[go: up one dir, main page]

CN115993154A - 一种自供能水流量检测仪 - Google Patents

一种自供能水流量检测仪 Download PDF

Info

Publication number
CN115993154A
CN115993154A CN202310079185.9A CN202310079185A CN115993154A CN 115993154 A CN115993154 A CN 115993154A CN 202310079185 A CN202310079185 A CN 202310079185A CN 115993154 A CN115993154 A CN 115993154A
Authority
CN
China
Prior art keywords
stator
rotor
electrode
impeller
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310079185.9A
Other languages
English (en)
Inventor
程廷海
何思扬
王中林
李恒禹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Nanoenergy and Nanosystems
Original Assignee
Beijing Institute of Nanoenergy and Nanosystems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Nanoenergy and Nanosystems filed Critical Beijing Institute of Nanoenergy and Nanosystems
Priority to CN202310079185.9A priority Critical patent/CN115993154A/zh
Publication of CN115993154A publication Critical patent/CN115993154A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本申请公开了一种自供能水流量检测仪包括壳体、动力单元、传感单元、发电单元、电源管理单元和通讯单元,其中,壳体具有流体通道,动力单元的设置于流体通道,动力单元包括叶轮,流体通道内的流体用于驱动叶轮转动;传感单元与叶轮传动连接,叶轮用于驱动传感单元生成传感信号;发电单元与叶轮传动连接,叶轮还用于驱动发电单元生成电信号为电源管理单元供电;电源管理单元与通讯单元电连接,用于为通信单元供电;通讯单元用于采集传感信号并发送至远程终端。本申请的监测仪表可以安装于流体管路中,流体进入流体通道使叶轮转动。叶轮在转动时传动于传感单元和发电单元,由此生成传感信号和电信号。通过监测传感信号实现对流体流量实时监测。

Description

一种自供能水流量检测仪
技术领域
本申请涉及仪表技术领域,特别涉及一种自供能水流量检测仪。
背景技术
流体流量监测对于工业生产、日程生活以及流体运输均具有十分重要的实际意义,智能监测传感器更是广泛应用于各种管网中,如:城市供水、农业灌溉、工业运输、污水排放以及石油开采等领域。而其中最常用的传统流量监测传感器主要是机械式传感器,而随着“智慧城市”的概念引入,智能传感器领域也正逐渐兴起。
智能传感器的基本用途在于精准监测流量的信息并记录,因此,提高监测精度是提升智能制造水平,促进传感器行业发展的重中之重。现有技术中用于检测液体的仪表需要外部电源持续的供电,或定期更换锂电池,才能够保证仪表实时的对液体流量进行监测,进而导致能源消耗较高。
发明内容
本申请提供了一种自供能水流量检测仪,在检测液体流量的同时,还能够降低能源的消耗。
为了达到上述目的,本申请提供的一种自供能水流量检测仪包括壳体、动力单元、传感单元、发电单元、电源管理单元和通讯单元,其中,所述壳体具有流体通道,所述动力单元的设置于所述流体通道,所述动力单元包括叶轮,所述流体通道内的流体用于驱动所述叶轮转动;所述传感单元与所述叶轮传动连接,所述叶轮用于驱动所述传感单元生成传感信号;所述发电单元与所述叶轮传动连接,所述叶轮还用于驱动所述发电单元生成电信号为所述电源管理单元供电;所述电源管理单元与所述通讯单元电连接,用于为所述通信单元供电;所述通讯单元用于采集所述传感信号并发送至远程终端。
上述自供能水流量检测仪可以安装于流体管路中,流体管路中的流体进入壳体的流体通道,使动力单元的叶轮转动。叶轮在转动的过程中,同时传动于传感单元和发电单元,由此传感单元生成传感信号,发电单元生成电信号。传感信号的频率与流体的流量呈正相关,通过监测传感信号实现对流体的流量实时的监测。发电单元生成的电信号能够为电源管理单元供电,同时电源管理单元还能够为通讯单元供电,从而使得上述自供能水流量检测仪实现自供电,节约了能耗。通讯单元对实时采集的传感信号进行处理转换成流体实时流量数据发送至远程终端。
在可选的技术方案中,所述动力单元还包括叶轮盒,所述叶轮设置于所述叶轮盒中;所述叶轮盒的侧壁设有通孔,所述流体从所述通孔流入所述叶轮盒中驱动所述叶轮转动。
在可选的技术方案中,所述传感单元包括第一转子和第一定子,所述第一转子通过转轴与所述叶轮传动连接,所述第一转子在所述叶轮的驱动下相对于第一定子转动以产生所述传感信号。
在可选的技术方案中,所述第一转子包括多个第一摩擦片和第一转子基板,所述第一摩擦片设置于所述第一定子基板朝向所述第一定子的一侧,且沿所述第一转子基板的周向分布;所述第一定子包括一个第一电极片、多个第二电极片和第一定子基板,所述第一电极片和多个第二电极片设置于所述第一定子基板朝向所述第一摩擦片的一侧;多个所述第二电极片沿所述第一定子基板的周向均布,所述第一电极片位于任意相邻的两个所述第二电极片之间,所述第一电极片的厚度a与所述第二电极片的厚度b,满足a>b;所述第一转子相对于所述第一定子转动以驱动所述第一摩擦片与所述第一电极片接触实现电荷转移,并且所述第一摩擦片与所述第二电极片非接触产生所述传感信号。
在可选的技术方案中,所述发电单元包括第二定子和第一磁性件,所述第二定子包括第一本体和第一线圈,所述第一本体设有第一容置槽,所述第一线圈位于所述第一容置槽中,所述第二定子位于第一转子背离所述第一定子的一侧。所述第一磁性件设置于所述第一转子基板朝向所述第二定子的一侧,所述第一磁性件的位置与所述第一线圈位置对应。所述第一转子相对于所述第二定子转动以驱动所述第一磁性件相对于所述第一线圈移动产生所述电信号。
在可选的技术方案中,所述第一转子包括基架和多个第二摩擦片,所述基架具有多个沿所述基架的轴心呈放射状分布的第一支板,所述第二摩擦片设置于所述第一支板远离所述基架的轴心的一端且与所述第一支板一一对应,所述第二摩擦片平行于所述基架的轴向方向。所述第一定子包括第一套筒和多个第三电极片,多个所述第三电极片设置于所述第一套筒的内壁。所述第一转子设置于所述第一套筒内,所述第一转子相对于所述第一定子转动以驱动所述第二摩擦片依次与每个所述第三电极片摩擦产生所述传感信号。
在可选的技术方案中,所述发电单元包括第三转子和第三定子,所述第三转子包括第二转子基板和多个第三摩擦片,多个所述第三摩擦片沿所述第二转子基板的周向分布。所述第三定子包括第二定子基板和多个第四电极片,多个所述第四电极片沿所述第二定子基板的周向均匀分布,相邻的两个所述第四电极片之间电连接。所述第三转子相对于所述第三定子转动以驱动第三摩擦片与所述第四电极片摩擦产生所述电信号。
在可选的技术方案中,所述第一转子包括转动块和多个第五电极片,多个所述第五电极片设置于所述转动块的侧壁,且排列为p行,沿所述转动块的轴向方向每列所述第五电极片位置对应。所述第一定子包括第四摩擦片和多个第六电极片,所述第四摩擦片为圆筒状,多个所述第六电极片设置于所述第四摩擦片的外壁,且沿所述第四摩擦片的轴向,相邻的两个所述第六电极片交错设置,所述第六电极片排列为s行,s=p。所述第一转子相对于所述第一定子转动以驱动所述第五电极片与所述第四摩擦片摩擦产生所述传感信号。
在可选的技术方案中,所述发电单元包括第四转子和第四定子,所述第四转子包括第三转子基板和多个第五摩擦片,所述第五摩擦片沿第三转子基板的周向分布。所述第四定子包括第三定子基板和多个第七电极片,多个所述第七电极片沿第三定子基板的周向分布。所述第四转子相对于所述第四定子转动以驱动第五摩擦片与所述第七电极片摩擦产生所述电信号。在可选的技术方案中,所述第一转子包括转子支架和多个第六摩擦片,所述转子支架具有多个沿所述转子支架的轴心呈放射状分布的第二支板,所述第六摩擦片设置于所述第二支板远离所述转子支架的轴心的一端且与所述第二支板一一对应,所述第六摩擦片平行于所述转子支架的轴向方向。所述第一定子包括第二套筒和多个第八电极片,多个所述第八电极片设置于所述第二套筒内壁。所述第一转子设置于所述第二套筒中,所述第一转子相对于所述第二套筒转动以驱动所述第六摩擦片与所述第八电极片摩擦产生所述传感信号。
在可选的技术方案中,所述发电单元包括第五定子和第二磁性件,所述第五定子包括第二本体和第二线圈,所述第二本体设有第二容置槽,所述第二线圈位于所述第二容置槽中,所述第五定子连接于所述第二套筒的一端。所述第二磁性件设置于所述转子支架的相邻两个所述第六摩擦片之间,且所述第二磁性件的位置与所述第二线圈位置对应。所述第一转子相对于所述第五定子转动以驱动所述第二磁性件相对所述第二线圈移动产生所述电信号。
在可选的技术方案中,所述发电单元还包括第六定子,所述第六定子设置与所述第二转子背离所述第五定子的一侧。所述第六定子包括第三本体和第三线圈,所述第三本体设有第三容置槽,所述第三线圈位于所述第三容置槽中,所述第三线圈与所述第二线圈的位置对应。所述第一转子相对于所述第六定子转动以驱动所述第二磁性件相对所述第三线圈移动产生所述电信号。
在可选的技术方案中,所述转轴与所述叶轮通过磁性件磁吸附连接。
在可选的技术方案中,所述通讯单元包括单片机和显示模块,所述单片机与所述显示模块电连接;所述电池管理单元包括整流电路,所述整流电路与所述发电单元电连接。
附图说明
图1为本申请实施例提供的自供能水流量检测仪的一种结构示意图;
图2为本申请实施例提供的自供能水流量检测仪的壳体结构示意图;
图3为本申请实施例的动力单元的结构示意图;
图4为本申请实施例的叶轮盒的结构示意图;
图5为本申请实施例的密封盒的结构示意图;
图6为实施例一中第一转子的结构示意图;
图7为实施例一中第一定子的结构示意图;
图8为实施例一中第二定子的结构示意图;
图9为实施例一中第一转子基板的另一角度的结构示意图;
图10为本申请实施例中支架的结构示意图;
图11为实施例一中第一转轴的结构示意图;
图12为实施例一中第一定子、第二定子、第一转子、支架和密封盒的装配图;
图13为实施例二中第一转子的结构示意图;
图14为实施例二中第一定子的结构示意图;
图15为实施例二中第三转子的结构示意图;
图16为实施例二中第三定子的结构示意图;
图17为实施例二中第二转轴的结构示意图;
图18为实施例二中第一转子、第一定子、第三转子、第三定子、支架和密封盒的装配图;
图19为实施例三中第一转子的结构示意图;
图20为实施例三中第一定子的结构示意图;
图21为实施例三中第四转子的结构示意图;
图22为实施例三中第四定子的结构示意图;
图23为实施例三中第三转轴的结构示意图;
图24为实施例三中第一转子、第一定子、第四转子、第四定子、第三转轴、支架和密封盒的结构示意图;
图25为实施例四中第一转子的结构示意图;
图26为实施例四中第一定子和第六定子的装配图;
图27为实施例四中第五定子的结构示意图;
图28为实施例四中第一转子、第一定子、第五定子、第六定子、支架、第四转轴、密封盒的结构示意图;
图29为实施例四中第四转轴的结构示意图。
附图标记:
1-壳体;2-动力单元;17-流体通道;31-叶轮盒;32-叶轮;312-进液孔;324-叶轮轴;322-叶片;21-密封盒;215-第二卡块;15-容纳腔;12-顶盖;13-顶罩玻璃;
242-第一摩擦片;243-第一转子基板;232-第二电极片;231-第一电极片;234-第一定子基板;25-第二定子;245-第一磁性件;251-第一本体;252-第一线圈;22-支架;221-支架顶板;225-支架底板;2251-中心孔;223-较细部;224-较粗部;24-第一转轴;2411-第一顶针;2414-第二顶针;222-第一插孔;213-第二插孔;244-第一环状磁铁;321-第二环状磁铁;212-第一卡槽;
62-基架;621-第一支板;623-第二摩擦片;632-第一套筒;631-第三电极片;64-第三转子;641-第三摩擦片;65-第三定子;642-第二转子基板;652-第二定子基板;651-第四电极片;61-第二转轴;611-第一顶针、614-第二顶针、612-第一凸台、613-第二凸台;
731-转动块;733-第五电极片;722-第四摩擦片;723-第六电极片;74-第四转子;75-第四定子;742-第三转子基板;741-第五摩擦片;752-第三定子基板;751-第七电极片;721-支撑套筒;76-第三转轴;761-第三凸台;762-第四凸台;763-第三顶针;764-第四顶针;
813-转子支架;812-第六摩擦片;8131-第二支板;831-第二套筒;832-第八电极片;82-第五定子;811-第二磁性件;821-第二本体;822-第二线圈;8211-第二容置槽;83-第六定子;833-第三线圈;830-第三本体;8301-第三容置槽;84-第四转轴;841-第五顶针;843-第六顶针;842-安装键。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本申请实施例提供的自供能水流量检测仪的一种结构示意图,图2为本申请实施例提供的自供能水流量检测仪的壳体结构示意图,图3为本申请实施例的动力单元的结构示意图。请结合图1~图3,一种自供能水流量检测仪包括壳体1、动力单元2、传感单元、发电单元、通讯单元和电源管理单元。其中,上述壳体1具有流体通道17,动力单元2的设置于流体通道17,动力单元2包括叶轮32,流体通道17内的流体用于驱动叶轮32转动。上述传感单元与叶轮32传动连接,叶轮32用于驱动传感单元生成传感信号。上述发电单元与叶轮32传动连接,叶轮32还用于驱动发电单元生成电信号为电源管理单元供电。上述电源管理单元与通讯单元电连接,用于为通信单元供电。上述通讯单元用于采集传感信号并发送至远程终端。
上述自供能水流量检测仪可以安装于流体管路中,流体管路中的流体进入壳体1的流体通道17,使动力单元2的叶轮32转动。叶轮32在转动的过程中,同时传动于传感单元和发电单元,由此传感单元生成传感信号,发电单元生成电信号。传感信号的频率与流体的流量呈正相关,通过监测传感信号实现对流体的流量实时的监测。发电单元生成的电信号能够为电源管理单元供电,同时电源管理单元还能够为通讯单元供电,从而使得上述自供能水流量检测仪实现自供电,节约了能耗。通讯单元对实时采集的传感信号进行处理转换成流体实时流量数据发送至远程终端。
在可选的实施例中,上述通讯单元(图中未示出)可以包括单片机、无线通信模块和显示模块。单片机与显示模块电连接。其中,单片机可以为51系列单片机、STM32系列单片机等。无线通信模块可以为蓝牙模块、距离无线通信模块(LoRa)、单片射频收发模块(nRF24L01)等。具体的,单片机可以采用以STM32F103为核心芯片的单片机。无线通信模块采用nRF24L01。单片机将传感单元输出的模拟信号转化为数字信号并控制无线通信模块将数字信号发送到远程终端,进而实现流体的流量的实时监测。或者,单片机将传感单元输出的模拟信号转化为数字信号后直接传输到显示模块上显示。
在可选的实施例中,上述电源管理单元可以包括整流电路、DC-DC转换电路、全控开关电路和电池。其中,整流电路种类包括半波整流电路、全波整流电路、桥式整流电路与倍压整流电路等。具体的,整流电路以桥式整流电路为核心。电池采用以18650充电锂电池为核心的电池。全控开关电路采用以MOS管2N7000为核心的全控开关。发电单元将输出的交流电信号通过桥式整流电路转换为直流电,DC-DC转换电路将直流电变流处理,通过全控开关将转换后的电信号进行分配,当通讯单元的电能需求大时电池会进行补充,实现有源协同供电。
在可选的实施例中,上述显示模块还可以包括无线电路。该无线电路用于与上述远程终端通信,将显示模块的显示数据发送至远程终端。
图5为本申请实施例的密封盒的结构示意图。如图5所示,在可选的实施例中,上述自供能水流量检测仪还可以包括密封盒21,上述动力单元2、传感单元、发电单元、通讯单元和电源管理单元安装于该密封盒21中,避免被流体浸泡而损坏。
图3为本申请实施例的动力单元的结构示意图,图4为本申请实施例的叶轮盒的结构示意图。如图3图4所示,在可选的实施例中,上述动力单元还可以包括叶轮盒31,叶轮32设置于叶轮盒31中。叶轮盒31的侧壁设有进液孔312,流体从进液孔312流入叶轮盒31中驱动叶轮32转动。具体的,上述叶轮盒31可以为圆柱形腔体。叶轮32包括叶轮轴324和沿叶轮轴324周向设置的叶片322,叶片322呈放射状排列。叶轮32与叶轮盒31同心设置。上述进液孔312可以为切向孔,即进液孔312的朝向与叶轮轴324具有一定角度,以使流体从进液孔312进入叶轮盒31时能够冲向叶轮32的叶片322,而非冲向叶轮轴324,减少阻碍叶轮32的转动的情况。
请继续参考图2,在可选的实施例中,上述壳体1具有容纳腔15,密封盒21可以设置于容纳腔15中。流体通道17位于容纳腔15的一端且与容纳腔15相互连通。叶轮盒31设置于流体通道17中。叶轮盒31顶部与密封盒21的底部对接。壳体1还包括顶盖12和顶罩玻璃13。顶罩玻璃13嵌设与顶盖12中。顶盖12罩设于容纳腔15顶部。
在可选的实施例中,上述传感单元可以包括第一转子和第一定子,第一转子通过转轴与叶轮32传动连接。具体的,第一转子与第一定子相对且同心设置。第一转子在叶轮的驱动下相对于第一定子转动以产生传感信号。
在可选的实施例中,上述转轴与叶轮的连接可以采用磁性件进行磁吸式连接。
下面举不同实施例对传感单元和发电单元的结构及不同的组合形式进行详细说明。
实施例一:
图6为实施例一中第一转子的结构示意图。如图6所示,上述传感单元可以包括第一转子和第一定子。上述第一转子包括多个第一摩擦片242和第一转子基板243,第一转子基板243可以为圆形。第一摩擦片242设置于第一转子基板243朝向第一定子的一侧,且沿第一转子基板243的周向均匀分布。
图7为实施例一中第一定子的结构示意图。如图7所示,第一定子包括一个第一电极片231,多个第二电极片232和第一定子基板234。第一电极片231和多个第二电极片232设置于第一定子基板234朝向第一摩擦片242的一侧,且第一电极片231和第二电极片232与任意一个第一摩擦片242的位置对应,以使第一定子和第一转子相对转动时第一摩擦片242能够与第一电极片231接触。多个第二电极片232沿第一定子基板234的周向均匀分布。第一电极片231位于任意两个相邻的两个第二电极片232之间。第一电极片231的厚度a与第二电极片232的厚度b,满足a>b。第一转子相对于第一定子转动以驱动第一摩擦片242与第一电极片231接触产生电荷转移,同时,第一摩擦片242与第二电极片232非接触相对转动产生传感信号。
上述两个相邻的第二电极片232构成一对电极。由于第一电极片231的厚度大于第二电极片232的厚度,因此,在第一转子转动时,上述第一电极片231与第一摩擦片242为接触状态,第二电极片232与第一摩擦片242为非接触的状态。在第一转子转动时,首先,上述第一电极片231与第一摩擦片242接触实现第一电极片231和第一摩擦片242上的电荷转移,使第一摩擦片242带负电荷。然后,第一摩擦片242继续转动,经过第二电极片232时,第一摩擦片242和第二电极片232电荷发生转移,使第二电极片232带正电从而产生传感信号。第一电极片231能够为第二电极片232补充电荷。上述非接触模式提高了第二电极片232使用的耐久性,减少了第二电极片232的摩擦磨损从而提高第一定子的使用寿命。并且,提高了监测精度。
进一步的,第二电极片232与第一电极片231形状相同,且面积相同。第一定子基板234可以为圆形,第一电极片231和第二电极片232可以为扇形。
在具体选择上述第一电极片231、第二电极片232和第一摩擦片242的材质时,可以选择铜、铝、银、兔毛等导电材质作为第一电极片231的材质;铜、铝、银等导电材质作为第二电极片232的材质;聚四氟乙烯(PTFE)、氟化乙烯丙烯共聚物(FEP)等作为第一摩擦片的材质。在上述实施例中,优选兔毛作为第一电极片231的材质,铜作为第二电极片232的材质,聚四氟乙烯(PTFE)作为第一摩擦片242的材质。选择上述材质能够起到生成较稳定的电信号的效果。
图8为实施例一中第二定子的结构示意图,图9为实施例一中第一转子基板的另一角度的结构示意图。请结合图8和图9,上述发电单元可以包括第二定子25和第一磁性件245,第二定子包括第一本体251和第一线圈252,第一本体251设有第一容置槽,第一线圈252位于第一容置槽中。第二定子25位于第一转子背离第一定子的一侧。第一磁性件245设置于第一转子基板243朝向第二定子的一侧,第一磁性件245的位置与第一线圈252位置对应。具体的,第一磁性件245的数量可以与第一线圈252的数量一致,本实施例中采用六个第一磁性件245,对应的设置6个线圈252。第一转子相对于第二定子转动以驱动第一磁性件245相对于第一线圈252移动,第一磁性件245切割第一线圈252的磁感线产生电信号。生成的电信号能够通过电源管理单元为通讯单元供能。
图10为实施例一中支架的结构示意图,图12为实施例一中第一定子、第二定子、第一转子、支架和密封盒的装配图。如图10和图12所示,进一步的,自供能水流量检测仪还可以包括支架22,该支架22包括支架顶板221和支架底板225,支架顶板221与支架底板225相对的边缘设有支架梁。支架梁上端的较细部223可以用于安装第一定子基板234,支架梁下端的较粗部224用于安装第一本体251。为了使第一定子基板234和第一本体251安装稳定,可以设置三个支架梁。相应的,第一定子基板234和第一本体251设有与支架梁位置对应的安装孔。
图11为实施例一中第一转轴的结构示意图。结合图10、图11和图5,第一转子通过第一转轴24固定于上述支架22上,具体的,第一转轴24可以包括位于转轴顶部的第一顶针2411和位于转轴底部的第二顶针2414。上述支架顶板221的圆心位置设有第一插孔222。上述密封盒21的底部设有第二插孔213。第一顶针2411插入第一插孔222中,第二顶针2414插入第二插孔213中转轴的侧壁还设有转子安装键2412,第一转子基板243通过安装键2412固定于第一转轴24,使第一转子基板243随第一转轴24一起转动。
请继续参考图3、图5、图6上述第一转轴24靠近叶轮的一端设有第一环状磁铁244,叶轮轴324朝向第一转子的一端设有第二环状磁铁321。第一转轴24穿过支架底板225的中心孔2251向下沿伸。第一环状磁铁244设置于密封盒21底部朝向内侧的第一卡槽212中。第二环状磁铁321套设于密封盒21底部朝向外侧的第二卡块215。第一环状磁铁244与下方的第二环状磁铁321相互吸附,从而使得第一转轴24与叶轮轴324传动连接。
实施例二:
图13为实施例二中第一转子的结构示意图。如图13所示,上述传感单元可以包括第一转子和第一定子。第一转子可以包括基架62和多个第二摩擦片623。上述基架62具有多个沿基架62的轴心呈放射状分布的第一支板621,第二摩擦片623设置于第一支板621远离基架的轴心的一端,且与第一支板621一一对应。第二摩擦片623平行于基架62的轴向方向。
图14为实施例二中第一定子的结构示意图。如图14所示,第一定子包括第一套筒632和多个第三电极片631,多个第三电极片631设置于第一套筒632的内壁。第一转子设置于第一套筒632内,第一转子相对于第一定子转动以驱动第二摩擦片623依次与每个第三电极片631摩擦产生传感信号。
上述第二摩擦片623的材质可以为聚四氟乙烯(PTFE)、氟化乙烯丙烯共聚物(FEP)等。优选的,第二摩擦片623的材质为氟化乙烯丙烯共聚物(FEP)。其拉伸强度、耐磨性、抗蠕变性低于许多工程塑料。FEP是化学惰性的,在很宽的温度和频率范围内具有较低的介电常数。由于第二摩擦片623质地较软,将第一转子安装于第一套筒632时,第二摩擦片623能够向内弯曲,从而使第二摩擦片623与第三电极片631的接触面积较大,进而使生成的传感信号精度较高。
可选的,第三电极片631可以为叉指电极,相邻的两个第三电极片631组成一对电极。第三电极片631的数量为k,k的数量决定了传感信号的精度,k的值越高,监测精度越高。K的范围可以是2<k<1000。在本实施例中,k=12。第三电极片631的材质可以为铜、铝、银、兔毛等,优选为铜。
图15为实施例二中第三转子的结构示意图,图16为实施例二中第三定子的结构示意图。如图15图16所示,可选的,发电单元可以包括第三转子64和第三定子65,第三转子64包括第二转子基板642和多个第三摩擦片641,多个第三摩擦片641沿第二转子基板642的周向均匀分布。第三定子65包括第二定子基板652和多个第四电极片651,多个第四电极片651沿第二定子基板652的周向均匀分布。相邻的两个第四电极片651电连接,构成一对电极。第三转子64相对于第三定子65转动以驱动第三摩擦片641与第四电极片651摩擦产生电信号。
可选的,上述第三摩擦片641的数量m与第四电极片651的数量n,满足n=4m。具体的,多个第三摩擦片641的总面积决定了产生电信号的多少。本实施例中,m=6。相邻的两个第四电极片651组成一对电极,该一对电极为两相等间距电极。等间距电极相较等角度电极输出性能更高,并且两相等间距电极发电量高于电极片间等角度排布方式的发电量。
可选的,上述任意两个相邻的第四电极片651构成一对电极。本实施例中有24个第四电极片651,那么就是有12对电极。间隔的一对电极的两个第四电极片651电连接。也就是说,选其中任意一对电极为第一对电极,按顺时针方向排列为第二对电极、第三对电极、第四对电极等以此类推。其中,若第一对电极的两个第四电极片电连接,那么第三、第五、第七、第九、第十一对电极的两个第四电极片也电连接。电连接的两个第四电极片651之间可以进行电荷转移。
在具体选择上述第三摩擦片641的材质时,可以选择聚四氟乙烯(PTFE)、氟化乙烯丙烯共聚物(FEP)等,优选聚四氟乙烯(PTFE)。聚四氟乙烯具有耐高温、摩擦系数较低的优点。第四电极片的材质可以为铜、铝、银、兔毛等,优选为铜。
图17为实施例二中第二转轴的结构示意图,图18为实施例二中第一转子、第一定子、第三转子、第三定子、支架和密封盒的装配图。如图17图18所示,基架62和第二转子基板642通过安装键固定安装于第二转轴61,能够随第二转轴61一起转动。第二转轴61与叶轮轴324传动连接。具体的,第二转轴61与叶轮轴也可以采用磁吸吸附的方式进行连接,与实施例一中的第一转轴24与叶轮轴324的连接方式相同,在此不再进行赘述。转轴周向可以设有直径不同的凸台,基架62和第二转子基板642卡接于不同的凸台,减少基架62或第二转子基板642沿思维转轴61的轴向方向滑动的情况。具体的,基架62可以安装于第一凸台612,第二转子基板642可以安装于第二凸台613。第二定子基板652和第一套筒632可以固定安装于支架22,本实施例中的支架与实施例一中的支架结构相同。第二转轴61的顶部和底部分别设有第一顶针611和第二顶针614,第一顶针611插入支架的第一插孔222,第二顶针614插入密封盒的第二插孔213,实现第二转轴61的装配。第二转轴61、支架和密封盒的装配与实施例一中第一转轴的装配方式相同,在此不再进行赘述。
实施例三:
图19为实施例三中第一转子的结构示意图。如图19所示,上述传感单元可以包括第一转子和第一定子。第一转子可以包括转动块731和多个第五电极片733,转动块731可以为圆柱体。多个第五电极片733设置于转动块731的侧壁,且排列为p行,沿转动块731的轴向方向每列第五电极片733位置对应。具体的,上述p=3。多个第五电极片733排列成三行。每一行的第五电极片与相邻的一行的第五电极片位置对应。也就是说,每一列具有三个第五电极片733。
图20为实施例三中第一定子的结构示意图,如图20所示,第一定子包括第四摩擦片722和多个第六电极片723,第四摩擦片722为圆筒状,多个第六电极片723设置于第四摩擦片722的外壁,且沿第四摩擦片722的轴向方向,相邻的两个第六电极片交错设置,第六电极片排列为s行,s=p。在本实施例中,s=p=3。每行第六电极片723为一相,第一定子共有三相电极,每一相电极之间具有一定相位差。三相电极通过Q度的相位差以提高流体流量检测的分辨率。在本实施例中,Q=30°。第一转子相对于第一定子转动以驱动第五电极片733与第四摩擦片722摩擦产生传感信号。
上述第四摩擦片722的材质可以为聚四氟乙烯(PTFE)、氟化乙烯丙烯共聚物(FEP)等,优选为聚四氟乙烯(PTFE)。第六电极片723的材质可以为铜、铝、银、兔毛等,优选为铜。第五电极片733的材质可以为金、铜、铝、银、兔毛等,优选为铜。
图21为实施例三中第四转子的结构示意图,图22为实施例三中第四定子的结构示意图。如图21图2所示,可选的,上述发电单元可以包括第四转子74和第四定子75,第四转子74包括第三转子基板742和多个第五摩擦片741,第五摩擦片741沿第三转子基板742的周向均匀分布。第四定子包括第三定子基板752和多个第七电极片751,多个第七电极片751第三定子基板的周向分布。第四转子74相对于第四定子75转动以驱动第五摩擦片741与第七电极片751摩擦产生电信号。
上述第五摩擦片741的材料包括聚四氟乙烯(PTFE)、氟化乙烯丙烯共聚物(FEP)、兔毛、木材、织物等,优选为兔毛。
在本实施例中,上述第七电极片751的数量可以为32个。第五摩擦片741的数量为4个。上述相邻的两个第七电极片751组成一对电极,第七电极片751通过并联相位差整流叠加可实现低峰值因子,有效提高平均功率。上述第五摩擦片741能够覆盖4个第七电极片751。第五摩擦片741的宽度大于第七电极片751的宽度。间隔的一对电极的两个第七电极片751电连接,同实施例二中第四电极片的电连接关系。
请继续参考图20,上述第一定子还包括支撑套筒721,第四摩擦片722安装于支撑套筒721,具体的,第六电极片723设置于支撑套筒721与第四摩擦片722之间。
图23为实施例三中第三转轴的结构示意图,图24为实施例三中第一转子、第一定子、第四转子、第四定子、第三转轴、支架和密封盒的结构示意图。请结合图23和图24,转动块731和第三转子基板742通过安装键固定安装于第三转轴76。第三转轴76与叶轮轴324传动连接。具体的,第三转轴76与叶轮轴324也可以采用磁吸吸附的方式进行连接,与实施例一中的第一转轴24与叶轮轴324的连接方式相同,在此不再进行赘述。叶轮轴324转动驱动第三转轴76转动。第三转轴76周向可以设有直径不同的凸台,转动块731和第三转子基板742卡接于不同的凸台,减少转动块731或第三转子基板742沿思维第三转轴76的轴向方向滑动的情况。具体的,转动块731可以安装于第三凸台761第三转子基板742可以安装于第四凸台762。第三转轴76穿过第三定子基板752的通孔。支撑套筒721和第三定子基板752可以固定安装于支架22,本实施例中的支架与实施例一中的支架结构相同。第三转轴76的顶部设有第四顶针764和底部设有第三顶针763,两个顶针分别插入支架的第一插孔222,和密封盒的第二插孔213,实现第三转轴76的装配。与实施例一中第一转轴的装配方式相同,在此不再进行赘述。
实施例四:
图25为实施例四中第一转子的结构示意图。如图25所示,上述第一转子可以包括转子支架813和多个第六摩擦片812,转子支架813具有多个沿转子支架813的轴心呈放射状分布的第二支板8131,第六摩擦片812设置于第二支板8131远离转子支架813的轴心的一端且与第二支板8131一一对应,第六摩擦片812平行于转子支架813的轴向方向。
图26为实施例四中第一定子和第六定子的装配图。如图26所示,第一定子包括第二套筒831和多个第八电极片832,多个第八电极片832设置于第二套筒831内壁。多个第八电极片832沿第二套筒831的内壁周向均匀分布,相邻的两个第八电极片832之间具有间隙。第六摩擦片812的数量决定了产生传感信号的多少。在本实施例中,第六摩擦片812的数量为6个。第一转子设置于第二套筒831中,第一转子相对于第二套筒831转动以驱动第六摩擦片812与第八电极片832摩擦产生传感信号。
图27为实施例四中第五定子的结构示意图。结合图25和图27,可选的,上述发电单元包括第五定子82和第二磁性件811,第五定子82包括第二本体821和第二线圈822,第二本体821设有第二容置槽8211,第二线圈822位于第二容置槽8211中,第五定子82连接于第二套筒831的一端。第二磁性件811设置于转子支架813的相邻两个第六摩擦片812之间,且第二磁性件811的位置与第二线圈822位置对应。第一转子相对于第五定子82转动以驱动第二磁性件811相对第二线圈822移动,第二磁性件811切割第二线圈822的磁感线产生电信号。生成的电信号能够通过电源管理单元为通讯单元供能。在本实施例中,第二磁性件811和第二线圈822的数量均为6个。
继续参考图26。可选的,上述发电单元还可以包括第六定子83,第六定子83设置与第二转子背离第五定子82的一侧。具体的,第六定子83可以固定安装于第二套筒831中。第六定子83包括第三本体830和第三线圈833,第三本体830设有第三容置槽8301,第三线圈833位于第三容置槽8301中,第三线圈833与第二线圈822的位置对应。第一转子相对于第六定子83转动以驱动第二磁性件811相对第三线圈833移动,第二磁性件811切割第三线圈833的磁感线产生电信号。生成的电信号能够通过电源管理单元为通讯单元供能。
图28为实施例四中第一转子、第一定子、第五定子、第六定子、支架、密封盒的结构示意图。如图28所示,在本实施例中,第一转子相对于第五定子82和第六定子83转动,第二磁性件811能够同时切割第二线圈822和第三线圈833的磁感线产生的电信号,相比只切割一侧的第二线圈822的磁感线产生的电信号更多。
上述第六摩擦片812的材质可以为聚四氟乙烯(PTFE)、氟化乙烯丙烯共聚物(FEP)等,优选为氟化乙烯丙烯共聚物(FEP)。第八电极片832的材质可以为铜、铝、银、兔毛等,优选为铜。
图29为实施例四中第四转轴的结构示意图。结合图28和图29,上述转子支架813通过安装键842固定安装于第四转轴84,第四转轴84与叶轮轴324传动连接。第四转轴84与叶轮轴324也可以采用磁吸吸附的方式进行连接,与实施例一中的第一转轴24与叶轮轴324的连接方式相同,在此不再进行赘述。叶轮轴324转动驱动第四转轴84转动。第二本体821和第二套筒831固定安装于支架22,本实施例中的支架与实施例一种的支架结构相同。第四转轴84的顶部设有第五顶针841和底部设有第六顶针843,第五顶针841插入支架的第一插孔222,第六顶针843插入密封盒的第二插孔213,实现第四转轴84的装配。与实施例一中第一转轴的装配方式相同,在此不再进行赘述。
在本申请的描述中,需要说明的是,术语“上”、“下”、“顶部”、“底部”、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (14)

1.一种自供能水流量检测仪,其特征在于,包括壳体、动力单元、传感单元、发电单元、电源管理单元和通讯单元,其中,
所述壳体具有流体通道,所述动力单元的设置于所述流体通道,所述动力单元包括叶轮,所述流体通道内的流体用于驱动所述叶轮转动;
所述传感单元与所述叶轮传动连接,所述叶轮用于驱动所述传感单元生成传感信号;
所述发电单元与所述叶轮传动连接,所述叶轮还用于驱动所述发电单元生成电信号为所述电源管理单元供电;
所述电源管理单元与所述通讯单元电连接,用于为所述通信单元供电;
所述通讯单元用于采集所述传感信号并发送至远程终端。
2.如权利要求1所述的自供能水流量检测仪,其特征在于,所述动力单元还包括叶轮盒,所述叶轮设置于所述叶轮盒中;所述叶轮盒的侧壁设有通孔,所述流体从所述通孔流入所述叶轮盒中驱动所述叶轮转动。
3.如权利要求2所述的自供能水流量检测仪,其特征在于,所述传感单元包括第一转子和第一定子,所述第一转子通过转轴与所述叶轮传动连接,所述第一转子在所述叶轮的驱动下相对于第一定子转动以产生所述传感信号。
4.如权利要求3所述的自供能水流量检测仪,其特征在于,所述第一转子包括多个第一摩擦片和第一转子基板,所述第一摩擦片设置于所述第一定子基板朝向所述第一定子的一侧,且沿所述第一转子基板的周向分布;
所述第一定子包括一个第一电极片、多个第二电极片和第一定子基板,所述第一电极片和多个第二电极片设置于所述第一定子基板朝向所述第一摩擦片的一侧;多个所述第二电极片沿所述第一定子基板的周向均布,所述第一电极片位于任意相邻的两个所述第二电极片之间,所述第一电极片的厚度a与所述第二电极片的厚度b,满足a>b;
所述第一转子相对于所述第一定子转动以驱动所述第一摩擦片与所述第一电极片接触使电荷转移,并且所述第一摩擦片与所述第二电极片非接触产生所述传感信号。
5.如权利要求4所述的自供能水流量检测仪,其特征在于,所述发电单元包括第二定子和第一磁性件,所述第二定子包括第一本体和第一线圈,所述第一本体设有第一容置槽,所述第一线圈位于所述第一容置槽中,所述第二定子位于第一转子背离所述第一定子的一侧;
所述第一磁性件设置于所述第一转子基板朝向所述第二定子的一侧,所述第一磁性件的位置与所述第一线圈位置对应;
所述第一转子相对于所述第二定子转动以驱动所述第一磁性件相对于所述第一线圈移动产生所述电信号。
6.如权利要求3所述的自供能水流量检测仪,其特征在于,所述第一转子包括基架和多个第二摩擦片,所述基架具有多个沿所述基架的轴心呈放射状分布的第一支板,所述第二摩擦片设置于所述第一支板远离所述基架的轴心的一端且与所述第一支板一一对应,所述第二摩擦片平行于所述基架的轴向方向;
所述第一定子包括第一套筒和多个第三电极片,多个所述第三电极片设置于所述第一套筒的内壁;
所述第一转子设置于所述第一套筒内,所述第一转子相对于所述第一定子转动以驱动所述第二摩擦片依次与每个所述第三电极片摩擦产生所述传感信号。
7.如权利要求6所述的自供能水流量检测仪,其特征在于,所述发电单元包括第三转子和第三定子,所述第三转子包括第二转子基板和多个第三摩擦片,多个所述第三摩擦片沿所述第二转子基板的周向分布;
所述第三定子包括第二定子基板和多个第四电极片,多个所述第四电极片沿所述第二定子基板的周向均匀分布,相邻的两个所述第四电极片之间电连接;
所述第三转子相对于所述第三定子转动以驱动第三摩擦片与所述第四电极片摩擦产生所述电信号。
8.如权利要求3所述的自供能水流量检测仪,其特征在于,所述第一转子包括转动块和多个第五电极片,多个所述第五电极片设置于所述转动块的侧壁,且排列为p行,沿所述转动块的轴向方向每列所述第五电极片位置对应;
所述第一定子包括第四摩擦片和多个第六电极片,所述第四摩擦片为圆筒状,多个所述第六电极片设置于所述第四摩擦片的外壁,且沿所述第四摩擦片的轴向,相邻的两个所述第六电极片交错设置,所述第六电极片排列为s行,s=p;
所述第一转子相对于所述第一定子转动以驱动所述第五电极片与所述第四摩擦片摩擦产生所述传感信号。
9.如权利要求8所述的自供能水流量检测仪,其特征在于,所述发电单元包括第四转子和第四定子,所述第四转子包括第三转子基板和多个第五摩擦片,所述第五摩擦片沿第三转子基板的周向分布;
所述第四定子包括第三定子基板和多个第七电极片,多个所述第七电极片沿第三定子基板的周向分布;
所述第四转子相对于所述第四定子转动以驱动第五摩擦片与所述第七电极片摩擦产生所述电信号。
10.如权利要求3所述的自供能水流量检测仪,其特征在于,所述第一转子包括转子支架和多个第六摩擦片,所述转子支架具有多个沿所述转子支架的轴心呈放射状分布的第二支板,所述第六摩擦片设置于所述第二支板远离所述转子支架的轴心的一端且与所述第二支板一一对应,所述第六摩擦片平行于所述转子支架的轴向方向;
所述第一定子包括第二套筒和多个第八电极片,多个所述第八电极片设置于所述第二套筒内壁;
所述第一转子设置于所述第二套筒中,所述第一转子相对于所述第二套筒转动以驱动所述第六摩擦片与所述第八电极片摩擦产生所述传感信号。
11.如权利要求10所述的自供能水流量检测仪,其特征在于,所述发电单元包括第五定子和第二磁性件,所述第五定子包括第二本体和第二线圈,所述第二本体设有第二容置槽,所述第二线圈位于所述第二容置槽中,所述第五定子连接于所述第二套筒的一端;
所述第二磁性件设置于所述转子支架的相邻两个所述第六摩擦片之间,且所述第二磁性件的位置与所述第二线圈位置对应;
所述第一转子相对于所述第五定子转动以驱动所述第二磁性件相对所述第二线圈移动产生所述电信号。
12.如权利要求11所述的自供能水流量检测仪,其特征在于,所述发电单元还包括第六定子,所述第六定子设置与所述第二转子背离所述第五定子的一侧;
所述第六定子包括第三本体和第三线圈,所述第三本体设有第三容置槽,所述第三线圈位于所述第三容置槽中,所述第三线圈与所述第二线圈的位置对应;
所述第一转子相对于所述第六定子转动以驱动所述第二磁性件相对所述第三线圈移动产生所述电信号。
13.如权利要求3所述的自供能水流量检测仪,其特征在于,所述转轴与所述叶轮通过磁性件连接。
14.如权利要求1~13任一项所述的自供能水流量检测仪,其特征在于,所述通讯单元包括单片机和显示模块,所述单片机与所述显示模块电连接;所述电池管理单元包括整流电路,所述整流电路与所述发电单元电连接。
CN202310079185.9A 2023-01-18 2023-01-18 一种自供能水流量检测仪 Pending CN115993154A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310079185.9A CN115993154A (zh) 2023-01-18 2023-01-18 一种自供能水流量检测仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310079185.9A CN115993154A (zh) 2023-01-18 2023-01-18 一种自供能水流量检测仪

Publications (1)

Publication Number Publication Date
CN115993154A true CN115993154A (zh) 2023-04-21

Family

ID=85991811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310079185.9A Pending CN115993154A (zh) 2023-01-18 2023-01-18 一种自供能水流量检测仪

Country Status (1)

Country Link
CN (1) CN115993154A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117553867A (zh) * 2024-01-09 2024-02-13 北京纳米能源与系统研究所 一种液体流量监测仪表
CN117686047A (zh) * 2024-01-29 2024-03-12 北京纳米能源与系统研究所 摩擦电式智能水表

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117553867A (zh) * 2024-01-09 2024-02-13 北京纳米能源与系统研究所 一种液体流量监测仪表
CN117553867B (zh) * 2024-01-09 2024-04-26 北京纳米能源与系统研究所 一种液体流量监测仪表
CN117686047A (zh) * 2024-01-29 2024-03-12 北京纳米能源与系统研究所 摩擦电式智能水表
CN117686047B (zh) * 2024-01-29 2024-04-26 北京纳米能源与系统研究所 摩擦电式智能水表

Similar Documents

Publication Publication Date Title
CN115993154A (zh) 一种自供能水流量检测仪
CN109921678B (zh) 一种旋转式电磁-摩擦复合纳米发电机
He et al. A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring
Ahmed et al. Integrated triboelectric nanogenerators in the era of the internet of things
Luo et al. Durability improvement of breeze‐driven triboelectric‐electromagnetic hybrid nanogenerator by a travel‐controlled approach
Fang et al. A high-performance triboelectric-electromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor IoT applications
CN116046084A (zh) 自驱动智能水表
CN211505608U (zh) 一种摩擦纳米发电式流体测速装置
Gao et al. Triple-mode hybridized generator for efficient water flow energy harvesting and water quality monitoring applications
CN112039365A (zh) 一种基于液态金属的振动能量收集装置及其应用
CN116202579A (zh) 一种自供电流量传感器
CN103427467B (zh) 风力带动旋转式压电发电充电器
CN116614021A (zh) 风能脉冲摩擦纳米发电机及风力监测系统
Zou et al. Advances in triboelectric flow sensor
CN114877918A (zh) 一种集成自供电传感装置
CN111193431A (zh) 直流输出摩擦纳米发电装置及传感设备
CN117686047B (zh) 摩擦电式智能水表
CN107843304A (zh) 一种液电分离的自发电流量计
CN111130297A (zh) 一种流体能量收集装置
CN117629323A (zh) 一种流体流量监测仪表
CN111424722A (zh) 一种基于压电陶瓷的无源智能井盖系统及其工作方法
CN116950834A (zh) 一种面向高压输电线路的复合互补型微风自供能装置
CN112968585B (zh) 一种具备转矩测量能力的高减速比谐波磁齿轮减速器
CN115347813A (zh) 一种基于无动力风帽的摩擦纳米发电装置
CN112412969A (zh) 推力轴承、轴承组件和旋转机械

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination