CN116000333A - Device for preparing metal fin with wave structure and preparation method thereof - Google Patents
Device for preparing metal fin with wave structure and preparation method thereof Download PDFInfo
- Publication number
- CN116000333A CN116000333A CN202211734380.2A CN202211734380A CN116000333A CN 116000333 A CN116000333 A CN 116000333A CN 202211734380 A CN202211734380 A CN 202211734380A CN 116000333 A CN116000333 A CN 116000333A
- Authority
- CN
- China
- Prior art keywords
- tool
- workpiece
- cutting
- unit
- plow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Milling Processes (AREA)
Abstract
本发明公开一种用于制备波形结构金属翅片的装置及其制备方法,所述制备方法包含先后三种工序,一是工件加热,二是槽形结构成形,三是波形结构成形。通过加热使得金属工件软化。通过犁挤刀具,将金属表面先“犁切塑形”为槽形结构。通过切削刀具,将槽形结构“堆积折叠”成波形结构,同时将波形结构连同部分基体与工件本体切割分离。通过上述工序便可制备得到底部为连续带状、顶部呈波形结构的三维翅片带材。本发明不仅可成功制备波形结构金属翅片,而且方法简单、高效,装置灵活,可产业化推广应用。
The invention discloses a device for preparing metal fins with a corrugated structure and a preparation method thereof. The preparation method includes three processes in succession, one is heating a workpiece, the other is forming a groove structure, and the third is forming a corrugated structure. The metal workpiece is softened by heating. The metal surface is first "ploughed and shaped" into a groove-shaped structure by plowing the extruding tool. Through the cutting tool, the groove structure is "stacked and folded" into a wave structure, and at the same time, the wave structure together with part of the matrix is cut and separated from the workpiece body. A three-dimensional finned strip material with a continuous strip at the bottom and a corrugated top can be prepared through the above process. The invention not only can successfully prepare metal fins with a corrugated structure, but also has a simple and efficient method, a flexible device, and can be popularized and applied industrially.
Description
技术领域technical field
本发明涉及金属翅片制造技术领域,更具体地说是一种用于制备波形结构金属翅片的装置及其制备方法。The invention relates to the technical field of metal fin manufacturing, in particular to a device for preparing metal fins with a corrugated structure and a preparation method thereof.
背景技术Background technique
强制对流冷却是一种常用于消费者以及工业电子器产品中的冷却方式。电子器件产生的热量被转移到可以被吹走或抽走的流体中,以保证有利于器件性能的工作温度,从而保持电子系统的可靠性。Forced convection cooling is a cooling method commonly used in consumer as well as industrial electronics products. The heat generated by the electronics is transferred to a fluid that can be blown or pumped away to maintain an operating temperature that is conducive to the performance of the device, thereby maintaining the reliability of the electronic system.
一种常见的强制对流冷却方式是使用扩展表面(翅片)增强载热介质的对流传热能力,即利用翅片提高热量从电子器件传递到液体或者气体的效率,因此翅片的传热效率对冷却系统的冷却性能有着重要影响。翅片的传热性能受多种因素的影响,比如翅片的材料,工艺以及结构等。A common forced convection cooling method is to use extended surfaces (fins) to enhance the convective heat transfer capacity of the heat transfer medium, that is, to use fins to improve the efficiency of heat transfer from electronic devices to liquids or gases, so the heat transfer efficiency of fins It has an important influence on the cooling performance of the cooling system. The heat transfer performance of the fin is affected by many factors, such as the material, process and structure of the fin.
目前市面上常见的翅片结构比较简单,比如平直翅片和百叶窗翅片,翅片尺寸和间距都在毫米级。然而随着制造工艺和微电子技术的快速发展,芯片的体积越来越小,集成度也越来越高,普通冷却方式已经无法满足高集成度芯片的散热需求,这将导致元器件内部的热量堆积,从而影响电子产品的正常使用与性能发挥,缩短其使用寿命,因此简单的平面二维结构难以满足要求更高的传热以及对流条件,这已然成为此类技术发展的一大限制。考虑到研究成本和难度,翅片结构研发相较于材料和工艺研发更直接有效,且在计算机技术辅助下成本较低。因此,对散热翅片结构优化有迫切的需求。At present, the common fin structures on the market are relatively simple, such as straight fins and louver fins, and the size and spacing of the fins are at the millimeter level. However, with the rapid development of the manufacturing process and microelectronics technology, the volume of the chip is getting smaller and higher, and the integration level is getting higher and higher. The ordinary cooling method can no longer meet the heat dissipation requirements of the highly integrated chip, which will lead to internal components. Heat accumulation affects the normal use and performance of electronic products and shortens their service life. Therefore, a simple two-dimensional structure is difficult to meet higher heat transfer and convection conditions, which has become a major limitation for the development of this type of technology. Considering the cost and difficulty of research, the research and development of fin structure is more direct and effective than the research and development of materials and processes, and the cost is lower with the assistance of computer technology. Therefore, there is an urgent need to optimize the structure of heat dissipation fins.
在设计散热翅片结构时,主要考虑的是它的传热性能和空气通过其延伸表面的阻力。随着建模、仿真模拟以及制造技术的发展,许多具有三维结构的微型翅片被提出并制备,这些结构有各种各样的几何形状,比如圆柱针形翅片、带状翅片和板形翅片。三维结构金属翅片因其具有复杂表面和大比表面积,相比于传统平板翅片有着更高的传热效率。然而受限于其复杂的结构以及微小的尺寸,复杂三维结构的制造相当困难。When designing a cooling fin structure, the main considerations are its heat transfer performance and resistance to air passing through its extended surface. With the development of modeling, simulation and manufacturing technology, many micro-fins with three-dimensional structures have been proposed and prepared, and these structures have various geometric shapes, such as cylindrical pin-shaped fins, strip-shaped fins and plates. shaped fins. Compared with traditional flat fins, three-dimensional metal fins have higher heat transfer efficiency due to their complex surface and large specific surface area. However, limited by its complex structure and tiny size, the fabrication of complex three-dimensional structures is quite difficult.
到目前为止,研究人员已经利用增材制造、压铸、烧结、激光加工和电火花加工(EDM)方法制备具备不同三维结构的翅片,然而增材制造需要依赖于激光使得金属粉末融化,受限于激光技术发展,单个激光烧结层的厚度相对较薄,想要制备完整形貌的三维翅片需要进行多层烧结,既消耗时间也提高的成本;压铸则适用于较大尺寸且结构简单的翅片制造,然而对于集成程度越来越高的电子器件,其散热接触面积有限,因此为了充分利用空间,翅片更倾向于小尺寸并具有复杂结构,而压铸技术难以实现;虽然有研究者用烧结技术制备了微米尺度的三维结构,但是其制造过程需要经历多次烧结,需要多种不同结构的模具;同理,激光加工以及电火花加工技术均需要经历多次加工工序,在制备结构时,难以同时加工多个三维结构,时间成本较高。So far, researchers have used additive manufacturing, die-casting, sintering, laser machining, and electrical discharge machining (EDM) to prepare fins with different three-dimensional structures. However, additive manufacturing needs to rely on lasers to melt metal powder, which is limited. Due to the development of laser technology, the thickness of a single laser sintered layer is relatively thin. To prepare a three-dimensional fin with a complete shape, multi-layer sintering is required, which consumes time and increases the cost; die-casting is suitable for large-sized and simple-structured fins. Fin manufacturing, however, for more and more integrated electronic devices, the heat dissipation contact area is limited, so in order to make full use of space, fins tend to be small in size and have complex structures, and die-casting technology is difficult to achieve; although some researchers Micron-scale three-dimensional structures are prepared by sintering technology, but the manufacturing process requires multiple sinterings and molds with different structures. , it is difficult to process multiple three-dimensional structures at the same time, and the time cost is high.
可见,现有的制备方法虽能制造几何(形状和尺寸)可控的微结构翅片,但存在制造成本昂贵、换热效率较低、加工工艺复杂等问题。而且大量研究表明,波形结构翅片对相比于平直形翅片具有更优异的散热效果。因此,提出简便且高效的波形结构翅片的制备方法和开发出相应的制备装置是现实且迫切的需求。It can be seen that although the existing preparation methods can produce microstructured fins with controllable geometry (shape and size), there are problems such as high manufacturing cost, low heat exchange efficiency, and complicated processing technology. Moreover, a large number of studies have shown that the corrugated fin pair has a better heat dissipation effect than the straight fin. Therefore, it is a realistic and urgent need to propose a simple and efficient method for preparing corrugated fins and develop a corresponding preparation device.
常见的翅片加工方法有选择激光融化加工法,该方法速度虽快,但依然需要逐层式扫描来获得所需形状(Convective heat transfer and pressure losses acrossnovel heat sinks fabricated),加工工艺仍十分复杂。The common fin processing method is the selective laser melting processing method. Although this method is fast, it still needs layer-by-layer scanning to obtain the desired shape (Convective heat transfer and pressure losses across novel heat sinks fabricated), and the processing technology is still very complicated.
发明内容Contents of the invention
本发明旨在至少在一定程度上解决现有技术存在的技术问题之一。为此,本发明的第一个目的在于提出一种用于制备波形结构金属翅片的装置。The present invention aims at solving one of the technical problems existing in the prior art at least to a certain extent. To this end, a first object of the present invention is to propose a device for producing metal fins of corrugated structure.
本发明的另一个目的在于提出一种用于制备波形结构金属翅片的方法,以期能提高翅片传热性能,适于产业化应用推广。Another object of the present invention is to propose a method for preparing metal fins with a corrugated structure, in order to improve the heat transfer performance of the fins and be suitable for industrial application and promotion.
为实现前述第一个目的,本发明提供的一种用于制备波形结构金属翅片的装置,包括运动单元、加热单元、组合刀具单元和收集单元,In order to achieve the aforementioned first purpose, the present invention provides a device for preparing metal fins with a wave structure, including a movement unit, a heating unit, a combination cutter unit and a collection unit,
所述运动单元包括刀具移动子单元和工件移动子单元,所述组合刀具单元设置在刀具移动子单元,以控制刀具的进给,工件移动子单元上用于放置工件以带动工件在切削方向上的运动;The motion unit includes a tool moving subunit and a workpiece moving subunit. The combined tool unit is arranged on the tool moving subunit to control the feeding of the tool. The workpiece moving subunit is used to place the workpiece to drive the workpiece in the cutting direction exercise;
所述组合刀具单元包括刀柄、犁挤刀具、切削刀具,所述刀柄用于安装固定刀具,刀柄包括刀柄座、刀座和定位凸缘,刀柄座与运动单元连接,刀座和定位凸缘均与刀柄座连接;所述犁挤刀具用于在工件的待加工表面犁切出具有一定高度的、平行连续的槽形结构,犁挤刀具设置在刀座上,犁挤刀具包括犁切刀具块和设置在犁切刀具块上的平行犁刀,平行犁刀有多个,相邻平行犁刀之间留有间隙作为成形通道;切削刀具设置在犁挤刀具上,切削刀具包括前刀面和切削刃,用于切割分离金属并最终制得波形结构翅片;The combined tool unit includes a knife handle, a plowing tool, and a cutting tool. The knife handle is used to install a fixed tool. The knife handle includes a knife handle seat, a knife seat and a positioning flange. The knife handle seat is connected with the motion unit, and the knife seat and the positioning flange are all connected with the handle seat; the plow extruding tool is used to plow out a parallel and continuous groove structure with a certain height on the surface to be processed of the workpiece, the plow extruding tool is arranged on the tool seat, and the plow extruding tool The tool includes a plow cutting tool block and parallel coulters arranged on the plow cutting tool block. There are multiple parallel coulters, and a gap is left between adjacent parallel coulters as a forming channel; the cutting tool is arranged on the plow extruding tool, and the cutting tool The tool consists of a rake face and a cutting edge, which is used to cut the separated metal and finally make the fin with wave structure;
所述收集单元用于收集加工得到的所述波形结构翅片。The collecting unit is used for collecting the processed fins of the corrugated structure.
优选的,所述刀具移动子单元包括龙门架,所述龙门架包括龙门支柱、横向移动装置和纵向移动装置,横向移动装置横向设置在龙门支柱上,纵向移动装置设置在横向移动装置上,组合刀具单元设置在纵向移动装置上,固定和控制组合刀具单元进给方向运动,通过纵向进给装置控制组合刀具的进给方向(z轴)和犁切深度。Preferably, the tool moving subunit includes a gantry frame, and the gantry frame includes a gantry pillar, a lateral movement device and a longitudinal movement device, the transverse movement device is horizontally arranged on the gantry pillar, and the longitudinal movement device is arranged on the transverse movement device. The cutter unit is arranged on the longitudinal moving device, which fixes and controls the movement of the combined cutter unit in the feeding direction, and controls the feeding direction (z-axis) and plowing depth of the combined cutter through the longitudinal feeding device.
所述工件移动子单元包括工作台,工作台位于组合刀具单元下方且工作台能够在切削方向上运动,工件设置在工作台上,通过工作台固定和控制工件在切削方向的运动。The workpiece moving subunit includes a workbench, which is located below the combined tool unit and can move in the cutting direction. The workpiece is set on the workbench, and the movement of the workpiece in the cutting direction is fixed and controlled by the workbench.
优选的,所述工件的两侧有凸缘,凸缘上设有固定通孔,所述工作台上设置有T形槽,通过紧固件与固定通孔与T形槽的配合来固定工件。因此工件只要有固定通孔,工件就能够容易地通过T形槽安装在工作台,工件的尺寸可根据具体需求任选。Preferably, there are flanges on both sides of the workpiece, the flanges are provided with fixing through holes, the workbench is provided with T-shaped slots, and the workpiece is fixed by the cooperation of the fasteners, the fixing through holes and the T-shaped slots . Therefore, as long as the workpiece has a fixed through hole, the workpiece can be easily installed on the workbench through the T-shaped slot, and the size of the workpiece can be selected according to specific requirements.
工件为块状金属工件。The workpiece is a massive metal workpiece.
优选的,所述加热单元为感应加热模组,包括感应线圈和与感应线圈连接的感应加热电源,感应线圈位于犁挤刀具入口处的下方,用于加热工件。Preferably, the heating unit is an induction heating module, including an induction coil and an induction heating power supply connected to the induction coil, and the induction coil is located below the entrance of the plowing tool for heating the workpiece.
优选的,所述收集单元包括产品传送台和收集箱,所述产品传送台用于将加工后的波形结构翅片运输到收集箱。Preferably, the collection unit includes a product transfer table and a collection box, and the product transfer table is used for transporting the processed corrugated fins to the collection box.
优选的,产品传送台包括电机和由电机驱动的产品传送带和电机。收集箱由箱体和把手组成,用于收集和运输波形翅片。Preferably, the product conveyor table includes a motor and a product conveyor belt and motor driven by the motor. The collection box consists of a box body and a handle for collecting and transporting corrugated fins.
优选的,所述犁挤刀具设有两个第一定位通孔,与刀柄上设置的两个第一定位孔配合;犁挤刀具上还设有第二定位螺纹盲孔,与刀柄上设置的第二定位孔配合;Preferably, the plow extruding tool is provided with two first positioning through holes, which cooperate with the two first positioning holes provided on the handle; The set second positioning hole fits;
所述切削刀具上设有安装通孔,与犁挤刀具上设置的第一定位孔配合,用于刀具的安装与拆卸。装刀时将长螺栓(150)穿过定位孔,再用螺母旋紧,当要改变刀具前角等参数时,只需换刀即可;The cutting tool is provided with an installation through hole, which cooperates with the first positioning hole provided on the plowing tool, and is used for the installation and removal of the tool. When installing the tool, pass the long bolt (150) through the positioning hole, and then tighten it with a nut. When you want to change the parameters such as the rake angle of the tool, you only need to change the tool;
刀柄座上设有第三定位孔,用于组合刀具单元与运动单元的安装定位。A third positioning hole is provided on the handle seat for installation and positioning of the combined tool unit and the motion unit.
优选的,在刀柄的定位凸缘和切削刀具之间还设置有垫片以改变切削深度;同时,在犁挤刀具和切削刀具之间也设置有垫片以调整犁挤刀具和切削刀具之间的相对位置。Preferably, a spacer is also arranged between the positioning flange of the handle and the cutting tool to change the depth of cut; meanwhile, a spacer is also arranged between the plowing tool and the cutting tool to adjust the distance between the plowing tool and the cutting tool. relative position between them.
优选的,平行犁刀尾部和切削刃之间的距离设置为6.0-10.0mm,将容纳翅片的平行犁刀之间的空隙的高度设为1.0-2.0mm,以预留合适的翅片通道,既要保证犁挤刀具的通道在切削时不因材料堆积而堵塞,又要充分发挥“犁切塑形”作用,促进槽形结构的生成。Preferably, the distance between the tails of the parallel coulters and the cutting edge is set to 6.0-10.0 mm, and the height of the gap between the parallel coulters that accommodate the fins is set to 1.0-2.0 mm to reserve a suitable channel for the fins , it is necessary to ensure that the channel of the plow extrusion tool is not blocked by material accumulation during cutting, and it is also necessary to give full play to the role of "plough cutting and shaping" to promote the formation of groove-shaped structures.
优选的,所述犁挤刀具由多个平行犁刀组成,这些平行犁刀为等间距排列。为了防止犁刀变形和断裂,每个犁刀呈成双边对称。Preferably, the coulter is composed of a plurality of parallel coulters, and these parallel coulters are arranged at equal intervals. In order to prevent the coulters from being deformed and broken, each coulter is bilaterally symmetrical.
为了实现前述本发明的另一目的,本发明提供的一种制备波形结构金属翅片的方法,其特征是按如下步骤进行:In order to achieve another purpose of the foregoing invention, a method for preparing a corrugated metal fin provided by the invention is characterized in that it proceeds as follows:
步骤1、工件加热Step 1, workpiece heating
启动加热单元并设置需要加热到的预设温度,然后工件受加热单元作用的部分温度上升,当温度达到预设温度并保温一段时间后,工件材料的变形阻力减小,塑性提高;Start the heating unit and set the preset temperature that needs to be heated, then the temperature of the part of the workpiece affected by the heating unit will rise. When the temperature reaches the preset temperature and keep it warm for a period of time, the deformation resistance of the workpiece material will decrease and the plasticity will increase;
步骤2、槽形结构成形Step 2. Forming the trough structure
启动工件移动子单元使工件向切削速度方向(+x)移动,同时控制刀具移动子单元使所述的组合刀具沿进给方向(-z)移动,对工件待加工层的材料进行切削,其中犁挤刀具最先作用于待切削层材料,并对材料施加的“犁切塑形”作用。由于高温使得工件金属软化,金属可顺利流入犁挤刀具内的成形通道,进而受到通道侧壁的挤压塑形作用,形成与通道形状相近的、连续的槽形结构;Start the workpiece movement subunit to move the workpiece to the cutting speed direction (+x), and control the tool movement subunit to move the combined tool along the feed direction (-z) to cut the material of the workpiece layer to be processed, wherein The plow extrusion tool first acts on the material to be cut, and exerts a "plough cutting and shaping" effect on the material. As the high temperature softens the metal of the workpiece, the metal can smoothly flow into the forming channel in the plow extrusion tool, and then be extruded and shaped by the side wall of the channel to form a continuous groove structure similar to the channel shape;
步骤3、波形结构成形Step 3. Forming the waveform structure
上述槽形结构的切削层金属进入切削区,切削刀具对切削层金属产生两方面的作用:一是切削刀具切割切削层金属底部,使其与工件本体分离,形成连续带材;二是切削刀具迫使上部槽形结构发生剪切、堆积、折叠作用,其结果是槽形结构转变成波形结构。切削刀具对槽形结构的“切割分离”和“堆积折叠”是并行的成形过程,得到顶部为波形结构和底部为连续带材的三维金属翅片。The metal of the cutting layer with the above-mentioned trough structure enters the cutting area, and the cutting tool has two effects on the metal of the cutting layer: one is that the cutting tool cuts the bottom of the metal of the cutting layer to separate it from the workpiece body to form a continuous strip; the other is that the cutting tool The upper trough structure is forced to shear, accumulate, and fold, and the result is that the trough structure transforms into a wave structure. The "cutting and separating" and "stacking and folding" of the grooved structure by the cutting tool are parallel forming processes, resulting in a three-dimensional metal fin with a corrugated structure at the top and a continuous strip at the bottom.
步骤4、翅片收集Step 4. Fin Collection
制备出的波形结构连续翅片通过收集单元,由产品传送台和收集箱进行翅片产品转移和收集。The prepared continuous fins with corrugated structure pass through the collection unit, and the fin products are transferred and collected by the product transfer platform and the collection box.
与已有技术相比,本发明有益效果体现在:Compared with the prior art, the beneficial effects of the present invention are reflected in:
1、在现有的小微结构翅片制备技术中,挤出切削成形技术制备出的槽形翅片底层结构厚度较大,翅片结构深宽比较小,材料利用率不高;而犁切挤出切削成形技术虽然有效减少了底层厚度占比,增大了翅片结构深宽比,但同样只能制备二维槽形翅片。而本发明所述装置实现了翅片的制备到收集等一系列过程,且制备出的波形结构翅片纵横比大,具有更丰富的结构和更大的比表面积,这些特性将显著增加扰流效果,提高传热效率;1. In the existing small and micro-structured fin preparation technology, the thickness of the bottom structure of the trough-shaped fin prepared by extrusion cutting forming technology is relatively large, the depth-width ratio of the fin structure is small, and the material utilization rate is not high; while plow cutting Although the extrusion cutting forming technology effectively reduces the thickness ratio of the bottom layer and increases the aspect ratio of the fin structure, it can only prepare two-dimensional grooved fins. However, the device of the present invention realizes a series of processes from the preparation of the fins to the collection, and the prepared corrugated fins have a large aspect ratio, a richer structure and a larger specific surface area. These characteristics will significantly increase the turbulence. effect, improve heat transfer efficiency;
2、本发明中,采用所述方法能够切削块状工件的端面,在工件向切削方向运动时,利用所述装置中的组合刀具进行切削,在工件的待加工表面犁切出多个平行的连续槽形结构,槽间的材料因犁刀的“犁切塑形”作用,形成连续的槽形结构,槽形结构连同待切削层金属底部被所述切削刀具从工件基材上切削分离,槽形结构翅片在切削区域内因“堆积折叠”原理成形出波形形貌,槽形结构底部因“切割分离”原理成形出连续带材,通过切削刀具制造出表面呈波形结构、底部呈带状的三维翅片,加工的原理巧妙且创新,方法简便且高效,可以直接运用在通用三轴移动平台,适应性强,成本较低,效果显著;2. In the present invention, the method can be used to cut the end face of the block workpiece, and when the workpiece moves in the cutting direction, the combined tool in the device is used to cut, and a plurality of parallel blades are plowed out on the surface to be processed of the workpiece. Continuous trough-shaped structure, the material between the troughs forms a continuous trough-shaped structure due to the "plough cutting and shaping" effect of the coulter, and the trough-shaped structure and the metal bottom of the layer to be cut are cut and separated from the workpiece substrate by the cutting tool. The trough-shaped structure fins form a wave shape due to the principle of "stacking and folding" in the cutting area, and the bottom of the trough-shaped structure forms a continuous strip due to the principle of "cutting and separation". The surface is wave-shaped and the bottom is strip-shaped by cutting tools. The three-dimensional fins, the processing principle is ingenious and innovative, the method is simple and efficient, and can be directly applied to the general three-axis mobile platform, with strong adaptability, low cost and remarkable effect;
3、本发明中波形翅片的形成机理独特新颖,所述装置中的组合刀具可以实现从槽形翅片到波形翅片的转换,当初始翅片逐渐接近刀具,其剪切应力达到屈服强度,金属沿着剪切滑移线滑动,切削段出现材料堆积,接着由于犁切刀具对金属材料的“犁切塑形”作用,工件表面被塑造成槽形,然后随着切削刃对金属切削层“切割分离”和“堆积折叠”作用,得到顶部为波形结构和底部为连续带材的三维金属翅片;3. The formation mechanism of the corrugated fins in the present invention is unique and novel. The combined cutter in the device can realize the conversion from the grooved fin to the corrugated fin. When the initial fin gradually approaches the cutter, its shear stress reaches the yield strength , the metal slides along the shear slip line, material accumulation occurs in the cutting section, and then due to the "plough cutting and shaping" effect of the plow cutting tool on the metal material, the surface of the workpiece is shaped into a groove shape, and then the metal is cut with the cutting edge Layer "cutting and separation" and "stacking and folding" functions, to obtain a three-dimensional metal fin with a wave structure on the top and a continuous strip on the bottom;
4、本发明证实了“一步两阶段”工艺的可行性和高度灵活性,其在传热领域具有良好的潜力,在实际应用中,可根据不同的生产需求改变进给速度、切削速度,还可以更换刀具以改变刀具前角、犁切深度等参数,适应产业化应用推广;4. The present invention proves the feasibility and high flexibility of the "one-step two-stage" process, which has good potential in the field of heat transfer. In practical applications, the feed speed and cutting speed can be changed according to different production requirements, and also The tool can be replaced to change the rake angle, plowing depth and other parameters to adapt to industrial application and promotion;
5、本发明中的块状工件材料种类不受限制,可选择纯铜、铝合金、镁合金等不同种类材料,工件尺寸也可根据具体需求任选大小,能适应不同产业的需求。5. The types of block workpiece materials in the present invention are not limited, and different types of materials such as pure copper, aluminum alloy, and magnesium alloy can be selected, and the size of the workpiece can also be selected according to specific needs, which can adapt to the needs of different industries.
6、本发明能够通过组合刀具单元一步加工出所需的波形结构翅片。6. The present invention can process the required corrugated fins in one step by combining the cutter unit.
附图说明Description of drawings
图1为本发明涉及相关生产流水线中主要装置的工作示意图;Fig. 1 is that the present invention relates to the working schematic diagram of main device in relevant production line;
图2为图1中制备波形结构翅片的生产区域放大图;Figure 2 is an enlarged view of the production area for preparing corrugated fins in Figure 1;
图3为图1的左视图;Fig. 3 is the left view of Fig. 1;
图4为图3中制备波形结构翅片的生产区域放大图;Fig. 4 is an enlarged view of the production area for preparing corrugated fins in Fig. 3;
图5为本发明所述的装置中组合刀具单元的工作实例图;Fig. 5 is the working example diagram of combined cutter unit in the device of the present invention;
图6为本发明所述装置中的组合刀具单元的俯视图;Fig. 6 is the top view of the combined cutter unit in the device of the present invention;
图7为图4中A-A截面的剖视图;Fig. 7 is the sectional view of A-A section among Fig. 4;
图8为图4中B-B截面的剖视图;Fig. 8 is the sectional view of B-B section among Fig. 4;
图9为本发明所述组合刀具单元中的刀柄结构示意图;Fig. 9 is a schematic diagram of the structure of the tool handle in the combined tool unit of the present invention;
图10为本发明所述组合刀具单元中的犁挤刀具结构示意图;Fig. 10 is a structural schematic diagram of the plow extruding tool in the combined tool unit of the present invention;
图11为本发明所述组合刀具单元中的犁挤刀具主视图;Fig. 11 is a front view of the plowing cutter in the combined cutter unit of the present invention;
图12为本发明所述组合刀具单元中的切削刀具结构示意图;Fig. 12 is a schematic structural view of the cutting tool in the combined tool unit of the present invention;
图13为本发明所述收集单元中的结构示意图;Fig. 13 is a schematic structural view of the collection unit of the present invention;
图14为本发明所述装置所制备出的波形结构翅片的结构立体图。Fig. 14 is a structural perspective view of the corrugated fins prepared by the device of the present invention.
图15为本发明所述组合刀具制备波形结构翅片的原理示意图。Fig. 15 is a schematic diagram of the principle of preparing fins with a wave structure by the combined tool of the present invention.
图中标号:100组合刀具单元;110刀柄;111刀柄座;112刀座;113第一定位孔;114第二定位孔;115第三定位孔;116定位凸缘;120犁挤刀具;121平行犁刀;122第一定位通孔;123第二定位螺纹盲孔;124犁切刀具块;130切削刀具;131前刀面;132切削刃;133定位通孔;140垫片;150长螺栓;160螺母;170短螺栓;180大螺栓;200波形结构翅片;210波形结构;220翅片底部;300块状金属工件;310固定通孔;400工作台;410T形槽;420切削运动装置;500龙门架;510龙门支柱;520横向移动装置;530纵向移动装置;600感应加热模组;610感应线圈;620感应加热电源;700产品传送台;710产品传送带;720电机;800收集箱;810箱体;820把手。Symbols in the figure: 100 combined tool unit; 110 tool handle; 111 tool handle seat; 112 tool seat; 113 first positioning hole; 114 second positioning hole; 115 third positioning hole; 116 positioning flange; 120 plow extruding tool; 121 parallel coulter; 122 first positioning through hole; 123 second positioning threaded blind hole; 124 plow cutter block; 130 cutting tool; 131 rake face; 132 cutting edge; 133 positioning through hole; 140 spacer; 150 long Bolt; 160 nut; 170 short bolt; 180 large bolt; 200 wave structure fin; 210 wave structure; 220 fin bottom; 300 block metal workpiece; 310 fixed through hole; 400 table; Device; 500 gantry frame; 510 gantry pillar; 520 horizontal moving device; 530 vertical moving device; 600 induction heating module; 610 induction coil; 620 induction heating power supply; ; 810 box; 820 handle.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都是本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts are within the protection scope of the present invention.
如图1至图12所示,本发明提供的一种制备波形结构翅片200的装置,包括组合刀具单元、运动单元、加热单元和收集单元。As shown in FIGS. 1 to 12 , the present invention provides a device for preparing
所述运动单元包括刀具移动子单元和工件移动子单元,所述组合刀具单元100设置在刀具移动子单元,以控制刀具的进给,工件移动子单元上用于放置工件300以带动工件在切削方向上的运动;The motion unit includes a tool moving subunit and a workpiece moving subunit. The combined
组合刀具单元100包括刀柄110、犁挤刀具120、切削刀具130。The combined
犁挤刀具120包括犁切刀具块124以及固定在犁切刀具块124上的平行犁刀121,犁切刀具块124上还开设有第一定位通孔122和第二定位螺纹盲孔123。所述犁挤刀具120用于在块状工件的待加工表面犁切出具有一定高度的、平行连续的槽形结构。The
刀柄110用于安装固定刀具,所述刀柄110包括刀柄座111、刀座112、定位凸缘116,刀座112上开设有第一定位孔113,定位凸缘116上开设有第二定位孔114,刀柄座111上开设有第三定位孔115。The handle of a
切削刀具130包括前刀面131、切削刃132、定位通孔133。所述切削刀具130用于切割分离金属并最终制得波形结构翅片200。The
在本发明的其中一些实施例中,如图5至图8所示,组合刀具单元100使用高速钢W18Cr4V制造,将平行犁刀121的底端与切削刃132的顶端之间的距离设为0.1mm,即槽形结构底部的待切削厚度为0.1mm,将容纳翅片的槽(槽即平行犁刀之间留有的空隙,材料经过犁挤后形成槽形结构,从平行犁刀之间穿过)的高度设为1.0mm,预留给所制翅片以合适的高度,既保证工件材料能充分填充槽形通道,又能防止通道太小导致材料堆积堵塞通道;所述犁挤刀具120上设有两个第一定位通孔122和四个第二定位螺纹盲孔123,保证犁挤刀具120与刀柄110之间定位精度以及增加犁挤刀具120的刚度;所述刀柄110上设有两个定位凸缘116,便于在刀柄110与切削刀具130之间放置垫片140,调整犁刀121的底端与切削刃133的顶端之间的相对距离,以改变翅片底部220带材的厚度。In some of the embodiments of the present invention, as shown in FIGS. 5 to 8 , the combined cutter unit 100 is made of high-speed steel W18Cr4V, and the distance between the bottom end of the parallel coulter 121 and the top end of the cutting edge 132 is set to 0.1 mm, that is, the thickness to be cut at the bottom of the trough-shaped structure is 0.1mm, and the slots that accommodate the fins (the slots are the gaps left between the parallel coulters, the material is plowed to form a trough-shaped structure, from between the parallel coulters The height of passing through) is set to 1.0mm, and an appropriate height is reserved for the manufactured fins, which not only ensures that the workpiece material can fully fill the groove-shaped passage, but also prevents the passage from being too small to cause material accumulation to block the passage; the plow extruding tool 120 is provided with two first positioning through holes 122 and four second positioning threaded blind holes 123 to ensure the positioning accuracy between the plow extruding tool 120 and the handle 110 and to increase the rigidity of the plow extruding tool 120; the handle 110 Two locating flanges 116 are provided on the top, which is convenient to place a spacer 140 between the handle 110 and the cutting tool 130, and adjust the relative distance between the bottom end of the coulter 121 and the top end of the cutting edge 133 to change the fin bottom. 220 strip thickness.
在本发明的其中一些实施例中,如图9所示,刀柄座111上设有三个第三定位孔115,用于组合刀具单元100与龙门架500的安装定位,也适用于多种机床装夹。In some embodiments of the present invention, as shown in FIG. 9 , three third positioning holes 115 are provided on the tool handle
在本发明的其中一些实施例中,如图10和图11所示,犁挤刀具120上设置的平行犁刀121有多个,这些平行犁刀121之间为等间距排列,相邻平行犁刀121之间留有间隙以形成成形通道。为了防止平行犁刀121变形和断裂,每个平行犁刀121设计成双边对称。优选地,犁挤刀具120的几何参数设置如下:犁刃倾角为30°、犁削成形角为30°、挤压成形角为0°、挤压间隙角为0°、单个平行犁刀121的宽度为0.4mm、高度为1.0mm、相邻平行犁刀121之间的间隙为0.4mm,可以理解的是,这些具体数值只是相应参数的一个具体举例,并不构成对保护范围的限制。In some of the embodiments of the present invention, as shown in Figure 10 and Figure 11, there are multiple
在本发明的其中一些实施例中,如图12所示,切削刀具130上设有两个定位通孔133,其与犁挤刀具120的第一定位孔122配合,用于刀具的安装与拆卸。装刀时将长螺栓150穿过定位孔,再用螺母旋紧,当要改变刀具前角等参数时,只需换刀即可。优选地,刀具前角选为20°、后角为5°,刀刃半径为0mm,犁切深度为0.59mm、犁刀121尾部和切削刃133之间x方向的距离为6.0mm,可以理解的是,这些具体数值只是相应参数的一个具体举例,并不构成对保护范围的限制。In some of the embodiments of the present invention, as shown in FIG. 12 , two positioning through
所述运动单元控制进给和切削方向运动,其中,所述刀具移动子单元包括龙门架500,所述龙门架500用于固定和控制组合刀具单元100进给方向运动,包括龙门支柱510、横向设置在龙门支柱510上的横向移动装置520、设置在横向移动装置520上的纵向移动装置530,组合刀具单元100与纵向移动装置530固定连接。纵向移动装置530可以在横向移动装置520的驱动下载y方向上进行往复移动,纵向移动装置530可以驱动组合刀具单元100在z方向移动上移动。纵向移动装置530和横向移动装置520可采用现有的移动机构实现,如丝杆滑块等,在此不做赘述。The movement unit controls the movement in the feeding and cutting directions, wherein the tool moving subunit includes a
所述工件移动子单元用于固定工件300且控制工件在切削方向上的运动,所述工件移动子单元包括工作台400、切削运动装置420和设置在工作台400上的T形槽410,其中,在本发明的其中一些实施例中,切削运动装置420包括切削运动电机和由切削运动电机驱动的滚珠丝杆机构,工作台400与滚珠丝杆机构连接,切削运动电机工作,驱动滚珠丝杆机构旋转工作,进而带动工作台400移动,T形槽410随着工作台400的移动而移动,进而带动固定在T形槽410上的工件300往进给和切削方向运动。The workpiece moving subunit is used to fix the
所述加热单元即感应加热模组600包括感应线圈610和与感应线圈610连接的感应加热电源620,感应线圈610与感应加热电源620连接,感应线圈610环绕的轴线垂直于在工件侧面,位于犁挤刀具120入口处的下方,目的是加热即将受到犁挤作用的工件300。The heating unit, that is, the
如图13所示,收集单元包括产品传送台700和设置在产品传送台700出口端的收集箱800。产品传送台700包括电机720和由电机720驱动产品传送带710,用于转移波形结构翅片200至收集箱800。收集箱800包括箱体810和设置在箱体810上的把手820,用于收集和运输波形结构翅片200。As shown in FIG. 13 , the collection unit includes a
本发明中波形结构金属翅片的形成机理独特新颖,所述装置中的组合刀具单元100可以实现从切削段到波形翅片的转换,包含前后两个成形过程,即槽形结构成形和波形结构成形。金属表面先通过“犁切塑形”原理塑形成平行连续、具有一定高度的槽形结构,再通过“堆积折叠”原理形成波形结构,金属底部通过“切割分离”原理形成连续的带材,得到顶部为波形结构和底部为连续带材的三维金属翅片。The formation mechanism of the corrugated metal fins in the present invention is unique and novel. The combined
如图1至图4所示,本发明还提供一种采用前述装置来制备波形结构金属翅片的方法,如图15所示,其是按如下步骤进行:As shown in Figures 1 to 4, the present invention also provides a method for preparing metal fins with a corrugated structure by using the aforementioned device, as shown in Figure 15, which is carried out in the following steps:
步骤1、工件加热Step 1, workpiece heating
启动感应加热电源620并设置加热温度为预设温度(该预设温度根据实际工件尺寸而定,工件较大时,为了迅速升温使材料塑性提高,温度需要提高,当工件较小,为了减小功耗,温度可以适当降低,在本发明的其中一些实施例中,所述预设温度为500℃),然后工件300受感应线圈610作用的部分因电磁感应而温度上升,工件材料的变形阻力减小,塑性提高;Start the induction
步骤2、槽形结构成形Step 2. Forming the trough structure
启动工作台使工件向切削速度方向+x移动,同时控制龙门架500使所述的组合刀具单元100沿进给方向-z移动,使组合刀具单元100和工件300在竖直方向上处于合适的位置,既能切除想要的材料,又不会切得太深,导致刀具损坏,对工件待加工层的材料进行切削,其中犁挤刀具120最先作用于待切削层材料,并对材料施加的“犁切塑形”作用。由于高温使得工件金属软化,金属可顺利流入犁挤刀具120内的成形通道(即平行犁刀之间留下的空隙(材料受犁挤进入平行犁刀之间的空隙形成槽形结构),进而受到通道侧壁的挤压塑形作用,形成与通道形状相近的、连续的槽形结构;Start the workbench to move the workpiece to the cutting speed direction +x, and at the same time control the
步骤3、波形结构成形Step 3. Forming the waveform structure
上述槽形结构的切削层金属进入切削区,切削刀具130对切削层金属产生两方面的作用:一是切削刀具130切割切削层金属底部,使其与工件本体分离,形成连续带材;二是切削刀具130迫使上部槽形结构发生剪切、堆积、折叠作用,其结果是槽形结构转变成波形结构。切削刀具130对槽形结构的“切割分离”和“堆积折叠”是并行的成形过程,得到顶部为波形结构和底部为连续带材的三维金属翅片。The cutting layer metal of the above-mentioned groove structure enters the cutting area, and the
步骤4、翅片收集Step 4. Fin Collection
制备出的波形结构连续翅片通过收集单元,由产品传送台700和收集箱800进行翅片产品的转移和收集。The prepared continuous fins with corrugated structure pass through the collecting unit, and the fin products are transferred and collected by the
在本发明的其中一些实施例中,所述工件300两侧有凸缘,凸缘上设有固定通孔310,与工作台400上的T形槽410配合(即利用倒置的螺栓,螺栓头卡在T形槽内,另一端穿过凸缘上的固定通孔,再通过螺母进行固定)达到固定工件300的作用,因此工件只要有固定通孔310,工件300就能够容易地安装在工作台400上,工件300的尺寸可根据具体需求任选。此外工件材料种类也不受限制,可以选用纯铜、铝合金、镁合金等不同种类金属。In some of the embodiments of the present invention, there are flanges on both sides of the
在本发明实施例的其中一些实施例中,选择长宽高尺寸为200mm*60mm*80mm的纯铜C10200作为块状工件,在干切削条件下使用龙门加工中心进行。犁挤刀具120上平行犁刀121的位置与工件300上表面距离0.4-0.72mm,切削刀具130的切削刃133的位置与平行犁刀121的下表面距离0.1-0.3mm,切削方向与工件的200mm边平行-x,制备出来的波形结构翅片200宽度为60mm;通过调整龙门架500的横向运动装置520和纵向运动装置530使得固定在龙门架500的组合刀具单元100控制进给方向的运动;产品传送台700的高度稍低于波形结构翅片200,当工作台400完成一次切削进程后,即块状金属工件300上表面的切削层被切除后,波形结构翅片200将自动完成切断,然后掉落在产品传送带710上;收集箱800的箱体810边缘高度应低于产品传送台700,这样有利于波形结构翅片200传送到产品传送带710末端时受重力影响掉落到收集箱中,完成产品的自动收集。In some of the embodiments of the present invention, pure copper C10200 with a length, width, and height of 200mm*60mm*80mm is selected as a block workpiece, and a gantry machining center is used under dry cutting conditions. The distance between the position of the
在本发明的其中一些实施例中,切削速度+x方向为30—120m/min,组合刀具单元100的切削深度为0.40—0.72mm,所制备得到的波形结构翅片200全高范围约为3mm,翅片底部220厚度约为1.6mm,相邻波形结构的间隙为是0.4mm,翅片宽度约为60mm;由此可见,该种方法制备出的波形结构翅片200纵横比大,具有更大的比表面积,这些更优的性能将显著增加扰流效果,提高传热效率,且结构连续,翅片表面完整,抗磨损性能较强,机械强度较高,具体如图14所示。In some embodiments of the present invention, the cutting speed + x direction is 30-120m/min, the cutting depth of the combined
本实施例中,采用所述方法能够切削加工块状金属工件300的端面,工件被固定在工作台400上,当工作台向切削方向+x运动时,固定在龙门架500上的组合刀具单元100对工件进行“犁切塑形”、“堆积折叠”和“切割分离”,在工件的待加工表面犁切出多个平行的连续槽形结构,槽间材料因平行犁刀121的“犁切塑形”作用,形成连续的槽形结构,槽形结构连同底部待切削材料被所述切削刀具130从工件基体上切削分离,槽形结构在切削区域内因“堆积折叠”原理成形出波形形貌,槽形结构底部的待切削材料因“切割分离”原理成形出连续带材,通过切削刀具130制造出得到顶部为波形结构和底部为连续带材的三维的波形翅片200,加工的原理巧妙且创新,方法简便且高效,可以直接运用在通用机床,适应性强,成本较低,效果显著。In this embodiment, the method can be used to cut the end face of the
综上,本发明不仅可成功制备波形结构翅片200,而且方法简单、高效,装置灵活,可产业化推广应用。To sum up, the present invention not only successfully prepares the
此外,以上实施例中所用的各种参数仅为参考,熟悉本领域的相关技术人员可根据具体需要进行相应的调整变换,以达到不同产品的目的,但这些调整变换均属于本申请权利要求所包含的范围之内。In addition, the various parameters used in the above examples are for reference only, and those skilled in the art can make corresponding adjustments and transformations according to specific needs to achieve the purpose of different products, but these adjustments and transformations all belong to the claims of the present application. within the scope of inclusion.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211734380.2A CN116000333B (en) | 2022-12-30 | 2022-12-30 | Device for preparing metal fin with wave structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211734380.2A CN116000333B (en) | 2022-12-30 | 2022-12-30 | Device for preparing metal fin with wave structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116000333A true CN116000333A (en) | 2023-04-25 |
CN116000333B CN116000333B (en) | 2024-04-30 |
Family
ID=86024674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211734380.2A Active CN116000333B (en) | 2022-12-30 | 2022-12-30 | Device for preparing metal fin with wave structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116000333B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119566372A (en) * | 2025-02-10 | 2025-03-07 | 靖江市新博液压件有限公司 | Drilling equipment and drilling method for overflow valve machining |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4419315A (en) * | 1981-12-23 | 1983-12-06 | Gerald Kessler | Extruded fin-type weatherstrip |
JPS60202294A (en) * | 1984-03-27 | 1985-10-12 | Matsushita Electric Ind Co Ltd | Heat exchanger equipped with fin |
JPH05277600A (en) * | 1992-04-03 | 1993-10-26 | Hitachi Cable Ltd | Metal pipe inner surface processing equipment |
CN103831588A (en) * | 2014-02-28 | 2014-06-04 | 华南理工大学 | Large-strain extruding and cutting preparation method for ultra-fine grain or nanocrystalline metallic material |
CN106270583A (en) * | 2016-09-19 | 2017-01-04 | 华南理工大学 | A kind of cutting gang tool of big strain extrusion Ultra-fine Grained micro-toothing sheet metal strip |
CN106391913A (en) * | 2016-11-10 | 2017-02-15 | 华南理工大学 | Device and method for forming three-dimensional internal finned tubes based on multi-blade ploughing-extrusion |
-
2022
- 2022-12-30 CN CN202211734380.2A patent/CN116000333B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4419315A (en) * | 1981-12-23 | 1983-12-06 | Gerald Kessler | Extruded fin-type weatherstrip |
JPS60202294A (en) * | 1984-03-27 | 1985-10-12 | Matsushita Electric Ind Co Ltd | Heat exchanger equipped with fin |
JPH05277600A (en) * | 1992-04-03 | 1993-10-26 | Hitachi Cable Ltd | Metal pipe inner surface processing equipment |
CN103831588A (en) * | 2014-02-28 | 2014-06-04 | 华南理工大学 | Large-strain extruding and cutting preparation method for ultra-fine grain or nanocrystalline metallic material |
CN106270583A (en) * | 2016-09-19 | 2017-01-04 | 华南理工大学 | A kind of cutting gang tool of big strain extrusion Ultra-fine Grained micro-toothing sheet metal strip |
CN106391913A (en) * | 2016-11-10 | 2017-02-15 | 华南理工大学 | Device and method for forming three-dimensional internal finned tubes based on multi-blade ploughing-extrusion |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119566372A (en) * | 2025-02-10 | 2025-03-07 | 靖江市新博液压件有限公司 | Drilling equipment and drilling method for overflow valve machining |
Also Published As
Publication number | Publication date |
---|---|
CN116000333B (en) | 2024-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116000333A (en) | Device for preparing metal fin with wave structure and preparation method thereof | |
US8844134B2 (en) | Method of manufacturing a heat exchanger | |
CN112601420B (en) | Large radiator with spacing adjustment structure and working method thereof | |
CN113001182B (en) | Combined tool, device and method for forming array structure fins | |
CN107532863A (en) | Heat exchanger inserts the device of flat tube with fin | |
CN215032673U (en) | Fin stamping process device | |
CN2501282Y (en) | Bladed Fin Heatsink | |
CN106847765B (en) | A kind of heat-radiating substrate with micro-structure | |
CN216501805U (en) | Blanking die with variable locator | |
CN109848666A (en) | A kind of production method of microchannel cold plates | |
CN210497880U (en) | Corner cutting die for machining radiator fins | |
CN100425110C (en) | Processing method for planing pattern fin slices radiator and tools thereof | |
CN116237771A (en) | A method and device for preparing metal fins with needle array structure | |
Zhang et al. | Fabrication and mechanism analysis of wavy fins using a novel machining method | |
CN210189247U (en) | Multistage cutting tool for aluminum die castings | |
CN1091408C (en) | Stacked laminate mold and method of making | |
CN115889831B (en) | A composite tool for preparing inclined array structure fins and its preparation method | |
CN2663074Y (en) | Planing device for planing radiators | |
CN116197423B (en) | A combined tool and method for preparing three-dimensional array structure metal fins | |
CN112276266A (en) | A processing device and processing method for curved microchannel structure | |
CN103324258B (en) | Heat exchanger and manufacturing method thereof | |
CN215316090U (en) | Shovel tooth cutter and shovel tooth forming machine | |
CN219378668U (en) | Continuous blanking and forming module for products | |
CN2370464Y (en) | Computer chip radiator | |
CN212946826U (en) | Cooling device for die steel processing machine tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |