个厌氧瓶处理后的水质。In 9 anaerobic bottles of 250mL, add 9 kinds of fillers prepared by Examples 1-3 and Comparative Examples 1-6 respectively, and the weight is 5g, and inoculate the autotrophic sludge acclimated in the above 9 anaerobic bottles 5ml, 5ml of anaerobic tank sludge from a domestic sewage treatment plant, add 200ml of artificially prepared nitrate-containing wastewater, and place it on an air bath shaker with a shaker speed of 120 rpm and a temperature of 25°C. During the culture period, every 24 hours, take out the anaerobic bottle, let it stand for 40 minutes, pour off the supernatant, and then add 200ml of new water. After 12 days of continuous culture and film formation, after 3 days of stabilization, the water distribution time was changed every 24 hours, and the water quality after treatment in 9 anaerobic bottles was measured.
人工配水:葡萄糖120mg/L,硝酸钠364.3mg/L(总氮60mg/L),磷酸二氢钾21.9mg/L(总磷5mg/L),七水硫酸镁10mg/L,二水合氯化钙5mg/L,用自来水配水,调节进水pH为7.0,人工配水C/N比为2:1,SO4 2-72.4mg/L。在加入厌氧瓶前,向配水中充氮气30分钟。Artificial water distribution: glucose 120mg/L, sodium nitrate 364.3mg/L (total nitrogen 60mg/L), potassium dihydrogen phosphate 21.9mg/L (total phosphorus 5mg/L), magnesium sulfate heptahydrate 10mg/L, dihydrate chloride Calcium 5mg/L, use tap water to mix water, adjust influent pH to 7.0, artificial water C/N ratio is 2:1, SO 4 2- 72.4mg/L. The distribution water was filled with nitrogen gas for 30 minutes before adding to the anaerobic bottle.
结果如表1所示:The results are shown in Table 1:
表1经9种填料处理后水质情况(初始总氮60mg/L,总磷5mg/L)Table 1 Water quality after treatment with 9 kinds of fillers (initial total nitrogen 60mg/L, total phosphorus 5mg/L)
以上结果表明由硫磺+稻糠+火山岩一起制备的填料具有优异的脱氮性能,去除效果大于硫磺+稻糠,硫磺+火山岩分别制备的填料的脱氮总和,表明硫磺+稻糠+火山岩制备的强化脱氮材料具有相互间的协同脱氮的功效,且在自养和异养协同作用下进行高效脱氮,脱氮过程中,基本没有亚硝酸盐的积累。且硫磺+稻糠+火山岩制备的填料,脱氮处理后pH基本在中性。The above results show that the filler prepared by sulfur + rice bran + volcanic rock has excellent denitrification performance, and the removal effect is greater than the sum of the denitrification of the fillers prepared by sulfur + rice bran and sulfur + volcanic rock respectively, indicating that the sulfur + rice bran + volcanic rock prepared enhanced denitrification The materials have the effect of synergistic denitrification among each other, and denitrification is carried out efficiently under the synergistic effect of autotrophy and heterotrophy. During the denitrification process, there is basically no accumulation of nitrite. And the filler made of sulfur + rice bran + volcanic rock, after denitrification treatment, the pH is basically neutral.
填料1和填料3的去除效果对比,表明硫磺先熔融,再到更高温度(135-180℃)的反应釜中和稻糠、火山岩进行混合,再进行循环冷却水造粒,比材料先混合再相对低温熔融造粒制备的填料脱氮效果要好。但温度过高,如超过180℃,制备的填料脱氮效果又有所下降,如填料2比填料1脱氮效果要差。The comparison of the removal effects of filler 1 and filler 3 shows that the sulfur is melted first, and then mixed with rice bran and volcanic rock in a reactor at a higher temperature (135-180°C), and then granulated with circulating cooling water. Compared with the filler prepared by low-temperature melting granulation, the denitrification effect is better. However, if the temperature is too high, such as exceeding 180°C, the denitrification effect of the prepared filler will decrease. For example, the denitrification effect of
填料1和填料4脱氮效果对比表明,本发明制备的强化脱氮填料脱氮效果比单独材料混合的效果要好,且产生的硫酸盐浓度更低。The comparison of the denitrification effects of filler 1 and
应用例1Application example 1
设计流量为1t/d的缺氧-好氧(AO)工艺农村生活污水处理装置,在缺氧池中加入由复合填料球制备的悬挂填料,复合填料球中含填料1和聚氨酯海绵,填料1和聚氨酯海绵填料体积比为2:1,悬挂填料填充率为70%。An anoxic-aerobic (AO) process rural domestic sewage treatment plant with a design flow rate of 1t/d, add suspension filler made of composite filler balls in the anoxic tank, the composite filler balls contain filler 1 and polyurethane sponge, filler 1 The volume ratio of polyurethane sponge filler is 2:1, and the filling rate of hanging filler is 70%.
装置回流比为3:1。好氧池内含聚氨酯海绵悬浮填料,填充率为50%。好氧池曝气泵流量为50L/min。The device reflux ratio is 3:1. The aerobic pool contains polyurethane sponge suspension filler with a filling rate of 50%. The flow rate of the aeration pump in the aerobic pool is 50L/min.
缺氧池中挂入悬挂填料后,向缺氧池接入驯化的自养污泥3L、生活污水处理厂厌氧池污泥3L的混合污泥。向好氧池接种3L生活污水处理厂好氧池污泥,挂膜阶段进水流量为0.5t/d。After hanging fillers in the anoxic pool, insert 3L of domesticated autotrophic sludge and 3L of sludge from the anaerobic pool of domestic sewage treatment plant into the anoxic pool. Inoculate 3L of aerobic pool sludge from the domestic sewage treatment plant into the aerobic pool, and the influent flow rate during the film formation stage is 0.5t/d.
经过9天的挂膜,出水总氮去除稳定,进水流量调为1t/d,进行连续通水试验,挂膜后15天开始系统采集进出水数据,每隔1周采测。After 9 days of filming, the removal of total nitrogen in the effluent was stable, the influent flow rate was adjusted to 1t/d, and a continuous water flow test was carried out. The system began to collect influent and effluent data 15 days after the filming, and the data was collected every one week.
进水浓度,COD:72~152mg/L,氨氮:48.8~71.1mg/L,总氮54.5~74.8mg/L,pH6.8-7.5Influent concentration, COD: 72~152mg/L, ammonia nitrogen: 48.8~71.1mg/L, total nitrogen 54.5~74.8mg/L, pH6.8-7.5
出水COD:31~38mg/L,氨氮:0.213-1.28mg/L,pH 6.85-7.6mg/L。进出水总氮如图1所示,出水总氮为:9.8-14.8mg/L,总氮平均去除率为:81.8%。Effluent COD: 31~38mg/L, ammonia nitrogen: 0.213-1.28mg/L, pH 6.85-7.6mg/L. The total nitrogen in the influent and effluent is shown in Figure 1. The total nitrogen in the effluent is 9.8-14.8mg/L, and the average removal rate of total nitrogen is 81.8%.
应用对比例1Application Comparative Example 1
设计流量为1t/d的缺氧-好氧(AO)工艺农村生活污水处理装置,在缺氧池中加入由复合填料球制备的悬挂填料,复合填料球中含聚氨酯海绵,悬挂填料填充率为70%。The designed flow rate is 1t/d for an anoxic-aerobic (AO) process rural domestic sewage treatment plant. Add suspension filler made of composite filler balls to the anoxic pool. The composite filler balls contain polyurethane sponge, and the filling rate of the suspension filler is 70%.
装置回流比为3:1。好氧池内含聚氨酯海绵悬浮填料,填充率为50%。好氧池曝气泵流量为50L/min。The device reflux ratio is 3:1. The aerobic pool contains polyurethane sponge suspension filler with a filling rate of 50%. The flow rate of the aeration pump in the aerobic pool is 50L/min.
缺氧池中挂入悬挂填料后,向缺氧池中接入驯化的自养污泥3L、生活污水处理厂厌氧池污泥3L的混合污泥。向好氧池接种3L生活污水处理厂好氧池污泥,挂膜阶段进水流量为0.5t/d。After the suspension filler is hung in the anoxic tank, the mixed sludge of 3L domesticated autotrophic sludge and 3L sludge of the anaerobic tank of the domestic sewage treatment plant is inserted into the anoxic tank. Inoculate 3L of aerobic pool sludge from the domestic sewage treatment plant into the aerobic pool, and the influent flow rate during the film formation stage is 0.5t/d.
经过15天的挂膜,出水总氮去除稳定,进水流量调为1t/d,进行连续通水试验。挂膜后15天开始系统采集进出水数据,每隔1周采测。After 15 days of film formation, the removal of total nitrogen in the effluent was stable, the influent flow rate was adjusted to 1t/d, and a continuous water flow test was carried out. The water inflow and outflow data will be systematically collected 15 days after the film is installed, and the data will be collected every one week.
进水浓度,COD:72~152mg/L,氨氮:48.8~71.1mg/L,总氮54.5~74.8mg/L,pH6.8-7.5Influent concentration, COD: 72~152mg/L, ammonia nitrogen: 48.8~71.1mg/L, total nitrogen 54.5~74.8mg/L, pH6.8-7.5
出水COD:32~43mg/L,氨氮:0.267-7.96mg/L,pH 6.9-7.6mg/L。Effluent COD: 32-43mg/L, ammonia nitrogen: 0.267-7.96mg/L, pH 6.9-7.6mg/L.
进出水总氮如图1所示,出水总氮为:47-65.9mg/L,总氮平均去除率为:18.6%。The total nitrogen in the influent and effluent is shown in Figure 1. The total nitrogen in the effluent is 47-65.9mg/L, and the average removal rate of total nitrogen is 18.6%.
应用例1和应用对比例1相比,进水相同,应用例1缺氧池使用了由硫磺、生物质、火山岩制备的填料1,应用对比例1使用普通的海绵填料外,其余均相同。由应用例1与应用对比例1可知,填料1的使用可以有效缩短装置的挂膜启动时间。装置运行3个多月,应用例1的脱氮效果显著高于应用对比例1。表明本发明制备的填料能高效用于农村生活污水反应装置的缺氧或厌氧池,显著提高装置的脱氮效果。Compared with application example 1 and application comparison example 1, the water inflow is the same. Application example 1 uses filler 1 prepared from sulfur, biomass, and volcanic rock in the anoxic pool. Application example 1 uses ordinary sponge filler, and the rest are the same. From application example 1 and application comparison example 1, it can be known that the use of filler 1 can effectively shorten the start-up time of the device for film formation. The device has been in operation for more than 3 months, and the denitrification effect of application example 1 is significantly higher than that of application comparison example 1. It shows that the filler prepared by the invention can be efficiently used in the anoxic or anaerobic tank of the rural domestic sewage reaction device, and can significantly improve the denitrification effect of the device.
以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。The embodiments described above have described the technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. All within the scope of the principles of the present invention Any modifications, supplements and equivalent replacements should be included within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211674366.8A CN116002871B (en) | 2022-12-26 | 2022-12-26 | Reinforced denitrification filler and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211674366.8A CN116002871B (en) | 2022-12-26 | 2022-12-26 | Reinforced denitrification filler and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116002871A true CN116002871A (en) | 2023-04-25 |
CN116002871B CN116002871B (en) | 2024-10-15 |
Family
ID=86032856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211674366.8A Active CN116002871B (en) | 2022-12-26 | 2022-12-26 | Reinforced denitrification filler and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116002871B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116332343A (en) * | 2023-05-22 | 2023-06-27 | 江苏省环境工程技术有限公司 | Sulfur autotrophic denitrification sulfur-based magnetic filler and preparation method and application thereof |
CN117466432A (en) * | 2023-09-18 | 2024-01-30 | 北京科净源科技股份有限公司 | A method for preparing coupled autotrophic denitrification rapid separation denitrification balls |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012010096A1 (en) * | 2010-07-20 | 2012-01-26 | 华南理工大学 | Device for synchronously removing nitrogen and phosphorus in mixed municipal sewage and fecal sewage by using a2/o-biomembrane and method thereof |
WO2018107740A1 (en) * | 2016-12-14 | 2018-06-21 | 江南大学 | Wastewater nitrogen and phosphorus removal device and application thereof |
CN110921811A (en) * | 2019-11-29 | 2020-03-27 | 南京华创环境技术研究院有限公司 | Modified volcanic rock filler and preparation method and application thereof |
CN111717995A (en) * | 2019-03-19 | 2020-09-29 | 北京林业大学 | Autotrophic denitrification artificial pond, construction method and method for denitrifying sewage by using artificial pond |
CN114573103A (en) * | 2022-04-01 | 2022-06-03 | 山东太平洋环保股份有限公司 | Preparation method and application of efficient denitrification composite filler |
CN114634247A (en) * | 2022-04-15 | 2022-06-17 | 合肥工业大学 | Sulfur autotrophic nitrogen removal material prepared from sulfur paste or sulfur slag and preparation and application methods thereof |
CN115417500A (en) * | 2022-09-29 | 2022-12-02 | 江西零真生态环境集团有限公司 | Sulfur autotrophic denitrification filler and preparation method thereof |
-
2022
- 2022-12-26 CN CN202211674366.8A patent/CN116002871B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012010096A1 (en) * | 2010-07-20 | 2012-01-26 | 华南理工大学 | Device for synchronously removing nitrogen and phosphorus in mixed municipal sewage and fecal sewage by using a2/o-biomembrane and method thereof |
WO2018107740A1 (en) * | 2016-12-14 | 2018-06-21 | 江南大学 | Wastewater nitrogen and phosphorus removal device and application thereof |
CN111717995A (en) * | 2019-03-19 | 2020-09-29 | 北京林业大学 | Autotrophic denitrification artificial pond, construction method and method for denitrifying sewage by using artificial pond |
CN110921811A (en) * | 2019-11-29 | 2020-03-27 | 南京华创环境技术研究院有限公司 | Modified volcanic rock filler and preparation method and application thereof |
CN114573103A (en) * | 2022-04-01 | 2022-06-03 | 山东太平洋环保股份有限公司 | Preparation method and application of efficient denitrification composite filler |
CN114634247A (en) * | 2022-04-15 | 2022-06-17 | 合肥工业大学 | Sulfur autotrophic nitrogen removal material prepared from sulfur paste or sulfur slag and preparation and application methods thereof |
CN115417500A (en) * | 2022-09-29 | 2022-12-02 | 江西零真生态环境集团有限公司 | Sulfur autotrophic denitrification filler and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
郑绍智;刘会娟;彭剑峰;赵凯;孙欣;: "异养-自养耦合深度脱氮系统的生物脱氮性能研究", 环境科学研究, no. 02, 31 December 2020 (2020-12-31) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116332343A (en) * | 2023-05-22 | 2023-06-27 | 江苏省环境工程技术有限公司 | Sulfur autotrophic denitrification sulfur-based magnetic filler and preparation method and application thereof |
CN116332343B (en) * | 2023-05-22 | 2023-08-18 | 江苏省环境工程技术有限公司 | Sulfur autotrophic denitrification sulfur-based magnetic filler and preparation method and application thereof |
CN117466432A (en) * | 2023-09-18 | 2024-01-30 | 北京科净源科技股份有限公司 | A method for preparing coupled autotrophic denitrification rapid separation denitrification balls |
CN117466432B (en) * | 2023-09-18 | 2024-11-29 | 北京科净源科技股份有限公司 | A method for preparing a coupled autotrophic denitrification rapid separation denitrification ball |
Also Published As
Publication number | Publication date |
---|---|
CN116002871B (en) | 2024-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107162184B (en) | A UBF reactor utilizing anammox-sulfur autotrophic denitrification coupled denitrification and its system and denitrification method | |
CN109650561B (en) | A kind of denitrification functional filler and its preparation and application | |
CN114230021B (en) | A kind of biocomposite filler and its preparation method and application | |
CN102583722B (en) | Immobilized-cultivation method for aerobic granular sludge | |
CN111285462B (en) | Synergistic denitrification composite suspended filler, preparation method and application thereof | |
CN116002871A (en) | Reinforced denitrification filler and preparation method and application thereof | |
CN105712497A (en) | Microbial activation method and system for eutrophicated water body ecological restoration | |
CN112897696B (en) | Device and method for biological nitrogen and phosphorus removal based on staged water inflow | |
CN107010724A (en) | A kind of method for being sustained its progress sewage deep denitrogenation of electron donor and application | |
CN106242045A (en) | A kind of aerobic particle mud fast culture process | |
CN101386448A (en) | Preparation and repair method of aerobic nitrification granular sludge | |
CN101913710B (en) | A kind of method for suspended packing microbe to hang film quickly | |
EP4393889A1 (en) | Bfm-based efficient wastewater treatment method and system using aoa coupled with anaerobic ammonia oxidation | |
CN115353198B (en) | A method for simultaneous nitrogen and phosphorus removal based on sponge iron-sodium thiosulfate autotrophic denitrification biological filter | |
CN102583721A (en) | Method for culturing load fluctuation tolerant volatile aerobic granule sludge used for low-concentration wastewater | |
CN105016468B (en) | AOB AnAOB granule sludges and preparation method thereof and the method that waste water is handled using its autotrophic denitrification | |
CN116605986A (en) | Solid-phase slow-release sulfur filler based on sulfur autotrophic denitrification and preparation method and application thereof | |
CN117164108A (en) | Wastewater treatment functional material prepared based on natural wurtzite and natural limonite and application thereof in synchronous denitrification and phosphorus recovery | |
WO2021223377A1 (en) | Step-feed multistage anoxic/aerobic sewage biological nitrogen removal treatment method at low temperature | |
CN109052663B (en) | A rapid cultivation method of salt-tolerant and carbon-removing microbial particulate material | |
CN107235553A (en) | A kind of low-temperature aerobic granular sludge fast culture process based on sludge incineration ash | |
CN102826646A (en) | Catalytic iron internal electrolysis biological fluidization filler and preparation method thereof | |
CN105366802A (en) | Eco-biofilter apparatus and method for treating sewage by eco-biofilter apparatus | |
CN116143280B (en) | Device and method for realizing deep denitrification of low carbon-nitrogen ratio urban sewage by sulfur autotrophic denitrification enhanced short-range denitrification anaerobic ammonia oxidation | |
CN117185467A (en) | A sulfur autotrophic denitrification, denitrification, denitrification and phosphorus removal filler prepared at room temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |