CN115975962A - Net path product directed synthesis - Google Patents
Net path product directed synthesis Download PDFInfo
- Publication number
- CN115975962A CN115975962A CN202211741254.XA CN202211741254A CN115975962A CN 115975962 A CN115975962 A CN 115975962A CN 202211741254 A CN202211741254 A CN 202211741254A CN 115975962 A CN115975962 A CN 115975962A
- Authority
- CN
- China
- Prior art keywords
- module
- synthesis
- cyp17a1
- hsd
- por
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明涉及生物技术领域,具体涉及网状路径产物定向合成。与利用天然微生物内源路径转化甾体底物相比,本发明在酵母底盘下,利用重新构建人工异源网状路径,通过理性组合路径组分蛋白,可实现定向合成节点产物。通过组合表达不同催化特异性的路径组分同源蛋白,可实现路径转化效率的进一步提升。同时利用在微生物底盘下构建人工孕烯醇酮合成路径,并通过引入特定下游雄烯二酮合成路径组分,实现以简单碳源为底物,定向合成雄烯二酮路径节点化合物。The invention relates to the field of biotechnology, in particular to the directional synthesis of network pathway products. Compared with the conversion of steroidal substrates by using natural microbial endogenous pathways, the present invention utilizes the reconstruction of artificial heterologous network pathways under the yeast chassis and rationally combines pathway component proteins to achieve directional synthesis of node products. Further improvements in pathway conversion efficiency can be achieved by combining homologous proteins of pathway components expressing different catalytic specificities. At the same time, the artificial pregnenolone synthesis pathway is constructed under the microbial chassis, and by introducing specific downstream androstenedione synthesis pathway components, the directional synthesis of androstenedione pathway node compounds is achieved using simple carbon sources as substrates.
Description
技术领域Technical Field
本发明涉及生物技术领域,具体涉及网状路径产物定向合成。The invention relates to the field of biotechnology, in particular to the directional synthesis of network path products.
背景技术Background Art
脊索动物中,甾体类激素合成路径由众多非特异性催化酶组成,这些酶可修饰多种结构相似的底物,因而酶之间往往共用多个底物,路径间反应交叉最终使得甾体合成路径呈现呈复杂网状催化,这大大增加了微生物定向异源合成网状路径中间节点化合物的难度。In chordates, the steroid hormone synthesis pathway is composed of numerous non-specific catalytic enzymes, which can modify a variety of structurally similar substrates. Therefore, enzymes often share multiple substrates. The cross-reactions between pathways ultimately make the steroid synthesis pathway present a complex network catalysis, which greatly increases the difficulty of microorganisms to heterologously synthesize intermediate node compounds in the network pathway.
甾体激素是一类以环戊烷多氢菲母核为基本结构是四环脂肪族碳氢化合物,该类化合物种类繁多,目前全世界生产的甾体药物已有400多种,以其抗炎、抗过敏、调节内分泌等功效得到广泛应用,到2017年甾体激素药物全球销售额达1000亿美元,为第二大类化学药物。由CYP17-3β-HSD构成的“孕烯醇酮-雄烯二酮”合成路径位于脊椎动物类固醇合成途径中的交叉路口,其中包含多种甾体激素药物的关键前体(孕烯醇酮、孕酮、17-羟基孕酮、17-羟基孕烯醇酮、DHEA、雄烯二酮、睾酮)。Steroid hormones are a class of tetracyclic aliphatic hydrocarbons with a cyclopentane polyhydrogen phenanthrene nucleus as the basic structure. There are many types of such compounds. At present, there are more than 400 steroid drugs produced in the world. They are widely used for their anti-inflammatory, anti-allergic and endocrine regulating effects. By 2017, the global sales of steroid hormone drugs reached 100 billion US dollars, making it the second largest class of chemical drugs. The "pregnenolone-androstenedione" synthesis pathway composed of CYP17-3β-HSD is located at the intersection of the vertebrate steroid synthesis pathway, which contains the key precursors of many steroid hormone drugs (pregnenolone, progesterone, 17-hydroxyprogesterone, 17-hydroxypregnenolone, DHEA, androstenedione, testosterone).
甾体激素中间体生产工艺的发展历经植物提取皂素法、化学全合成法、半合成法、新型的微生物合成法等阶段。植物提取法和微生物转化法是生产甾体激素类药物的主要方法。但动植物提取法成本较高,来源受限、同时伴有环境污染等问题。化学全合成甾体分子会涉及流程长、反应复杂、环境污染等局限。The development of the production process of steroid hormone intermediates has gone through stages such as plant extraction saponin method, chemical total synthesis method, semi-synthesis method, and new microbial synthesis method. Plant extraction method and microbial transformation method are the main methods for producing steroid hormone drugs. However, the animal and plant extraction method has high costs, limited sources, and is accompanied by environmental pollution. Chemical total synthesis of steroid molecules involves limitations such as long processes, complex reactions, and environmental pollution.
与从动物来源分离甾体相比,微生物合成甾体具有低病毒/朊病毒污染的风险。微生物合成甾体也可以避免化学合成涉及的繁琐反应步骤。在过去的研究中,酿酒酵母、大肠杆菌、解脂耶氏酵母都被应用于孕烯醇酮或其他甾体合成的研究中,其中酿酒酵母的实验中,实现了由葡萄糖为底物从头合成孕烯醇酮及下游产物氢化可的松,酿酒酵母、大肠杆菌、解脂耶氏酵母实现了由生物转化甾醇底物合成孕烯醇酮。通过引入P450scc催化系统至酿酒酵母或大肠杆菌中,并在培养环境中添加P450scc催化系统的直接底物甾醇,可实现孕烯醇酮的生物转化。在异源表达P450scc系统及P450c17系统的解脂酵母二倍体底盘细胞的培养环境中进行固醇饲喂,可使之以甾醇为底物进行生物转化,用于合成孕烯醇酮或17α-羟基孕烯醇酮。而甾体类较强的疏水性、常用微生物分枝杆菌的鲁棒性较差、灭菌成本较高,使微生物转化效率较低。Compared with steroids isolated from animal sources, microbial synthesis of steroids has a low risk of viral/prion contamination. Microbial synthesis of steroids can also avoid the cumbersome reaction steps involved in chemical synthesis. In previous studies, Saccharomyces cerevisiae, Escherichia coli, and Yarrowia lipolytica have all been used in the study of pregnenolone or other steroid synthesis. In the experiment of Saccharomyces cerevisiae, de novo synthesis of pregnenolone and downstream product hydrocortisone were achieved from glucose as substrate, and Saccharomyces cerevisiae, Escherichia coli, and Yarrowia lipolytica achieved the synthesis of pregnenolone from biotransformation of sterol substrates. The biotransformation of pregnenolone can be achieved by introducing the P450scc catalytic system into Saccharomyces cerevisiae or Escherichia coli and adding sterols, the direct substrate of the P450scc catalytic system, to the culture environment. Sterol feeding in the culture environment of Saccharomyces lipolytica diploid chassis cells heterologously expressing the P450scc system and the P450c17 system can enable them to use sterols as substrates for biotransformation and synthesis of pregnenolone or 17α-hydroxypregnenolone. However, the strong hydrophobicity of steroids, the poor robustness of commonly used microorganisms Mycobacterium, and the high cost of sterilization result in low microbial conversion efficiency.
合成生物学提供了一种新的微生物合成法,人工构建异源合成路径的功能微生物,能低能耗、高效、环境友好地生产特定结构的甾体激素类药物,可以仅以葡萄糖、甘油等为单一碳源即可生产特定甾体类化合物。1998年,Catherine Duport等通过敲除酿酒酵母固有基因erg5并引入外源基因DHCR7,实现了菜油甾醇的合成,提供了孕烯醇酮的合成前体;而后引入牛来源的P450scc催化系统和3β-HSD,实现了以葡萄糖为底物,孕酮的从头合成。2019年,本课题组基于高产菜油甾醇底盘,通过酶来源筛选和启动子辅配,构建了从头合成孕烯醇酮的解脂酵母工程菌。2003年,Florence Ménard Szczebara等在高产孕酮的酿酒酵母底盘基础上,对ATF2敲除,同时引入CYP17A1、CYP21A1、CYP11B1,成功实现了氢化可的松的从头合成。2019年,专利US10400261B2基于酿酒酵母,对氢化可的松路径基因进行多拷贝整合,获得了氢化可的松高产菌株。Synthetic biology provides a new method of microbial synthesis. It can artificially construct functional microorganisms with heterologous synthesis pathways, which can produce steroid hormone drugs of specific structures with low energy consumption, high efficiency and environmental friendliness. It can produce specific steroid compounds with only glucose, glycerol and other single carbon sources. In 1998, Catherine Duport and others achieved the synthesis of campesterol by knocking out the inherent gene erg5 of Saccharomyces cerevisiae and introducing the exogenous gene DHCR7, providing the synthetic precursor of pregnenolone; and then introduced the bovine P450scc catalytic system and 3β-HSD to achieve the de novo synthesis of progesterone with glucose as the substrate. In 2019, based on the high-yield campesterol chassis, our research group constructed a lipolytic yeast engineered bacterium that synthesizes pregnenolone from scratch through enzyme source screening and promoter assistance. In 2003, Florence Ménard Szczebara et al. knocked out ATF2 based on the high-progesterone-producing Saccharomyces cerevisiae chassis, and introduced CYP17A1, CYP21A1, and CYP11B1, successfully achieving the de novo synthesis of hydrocortisone. In 2019, patent US10400261B2 integrated multiple copies of hydrocortisone pathway genes based on Saccharomyces cerevisiae to obtain a high-yield strain of hydrocortisone.
皮质激素、雄激素和雌激素类固醇已被广泛应用于医疗领域。这些位于动物类固醇激素合成路径的下游产物的合成,都需经历Δ5-向Δ4-型类固醇转化的过程(Δ5-和Δ4-:分别位于5.6和4.5位的烯类双键),该过程以孕烯醇酮(P5)为底物,经3β-羟类固醇脱氢酶(3β-hsd)和17α-羟化酶/17,20-裂解酶(Cyp17)协同催化。其中CYP17以Δ5-和Δ4-类固醇为底物,进行17α-羟基化修饰,同时在细胞色素b5(Cyb5)参与的条件下,CYP17会表现更强17,20-裂解酶活性(C17-C20键解理),CYP17可对;而3β-HSD具有异构酶活性,可将Δ5-类固醇转化为相应的Δ4-异构体,并实现代谢通量由Δ5-路径向Δ4-路径迁移。然而在以孕烯醇酮为底物合成Δ4-类固醇的过程中,由于CYP17和3β-HSD之间共享多个底物,17α-羟基化、17,20-裂解和Δ5-Δ4异构化不是严格按顺序发生的,这给异源定向合成目标Δ4-类固醇带来很大挑战。Corticosteroids, androgens and estrogens have been widely used in the medical field. The synthesis of these downstream products in the animal steroid hormone synthesis pathway requires the conversion of Δ 5 - to Δ 4 -type steroids (Δ 5 - and Δ 4 -: olefinic double bonds at positions 5.6 and 4.5, respectively), which uses pregnenolone (P5) as a substrate and is catalyzed by 3β-hydroxysteroid dehydrogenase (3β-hsd) and 17α-hydroxylase/17,20-lyase (Cyp17). Among them, CYP17 uses Δ 5 - and Δ 4 -steroids as substrates to carry out 17α-hydroxylation modification. At the same time, under the condition of the participation of cytochrome b5 (Cyb5), CYP17 will show stronger 17,20-lyase activity (C17-C20 bond cleavage), and CYP17 can; while 3β-HSD has isomerase activity, which can convert Δ 5 -steroids into corresponding Δ 4 -isomers and realize the migration of metabolic flux from Δ 5 -pathway to Δ 4 -pathway. However, in the process of synthesizing Δ 4 -steroids using pregnenolone as substrate, since CYP17 and 3β-HSD share multiple substrates, 17α-hydroxylation, 17,20-cleavage and Δ 5 -Δ 4 isomerization do not occur in strict sequence, which brings great challenges to the heterologous directed synthesis of target Δ 4 -steroids.
甾体类激素往往对微生物具有毒性。在含有甾体化合物的环境下,微生物内源代谢可对外源甾体母核进行修饰(羟化等)以降低其细胞毒性。利用这个特性,人们利用分枝杆菌(Mycobacterium)等微生物内源代谢为媒介实现以甾醇、甾体中间体为底物通过生物转化合成目标甾体。Steroid hormones are often toxic to microorganisms. In an environment containing steroid compounds, endogenous microbial metabolism can modify (hydroxylate, etc.) the exogenous steroid nucleus to reduce its cytotoxicity. Taking advantage of this property, people use endogenous metabolism of microorganisms such as Mycobacterium as a medium to achieve the synthesis of target steroids through biotransformation using sterols and steroid intermediates as substrates.
传统利用微生物内源代谢生物转化甾体类底物合成目标甾体存在以下缺点:①传统生物转化微生物底盘对甾体母核较强修饰能活性可能不适宜特定目标甾体化合物合成需要,同时可能会与目标合成路径竞争甾体底物,造成副产物积累与底物损失。因此选用代谢背景较为纯净和清晰的解脂耶氏酵母底盘更具优势。②分枝杆菌(Mycobacterium)等传统生物转化微生物甾体内源修饰路径中,许多关键催化反应相关基因尚不明确,这大大增加了生物转化过程中实现中间节点产物定向合成的路径改造难度。The traditional use of microbial endogenous metabolism to biotransform steroid substrates to synthesize target steroids has the following disadvantages: ① The strong modification activity of the traditional biotransformation microbial chassis on the steroid parent nucleus may not be suitable for the synthesis of specific target steroid compounds, and may compete with the target synthesis pathway for steroid substrates, resulting in by-product accumulation and substrate loss. Therefore, it is more advantageous to use the Yarrowia lipolytica chassis with a relatively pure and clear metabolic background. ② In the endogenous modification pathways of steroids in traditional biotransformation microorganisms such as Mycobacterium, many key catalytic reaction-related genes are still unclear, which greatly increases the difficulty of path modification to achieve the directed synthesis of intermediate node products during the biotransformation process.
发明内容Summary of the invention
有鉴于此,本发明提供了网状路径产物定向合成。In view of this, the present invention provides a network-pathway product-directed synthesis.
本发明提供了网状路径产物定向合成。与利用天然微生物内源路径转化甾体底物相比,本发明在酵母底盘下,利用重新构建人工异源网状路径,通过理性组合路径组分蛋白,可实现定向合成节点产物。通过组合表达不同催化特异性的路径组分同源蛋白,可实现路径转化效率的进一步提升。同时利用在微生物底盘下构建人工孕烯醇酮合成路径,并通过引入特定下游雄烯二酮合成路径组分,实现以简单碳源为底物,定向合成雄烯二酮路径节点化合物。The present invention provides directional synthesis of network pathway products. Compared with the conversion of steroid substrates by natural microbial endogenous pathways, the present invention uses the reconstructed artificial heterologous network pathway under the yeast chassis and rationally combines the pathway component proteins to achieve directional synthesis of node products. By combining and expressing homologous proteins of pathway components with different catalytic specificities, the pathway conversion efficiency can be further improved. At the same time, by constructing an artificial pregnenolone synthesis pathway under the microbial chassis and introducing specific downstream androstenedione synthesis pathway components, the directional synthesis of androstenedione pathway node compounds using simple carbon sources as substrates can be achieved.
为了实现上述发明目的,本发明提供以下技术方案:In order to achieve the above-mentioned object of the invention, the present invention provides the following technical solutions:
本发明提供了表达如下任意项在合成甾体类化合物和/或甾体激素药物中的应用:The present invention provides the use of any of the following expressions in the synthesis of steroidal compounds and/or steroidal hormone drugs:
(I)、来源于Equus caballus、Ovis aries、Mesocricetus auratus或Xenopuslaevis的CYP17A1和POR;和/或(I), CYP17A1 and POR from Equus caballus, Ovis aries, Mesocricetus auratus or Xenopus laevis; and/or
(II)、来源于Equus caballus、Ovis aries、Mesocricetus auratus或Sus scrofa的CYB5;和/或(II), CYB5 from Equus caballus, Ovis aries, Mesocricetus auratus or Sus scrofa; and/or
(III)、来源于Mus musculus、Bos taurus、Vaccinia virus、Arabidopsisthaliana、Mycobacterium tuberculosis、Homo sapiens(I型)、Homo sapiens(II型)、Homosapiens(I型,L237S突变)或Homo sapiens(II型,L236S突变)的3β-HSD;和/或(III), 3β-HSD from Mus musculus, Bos taurus, Vaccinia virus, Arabidopsisthaliana, Mycobacterium tuberculosis, Homo sapiens (type I), Homo sapiens (type II), Homo sapiens (type I, L237S mutation) or Homo sapiens (type II, L236S mutation); and/or
(IV)、来源于Sus scrofa的mCYP11A1。(IV), mCYP11A1 from Sus scrofa.
在本发明的一些具体实施方案中,所述CYP17A1、POR、CYB5、3β-HSD和/或mCYP11A1经过密码子优化,添加序列1和/或序列2合成得到;In some specific embodiments of the present invention, the CYP17A1, POR, CYB5, 3β-HSD and/or mCYP11A1 are synthesized by adding
所述密码子优化采用的为解脂耶氏酵母;The codon optimization was performed using Yarrowia lipolytica;
所述序列1添加5’端,所述序列1包括:The
(Ⅰ)、如SEQ ID NO:1所示的核苷酸序列;或(I), the nucleotide sequence shown in SEQ ID NO: 1; or
(Ⅱ)、与(Ⅰ)所示的核苷酸序列编码相同蛋白质,但因遗传密码的简并性而与(Ⅰ)所示的核苷酸序列不同的核苷酸序列;或(II) a nucleotide sequence encoding the same protein as the nucleotide sequence shown in (I) but differing from the nucleotide sequence shown in (I) due to the degeneracy of the genetic code; or
(Ⅲ)、与(Ⅰ)或(Ⅱ)所示的核苷酸序列经取代、缺失或添加一个或多个核苷酸序列获得的核苷酸序列,且与(Ⅰ)或(Ⅱ)所示的核苷酸序列功能相同或相似的核苷酸序列;或(III) a nucleotide sequence obtained by replacing, deleting or adding one or more nucleotide sequences to the nucleotide sequence shown in (I) or (II), and a nucleotide sequence having the same or similar function as the nucleotide sequence shown in (I) or (II); or
(Ⅳ)、与(Ⅰ)~(Ⅲ)任一项所述核苷酸序列具有至少80%序列同源性的核苷酸序列;(IV) a nucleotide sequence having at least 80% sequence homology with the nucleotide sequence described in any one of (I) to (III);
所述序列2添加3’端,所述序列2包括:The
(Ⅰ)、如SEQ ID NO:2所示的核苷酸序列;或(I), the nucleotide sequence shown in SEQ ID NO: 2; or
(Ⅱ)、与(Ⅰ)所示的核苷酸序列编码相同蛋白质,但因遗传密码的简并性而与(Ⅰ)所示的核苷酸序列不同的核苷酸序列;或(II) a nucleotide sequence encoding the same protein as the nucleotide sequence shown in (I) but different from the nucleotide sequence shown in (I) due to the degeneracy of the genetic code; or
(Ⅲ)、与(Ⅰ)或(Ⅱ)所示的核苷酸序列经取代、缺失或添加一个或多个核苷酸序列获得的核苷酸序列,且与(Ⅰ)或(Ⅱ)所示的核苷酸序列功能相同或相似的核苷酸序列;或(III) a nucleotide sequence obtained by replacing, deleting or adding one or more nucleotide sequences to the nucleotide sequence shown in (I) or (II), and a nucleotide sequence having the same or similar function as the nucleotide sequence shown in (I) or (II); or
(Ⅳ)、与(Ⅰ)~(Ⅲ)任一项所述核苷酸序列具有至少80%序列同源性的核苷酸序列;(IV) a nucleotide sequence having at least 80% sequence homology with the nucleotide sequence described in any one of (I) to (III);
所述甾体包括:孕烯醇酮、孕酮、17-羟孕酮、17-羟孕烯醇酮、去氢表雄酮、雄烯二酮和/或睾酮;The steroids include: pregnenolone, progesterone, 17-hydroxyprogesterone, 17-hydroxypregnenolone, dehydroepiandrosterone, androstenedione and/or testosterone;
以所述孕烯醇酮(P5)为底物的转化实验中,表现出最强孕烯醇酮转化效率的为Vv_3β-HSD;所述转化效率为6.8%;表现了次强催化效率的包括I型人源及突变体3β-HSD;所述催化效率为4.6~4.8%;In the conversion experiment with pregnenolone (P5) as the substrate, the one showing the strongest pregnenolone conversion efficiency was Vv_3β-HSD; the conversion efficiency was 6.8%; the ones showing the second strongest catalytic efficiency included type I human and mutant 3β-HSD; the catalytic efficiency was 4.6-4.8%;
以17-羟基孕烯醇酮(17OHP5)为底物的转化实验中,表现出较强转化效率的包括I型人源及突变体3β-HSD、II型人源及突变体3β-HSD;所述I型人源3β-HSD得孕酮转化率最高为3.1%;In the conversion experiment with 17-hydroxypregnenolone (17OHP5) as the substrate, the ones that showed strong conversion efficiency included type I human 3β-HSD and mutant 3β-HSD, type II human 3β-HSD and mutant 3β-HSD; the type I human 3β-HSD had the highest progesterone conversion rate of 3.1%;
以所述去氢表雄酮(DHEA)为底物,表现较强催化活性的包括II型人源、牛源、分枝杆菌源3β-HSD;所述II型人源3β-HSD转化效率为10.5%。Taking dehydroepiandrosterone (DHEA) as a substrate, the ones showing stronger catalytic activity include type II human, bovine and mycobacterium-derived 3β-HSD; the conversion efficiency of type II human 3β-HSD is 10.5%.
本发明还提供了模块,包括表达如下任意项:The present invention also provides a module, including any of the following expressions:
(I)、来源于Equus caballus、Ovis aries、Mesocricetus auratus或Xenopuslaevis的CYP17A1和POR;和/或(I), CYP17A1 and POR from Equus caballus, Ovis aries, Mesocricetus auratus or Xenopus laevis; and/or
(II)、来源于Equus caballus、Ovis aries或Mesocricetus auratus或Susscrofa的CYB5;和/或(II), CYB5 from Equus caballus, Ovis aries, Mesocricetus auratus or Sus scrofa; and/or
(III)、来源于Mus musculus、Bos taurus、Vaccinia virus、Arabidopsisthaliana、Mycobacterium tuberculosis、Homo sapiens(I型)、Homo sapiens(II型)、Homosapiens(I型,L237S突变)或Homo sapiens(II型,L236S突变)的3β-HSD;和/或(III), 3β-HSD from Mus musculus, Bos taurus, Vaccinia virus, Arabidopsisthaliana, Mycobacterium tuberculosis, Homo sapiens (type I), Homo sapiens (type II), Homo sapiens (type I, L237S mutation) or Homo sapiens (type II, L236S mutation); and/or
(IV)、来源于Sus scrofa的mCYP11A1。(IV), mCYP11A1 from Sus scrofa.
在上述研究的基础上,本发明还提供了质粒,包括所述表达元件。Based on the above research, the present invention also provides a plasmid, comprising the expression element.
本发明还提供了宿主,包括所述质粒。The present invention also provides a host, comprising the plasmid.
在本发明的一些具体实施方案中,所述宿主包括模块一、模块二、模块三、模块四、模块五、模块六、模块七、模块A、模块B、模块C或模块D中的一种或多种:In some specific embodiments of the present invention, the host comprises one or more of module one, module two, module three, module four, module five, module six, module seven, module A, module B, module C or module D:
所述模块一包括来源于Equus caballus、Ovis aries、Mesocricetus auratus或Xenopus laevis的CYP17A1和POR;所述模块一包括IntD整合位点和/或两端带有LoxP位点的Leu2标签;和/或The module one comprises CYP17A1 and POR derived from Equus caballus, Ovis aries, Mesocricetus auratus or Xenopus laevis; the module one comprises an IntD integration site and/or a Leu2 tag with LoxP sites at both ends; and/or
所述模块二包括来源于Equus caballus、Ovis aries、Mesocricetus auratus或Susscrofa的CYB5;所述模块二包括IntB整合位点和/或Ura3标签;和/或The
所述模块三包括来源于Mus musculus、Bos taurus、Vaccinia virus、Arabidopsis thaliana、Mycobacterium tuberculosis、Homo sapiens(I型)、Homosapiens(II型)、Homo sapiens(I型,L237S突变)或Homo sapiens(II型,L236S突变)的3β-HSD;所述模块三连接的载体包括pINA1269-Nat;和/或The module three comprises 3β-HSD derived from Mus musculus, Bos taurus, Vaccinia virus, Arabidopsis thaliana, Mycobacterium tuberculosis, Homo sapiens (type I), Homo sapiens (type II), Homo sapiens (type I, L237S mutation) or Homo sapiens (type II, L236S mutation); the vector connected to the module three comprises pINA1269-Nat; and/or
所述模块四包括来源于Equus caballus的CYP17A1和POR;所述模块四包括IntF整合位点和/或两端带有LoxP位点的Leu2标签;和/或The module four includes CYP17A1 and POR derived from Equus caballus; the module four includes an IntF integration site and/or a Leu2 tag with LoxP sites at both ends; and/or
所述模块五包括:来源于Ovis aries的CYP17A1和POR;所述模块五敲除Leu2标签;和/或The module five comprises: CYP17A1 and POR derived from Ovis aries; the module five knocks out the Leu2 tag; and/or
所述模块六包括;来源于Homo sapiens(II型)的3β-HSD;所述模块六包括IntC整合位点和/或两端带有LoxP位点的Leu2标签;和/或The module six comprises: 3β-HSD derived from Homo sapiens (type II); the module six comprises an IntC integration site and/or a Leu2 tag with LoxP sites at both ends; and/or
所述模块七包括:来源于Mesocricetus auratus的CYP17A1和POR、来源于Homosapiens(II型)的3β-HSD和来源于Vaccinia virus的3β-HSD;所述CYP17A1和POR包括IntD整合位点和/或两端带有LoxP位点的Leu2标签;所述来源于Vaccinia virus的3β-HSD连接的载体包括pINA1269-Nat;所述来源于Homo sapiens(II型)的3β-HSD连接的载体包括pUC57-Kan-Simple;和/或The module seven comprises: CYP17A1 and POR derived from Mesocricetus auratus, 3β-HSD derived from Homosapiens (type II) and 3β-HSD derived from Vaccinia virus; the CYP17A1 and POR comprise an IntD integration site and/or a Leu2 tag with LoxP sites at both ends; the vector connected to the 3β-HSD derived from Vaccinia virus comprises pINA1269-Nat; the vector connected to the 3β-HSD derived from Homo sapiens (type II) comprises pUC57-Kan-Simple; and/or
所述模块A包括:来源于Equus caballus、Ovis aries、Mesocricetus auratus或Xenopus laevis的CYP17A1和POR;所述模块A包括IntD整合位点和/或两端带有LoxP位点的Leu2标签;和/或The module A comprises: CYP17A1 and POR derived from Equus caballus, Ovis aries, Mesocricetus auratus or Xenopus laevis; the module A comprises an IntD integration site and/or a Leu2 tag with LoxP sites at both ends; and/or
所述模块B包括:来源于Equus caballus、Ovis aries或Mesocricetus auratus的CYB5;所述模块B包括IntB整合位点和/或Ura3标签;和/或The module B comprises: CYB5 derived from Equus caballus, Ovis aries or Mesocricetus auratus; the module B comprises an IntB integration site and/or a Ura3 tag; and/or
所述模块C包括:来源于Mus musculus、Bos taurus、Vaccinia virus、Arabidopsis thaliana、Mycobacterium tuberculosis或Homo sapiens(II型)的3β-HSD和来源于Sus scrofa的mCYP11A1;所述模块C连接的载体包括pINA1269;和/或The module C comprises: 3β-HSD derived from Mus musculus, Bos taurus, Vaccinia virus, Arabidopsis thaliana, Mycobacterium tuberculosis or Homo sapiens (type II) and mCYP11A1 derived from Sus scrofa; the vector connected to the module C comprises pINA1269; and/or
所述模块D包括:来源于Ovis aries和Mesocricetus auratus的CYP17A1和POR;所述模块D包括IntF整合位点和/或两端带有LoxP位点的Leu2标签。The module D comprises: CYP17A1 and POR derived from Ovis aries and Mesocricetus auratus; the module D comprises an IntF integration site and/or a Leu2 tag with LoxP sites at both ends.
在本发明的一些具体实施方案中,所述模块一的构建包括:IntD整合位点左臂,终止子1拼接;将终止子2末端序列、两端带有LoxP位点的亮氨酸营养筛选标签Leu2、IntD整合位点右臂拼接得IntD-L和IntD-R;CYP17A1和POR与经BsmBI酶切后的表达模块连接得到整合质粒,将带有相同物种来源的CYP17A1和POR模块与pUC18H组装,得到整合质粒,经过酶切后获得模块一;In some specific embodiments of the present invention, the construction of module one includes: splicing the left arm of the IntD integration site and
所述终止子1为酿酒酵母GPM1t终止子;所述终止子2为酿酒酵母FBA1t;The
所述拼接的方法包括OE-PCR;所述表达模块包括TEF1inp-LIP2t-GPDt、GPDt-TEF1inp-OCT1t-FBA1t;所述CYP17A1和POR模块来源包括Equus caballus、Ovis aries、Mesocricetus auratus或Xenopus laevis;所述pUC18H为IntD-L、IntD、HincII酶切后的pUC18H;所述组装采用的方法包括Gibson;所述酶切包括采用NotI酶切。The splicing method includes OE-PCR; the expression modules include TEF1inp-LIP2t-GPDt, GPDt-TEF1inp-OCT1t-FBA1t; the sources of the CYP17A1 and POR modules include Equus caballus, Ovis aries, Mesocricetus auratus or Xenopus laevis; the pUC18H is pUC18H digested with IntD-L, IntD, and HincII; the assembly method includes Gibson; and the enzyme digestion includes NotI digestion.
在本发明的一些具体实施方案中,所述模块二的构建包括:将IntB整合位点左臂、标签、IntB整合位点右臂、启动子、终止子分别和CYB5通过拼接起来得到整合质粒,经过酶切后获得模块二;In some specific embodiments of the present invention, the construction of
所述标签包括营养缺陷型尿嘧啶标签Ura3;所述启动子包括TEF1in;所述终止子包括ACOt;所述CYB5来源包括Equus caballus、Ovis aries、Mesocricetus auratus或Susscrofa;所述拼接采用的方法包括Gibson;所述酶切包括采用NotI酶切。The tag includes the auxotrophic uracil tag Ura3; the promoter includes TEF1in; the terminator includes ACOt; the CYB5 source includes Equus caballus, Ovis aries, Mesocricetus auratus or Susscrofa; the splicing method includes Gibson; and the enzyme digestion includes NotI digestion.
在本发明的一些具体实施方案中,所述模块三的构建包括:3β-HSD通过组装整合入载体,通过PCR反应在上述基因5'端引入序列3,以及在基因3'端引入序列4,经过线性化的载体组装后,整合重组质粒,即模块三;In some specific embodiments of the present invention, the construction of module three includes: 3β-HSD is integrated into a vector by assembly,
所述3β-HSD来源包括Mus musculus、Bos taurus、Vaccinia virus、Arabidopsisthaliana、Mycobacterium tuberculosis、Homo sapiens(I型)、Homo sapiens(II型)、Homosapiens(I型,L237S突变)或Homo sapiens(II型,L236S突变);The 3β-HSD source includes Mus musculus, Bos taurus, Vaccinia virus, Arabidopsisthaliana, Mycobacterium tuberculosis, Homo sapiens (type I), Homo sapiens (type II), Homo sapiens (type I, L237S mutation) or Homo sapiens (type II, L236S mutation);
所述载体包括pINA1269-Nat;The vector includes pINA1269-Nat;
所述序列3包括:The
(Ⅰ)、如SEQ ID NO:3所示的核苷酸序列;或(I), the nucleotide sequence shown in SEQ ID NO: 3; or
(Ⅱ)、与(Ⅰ)所示的核苷酸序列编码相同蛋白质,但因遗传密码的简并性而与(Ⅰ)所示的核苷酸序列不同的核苷酸序列;或(II) a nucleotide sequence encoding the same protein as the nucleotide sequence shown in (I) but different from the nucleotide sequence shown in (I) due to the degeneracy of the genetic code; or
(Ⅲ)、与(Ⅰ)或(Ⅱ)所示的核苷酸序列经取代、缺失或添加一个或多个核苷酸序列获得的核苷酸序列,且与(Ⅰ)或(Ⅱ)所示的核苷酸序列功能相同或相似的核苷酸序列;或(III) a nucleotide sequence obtained by replacing, deleting or adding one or more nucleotide sequences to the nucleotide sequence shown in (I) or (II), and having the same or similar functions as the nucleotide sequence shown in (I) or (II); or
(Ⅳ)、与(Ⅰ)~(Ⅲ)任一项所述核苷酸序列具有至少80%序列同源性的核苷酸序列;(IV) a nucleotide sequence having at least 80% sequence homology with the nucleotide sequence described in any one of (I) to (III);
所述序列4包括:The
(Ⅰ)、如SEQ ID NO:3所示的核苷酸序列;或(I), the nucleotide sequence shown in SEQ ID NO: 3; or
(Ⅱ)、与(Ⅰ)所示的核苷酸序列编码相同蛋白质,但因遗传密码的简并性而与(Ⅰ)所示的核苷酸序列不同的核苷酸序列;或(II) a nucleotide sequence encoding the same protein as the nucleotide sequence shown in (I) but differing from the nucleotide sequence shown in (I) due to the degeneracy of the genetic code; or
(Ⅲ)、与(Ⅰ)或(Ⅱ)所示的核苷酸序列经取代、缺失或添加一个或多个核苷酸序列获得的核苷酸序列,且与(Ⅰ)或(Ⅱ)所示的核苷酸序列功能相同或相似的核苷酸序列;或(III) a nucleotide sequence obtained by replacing, deleting or adding one or more nucleotide sequences to the nucleotide sequence shown in (I) or (II), and a nucleotide sequence having the same or similar function as the nucleotide sequence shown in (I) or (II); or
(Ⅳ)、与(Ⅰ)~(Ⅲ)任一项所述核苷酸序列具有至少80%序列同源性的核苷酸序列;(IV) a nucleotide sequence having at least 80% sequence homology with the nucleotide sequence described in any one of (I) to (III);
所述线性化采用的酶包括BamHI、KpnI;The enzymes used for linearization include BamHI and KpnI;
所述3β-HSD来源于Homo sapiens(I型)的活性较高且以DHEA为主要底物,所述3β-HSD来源于Homo sapiens(II型)倾向以P5和17OHP5为底物。The 3β-HSD derived from Homo sapiens (type I) has a higher activity and uses DHEA as a major substrate, while the 3β-HSD derived from Homo sapiens (type II) tends to use P5 and 17OHP5 as substrates.
在本发明的一些具体实施方案中,所述模块四的构建包括:将IntF整合位点左臂、pUC18H、两端带有LoxP位点的亮氨酸营养筛选标签Leu2、IntF整合位点右臂、CYP17A1和POR(方法同模块一构建)通过拼接起来得到两端包含酶切位点的片段,经过酶切后获得模块四;In some specific embodiments of the present invention, the construction of module four includes: splicing the left arm of the IntF integration site, pUC18H, the leucine nutritional screening tag Leu2 with LoxP sites at both ends, the right arm of the IntF integration site, CYP17A1 and POR (the method is the same as that of module one) to obtain a fragment containing restriction sites at both ends, and obtaining module four after restriction digestion;
所述pUC18H为HincII酶切后的pUC18H;The pUC18H is pUC18H digested with HincII;
所述CYP17A1和POR来源包括Equus caballus;The CYP17A1 and POR sources include Equus caballus;
所述拼接采用的方法包括Gibson;所述酶切位点包括NotI;所述酶切包括采用NotI酶切。The splicing method includes Gibson; the restriction site includes NotI; and the restriction enzyme cutting includes NotI enzyme cutting.
在本发明的一些具体实施方案中,所述模块五的构建包括:敲除SyBE_Yl2091004的Leu2筛选标记,获得无Leu2标签的SyBE_Yl2091004;In some specific embodiments of the present invention, the construction of module five includes: knocking out the Leu2 screening marker of SyBE_Yl2091004 to obtain SyBE_Yl2091004 without the Leu2 tag;
所述敲除采用的方法包括Cre-loxP系统。The knockout method includes the Cre-loxP system.
在本发明的一些具体实施方案中,所述模块六的构建包括:将IntC整合位点左臂、人工启动子hp8d、Hs_3β-HSD2、解脂耶氏酵母终止子OCTt、两端带有LoxP位点的亮氨酸营养筛选标签Leu2、IntC整合位点右臂通过OE-PCR方法拼接起来得到两端包含NotI酶切位点的片段;上述片段与经HindIII线性化的质粒pUC57-Kan-Simple连接得到整合质粒。In some specific embodiments of the present invention, the construction of module six includes: splicing the left arm of the IntC integration site, the artificial promoter hp8d, Hs_3β-HSD2, the Yarrowia lipolytica terminator OCTt, the leucine nutritional screening label Leu2 with LoxP sites at both ends, and the right arm of the IntC integration site by the OE-PCR method to obtain a fragment containing NotI restriction sites at both ends; the above fragment is connected with the plasmid pUC57-Kan-Simple linearized with HindIII to obtain an integration plasmid.
在本发明的一些具体实施方案中,所述模块七的构建包括:将表达黄金仓鼠(Mesocricetus auratus)来源CYP17A1-POR的模块一、模块六、表达Vv_3β-HSD的模块三同时整合入ATCC201249。In some specific embodiments of the present invention, the construction of module seven includes: simultaneously integrating module one expressing CYP17A1-POR from golden hamster (Mesocricetus auratus), module six, and module three expressing Vv_3β-HSD into ATCC201249.
在本发明的一些具体实施方案中,所述模块A的构建包括:所述模块A的构建包括:IntD整合位点左臂,终止子1拼接;将终止子2末端序列、两端带有LoxP位点的亮氨酸营养筛选标签Leu2、IntD整合位点右臂拼接得IntD-L和IntD-R;CYP17A1和POR与经BsmBI酶切后的表达模块连接,将带有相同物种来源的CYP17A1和POR模块与IntD-L、IntD-R、pUC18H组装,得到整合质粒,经过酶切后获得模块A;In some specific embodiments of the present invention, the construction of module A includes: the construction of module A includes: the left arm of the IntD integration site, the
所述终止子1为酿酒酵母GPM1t终止子;所述终止子2为酿酒酵母FBA1t;The
所述拼接的方法包括OE-PCR;所述表达模块包括TEF1inp-LIP2t-GPDt、GPDt-TEF1inp-OCT1t-FBA1t;所述CYP17A1和POR模块来源包括Equus caballus、Ovis aries、Mesocricetus auratus或Xenopus laevis;所述pUC18H为IntD-L、IntD、HincII酶切后的pUC18H;所述组装采用的方法包括Gibson;所述酶切包括采用NotI酶切;The splicing method includes OE-PCR; the expression modules include TEF1inp-LIP2t-GPDt, GPDt-TEF1inp-OCT1t-FBA1t; the sources of the CYP17A1 and POR modules include Equus caballus, Ovis aries, Mesocricetus auratus or Xenopus laevis; the pUC18H is pUC18H digested with IntD-L, IntD, and HincII; the assembly method includes Gibson; the digestion includes digestion with NotI;
所述整合质粒包括pIntD-Oa_CYP17-POR、pIntD-Ma_CYP17-POR、pIntD-Ec_CYP17-POR、pIntD-Xl_CYP17-POR。The integration plasmids include pIntD-Oa_CYP17-POR, pIntD-Ma_CYP17-POR, pIntD-Ec_CYP17-POR, and pIntD-Xl_CYP17-POR.
在本发明的一些具体实施方案中,所述模块B的构建包括:将IntB整合位点左臂、标签、IntB整合位点右臂、启动子、终止子分别和CYB5通过拼接起来得到整合质粒,经过酶切后获得模块B;In some specific embodiments of the present invention, the construction of module B includes: splicing the left arm of the IntB integration site, the tag, the right arm of the IntB integration site, the promoter, the terminator and CYB5 to obtain an integration plasmid, and obtaining module B after enzyme digestion;
所述标签包括营养缺陷型尿嘧啶标签Ura3;所述启动子包括TEF1in;所述终止子包括ACOt;所述CYB5来源包括Equus caballus、Ovis aries或Mesocricetus auratus;所述拼接采用的方法包括Gibson;所述酶切包括采用NotI酶切。The tag includes the auxotrophic uracil tag Ura3; the promoter includes TEF1in; the terminator includes ACOt; the CYB5 source includes Equus caballus, Ovis aries or Mesocricetus auratus; the splicing method includes Gibson; and the enzyme digestion includes NotI digestion.
在本发明的一些具体实施方案中,所述模块C的构建包括:mCYP11A1分别整合于带有启动子1的表达盒中、3β-HSD分别整合于带有启动子2的表达盒中,并将mCYP11A1表达盒与3β-HSD表达盒通过组装入经酶切后的pINA1269整合质粒,最后经NotI酶切后将质粒线性化,得到模块C;In some specific embodiments of the present invention, the construction of module C includes: mCYP11A1 is respectively integrated into an expression cassette with
所述mCYP11A1来源包括Sus scrofa;所述启动子1包括TEF1p;所述3β-HSD来源包括Mus musculus、Bos taurus、Vaccinia virus、Arabidopsis thaliana、Mycobacteriumtuberculosis或Homo sapiens(II型);所述启动子2包括EXP1p;所述组装采用的方法包括Gibson;所述pINA1269酶切采用的酶包括SalI、ClaI。The mCYP11A1 source includes Sus scrofa; the
在本发明的一些具体实施方案中,所述模块D的构建包括:将IntF整合位点左臂、pUC18H、两端带有LoxP位点的亮氨酸营养筛选标签Leu2、IntD整合位点右臂、CYP17A1和POR模块通过拼接起来得到两端包含酶切位点的片段,经过酶切后获得模块D;In some specific embodiments of the present invention, the construction of the module D comprises: splicing the left arm of the IntF integration site, pUC18H, the leucine nutritional screening tag Leu2 with LoxP sites at both ends, the right arm of the IntD integration site, CYP17A1 and the POR module to obtain a fragment containing restriction sites at both ends, and obtaining the module D after restriction digestion;
所述pUC18H为HincII酶切后的pUC18H;所述CYP17A1和POR模块来源包括Ovisaries和Mesocricetus auratus;所述拼接采用的方法包括Gibson;所述酶切位点包括NotI;所述酶切包括采用NotI酶切。The pUC18H is pUC18H digested with HincII; the sources of the CYP17A1 and POR modules include Ovisaries and Mesocricetus auratus; the method used for splicing includes Gibson; the restriction site includes NotI; and the restriction digestion includes NotI digestion.
本发明还提供了如下任意项在合成甾体类化合物和/或甾体激素药物中的应用:The present invention also provides the use of any of the following in the synthesis of steroidal compounds and/or steroidal hormone drugs:
(I)、所述表达元件;和/或(I), the expression element; and/or
(II)、所述质粒;和/或(II), the plasmid; and/or
(III)、所述宿主。(III) the host.
在本发明的一些具体实施方案中,所述甾体类化合物和/或甾体激素药物包括孕酮、孕烯醇酮、17-羟孕烯醇酮、17-羟孕酮、去氢表雄酮、雄烯二酮和/或睾酮;In some specific embodiments of the present invention, the steroidal compounds and/or steroidal hormone drugs include progesterone, pregnenolone, 17-hydroxypregnenolone, 17-hydroxyprogesterone, dehydroepiandrosterone, androstenedione and/or testosterone;
在本发明的一些具体实施方案中,所述孕酮利用碳源和/或3β-HSD在微生物底盘中从头合成。In some embodiments of the invention, the progesterone is synthesized de novo in a microbial chassis using a carbon source and/or 3β-HSD.
在本发明的一些具体实施方案中,所述17-羟孕酮利用碳源、3β-HSD、CYP17A1和POR在微生物底盘中从头合成。In some specific embodiments of the present invention, the 17-hydroxyprogesterone is synthesized de novo in a microbial chassis using a carbon source, 3β-HSD, CYP17A1 and POR.
在本发明的一些具体实施方案中,所述17-羟孕烯醇酮利用碳源、CYP17A1和POR在微生物底盘中从头合成。In some embodiments of the invention, the 17-hydroxypregnenolone is synthesized de novo in a microbial chassis using a carbon source, CYP17A1 and POR.
在本发明的一些具体实施方案中,所述去氢表雄酮利用碳源、CYP17A1、POR和/或CYB5在微生物底盘中从头合成。In some embodiments of the invention, the dehydroepiandrosterone is synthesized de novo in a microbial chassis using a carbon source, CYP17A1, POR and/or CYB5.
在本发明的一些具体实施方案中,所述雄烯二酮和睾酮利用碳源、CYP17A1、POR、CYB5和/或3β-HSD在微生物底盘从头合成。In some embodiments of the present invention, the androstenedione and testosterone are synthesized de novo in a microbial chassis using a carbon source, CYP17A1, POR, CYB5 and/or 3β-HSD.
在本发明的一些具体实施方案中,所述碳源包括葡萄糖;所述微生物底盘包括高产菜油甾醇解脂耶氏酵母底盘菌株SyBE_Yl2060077和/或野生型解脂耶氏酵母菌株ATCC201249;In some specific embodiments of the present invention, the carbon source comprises glucose; the microbial chassis comprises the high-yielding campesterol Yarrowia lipolytica chassis strain SyBE_Y12060077 and/or the wild-type Yarrowia lipolytica strain ATCC201249;
所述3β-HSD来源包括Mus musculus、Bos taurus、Vaccinia virus、Arabidopsisthaliana、Mycobacterium tuberculosis、Homo sapiens(I型)、Homo sapiens(II型)、Homosapiens(I型,L237S突变)或Homo sapiens(II型,L236S突变);The 3β-HSD source includes Mus musculus, Bos taurus, Vaccinia virus, Arabidopsisthaliana, Mycobacterium tuberculosis, Homo sapiens (type I), Homo sapiens (type II), Homo sapiens (type I, L237S mutation) or Homo sapiens (type II, L236S mutation);
所述CYP17A1和POR来源包括Equus caballus、Ovis aries、Mesocricetusauratus或Xenopus laevis;The CYP17A1 and POR sources include Equus caballus, Ovis aries, Mesocricetusauratus or Xenopus laevis;
所述CYB5来源包括Equus caballus、Ovis aries、Mesocricetus auratus或Susscrofa。The CYB5 sources include Equus caballus, Ovis aries, Mesocricetus auratus or Susscrofa.
在本发明的一些具体实施方案中,所述雄烯二酮的定向合成包括表达3β-HSD的上游模块与表达CYP17A1、POR和/或CYB5的下游模块混合共培养。In some specific embodiments of the present invention, the directed synthesis of androstenedione comprises co-culturing an upstream module expressing 3β-HSD and a downstream module expressing CYP17A1, POR and/or CYB5.
在本发明的一些具体实施方案中,所述3β-HSD的来源包括Bos taurus;所述CYP17A1、POR和/或的CYB5来源包括Mycobacterium tuberculosis和/或Ovis aries;In some specific embodiments of the present invention, the source of 3β-HSD includes Bos taurus; the source of CYP17A1, POR and/or CYB5 includes Mycobacterium tuberculosis and/or Ovis aries;
在本发明的一些具体实施方案中,所述上游模块包括包括所述模块C;In some specific embodiments of the present invention, the upstream module includes the module C;
所述下游模块包括所述模块A、所述模块B、所述模块四、所述模块二或所述模块五中的一种或多种。The downstream module includes one or more of the module A, the module B, the module four, the module two or the module five.
在本发明的一些具体实施方案中,所述上游模块的构建包括:所述mCYP11A1于启动子1下表达,所述3β-HSD于启动子2下表达,二者同时整合至pBR322位点;所述启动子1包括TEF1p;所述启动子2包括EXP1p;In some specific embodiments of the present invention, the construction of the upstream module includes: the mCYP11A1 is expressed under
所述下游模块的构建包括:所述CYP17A1和POR均于启动子下表达,整合于底盘菌株基因组IntD位点上;所述启动子包括TEF1inp;所述底盘菌株包括高产菜油甾醇解脂耶氏酵母底盘菌株SyBE_Yl2060077和/或野生型解脂耶氏酵母菌株ATCC201249。The construction of the downstream module includes: the CYP17A1 and POR are both expressed under the promoter and integrated into the IntD site of the chassis strain genome; the promoter includes TEF1inp; the chassis strain includes the high-yielding campesterol Yarrowia lipolytica chassis strain SyBE_Yl2060077 and/or the wild-type Yarrowia lipolytica strain ATCC201249.
在本发明的一些具体实施方案中,雄烯二酮的定向合成量最高的组合包括表达所述模块C的宿主与表达所述模块五、所述模块四和/或模块二的宿主混合共培养;所述模块C选自Bos taurus来源;所述模块二选自Equus caballus来源。In some specific embodiments of the present invention, the combination with the highest directed synthesis of androstenedione includes co-culturing a host expressing module C with a host expressing module five, module four and/or module two; module C is selected from Bos taurus; and module two is selected from Equus caballus.
在本发明的一些具体实施方案中,所述17-羟孕酮的合成包括共表达孕烯醇酮路径和/或3β-HSD的上游模块与仅表达CYP17A1,CYB5和POR的下游模块混合共培养。In some specific embodiments of the present invention, the synthesis of 17-hydroxyprogesterone comprises co-culturing an upstream module that co-expresses the pregnenolone pathway and/or 3β-HSD with a downstream module that only expresses CYP17A1, CYB5 and POR.
在本发明的一些具体实施方案中,所述3β-HSD的来源包括Bos taurus;所述CYP17A1、POR和/或的CYB5来源包括Mycobacterium tuberculosis和/或Ovis aries;In some specific embodiments of the present invention, the source of 3β-HSD includes Bos taurus; the source of CYP17A1, POR and/or CYB5 includes Mycobacterium tuberculosis and/or Ovis aries;
所述17-羟孕酮的合成最高的组合包括表达所述模块C的宿主与表达所述模块A和/或模块B的宿主混合共培养;所述模块C选自Bos taurus来源;所述模块A和/或模块B选自Ovis aries来源。The combination with the highest synthesis of 17-hydroxyprogesterone includes co-culturing a host expressing module C with a host expressing module A and/or module B; module C is selected from Bos taurus; and module A and/or module B are selected from Ovis aries.
在本发明的一些具体实施方案中,所述雄烯二酮的定向合成和/或17-羟孕酮的合成中对甾体类底物高效17α-羟基化的CYP17A1包括Mesocricetus auratus来源和/或Ovisaries来源。In some specific embodiments of the present invention, the CYP17A1 that efficiently 17α-hydroxylates steroidal substrates in the directed synthesis of androstenedione and/or the synthesis of 17-hydroxyprogesterone comprises a Mesocricetus auratus source and/or an Ovisaries source.
在本发明的一些具体实施方案中,所述雄烯二酮的定向合成和/或17-羟孕酮的合成中对甾体类底物高效17,20-裂解活性的CYP17A1包括Mesocricetus auratus来源和/或Equus caballus来源。In some specific embodiments of the present invention, the CYP17A1 with high 17,20-cleavage activity for steroidal substrates in the directed synthesis of androstenedione and/or the synthesis of 17-hydroxyprogesterone comprises a Mesocricetus auratus source and/or an Equus caballus source.
在本发明的一些具体实施方案中,以所述P5为底物合成P4、17OHP5、17OHP4或DHEA中的一种或多种。In some specific embodiments of the present invention, P5 is used as a substrate to synthesize one or more of P4, 17OHP5, 17OHP4 or DHEA.
在本发明的一些具体实施方案中,以所述P5为底物合成P4包括表达3β-HSD;所述3β-HSD来源包括Vaccinia virus、Bos taurus、Mycobacterium tuberculosis、Homosapiens(I型)或Homo sapiens(II型)中的一种或多种。In some specific embodiments of the present invention, synthesizing P4 using P5 as a substrate includes expressing 3β-HSD; the source of 3β-HSD includes one or more of Vaccinia virus, Bos taurus, Mycobacterium tuberculosis, Homosapiens (type I) or Homo sapiens (type II).
在本发明的一些具体实施方案中,以所述P5为底物合成17OHP5包括共表达CYP17A1、POR;所述CYP17A1和POR来源包括Ovis aries和/或Mesocricetus auratus。In some specific embodiments of the present invention, the synthesis of 17OHP5 using the P5 as a substrate comprises co-expressing CYP17A1 and POR; the sources of the CYP17A1 and POR include Ovis aries and/or Mesocricetus auratus.
在本发明的一些具体实施方案中,以所述P5为底物合成17OHP4包括共表达3β-HSD、CYP17A1和POR;所述3β-HSD来源包括Homo sapiens(II型)和/或Vaccinia virus;所述CYP17A1和POR来源包括Ovis aries。In some specific embodiments of the present invention, the synthesis of 17OHP4 using P5 as a substrate includes co-expressing 3β-HSD, CYP17A1 and POR; the source of 3β-HSD includes Homo sapiens (type II) and/or Vaccinia virus; the source of CYP17A1 and POR includes Ovis aries.
在本发明的一些具体实施方案中,以所述P5为底物合成DHEA包括共表达CYP17A1、POR和/或CYB5;所述CYP17A1、POR来源包括Ovis aries和/或Equus caballus;所述CYB5来源包括Equus caballus。In some specific embodiments of the present invention, synthesizing DHEA using P5 as a substrate comprises co-expressing CYP17A1, POR and/or CYB5; the sources of CYP17A1 and POR include Ovis aries and/or Equus caballus; and the source of CYB5 includes Equus caballus.
在本发明的一些具体实施方案中,以所述17OHP5为底物合成17OHP4。In some specific embodiments of the present invention, 17OHP4 is synthesized using 17OHP5 as a substrate.
在本发明的一些具体实施方案中,以所述17OHP5为底物合成17OHP4包括表达3β-HSD;所述3β-HSD来源包括Homo sapiens(I型)和/或Homo sapiens(II型)。In some specific embodiments of the present invention, the synthesis of 17OHP4 using 17OHP5 as a substrate includes expressing 3β-HSD; the source of 3β-HSD includes Homo sapiens (type I) and/or Homo sapiens (type II).
在本发明的一些具体实施方案中,以所述17OHP5为底物合成DHEA。In some specific embodiments of the present invention, DHEA is synthesized using 17OHP5 as a substrate.
在本发明的一些具体实施方案中,以所述17OHP5为底物合成DHEA包括共表达CYP17A1、POR和/或CYB5;所述CYP17A1、POR来源包括Ovis aries;所述CYB5来源包括Mesocricetus auratus、Equus caballus或Sus scrofa。In some specific embodiments of the present invention, synthesizing DHEA using 17OHP5 as a substrate comprises co-expressing CYP17A1, POR and/or CYB5; the sources of CYP17A1 and POR include Ovis aries; the source of CYB5 includes Mesocricetus auratus, Equus caballus or Sus scrofa.
在本发明的一些具体实施方案中,以所述DHEA为底物合成4AD和TS。In some specific embodiments of the present invention, 4AD and TS are synthesized using DHEA as a substrate.
在本发明的一些具体实施方案中,以所述17OHP5为底物合成17OHP4包括表达3β-HSD;所述3β-HSD来源包括Vaccinia virus、Mycobacterium tuberculosis、Homo sapiens(I型)、Homo sapiens(II型)或Bos taurus的一种或多种;In some specific embodiments of the present invention, the synthesis of 17OHP4 using the 17OHP5 as a substrate includes expressing 3β-HSD; the source of the 3β-HSD includes one or more of Vaccinia virus, Mycobacterium tuberculosis, Homo sapiens (type I), Homo sapiens (type II) or Bos taurus;
在本发明的一些具体实施方案中,以所述17OHP4合成4AD和TS。In some specific embodiments of the present invention, 4AD and TS are synthesized from the 17OHP4.
在本发明的一些具体实施方案中,以所述7OHP4合成4AD和TS包括共表达CYP17A1、POR和/或CYB5;所述CYP17A1、POR来源包括Mesocricetus auratus、Equus caballus或Ovisaries;所述CYB5来源包括Equus caballus、Ovis aries、Mesocricetus auratus或Susscrofa。In some specific embodiments of the present invention, the synthesis of 4AD and TS with 7OHP4 includes co-expressing CYP17A1, POR and/or CYB5; the sources of CYP17A1 and POR include Mesocricetus auratus, Equus caballus or Ovisaries; the sources of CYB5 include Equus caballus, Ovis aries, Mesocricetus auratus or Susscrofa.
本发明提供了一种通过组合表达不同路径模块,实现复杂网状路径节点路径产物定向合成的方法;The present invention provides a method for achieving directional synthesis of complex mesh path node path products by combining and expressing different path modules;
a)如:雄烯二酮的定向合成(如实施例7所述);a) For example: directed synthesis of androstenedione (as described in Example 7);
b)如:17-羟孕酮的合成:上游模块菌:共表达孕烯醇酮路径和3β-HSD;下游模块菌:仅表达CYP17A1,CYB5和POR。混菌共培养上游模块和下游模块即可实现由葡萄糖合成17-羟孕酮;b) For example, the synthesis of 17-hydroxyprogesterone: the upstream module bacteria: co-express the pregnenolone pathway and 3β-HSD; the downstream module bacteria: only express CYP17A1, CYB5 and POR. The upstream and downstream modules can be co-cultured to synthesize 17-hydroxyprogesterone from glucose;
两种在异源合成中,可对甾体类底物高效17α-羟基化的CYP17A1:Ma_CYP17A1、Oa_CYP17A1;Two CYP17A1s that can efficiently 17α-hydroxylate steroidal substrates in heterologous synthesis: Ma_CYP17A1 and Oa_CYP17A1;
两种在异源合成中,具备对甾体类底物高效17,20-裂解活性的CYP17A1:Ma_CYP17A1、Ec_CYP17A1;Two CYP17A1s with efficient 17,20-cleavage activity on steroidal substrates in heterologous synthesis: Ma_CYP17A1 and Ec_CYP17A1;
酵母底盘中组合表达特定网状路径产物实现节点产物定向合成;Combinatorial expression of specific network pathway products in the yeast chassis achieves directed synthesis of node products;
a)以P5为底物合成P4:表达3β-HSD;a) Synthesis of P4 using P5 as substrate: expression of 3β-HSD;
b)以P5为底物合成17OHP5:共表达CYP17A1、POR;b) Synthesis of 17OHP5 using P5 as substrate: co-expression of CYP17A1 and POR;
c)以P5为底物合成17OHP4:共表达3β-HSD、CYP17A1、POR;c) Synthesis of 17OHP4 using P5 as substrate: co-expression of 3β-HSD, CYP17A1, and POR;
d)以P5为底物合成DHEA:共表达CYP17A1、POR、CYB5;d) Synthesis of DHEA using P5 as substrate: co-expression of CYP17A1, POR, and CYB5;
组合表达催化特异性互补的同源蛋白,构建高效生物转化合成路径;Combinatorial expression of homologous proteins with complementary catalytic specificity to construct efficient biotransformation synthetic pathways;
a)对于以P5为底物合成P4:单表达Vv_3β-HSD;a) For the synthesis of P4 using P5 as substrate: single expression of Vv_3β-HSD;
b)对于以P5为底物合成P4:单表达Bt_3β-HSD;b) For the synthesis of P4 using P5 as substrate: single expression of Bt_3β-HSD;
c)对于以P5为底物合成P4:单表达Mt_3β-HSD;c) For the synthesis of P4 using P5 as substrate: single expression of Mt_3β-HSD;
d)对于以P5为底物合成P4:单表达Hs_3β-HSD1(I型人源Hs_3β-HSD);d) For the synthesis of P4 using P5 as substrate: single expression of Hs_3β-HSD1 (type I human Hs_3β-HSD);
e)对于以P5为底物合成P4:单表达Hs_3β-HSD2(II型人源Hs_3β-HSD);e) For the synthesis of P4 using P5 as substrate: single expression of Hs_3β-HSD2 (type II human Hs_3β-HSD);
f)对于以P5为底物合成P4:组合表达a)~e)中3β-HSD;f) For the synthesis of P4 using P5 as substrate: combined expression of 3β-HSD in a) to e);
g)对于以17OHP5为底物合成17OHP4:单表达Hs_3β-HSD1(I型人源Hs_3β-HSD);g) For the synthesis of 17OHP4 using 17OHP5 as substrate: single expression of Hs_3β-HSD1 (type I human Hs_3β-HSD);
h)对于以17OHP5为底物合成17OHP4:单表达Hs_3β-HSD2(II型人源Hs_3β-HSD);h) For the synthesis of 17OHP4 using 17OHP5 as substrate: single expression of Hs_3β-HSD2 (type II human Hs_3β-HSD);
i)对于以17OHP5为底物合成17OHP4:组合表达Hs_3β-HSD1和Hs_3β-HSD2;i) For the synthesis of 17OHP4 using 17OHP5 as substrate: combined expression of Hs_3β-HSD1 and Hs_3β-HSD2;
j)对于以DHEA为底物合成4AD和TS(睾酮):单表达Vv_3β-HSD;j) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: single expression of Vv_3β-HSD;
k)对于以DHEA为底物合成4AD和TS(睾酮):单表达Mt_3β-HSD;k) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: single expression of Mt_3β-HSD;
l)对于以DHEA为底物合成4AD和TS(睾酮):单表达Hs_3β-HSD1(I型人源Hs_3β-HSD);l) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: single expression of Hs_3β-HSD1 (type I human Hs_3β-HSD);
m)对于以DHEA为底物合成4AD和TS(睾酮):单表达Hs_3β-HSD2(II型人源Hs_3β-HSD);m) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: single expression of Hs_3β-HSD2 (type II human Hs_3β-HSD);
n)对于以DHEA为底物合成4AD和TS(睾酮):单表达Bt_3β-HSD2;n) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: single expression of Bt_3β-HSD2;
o)对于以DHEA为底物合成4AD和TS(睾酮):组合表达j)~n)中3β-HSD;o) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: combined expression of 3β-HSD in j) to n);
p)对于以P5为底物合成DHEA:共表达Oa_CYP17A1、Oa_POR、Ec_CYP17A1、Ec_POR、Ec_CYB5;p) For DHEA synthesis using P5 as substrate: co-expression of Oa_CYP17A1, Oa_POR, Ec_CYP17A1, Ec_POR, and Ec_CYB5;
q)对于以P5为底物合成17OHP4:共表达Hs_3β-HSD2(II型人源Hs_3β-HSD)、Vv_3β-HSD、Oa_CYP17A1、Oa_POR;q) For the synthesis of 17OHP4 using P5 as substrate: co-expression of Hs_3β-HSD2 (type II human Hs_3β-HSD), Vv_3β-HSD, Oa_CYP17A1, and Oa_POR;
r)对于以P5为底物合成17OHP5:共表达Oa_CYP17A1、Oa_POR;r) For the synthesis of 17OHP5 using P5 as substrate: co-expression of Oa_CYP17A1 and Oa_POR;
s)对于以P5为底物合成17OHP5:共表达Ma_CYP17A1、Ma_POR;s) For the synthesis of 17OHP5 using P5 as substrate: co-expression of Ma_CYP17A1 and Ma_POR;
t)对于以P5为底物合成17OHP5:组合表达r)~s)中CYP17A1和POR;t) For the synthesis of 17OHP5 using P5 as substrate: combined expression of CYP17A1 and POR in r) to s);
u)对于以17OHP5合成DHEA:共表达Oa_CYP17A1、Ma_CYB5、Oa_POR;u) For DHEA synthesis by 17OHP5: co-expression of Oa_CYP17A1, Ma_CYB5, and Oa_POR;
v)对于以17OHP5合成DHEA:共表达Oa_CYP17A1、Ec_CYB5、Oa_POR;v) For DHEA synthesis by 17OHP5: co-expression of Oa_CYP17A1, Ec_CYB5, and Oa_POR;
w)对于以17OHP5合成DHEA:共表达Oa_CYP17A1、Ss_CYB5、Oa_POR;w) For DHEA synthesis by 17OHP5: co-expression of Oa_CYP17A1, Ss_CYB5, and Oa_POR;
x)对于以17OHP4合成4AD和TS(睾酮):共表达Ma_CYP17A1、Ss_CYB5、Ma_POR;x) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ma_CYP17A1, Ss_CYB5, Ma_POR;
y)对于以17OHP4合成4AD和TS(睾酮):共表达Ec_CYP17A1、Ss_CYB5、Ec_POR;y) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ec_CYP17A1, Ss_CYB5, and Ec_POR;
z)对于以17OHP4合成4AD和TS(睾酮):共表达Oa_CYP17A1、Ss_CYB5、Oa_POR;z) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Oa_CYP17A1, Ss_CYB5, and Oa_POR;
aa)对于以17OHP4合成4AD和TS(睾酮):共表达Ma_CYP17A1、Ec_CYB5、Ma_POR;aa) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ma_CYP17A1, Ec_CYB5, Ma_POR;
ab)对于以17OHP4合成4AD和TS(睾酮):共表达Ec_CYP17A1、Ec_CYB5、Ec_POR;ab) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ec_CYP17A1, Ec_CYB5, and Ec_POR;
ac)对于以17OHP4合成4AD和TS(睾酮):共表达Oa_CYP17A1、Ec_CYB5、Oa_POR;ac) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Oa_CYP17A1, Ec_CYB5, and Oa_POR;
ad)对于以17OHP4合成4AD和TS(睾酮):共表达Ec_CYP17A1、Oa_CYB5、Ec_POR;ad) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ec_CYP17A1, Oa_CYB5, and Ec_POR;
ae)对于以17OHP4合成4AD和TS(睾酮):共表达Ec_CYP17A1、Ma_CYB5、Ec_POR;ae) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ec_CYP17A1, Ma_CYB5, and Ec_POR;
af)对于以17OHP4合成4AD和TS(睾酮):共表达Ma_CYP17A1、Oa_CYB5、Ma_POR;af) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ma_CYP17A1, Oa_CYB5, Ma_POR;
ag)对于以17OHP4合成4AD和TS(睾酮):共表达Ma_CYP17A1、Ma_CYB5、Ma_POR。ag) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ma_CYP17A1, Ma_CYB5, Ma_POR.
在本发明的一些具体实施方案中,雄烯二酮的定向合成量最高的组合包括表达所述模块C的宿主与表达所述模块五、所述模块四和/或模块二的宿主混合共培养;所述模块C选自Bos taurus来源;所述模块二选自Equus caballus来源。In some specific embodiments of the present invention, the combination with the highest directed synthesis of androstenedione includes co-culturing a host expressing module C with a host expressing module five, module four and/or module two; module C is selected from Bos taurus; and module two is selected from Equus caballus.
在本发明的一些具体实施方案中,以所述孕烯醇酮(P5)为底物的转化实验中,表现出最强孕烯醇酮转化效率的为Vv_3β-HSD;所述转化效率为6.8%;表现了次强催化效率的包括I型人源及突变体3β-HSD;所述催化效率为4.6~4.8%;In some specific embodiments of the present invention, in the conversion experiment with pregnenolone (P5) as the substrate, the one showing the strongest pregnenolone conversion efficiency is Vv_3β-HSD; the conversion efficiency is 6.8%; the ones showing the second strongest catalytic efficiency include type I human and mutant 3β-HSD; the catalytic efficiency is 4.6-4.8%;
以17-羟基孕烯醇酮(17OHP5)为底物的转化实验中,表现出较强转化效率的包括I型人源及突变体3β-HSD、II型人源及突变体3β-HSD;所述I型人源3β-HSD得孕酮转化率最高为3.1%;In the conversion experiment with 17-hydroxypregnenolone (17OHP5) as the substrate, the ones that showed strong conversion efficiency included type I human 3β-HSD and mutant 3β-HSD, type II human 3β-HSD and mutant 3β-HSD; the type I human 3β-HSD had the highest progesterone conversion rate of 3.1%;
以所述去氢表雄酮(DHEA)为底物,表现较强催化活性的包括II型人源、牛源、分枝杆菌源3β-HSD;所述II型人源3β-HSD转化效率为10.5%。Taking dehydroepiandrosterone (DHEA) as a substrate, the ones showing stronger catalytic activity include type II human, bovine and mycobacterium-derived 3β-HSD; the conversion efficiency of type II human 3β-HSD is 10.5%.
在本发明的一些具体实施方案中,所述宿主包括含所述模块一的In some specific embodiments of the present invention, the host comprises a
SyBE_Yl2091001~SyBE_Yl2091004菌株,含所述模块一和所述模块二的SyBE_Yl2091005~SyBE_Yl2091016和SyBE_Yl2090013~SyBE_Yl2090016菌株,含所述模块五、所述模块四和来源于Equus caballus模块二的SyBE_Yl2091030菌株,含所述模块七、所述模块六和来源于Vaccinia virus模块三的SyBE_Yl2090007菌株。SyBE_Yl2091001~SyBE_Yl2091004 strains, SyBE_Yl2091005~SyBE_Yl2091016 and SyBE_Yl2090013~SyBE_Yl2090016 strains containing module one and module two, SyBE_Yl2091030 strain containing module five, module four and derived from Equus caballus module two, SyBE_Yl2090007 strain containing module seven, module six and derived from Vaccinia virus module three.
在本发明的一些具体实施方案中,培养所述SyBE_Yl2091001~SyBE_Yl2091004菌株和SyBE_Yl2091005~SyBE_Yl2091016菌株,可以定向合成17-羟孕烯醇酮;In some specific embodiments of the present invention, the SyBE_Yl2091001 to SyBE_Yl2091004 strains and SyBE_Yl2091005 to SyBE_Yl2091016 strains are cultured to synthesize 17-hydroxypregnenolone;
培养所述SyBE_Yl2091030菌株,以实现高效转化P5合成DHEA或4AD,P4合成DHEA或4AD;在以P5为底物的生物转化中,所述SyBE_Yl2091030菌株的DHEA合成量达12.6mg/L,较所述SyBE_Yl2091016高7.32倍;在以P4为底物的生物转化中,所述SyBE_Yl2091030菌株实现了13.9mg/L的雄烯二酮合成量,较所述菌株SyBE_Yl2091016菌株产量高86.2倍;The SyBE_Yl2091030 strain is cultivated to realize efficient conversion of P5 to synthesize DHEA or 4AD, and P4 to synthesize DHEA or 4AD; in the bioconversion with P5 as the substrate, the DHEA synthesis amount of the SyBE_Yl2091030 strain reaches 12.6 mg/L, which is 7.32 times higher than that of the SyBE_Yl2091016; in the bioconversion with P4 as the substrate, the SyBE_Yl2091030 strain achieves 13.9 mg/L of androstenedione synthesis, which is 86.2 times higher than the yield of the SyBE_Yl2091016 strain;
培养所述SyBE_Yl2090007菌株,以P5为底物定向合成17OHP4;所述17OHP4合成量达3.90mg/。The SyBE_Yl2090007 strain was cultured and directional synthesized 17OHP4 using P5 as a substrate; the amount of 17OHP4 synthesized reached 3.90 mg/.
在本发明的一些具体实施方案中,所述宿主还包括上游模块菌株和下游模块菌株;In some specific embodiments of the present invention, the host further comprises an upstream module strain and a downstream module strain;
所述上游模块菌株包括含所述模块三的SyBE_Yl2090018、SyBE_Yl2090006、SyBE_Yl2091025~SyBE_Yl2091028;所述下游模块菌株包括含所述模块A、模块B的SyBE_Yl2091006和含所述模块A、模块B的SyBE_Yl2091016,所述SyBE_Yl2091030。The upstream module strains include SyBE_Yl2090018, SyBE_Yl2090006, SyBE_Yl2091025 to SyBE_Yl2091028 containing the module three; the downstream module strains include SyBE_Yl2091006 containing the module A and module B and SyBE_Yl2091016 containing the module A and module B, and SyBE_Yl2091030.
在本发明的一些具体实施方案中,单培养所述SyBE_Yl2090018、SyBE_Yl2090006、SyBE_Yl2091025~SyBE_Yl2091028菌株获得孕酮。In some specific embodiments of the present invention, progesterone is obtained by culturing the SyBE_Yl2090018, SyBE_Yl2090006, SyBE_Yl2091025 to SyBE_Yl2091028 strains alone.
在本发明的一些具体实施方案中,混合共培养所述SyBE_Yl2091025和SyBE_Yl2091006,合成17-羟孕酮0.25mg/L,17-羟孕烯醇酮0.74mg/L,雄烯二酮产量为0.88mg/L。In some specific embodiments of the present invention, the SyBE_Yl2091025 and SyBE_Yl2091006 are co-cultured to synthesize 0.25 mg/L of 17-hydroxyprogesterone, 0.74 mg/L of 17-hydroxypregnenolone, and 0.88 mg/L of androstenedione.
在本发明的一些具体实施方案中,混合共培养所述SyBE_Yl2091025和SyBE_Yl2091016混菌体系中合成17-羟孕酮0.91mg/L,17-羟孕酮0.29mg/L,雄烯二酮产量为1.03mg/L。In some specific embodiments of the present invention, the mixed co-culture system of SyBE_Yl2091025 and SyBE_Yl2091016 synthesized 0.91 mg/L of 17-hydroxyprogesterone, 0.29 mg/L of 17-hydroxyprogesterone, and 1.03 mg/L of androstenedione.
在本发明的一些具体实施方案中,混合共培养所述SyBE_Yl2091026-SyBE_Yl2091006,合成去氢表雄酮2.13mg/L。In some specific embodiments of the present invention, the SyBE_Yl2091026-SyBE_Yl2091006 is mixed and co-cultured to synthesize 2.13 mg/L of dehydroepiandrosterone.
在本发明的一些具体实施方案中,混合共培养所述SyBE_Yl2091025和SyBE_Yl2091030,以雄烯二酮为主要产物,合成雄烯二酮5.02mg/L,睾酮1.09mg/L。In some specific embodiments of the present invention, the SyBE_Yl2091025 and SyBE_Yl2091030 are co-cultured to synthesize 5.02 mg/L of androstenedione and 1.09 mg/L of testosterone with androstenedione as the main product.
在本发明的一些具体实施方案中,所述SyBE_Yl2091025中的模块三来源于Bostaurus;所述SyBE_Yl2091026中的模块三来源于Vaccinia virus;所述SyBE_Yl2091006中的模块一、模块二来源于Mesocricetus auratus;所述SyBE_Yl2091016中的模块一、模块二来源于Ovis aries。In some specific embodiments of the present invention, module three in the SyBE_Yl2091025 is derived from Bostaurus; module three in the SyBE_Yl2091026 is derived from Vaccinia virus; module one and module two in the SyBE_Yl2091006 are derived from Mesocricetus auratus; module one and module two in the SyBE_Yl2091016 are derived from Ovis aries.
本发明还提供了药物,包括如下任意项以及药学上可接受的辅料或助剂:The present invention also provides a drug, comprising any of the following items and a pharmaceutically acceptable adjuvant or auxiliary agent:
(I)、所述表达元件;和/或(I), the expression element; and/or
(II)、所述质粒;和/或(II), the plasmid; and/or
(III)、所述宿主。(III) the host.
本发明还提供了药物组合,包括所述药物以及其他任意有效成分。The present invention also provides a drug combination, comprising the drug and any other effective ingredients.
本发明还提供了合成甾体类化合物和/或甾体激素药物的方法,包括取所述宿主,培养,收集培养物。The present invention also provides a method for synthesizing steroid compounds and/or steroid hormone drugs, comprising taking the host, culturing, and collecting the culture.
在本发明的一些具体实施方案中,所述方法包括:In some specific embodiments of the present invention, the method comprises:
(I)、利用碳源和/或3β-HSD在微生物底盘中从头合成孕酮;和/或(I) synthesizing progesterone de novo in a microbial chassis using a carbon source and/or 3β-HSD; and/or
(II)、利用碳源、3β-HSD、CYP17A1和POR在微生物底盘中从头合成17-羟孕酮;和/或(II), de novo synthesis of 17-hydroxyprogesterone in a microbial chassis using a carbon source, 3β-HSD, CYP17A1 and POR; and/or
(III)、利用碳源、CYP17A1和POR在微生物底盘中从头合成17-羟孕烯醇酮;和/或(III) de novo synthesis of 17-hydroxypregnenolone in a microbial chassis using a carbon source, CYP17A1 and POR; and/or
(Ⅳ)、利用碳源、CYP17A1、POR和/或CYB5在微生物底盘中从头合成去氢表雄酮;和/或(IV) de novo synthesis of dehydroepiandrosterone in a microbial chassis using a carbon source, CYP17A1, POR and/or CYB5; and/or
(Ⅴ)、利用碳源、CYP17A1、POR、CYB5和/或3β-HSD在微生物底盘从头合成雄烯二酮、睾酮;和/或(V) de novo synthesis of androstenedione and testosterone in a microbial chassis using carbon sources, CYP17A1, POR, CYB5 and/or 3β-HSD; and/or
(Ⅵ)、雄烯二酮的定向合成:表达3β-HSD的上游模块与表达CYP17A1、POR和/或CYB5的下游模块混合共培养;和/或(VI) Directed synthesis of androstenedione: co-culturing an upstream module expressing 3β-HSD and a downstream module expressing CYP17A1, POR and/or CYB5; and/or
(Ⅶ)、17-羟孕酮的合成:共表达孕烯醇酮路径和/或3β-HSD的上游模块与仅表达CYP17A1,CYB5和POR的下游模块混合共培养;和/或(VII) Synthesis of 17-hydroxyprogesterone: co-culturing an upstream module that co-expresses the pregnenolone pathway and/or 3β-HSD with a downstream module that only expresses CYP17A1, CYB5 and POR; and/or
(Ⅷ)、以P5为底物合成P4、17OHP5、17OHP4或DHEA中的一种或多种;和/或(VIII) using P5 as a substrate to synthesize one or more of P4, 17OHP5, 17OHP4 or DHEA; and/or
(IⅩ)、以17OHP5为底物合成17OHP4;和/或(IX), synthesizing 17OHP4 using 17OHP5 as a substrate; and/or
(Ⅹ)、以17OHP5为底物合成DHEA;和/或(X) synthesizing DHEA using 17OHP5 as a substrate; and/or
(ⅩⅠ)、以DHEA为底物合成4AD和TS;和/或(ⅩⅠ), synthesizing 4AD and TS using DHEA as a substrate; and/or
(ⅩII)、以17OHP4合成4AD和TS。(ⅩII) Synthesis of 4AD and TS using 17OHP4.
在本发明的一些具体实施方案中,所述碳源包括葡萄糖;所述微生物底盘包括高产菜油甾醇解脂耶氏酵母底盘菌株SyBE_Yl2060077和/或野生型解脂耶氏酵母菌株ATCC201249;In some specific embodiments of the present invention, the carbon source comprises glucose; the microbial chassis comprises the high-yielding campesterol Yarrowia lipolytica chassis strain SyBE_Y12060077 and/or the wild-type Yarrowia lipolytica strain ATCC201249;
所述3β-HSD来源包括Mus musculus、Bos taurus、Vaccinia virus、Arabidopsisthaliana、Mycobacterium tuberculosis、Homo sapiens(I型)、Homo sapiens(II型)、Homosapiens(I型,L237S突变)或Homo sapiens(II型,L236S突变);The 3β-HSD source includes Mus musculus, Bos taurus, Vaccinia virus, Arabidopsisthaliana, Mycobacterium tuberculosis, Homo sapiens (type I), Homo sapiens (type II), Homo sapiens (type I, L237S mutation) or Homo sapiens (type II, L236S mutation);
所述CYP17A1和POR来源包括Equus caballus、Ovis aries、Mesocricetusauratus或Xenopus laevis;The CYP17A1 and POR sources include Equus caballus, Ovis aries, Mesocricetusauratus or Xenopus laevis;
所述CYB5来源包括Equus caballus、Ovis aries、Mesocricetus auratus或Susscrofa;The CYB5 source includes Equus caballus, Ovis aries, Mesocricetus auratus or Susscrofa;
在本发明的一些具体实施方案中,所述3β-HSD的来源包括Bos taurus;所述CYP17A1、POR和/或的CYB5来源包括Mycobacterium tuberculosis和/或Ovis aries。In some specific embodiments of the present invention, the source of 3β-HSD includes Bos taurus; the source of CYP17A1, POR and/or CYB5 includes Mycobacterium tuberculosis and/or Ovis aries.
在本发明的一些具体实施方案中,所述上游模块包括包括所述模块C;In some specific embodiments of the present invention, the upstream module includes the module C;
所述下游模块包括所述模块A、所述模块B、所述模块四、所述模块二或所述模块五中的一种或多种。The downstream module includes one or more of the module A, the module B, the module four, the module two or the module five.
在本发明的一些具体实施方案中,所述上游模块的构建包括:所述mCYP11A1于启动子1下表达,所述3β-HSD于启动子2下表达,二者同时整合至pBR322位点;所述启动子1包括TEF1p;所述启动子2包括EXP1p;In some specific embodiments of the present invention, the construction of the upstream module includes: the mCYP11A1 is expressed under
所述下游模块的构建包括:所述CYP17A1和POR均于启动子下表达,整合于底盘菌株基因组IntD位点上;所述启动子包括TEF1inp;所述底盘菌株包括高产菜油甾醇解脂耶氏酵母底盘菌株SyBE_Yl2060077和/或野生型解脂耶氏酵母菌株ATCC201249。The construction of the downstream module includes: the CYP17A1 and POR are both expressed under the promoter and integrated into the IntD site of the chassis strain genome; the promoter includes TEF1inp; the chassis strain includes the high-yielding campesterol Yarrowia lipolytica chassis strain SyBE_Yl2060077 and/or the wild-type Yarrowia lipolytica strain ATCC201249.
在本发明的一些具体实施方案中,雄烯二酮的定向合成量最高的组合包括表达所述模块C的宿主与表达所述模块五、所述模块四和/或模块二的宿主混合共培养;所述模块C选自Bos taurus来源;所述模块二选自Equus caballus来源。In some specific embodiments of the present invention, the combination with the highest directed synthesis of androstenedione includes co-culturing a host expressing module C with a host expressing module five, module four and/or module two; module C is selected from Bos taurus; and module two is selected from Equus caballus.
在本发明的一些具体实施方案中,所述3β-HSD的来源包括Bos taurus;所述CYP17A1、POR和/或的CYB5来源包括Mycobacterium tuberculosis和/或Ovis aries;In some specific embodiments of the present invention, the source of 3β-HSD includes Bos taurus; the source of CYP17A1, POR and/or CYB5 includes Mycobacterium tuberculosis and/or Ovis aries;
所述17-羟孕酮的合成最高的组合包括表达所述模块C的宿主与表达所述模块A和/或模块B的宿主混合共培养;所述模块C选自Bos taurus来源;所述模块A和/或模块B选自Ovis aries来源。The combination with the highest synthesis of 17-hydroxyprogesterone includes co-culturing a host expressing module C with a host expressing module A and/or module B; module C is selected from Bos taurus; and module A and/or module B are selected from Ovis aries.
在本发明的一些具体实施方案中,所述雄烯二酮的定向合成和/或17-羟孕酮的合成中对甾体类底物高效17α-羟基化的CYP17A1包括Mesocricetus auratus来源和/或Ovisaries来源。In some specific embodiments of the present invention, the CYP17A1 that efficiently 17α-hydroxylates steroidal substrates in the directed synthesis of androstenedione and/or the synthesis of 17-hydroxyprogesterone comprises a Mesocricetus auratus source and/or an Ovisaries source.
在本发明的一些具体实施方案中,所述雄烯二酮的定向合成和/或17-羟孕酮的合成中对甾体类底物高效17,20-裂解活性的CYP17A1包括Mesocricetus auratus来源和/或Equus caballus来源;In some specific embodiments of the present invention, the CYP17A1 with high 17,20-cleavage activity for steroidal substrates in the directed synthesis of androstenedione and/or the synthesis of 17-hydroxyprogesterone includes Mesocricetus auratus sources and/or Equus caballus sources;
在本发明的一些具体实施方案中,所述以P5为底物合成P4包括表达3β-HSD;所述3β-HSD来源包括Vaccinia virus、Bos taurus、Mycobacterium tuberculosis、Homosapiens(I型)或Homo sapiens(II型)中的一种或多种。In some specific embodiments of the present invention, the synthesis of P4 using P5 as a substrate includes expressing 3β-HSD; the source of 3β-HSD includes one or more of Vaccinia virus, Bos taurus, Mycobacterium tuberculosis, Homosapiens (type I) or Homo sapiens (type II).
在本发明的一些具体实施方案中,所述以P5为底物合成17OHP5包括共表达CYP17A1、POR;所述CYP17A1和POR来源包括Ovis aries和/或Mesocricetus auratus。In some specific embodiments of the present invention, the synthesis of 17OHP5 using P5 as a substrate includes co-expressing CYP17A1 and POR; the sources of CYP17A1 and POR include Ovis aries and/or Mesocricetus auratus.
在本发明的一些具体实施方案中,所述以P5为底物合成17OHP4包括共表达3β-HSD、CYP17A1和POR;所述3β-HSD来源包括Homo sapiens(II型)和/或Vaccinia virus;所述CYP17A1和POR来源包括Ovis aries。In some specific embodiments of the present invention, the synthesis of 17OHP4 using P5 as a substrate includes co-expression of 3β-HSD, CYP17A1 and POR; the source of 3β-HSD includes Homo sapiens (type II) and/or Vaccinia virus; the source of CYP17A1 and POR includes Ovis aries.
在本发明的一些具体实施方案中,所述以P5为底物合成DHEA包括共表达CYP17A1、POR和/或CYB5;所述CYP17A1、POR来源包括Ovis aries和/或Equus caballus;所述CYB5来源包括Equus caballus。In some specific embodiments of the present invention, the synthesis of DHEA using P5 as a substrate includes co-expression of CYP17A1, POR and/or CYB5; the sources of CYP17A1 and POR include Ovis aries and/or Equus caballus; and the source of CYB5 includes Equus caballus.
在本发明的一些具体实施方案中,所述以17OHP5为底物合成17OHP4包括表达3β-HSD;所述3β-HSD来源包括Homo sapiens(I型)和/或Homo sapiens(II型)。In some specific embodiments of the present invention, the synthesis of 17OHP4 using 17OHP5 as a substrate includes expressing 3β-HSD; the source of 3β-HSD includes Homo sapiens (type I) and/or Homo sapiens (type II).
在本发明的一些具体实施方案中,所述以17OHP5为底物合成DHEA包括共表达CYP17A1、POR和/或CYB5;所述CYP17A1、POR来源包括Ovis aries;所述CYB5来源包括Mesocricetus auratus、Equus caballus或Sus scrofa。In some specific embodiments of the present invention, the synthesis of DHEA using 17OHP5 as a substrate includes co-expression of CYP17A1, POR and/or CYB5; the sources of CYP17A1 and POR include Ovis aries; the source of CYB5 includes Mesocricetus auratus, Equus caballus or Sus scrofa.
在本发明的一些具体实施方案中,所述以17OHP5为底物合成17OHP4包括表达3β-HSD;所述3β-HSD来源包括Vaccinia virus、Mycobacterium tuberculosis、Homo sapiens(I型)、Homo sapiens(II型)或Bos taurus的一种或多种。In some specific embodiments of the present invention, the synthesis of 17OHP4 using 17OHP5 as a substrate includes expressing 3β-HSD; the source of 3β-HSD includes one or more of Vaccinia virus, Mycobacterium tuberculosis, Homo sapiens (type I), Homo sapiens (type II) or Bos taurus.
在本发明的一些具体实施方案中,所述以7OHP4合成4AD和TS包括共表达CYP17A1、POR和/或CYB5;所述CYP17A1、POR来源包括Mesocricetus auratus、Equus caballus或Ovisaries;所述CYB5来源包括Equus caballus、Ovis aries、Mesocricetus auratus或Susscrofa。In some specific embodiments of the present invention, the synthesis of 4AD and TS by 7OHP4 includes co-expression of CYP17A1, POR and/or CYB5; the sources of CYP17A1 and POR include Mesocricetus auratus, Equus caballus or Ovisaries; the sources of CYB5 include Equus caballus, Ovis aries, Mesocricetus auratus or Susscrofa.
本发明提供了一种通过组合表达不同路径模块,实现复杂网状路径节点路径产物定向合成的方法:The present invention provides a method for realizing the directional synthesis of complex mesh path node path products by combining and expressing different path modules:
a)如:雄烯二酮的定向合成(如实施例7所述);a) For example: directed synthesis of androstenedione (as described in Example 7);
b)如:17-羟孕酮的合成:上游模块菌:共表达孕烯醇酮路径和3β-HSD;下游模块菌:仅表达CYP17A1,CYB5和POR。混菌共培养上游模块和下游模块即可实现由葡萄糖合成17-羟孕酮;b) For example, the synthesis of 17-hydroxyprogesterone: upstream module bacteria: co-express pregnenolone pathway and 3β-HSD; downstream module bacteria: only express CYP17A1, CYB5 and POR. Mixed bacterial co-culture of upstream and downstream modules can achieve the synthesis of 17-hydroxyprogesterone from glucose;
两种在异源合成中,可对甾体类底物高效17α-羟基化的CYP17A1:Ma_CYP17A1、Oa_CYP17A1;Two CYP17A1s that can efficiently 17α-hydroxylate steroidal substrates in heterologous synthesis: Ma_CYP17A1 and Oa_CYP17A1;
两种在异源合成中,具备对甾体类底物高效17,20-裂解活性的CYP17A1:Ma_CYP17A1、Ec_CYP17A1;Two CYP17A1s with efficient 17,20-cleavage activity on steroidal substrates in heterologous synthesis: Ma_CYP17A1 and Ec_CYP17A1;
酵母底盘中组合表达特定网状路径产物实现节点产物定向合成;Combinatorial expression of specific network pathway products in yeast chassis achieves directed synthesis of node products;
a)以P5为底物合成P4:表达3β-HSD;a) Synthesis of P4 using P5 as substrate: expression of 3β-HSD;
b)以P5为底物合成17OHP5:共表达CYP17A1、POR;b) Synthesis of 17OHP5 using P5 as substrate: co-expression of CYP17A1 and POR;
c)以P5为底物合成17OHP4:共表达3β-HSD、CYP17A1、POR;c) Synthesis of 17OHP4 using P5 as substrate: co-expression of 3β-HSD, CYP17A1, and POR;
d)以P5为底物合成DHEA:共表达CYP17A1、POR、CYB5;d) Synthesis of DHEA using P5 as substrate: co-expression of CYP17A1, POR, and CYB5;
组合表达催化特异性互补的同源蛋白,构建高效生物转化合成路径;Combinatorial expression of homologous proteins with complementary catalytic specificity to construct efficient biotransformation synthetic pathways;
a)对于以P5为底物合成P4:单表达Vv_3β-HSD;a) For the synthesis of P4 using P5 as substrate: single expression of Vv_3β-HSD;
b)对于以P5为底物合成P4:单表达Bt_3β-HSD;b) For the synthesis of P4 using P5 as substrate: single expression of Bt_3β-HSD;
c)对于以P5为底物合成P4:单表达Mt_3β-HSD;c) For the synthesis of P4 using P5 as substrate: single expression of Mt_3β-HSD;
d)对于以P5为底物合成P4:单表达Hs_3β-HSD1(I型人源Hs_3β-HSD);d) For the synthesis of P4 using P5 as substrate: single expression of Hs_3β-HSD1 (type I human Hs_3β-HSD);
e)对于以P5为底物合成P4:单表达Hs_3β-HSD2(II型人源Hs_3β-HSD);e) For the synthesis of P4 using P5 as substrate: single expression of Hs_3β-HSD2 (type II human Hs_3β-HSD);
f)对于以P5为底物合成P4:组合表达a)~e)中3β-HSD;f) For the synthesis of P4 using P5 as substrate: combined expression of 3β-HSD in a) to e);
g)对于以17OHP5为底物合成17OHP4:单表达Hs_3β-HSD1(I型人源Hs_3β-HSD);g) For the synthesis of 17OHP4 using 17OHP5 as substrate: single expression of Hs_3β-HSD1 (type I human Hs_3β-HSD);
h)对于以17OHP5为底物合成17OHP4:单表达Hs_3β-HSD2(II型人源Hs_3β-HSD);h) For the synthesis of 17OHP4 using 17OHP5 as substrate: single expression of Hs_3β-HSD2 (type II human Hs_3β-HSD);
i)对于以17OHP5为底物合成17OHP4:组合表达Hs_3β-HSD1和Hs_3β-HSD2;i) For the synthesis of 17OHP4 using 17OHP5 as substrate: combined expression of Hs_3β-HSD1 and Hs_3β-HSD2;
j)对于以DHEA为底物合成4AD和TS(睾酮):单表达Vv_3β-HSD;j) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: single expression of Vv_3β-HSD;
k)对于以DHEA为底物合成4AD和TS(睾酮):单表达Mt_3β-HSD;k) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: single expression of Mt_3β-HSD;
l)对于以DHEA为底物合成4AD和TS(睾酮):单表达Hs_3β-HSD1(I型人源Hs_3β-HSD);l) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: single expression of Hs_3β-HSD1 (type I human Hs_3β-HSD);
m)对于以DHEA为底物合成4AD和TS(睾酮):单表达Hs_3β-HSD2(II型人源Hs_3β-HSD);m) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: single expression of Hs_3β-HSD2 (type II human Hs_3β-HSD);
n)对于以DHEA为底物合成4AD和TS(睾酮):单表达Bt_3β-HSD2;n) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: single expression of Bt_3β-HSD2;
o)对于以DHEA为底物合成4AD和TS(睾酮):组合表达j)~n)中3β-HSD;o) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: combined expression of 3β-HSD in j) to n);
p)对于以P5为底物合成DHEA:共表达Oa_CYP17A1、Oa_POR、Ec_CYP17A1、Ec_POR、Ec_CYB5;p) For DHEA synthesis using P5 as substrate: co-expression of Oa_CYP17A1, Oa_POR, Ec_CYP17A1, Ec_POR, and Ec_CYB5;
q)对于以P5为底物合成17OHP4:共表达Hs_3β-HSD2(II型人源Hs_3β-HSD)、Vv_3β-HSD、Oa_CYP17A1、Oa_POR;q) For the synthesis of 17OHP4 using P5 as substrate: co-expression of Hs_3β-HSD2 (type II human Hs_3β-HSD), Vv_3β-HSD, Oa_CYP17A1, and Oa_POR;
r)对于以P5为底物合成17OHP5:共表达Oa_CYP17A1、Oa_POR;r) For the synthesis of 17OHP5 using P5 as substrate: co-expression of Oa_CYP17A1 and Oa_POR;
s)对于以P5为底物合成17OHP5:共表达Ma_CYP17A1、Ma_POR;s) For the synthesis of 17OHP5 using P5 as substrate: co-expression of Ma_CYP17A1 and Ma_POR;
t)对于以P5为底物合成17OHP5:组合表达r)~s)中CYP17A1和POR;t) For the synthesis of 17OHP5 using P5 as substrate: combined expression of CYP17A1 and POR in r) to s);
u)对于以17OHP5合成DHEA:共表达Oa_CYP17A1、Ma_CYB5、Oa_POR;u) For DHEA synthesis by 17OHP5: co-expression of Oa_CYP17A1, Ma_CYB5, and Oa_POR;
v)对于以17OHP5合成DHEA:共表达Oa_CYP17A1、Ec_CYB5、Oa_POR;v) For DHEA synthesis by 17OHP5: co-expression of Oa_CYP17A1, Ec_CYB5, and Oa_POR;
w)对于以17OHP5合成DHEA:共表达Oa_CYP17A1、Ss_CYB5、Oa_POR;w) For DHEA synthesis by 17OHP5: co-expression of Oa_CYP17A1, Ss_CYB5, and Oa_POR;
x)对于以17OHP4合成4AD和TS(睾酮):共表达Ma_CYP17A1、Ss_CYB5、Ma_POR;x) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ma_CYP17A1, Ss_CYB5, Ma_POR;
y)对于以17OHP4合成4AD和TS(睾酮):共表达Ec_CYP17A1、Ss_CYB5、Ec_POR;y) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ec_CYP17A1, Ss_CYB5, and Ec_POR;
z)对于以17OHP4合成4AD和TS(睾酮):共表达Oa_CYP17A1、Ss_CYB5、Oa_POR;z) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Oa_CYP17A1, Ss_CYB5, and Oa_POR;
aa)对于以17OHP4合成4AD和TS(睾酮):共表达Ma_CYP17A1、Ec_CYB5、Ma_POR;aa) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ma_CYP17A1, Ec_CYB5, Ma_POR;
ab)对于以17OHP4合成4AD和TS(睾酮):共表达Ec_CYP17A1、Ec_CYB5、Ec_POR;ab) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ec_CYP17A1, Ec_CYB5, and Ec_POR;
ac)对于以17OHP4合成4AD和TS(睾酮):共表达Oa_CYP17A1、Ec_CYB5、Oa_POR;ac) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Oa_CYP17A1, Ec_CYB5, and Oa_POR;
ad)对于以17OHP4合成4AD和TS(睾酮):共表达Ec_CYP17A1、Oa_CYB5、Ec_POR;ad) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ec_CYP17A1, Oa_CYB5, and Ec_POR;
ae)对于以17OHP4合成4AD和TS(睾酮):共表达Ec_CYP17A1、Ma_CYB5、Ec_POR;ae) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ec_CYP17A1, Ma_CYB5, and Ec_POR;
af)对于以17OHP4合成4AD和TS(睾酮):共表达Ma_CYP17A1、Oa_CYB5、Ma_POR;af) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ma_CYP17A1, Oa_CYB5, Ma_POR;
ag)对于以17OHP4合成4AD和TS(睾酮):共表达Ma_CYP17A1、Ma_CYB5、Ma_POR。ag) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ma_CYP17A1, Ma_CYB5, Ma_POR.
具体地,合成甾体类化合物和/或甾体激素药物的方法,包括:培养所述宿主,加入类固醇底物母液孵育,对孕烯醇酮(P5)、孕酮(P4)、17-羟孕烯醇酮(17OHP5)、17-羟孕酮(17OHP4)、去氢表雄酮(DHEA)、雄烯二酮(4AD)或睾酮(TS)定量;Specifically, the method for synthesizing steroidal compounds and/or steroidal hormone drugs comprises: culturing the host, adding a steroid substrate mother solution for incubation, and quantifying pregnenolone (P5), progesterone (P4), 17-hydroxypregnenolone (17OHP5), 17-hydroxyprogesterone (17OHP4), dehydroepiandrosterone (DHEA), androstenedione (4AD) or testosterone (TS);
所述培养包括在种子培养基中、生物转化培养基中或YPD发酵培养基中培养;The culturing includes culturing in a seed culture medium, a biotransformation culture medium or a YPD fermentation culture medium;
所述种子培养基的配方包括:20g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉;采用所述种子培养基培养的温度为30℃、转速为220rpm、培养时间为14~16h;The formula of the seed culture medium includes: 20g/L glucose, 20g/L peptone, and 10g/L yeast extract powder; the culture temperature of the seed culture medium is 30°C, the rotation speed is 220rpm, and the culture time is 14 to 16h;
所述生物转化培养基的配方包括:20g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉;采用所述生物转化培养基培养的温度28℃、转速为220rpm、培养时间为24h;The formula of the biotransformation medium includes: 20g/L glucose, 20g/L peptone, and 10g/L yeast extract powder; the culture temperature of the biotransformation medium is 28°C, the rotation speed is 220rpm, and the culture time is 24h;
所述YPD发酵培养基的配方包括:50g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉;采用所述YPD发酵培养基培养的温度28℃、转速为220rpm、培养时间为8天;The formula of the YPD fermentation medium includes: 50g/L glucose, 20g/L peptone, and 10g/L yeast extract powder; the YPD fermentation medium is used for culturing at a temperature of 28°C, a rotation speed of 220rpm, and a culturing time of 8 days;
合成所述甾体类化合物包括3β-HSD异构化转化、17-羟化转化、17,20-裂解转化、DHEA合成和/或4AD合成。The synthesis of the steroidal compounds includes 3β-HSD isomerization conversion, 17-hydroxylation conversion, 17,20-cleavage conversion, DHEA synthesis and/or 4AD synthesis.
所述3β-HSD异构化转化加入的类固醇底物母液包括P4和17OHP4溶液;所述P4和17OHP4溶液的浓度为1.75g/L(50%EtOH-Tween80);The steroid substrate mother liquor added to the 3β-HSD isomerization conversion includes P4 and 17OHP4 solutions; the concentration of the P4 and 17OHP4 solutions is 1.75 g/L (50% EtOH-Tween80);
所述17-羟化转化加入的类固醇底物母液包括P4和P5溶液;所述P4和P5溶液的浓度为1.75g/L(50%EtOH-Tween80);The steroid substrate mother solution added in the 17-hydroxylation conversion includes P4 and P5 solutions; the concentration of the P4 and P5 solutions is 1.75 g/L (50% EtOH-Tween80);
所述17,20-裂解转化加入的类固醇底物母液包括17OHP4和17OHP5溶液;所述17OHP4和17OHP5溶液的浓度为1.75g/L(50%EtOH-Tween80);The steroid substrate mother solution added to the 17,20-cleavage conversion includes 17OHP4 and 17OHP5 solutions; the concentration of the 17OHP4 and 17OHP5 solutions is 1.75 g/L (50% EtOH-Tween80);
所述DHEA合成加入的类固醇底物母液包括P5溶液;所述P5溶液的浓度为3.5g/L(50%EtOH-Tween80);The steroid substrate mother solution added to the DHEA synthesis includes a P5 solution; the concentration of the P5 solution is 3.5 g/L (50% EtOH-Tween80);
所述4AD合成加入的类固醇底物母液包括P4溶液;所述P4溶液的浓度为3.5g/L(50%EtOH-Tween80);The steroid substrate mother solution added to the 4AD synthesis includes a P4 solution; the concentration of the P4 solution is 3.5 g/L (50% EtOH-Tween80);
所述孕烯醇酮定量的方法包括:取培养后的宿主,离心,重悬,煮沸,加入皂化反应溶液反应,加入萃取溶剂,浓缩,检测;The method for quantifying pregnenolone comprises: taking the cultured host, centrifuging, resuspending, boiling, adding saponification reaction solution to react, adding extraction solvent, concentrating, and detecting;
所述离心转速为12000g,离心时间为2min;所述重悬采用的溶液为盐酸;所述盐酸的浓度为3mol/L;所述煮沸得温度为100℃;所述皂化反应溶液为氢氧化钾-甲醇溶液;所述氢氧化钾-甲醇溶液的浓度为2mol/L;所述萃取溶剂为正己烷;所述浓缩采用的为真空离心浓缩仪;所述浓缩的温度为25℃,时间为30min,转速为7000rpm;The centrifugal speed is 12000g, and the centrifugal time is 2min; the solution used for the resuspension is hydrochloric acid; the concentration of the hydrochloric acid is 3mol/L; the boiling temperature is 100°C; the saponification reaction solution is potassium hydroxide-methanol solution; the concentration of the potassium hydroxide-methanol solution is 2mol/L; the extraction solvent is n-hexane; the concentration is carried out by a vacuum centrifugal concentrator; the concentration temperature is 25°C, the time is 30min, and the speed is 7000rpm;
所述孕酮、17-羟孕烯醇酮、17-羟孕酮、DHEA或雄烯二酮定量的方法包括:取培养后的宿主,加入玻璃珠和萃取溶剂,浓缩,检测;The method for quantifying progesterone, 17-hydroxypregnenolone, 17-hydroxyprogesterone, DHEA or androstenedione comprises: taking a cultured host, adding glass beads and an extraction solvent, concentrating, and detecting;
所述萃取溶剂为乙酸乙酯;所述浓缩的温度为25℃,时间为1200min,转速为7000rpm。The extraction solvent is ethyl acetate; the concentration temperature is 25°C, the time is 1200 min, and the rotation speed is 7000 rpm.
本发明提供了网状路径产物定向合成。与利用天然微生物内源路径转化甾体底物相比,本发明在酵母底盘下,利用重新构建人工异源网状路径,通过理性组合路径组分蛋白,可实现定向合成节点产物。通过组合表达不同催化特异性的路径组分同源蛋白,可实现路径转化效率的进一步提升。同时利用在微生物底盘下构建人工孕烯醇酮合成路径,并通过引入特定下游雄烯二酮合成路径组分,实现以简单碳源为底物,定向合成雄烯二酮路径节点化合物。The present invention provides directional synthesis of network pathway products. Compared with the conversion of steroid substrates by natural microbial endogenous pathways, the present invention uses the reconstructed artificial heterologous network pathway under the yeast chassis and rationally combines the pathway component proteins to achieve directional synthesis of node products. By combining and expressing homologous proteins of pathway components with different catalytic specificities, the pathway conversion efficiency can be further improved. At the same time, by constructing an artificial pregnenolone synthesis pathway under the microbial chassis and introducing specific downstream androstenedione synthesis pathway components, the directional synthesis of androstenedione pathway node compounds using simple carbon sources as substrates can be achieved.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art are briefly introduced below.
图1示实施例1中孕烯醇酮合成雄烯二酮路径;FIG1 shows the synthesis pathway of androstenedione from pregnenolone in Example 1;
图2示实施例1中孕烯醇酮合成孕酮;FIG2 shows the synthesis of progesterone from pregnenolone in Example 1;
图3示实施例1中孕烯醇酮合成去氢表雄酮;FIG3 shows the synthesis of dehydroepiandrosterone from pregnenolone in Example 1;
图4示实施例1中孕烯醇酮合成17-羟孕酮;FIG4 shows the synthesis of 17-hydroxyprogesterone from pregnenolone in Example 1;
图5示实施例1中孕烯醇酮合成17-羟孕烯醇酮;FIG5 shows the synthesis of 17-hydroxypregnenolone from pregnenolone in Example 1;
图6示实施例1中不同来源3β-HSD在解脂酵母背景下分别以孕烯醇酮、17-羟孕烯醇酮、DHEA为底物异构化效率;FIG6 shows the isomerization efficiency of 3β-HSD from different sources in Example 1 with pregnenolone, 17-hydroxypregnenolone, and DHEA as substrates in the context of lipolytic yeast;
图7示实施例2中在解脂酵母背景下,不同来源CYP17A1以孕烯醇酮、孕酮为底物17α-羟基化效率;其中,左图示在解脂酵母背景下,不同来源CYP17A1以孕烯醇酮为底物17α-羟基化效率;右图示在解脂酵母背景下,不同来源CYP17A1以孕酮为底物17α-羟基化效率;FIG7 shows the 17α-hydroxylation efficiency of CYP17A1 from different sources with pregnenolone and progesterone as substrates in the context of lipolytica in Example 2; wherein the left figure shows the 17α-hydroxylation efficiency of CYP17A1 from different sources with pregnenolone as substrate in the context of lipolytica; the right figure shows the 17α-hydroxylation efficiency of CYP17A1 from different sources with progesterone as substrate in the context of lipolytica;
图8示实施例2中在解脂酵母背景下,不同CYP17A1和CYB5来源组合以17-羟孕烯醇酮、17-羟孕酮为底物的17,20-裂解效率;其中,图左示在解脂酵母背景下,不同CYP17A1和CYB5来源组合以17-羟孕烯醇酮为底物的17,20-裂解效率;图右示在解脂酵母背景下,不同CYP17A1和CYB5来源组合以17-羟孕酮为底物的17,20-裂解效率;Figure 8 shows the 17,20-cleavage efficiency of different CYP17A1 and CYB5 source combinations with 17-hydroxypregnenolone and 17-hydroxyprogesterone as substrates in the context of lipolytic yeast in Example 2; wherein the left figure shows the 17,20-cleavage efficiency of different CYP17A1 and CYB5 source combinations with 17-hydroxypregnenolone as substrate in the context of lipolytic yeast; the right figure shows the 17,20-cleavage efficiency of different CYP17A1 and CYB5 source combinations with 17-hydroxyprogesterone as substrate in the context of lipolytic yeast;
图9示实施例3中重组菌株以孕烯醇酮为底物合成去氢表雄酮效率;FIG9 shows the efficiency of synthesizing dehydroepiandrosterone using pregnenolone as a substrate by the recombinant strain in Example 3;
图10示实施例3中重组菌株以孕酮为底物合成雄烯二酮产量;其中,图左示SyBE_Yl2091016;图右示SyBE_Yl2091030;FIG. 10 shows the production of androstenedione synthesized by the recombinant strain in Example 3 using progesterone as a substrate; wherein the left side of the figure shows SyBE_Yl2091016; the right side of the figure shows SyBE_Yl2091030;
图11示实施例4中菌株SyBE_Yl2090007以孕烯醇酮为底物合成17-羟孕酮;Figure 11 shows that strain SyBE_Y12090007 in Example 4 synthesizes 17-hydroxyprogesterone using pregnenolone as a substrate;
图12示实施例5中不同来源3β-HSD在重组酵母中合成孕酮效果测试;FIG12 shows the test of the effect of 3β-HSD from different sources on the synthesis of progesterone in recombinant yeast in Example 5;
图13示实施例6中混菌体系合成雄烯二酮的产量(柱图);其中,图左示在SyBE_Yl2091025-SyBE_Yl2091016混菌合成雄烯二酮的产量;图右示在FIG. 13 shows the production of androstenedione synthesized by the mixed bacteria system in Example 6 (bar graph); wherein the left side of the figure shows the production of androstenedione synthesized by the mixed bacteria SyBE_Y12091025-SyBE_Y12091016; the right side of the figure shows
SyBE_Yl2091025-SyBE_Yl2091006混菌合成雄烯二酮的产量;The production of androstenedione synthesized by the mixed strain SyBE_Yl2091025-SyBE_Yl2091006;
图14示实施例7中混菌合成去氢表雄酮;Figure 14 shows the synthesis of dehydroepiandrosterone by mixed bacteria in Example 7;
图15示实施例8中利用生物转化测试不同来源CYP17A1、CYB5组分催化17α-羟基化、17,20-裂解效率;其中,左图示以P4为底物催化17α-羟基化的效率、右图示以17OHP4为底物催化17,20-裂解效率;FIG15 shows the efficiency of 17α-hydroxylation and 17,20-cleavage catalyzed by CYP17A1 and CYB5 components from different sources in the biotransformation test in Example 8; wherein the left figure shows the efficiency of 17α-hydroxylation catalyzed by P4 as a substrate, and the right figure shows the efficiency of 17,20-cleavage catalyzed by 17OHP4 as a substrate;
图16示实施例8中混菌体系从头合成4AD的产量(柱图);其中,图左示SyBE_Yl2091025-SyBE_Yl2091016混菌合成4AD的产量;图右示FIG. 16 shows the yield of 4AD synthesized from scratch by the mixed bacteria system in Example 8 (bar graph); wherein the left side of the figure shows the yield of 4AD synthesized by the mixed bacteria SyBE_Yl2091025-SyBE_Yl2091016; the right side of the figure shows
SyBE_Yl2091025-SyBE_Yl2091030混菌从头合成4AD的产量。The yield of 4AD synthesized from scratch by the mixed bacteria SyBE_Yl2091025-SyBE_Yl2091030.
具体实施方式DETAILED DESCRIPTION
本发明公开了网状路径产物定向合成,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明的方法及应用已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。The present invention discloses the directional synthesis of products of a network path, and those skilled in the art can refer to the content of this article and appropriately improve the process parameters to achieve it. It is particularly important to point out that all similar substitutions and modifications are obvious to those skilled in the art, and they are all considered to be included in the present invention. The methods and applications of the present invention have been described through preferred embodiments, and relevant personnel can obviously modify or appropriately change and combine the methods and applications described herein without departing from the content, spirit and scope of the present invention to implement and apply the technology of the present invention.
本发明以在解脂耶氏酵母中定向合成雄烯二酮路径节点产物为例,提供了一种在微生物底盘对网状路径解耦实现目标化合物定向合成的方法。简单地说,本发明利用①利用解脂耶氏酵母底盘②利用酶催化底物特异性构建激素类甾体合成路径,③依据目标化合物合成需要,选择性表达路径组分蛋白构建合成路径。④利用微生物底盘从头合成甾体激素类化合物。通过以上方法组合优化实现特定目标类固醇在微生物系统中高效合成。The present invention takes the directed synthesis of androstenedione pathway node products in Yarrowia lipolytica as an example, and provides a method for decoupling the network pathway in a microbial chassis to achieve directed synthesis of target compounds. Simply put, the present invention utilizes ① the
解脂耶氏酵母作为非常规酵母,用于甾体合成上具有以下优势:①基因组序列已知,可基因操作,增殖能力强,有利于代谢改造及大规模生产。②乙酰辅酶A作为合成甾体的前体物质,其代谢通量在解脂酵母中高,有利于甾体合成。③该物种在代谢改造后异源蛋白表达量高,同时细胞转录后糖基化修饰与酿酒酵母相比,更接近哺乳动物细胞,有利于哺乳动物来源的蛋白表达,进而合成动物源甾体。④GRAS(generally regard as safe)级别的安全性,可被考虑用作药物合成的底盘。⑤解脂耶氏酵母底物谱广泛,除葡萄糖外还可利用油类为底物,因此可以利用工业副产物及废弃物生产目的产物。⑥解脂酵母在以油为碳源时,胞内脂类积累会导致脂滴变大,为储存非极性产物(如甾体)提供贮存空间,利于减轻产物积累给细胞带来的负担。⑦与传统的甾体异源合成的传统宿主酿酒酵母相比,解脂酵母没有ATF2(alcohol O-acetyltransferase)的同源基因,该基因会导致酿酒酵母中的甾体酯化,阻碍甾体在细胞中进一步生物转化。As an unconventional yeast, Yarrowia lipolytica has the following advantages in steroid synthesis: ① The genome sequence is known, it can be genetically manipulated, and it has strong proliferation ability, which is conducive to metabolic modification and large-scale production. ② As a precursor for the synthesis of steroids, the metabolic flux of acetyl-CoA is high in Y. lipolytica, which is conducive to steroid synthesis. ③ After metabolic modification, the expression of heterologous proteins in this species is high. At the same time, compared with Saccharomyces cerevisiae, the post-transcriptional glycosylation modification of the cell is closer to that of mammalian cells, which is conducive to the expression of mammalian proteins and the synthesis of animal-derived steroids. ④ With GRAS (generally regarded as safe) level of safety, it can be considered as a chassis for drug synthesis. ⑤ Yarrowia lipolytica has a wide spectrum of substrates. In addition to glucose, it can also use oils as substrates, so it can use industrial by-products and waste to produce target products. ⑥ When Y. lipolytica uses oil as a carbon source, the accumulation of intracellular lipids will cause the lipid droplets to become larger, providing storage space for the storage of non-polar products (such as steroids), which is conducive to reducing the burden of product accumulation on cells. ⑦ Compared with Saccharomyces cerevisiae, the traditional host for heterologous steroid synthesis, Saccharomyces lipolytica does not have the homologous gene of ATF2 (alcohol O-acetyltransferase), which causes steroid esterification in Saccharomyces cerevisiae and hinders further biotransformation of steroids in cells.
本发明在代谢背景较为纯净和清晰的酵母底盘下,外源甾体合成路径与微生物内源代谢正交,使得甾体生物转化可在较为纯净的背景下进行,更好地实现中间节点产物定向合成。In the present invention, under the yeast chassis with a relatively pure and clear metabolic background, the exogenous steroid synthesis pathway is orthogonal to the endogenous metabolism of the microorganism, so that the steroid biotransformation can be carried out in a relatively pure background, and the directional synthesis of the intermediate node product can be better achieved.
利用微生物从头合成甾体激素类化合物的探索较为有限,本发明实现了利用简单碳源到雄烯二酮网状路径节点产物的定向合成。The exploration of de novo synthesis of steroid hormone compounds using microorganisms is relatively limited. The present invention realizes the directional synthesis of androstenedione network pathway node products using simple carbon sources.
构建人工合成路径可以通过对不同催化特异性蛋白组合与异源表达,实现路径节点化合物定向合成与路径通量强化。The construction of artificial synthetic pathways can achieve the directed synthesis of pathway node compounds and pathway flux enhancement through the combination and heterologous expression of different catalytic specific proteins.
本发明的目的是克服现有技术中的不足,提供实现目标化合物定向合成的方法。The purpose of the present invention is to overcome the deficiencies in the prior art and provide a method for achieving directed synthesis of a target compound.
本发明提供了如下:The present invention provides the following:
1、在微生物底盘中构建人工路径实现甾体化合物合成。1. Construct artificial pathways in the microbial chassis to achieve steroid synthesis.
2、在解脂耶氏酵母底盘中构建人工路径实现甾体化合物合成。2. Construct an artificial pathway in the Yarrowia lipolytica chassis to achieve steroidal compound synthesis.
3、利用组合表达实施例1中:9种3β-HSD、4种CYP17A1在微生物底盘从头合成17-羟孕酮的方法。3. A method for synthesizing 17-hydroxyprogesterone from scratch in a microbial chassis by using the combined expression of nine 3β-HSDs and four CYP17A1s in Example 1.
4、利用组合表达实施例1表格中:4种CYP17A1在微生物底盘从头合成17-羟孕烯醇酮的方法。4. Methods for synthesizing 17-hydroxypregnenolone de novo in a microbial chassis using the four CYP17A1 in the table of Example 1 using combination expression.
5、利用组合表达实施例1表格中:4种CYP17A1、4种CYB5在微生物底盘从头合成去氢表雄酮的方法。5. A method for synthesizing dehydroepiandrosterone from scratch in a microbial chassis by using the combined expression of the four CYP17A1 and four CYB5 in the table of Example 1.
6、利用组合表达实施例1表格中:4种CYP17A1、4种CYB5、9种3β-HSD在微生物底盘从头合成雄烯二酮、睾酮的方法。6. A method for synthesizing androstenedione and testosterone from scratch in a microbial chassis by using the combined expression of the table in Example 1: 4 CYP17A1, 4 CYB5, and 9 3β-HSD.
7、利用组合表达实施例1表格中:9种3β-HSD、4种CYP17A1在解脂耶氏酵母底盘从头合成17-羟孕酮的方法。7. A method for synthesizing 17-hydroxyprogesterone from scratch in the Yarrowia lipolytica chassis using the combined expression of the nine 3β-HSDs and four CYP17A1s in the table of Example 1.
8、利用组合表达实施例1表格中:4种CYP17A1在解脂耶氏酵母底盘从头合成17-羟孕烯醇酮的方法。8. A method for synthesizing 17-hydroxypregnenolone de novo in the Yarrowia lipolytica chassis using the four CYP17A1 in the table of Example 1 using combined expression.
9、利用组合表达实施例1表格中:4种CYP17A1、4种CYB5在解脂耶氏酵母底盘从头合成去氢表雄酮的方法。9. A method for synthesizing dehydroepiandrosterone from scratch in the Yarrowia lipolytica chassis by using the combined expression of the four CYP17A1 and four CYB5 in the table of Example 1.
10、利用组合表达实施例1表格中:4种CYP17A1、4种CYB5、9种3β-HSD在解脂耶氏酵母底盘从头合成雄烯二酮、睾酮的方法。10. A method for synthesizing androstenedione and testosterone from scratch in the Yarrowia lipolytica chassis by using the combined expression of 4 CYP17A1, 4 CYB5, and 9 3β-HSD in the table of Example 1.
11、利用牛源3β-HSD,构建可利用简单碳源从头合成孕酮的工程菌的方法。11. Using bovine 3β-HSD, a method was developed to construct an engineered bacterium that can synthesize progesterone from scratch using a simple carbon source.
12、利用人源3β-HSD,构建可利用简单碳源从头合成孕酮的工程菌的方法。12. A method for constructing an engineered bacterium that can synthesize progesterone from scratch using human 3β-HSD.
13、利用牛痘病毒源3β-HSD,构建可利用简单碳源从头合成孕酮的工程菌的方法。13. A method for constructing an engineered bacterium that can synthesize progesterone from scratch using a simple carbon source by using 3β-HSD derived from vaccinia virus.
14、利用分枝杆菌源3β-HSD,构建可利用简单碳源从头合成孕酮的工程菌的方法。14. A method for constructing an engineered bacterium that can synthesize progesterone from scratch using a simple carbon source by using mycobacterium-derived 3β-HSD.
15、一种通过组合表达不同路径模块,实现复杂网状路径节点路径产物定向合成的方法。15. A method for achieving directed synthesis of complex mesh path node products by combining different path modules.
a)如:雄烯二酮的定向合成(如实施例7所述)a) For example: Directed synthesis of androstenedione (as described in Example 7)
b)如:17-羟孕酮的合成:上游模块菌:共表达孕烯醇酮路径和3β-HSD;下游模块菌:仅表达CYP17A1,CYB5和POR。混菌共培养上游模块和下游模块即可实现由葡萄糖合成17-羟孕酮。b) For example, the synthesis of 17-hydroxyprogesterone: the upstream module bacteria: co-express the pregnenolone pathway and 3β-HSD; the downstream module bacteria: only express CYP17A1, CYB5 and POR. The upstream module and the downstream module can be co-cultured to synthesize 17-hydroxyprogesterone from glucose.
16、两种在异源合成中,可对甾体类底物高效17α-羟基化的CYP17A1:Ma_CYP17A1、Oa_CYP17A116. Two CYP17A1s that can efficiently 17α-hydroxylate steroidal substrates in heterologous synthesis: Ma_CYP17A1 and Oa_CYP17A1
17、两种在异源合成中,具备对甾体类底物高效17,20-裂解活性的CYP17A1:Ma_CYP17A1、Ec_CYP17A117. Two CYP17A1s with high 17,20-cleavage activity for steroidal substrates in heterologous synthesis: Ma_CYP17A1 and Ec_CYP17A1
18、酵母底盘中组合表达特定网状路径产物实现节点产物定向合成。18. Combinatorial expression of specific network pathway products in the yeast chassis enables directed synthesis of node products.
a)以P5为底物合成P4:表达3β-HSDa) Synthesis of P4 using P5 as substrate: Expression of 3β-HSD
b)以P5为底物合成17OHP5:共表达CYP17A1、PORb) Synthesis of 17OHP5 using P5 as substrate: co-expression of CYP17A1 and POR
c)以P5为底物合成17OHP4:共表达3β-HSD、CYP17A1、PORc) Synthesis of 17OHP4 using P5 as substrate: co-expression of 3β-HSD, CYP17A1, and POR
d)以P5为底物合成DHEA:共表达CYP17A1、POR、CYB5d) Synthesis of DHEA using P5 as substrate: Co-expression of CYP17A1, POR, and CYB5
19、组合表达催化特异性互补的同源蛋白,构建高效生物转化合成路径19. Combined expression of homologous proteins with complementary catalytic specificity to construct efficient biotransformation synthesis pathways
a)对于以P5为底物合成P4:单表达Vv_3β-HSDa) For the synthesis of P4 using P5 as substrate: single expression of Vv_3β-HSD
b)对于以P5为底物合成P4:单表达Bt_3β-HSDb) For the synthesis of P4 using P5 as substrate: single expression of Bt_3β-HSD
c)对于以P5为底物合成P4:单表达Mt_3β-HSDc) For the synthesis of P4 using P5 as substrate: single expression of Mt_3β-HSD
d)对于以P5为底物合成P4:单表达Hs_3β-HSD1(I型人源Hs_3β-HSD)d) For the synthesis of P4 using P5 as substrate: single expression of Hs_3β-HSD1 (type I human Hs_3β-HSD)
e)对于以P5为底物合成P4:单表达Hs_3β-HSD2(II型人源Hs_3β-HSD)e) For the synthesis of P4 using P5 as substrate: single expression of Hs_3β-HSD2 (type II human Hs_3β-HSD)
f)对于以P5为底物合成P4:组合表达a)~e)中3β-HSDf) For the synthesis of P4 using P5 as substrate: Combined expression of 3β-HSD in a) to e)
g)对于以17OHP5为底物合成17OHP4:单表达Hs_3β-HSD1(I型人源Hs_3β-HSD)g) For the synthesis of 17OHP4 using 17OHP5 as a substrate: single expression of Hs_3β-HSD1 (type I human Hs_3β-HSD)
h)对于以17OHP5为底物合成17OHP4:单表达Hs_3β-HSD2(II型人源Hs_3β-HSD)h) For the synthesis of 17OHP4 using 17OHP5 as a substrate: single expression of Hs_3β-HSD2 (type II human Hs_3β-HSD)
i)对于以17OHP5为底物合成17OHP4:组合表达Hs_3β-HSD1和Hs_3β-HSD2i) For the synthesis of 17OHP4 using 17OHP5 as a substrate: combined expression of Hs_3β-HSD1 and Hs_3β-HSD2
j)对于以DHEA为底物合成4AD和TS(睾酮):单表达Vv_3β-HSDj) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: single expression of Vv_3β-HSD
k)对于以DHEA为底物合成4AD和TS(睾酮):单表达Mt_3β-HSDk) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: single expression of Mt_3β-HSD
l)对于以DHEA为底物合成4AD和TS(睾酮):单表达Hs_3β-HSD1(I型人源Hs_3β-HSD)l) For the synthesis of 4AD and TS (testosterone) using DHEA as a substrate: single expression of Hs_3β-HSD1 (type I human Hs_3β-HSD)
m)对于以DHEA为底物合成4AD和TS(睾酮):单表达Hs_3β-HSD2(II型人源Hs_3β-HSD)m) For the synthesis of 4AD and TS (testosterone) using DHEA as a substrate: single expression of Hs_3β-HSD2 (type II human Hs_3β-HSD)
n)对于以DHEA为底物合成4AD和TS(睾酮):单表达Bt_3β-HSD2n) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: single expression of Bt_3β-HSD2
o)对于以DHEA为底物合成4AD和TS(睾酮):组合表达j)~n)中3β-HSDo) For the synthesis of 4AD and TS (testosterone) using DHEA as substrate: Combined expression of 3β-HSD in j) to n)
p)对于以P5为底物合成DHEA:共表达Oa_CYP17A1、Oa_POR、Ec_CYP17A1、Ec_POR、Ec_CYB5p) For DHEA synthesis using P5 as substrate: co-expression of Oa_CYP17A1, Oa_POR, Ec_CYP17A1, Ec_POR, Ec_CYB5
q)对于以P5为底物合成17OHP4:共表达Hs_3β-HSD2(II型人源Hs_3β-HSD)、Vv_3β-HSD、Oa_CYP17A1、Oa_PORq) For the synthesis of 17OHP4 using P5 as substrate: co-expression of Hs_3β-HSD2 (type II human Hs_3β-HSD), Vv_3β-HSD, Oa_CYP17A1, Oa_POR
r)对于以P5为底物合成17OHP5:共表达Oa_CYP17A1、Oa_PORr) For the synthesis of 17OHP5 using P5 as substrate: co-expression of Oa_CYP17A1, Oa_POR
s)对于以P5为底物合成17OHP5:共表达Ma_CYP17A1、Ma_PORs) For the synthesis of 17OHP5 using P5 as substrate: co-expression of Ma_CYP17A1, Ma_POR
t)对于以P5为底物合成17OHP5:组合表达r)~s)中CYP17A1和PORt) For the synthesis of 17OHP5 using P5 as substrate: Combined expression of CYP17A1 and POR in r) to s)
u)对于以17OHP5合成DHEA:共表达Oa_CYP17A1、Ma_CYB5、Oa_PORu) For DHEA synthesis by 17OHP5: co-expression of Oa_CYP17A1, Ma_CYB5, Oa_POR
v)对于以17OHP5合成DHEA:共表达Oa_CYP17A1、Ec_CYB5、Oa_PORv) For DHEA synthesis by 17OHP5: co-expression of Oa_CYP17A1, Ec_CYB5, Oa_POR
w)对于以17OHP5合成DHEA:共表达Oa_CYP17A1、Ss_CYB5、Oa_PORw) For DHEA synthesis by 17OHP5: co-expression of Oa_CYP17A1, Ss_CYB5, Oa_POR
x)对于以17OHP4合成4AD和TS(睾酮):共表达Ma_CYP17A1、Ss_CYB5、Ma_PORx) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ma_CYP17A1, Ss_CYB5, Ma_POR
y)对于以17OHP4合成4AD和TS(睾酮):共表达Ec_CYP17A1、Ss_CYB5、Ec_PORy) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ec_CYP17A1, Ss_CYB5, Ec_POR
z)对于以17OHP4合成4AD和TS(睾酮):共表达Oa_CYP17A1、Ss_CYB5、Oa_PORaa)对于以17OHP4合成4AD和TS(睾酮):共表达Ma_CYP17A1、Ec_CYB5、Ma_PORz) For the synthesis of 4AD and TS (testosterone) from 17OHP4: co-expression of Oa_CYP17A1, Ss_CYB5, Oa_PORaa) For the synthesis of 4AD and TS (testosterone) from 17OHP4: co-expression of Ma_CYP17A1, Ec_CYB5, Ma_PO
ab)对于以17OHP4合成4AD和TS(睾酮):共表达Ec_CYP17A1、Ec_CYB5、Ec_PORac)对于以17OHP4合成4AD和TS(睾酮):共表达Oa_CYP17A1、Ec_CYB5、Oa_PORad)对于以17OHP4合成4AD和TS(睾酮):共表达Ec_CYP17A1、Oa_CYB5、Ec_PORae)对于以17OHP4合成4AD和TS(睾酮):共表达Ec_CYP17A1、Ma_CYB5、Ec_PORaf)对于以17OHP4合成4AD和TS(睾酮):共表达Ma_CYP17A1、Oa_CYB5、Ma_PORab) For the synthesis of 4AD and TS (testosterone) with 17OHP4: co-express Ec_CYP17A1, Ec_CYB5, and Ec_PORac) For the synthesis of 4AD and TS (testosterone) with 17OHP4: co-express Oa_CYP17A1, Ec_CYB5, and Oa_PORad) For the synthesis of 4AD and TS (testosterone) with 17OHP4: co-express Ec_CYP17A1, Oa_CYB5, and Ec_PORae) For the synthesis of 4AD and TS (testosterone) with 17OHP4: co-express Ec_CYP17A1, Ma_CYB5, and Ec_PORaf) For the synthesis of 4AD and TS (testosterone) with 17OHP4: co-express Ma_CYP17A1, Oa_CYB5, and Ma_POR
ag)对于以17OHP4合成4AD和TS(睾酮):共表达Ma_CYP17A1、Ma_CYB5、Ma_PORag) For the synthesis of 4AD and TS (testosterone) by 17OHP4: co-expression of Ma_CYP17A1, Ma_CYB5, Ma_POR
本发明涉及的重组菌株及质粒如表1、表2所示:The recombinant strains and plasmids involved in the present invention are shown in Table 1 and Table 2:
表1:本发明涉及的重组菌株Table 1: Recombinant strains involved in the present invention
表2:本发明涉及的质粒Table 2: Plasmids involved in the present invention
本发明涉及的优化后的序列:The optimized sequence involved in the present invention is:
Ss_mCYP11A1(SEQ NO:5):Ss_mCYP11A1 (SEQ NO: 5):
ATGATCTCTACCAAGACCCCCCGACCCTTCTCTGAGATCCCCTCCCCCGGAGACAACATGATCTCTACCAAGACCCCCCGACCCTTCTCTGAGATCCCCTCCCCCGGAGACAAC
GGTTGGATTAACCTGTACCGATTCTGGAAGGAGAAGGGAACCCAGAAGATCCACTAGGTTGGATTAACCTGTACCGATTCTGGAAGGAGAAGGGAACCCAGAAGATCCACTA
CCACCACGTGCAGAACTTCCAGAAGTACGGCCCCATCTACCGAGAGAAGCTGGGAACCACCACGTGCAGAACTTCCAGAAGTACGGCCCCATCTACCGAGAGAAGCTGGGAA
ACCTGGAGTCCGTCTACATCATTGACCCCGAGGACGTGGCCCTGCTGTTCAAGTTCGACCTGGAGTCCGTCTACATCATTGACCCCGAGGACGTGGCCCTGCTGTTCAAGTTCG
AGGGCCCCAACCCCGAGCGATACAACATTCCCCCCTGGGTCGCCTACCACCAGCACTAGGGCCCCAACCCCGAGCGATACAACATTCCCCCCTGGGTCGCCTACCACCAGCACT
ACCAGAAGCCCGTGGGTGTCCTGCTGAAGAAGTCTGGCGCTTGGAAGAAGGACCGAACCAGAAGCCCGTGGGTGTCCTGCTGAAGAAGTCTGGCGCTTGGAAGAAGGACCGA
CTGGTCCTGAACACCGAGGTCATGGCCCCCGAGGCTATCAAGAACTTCATTCCCCTGCTGGTCCTGAACACCGAGGTCATGGCCCCCGAGGCTATCAAGAACTTCATTCCCCTG
CTGGACACCGTGTCCCAGGACTTCGTGGGCGTCCTGCACCGACGAATCAAGCAGCACTGGACACCGTGTCCCAGGACTTCGTGGGCGTCCTGCACCGACGAATCAAGCAGCA
GGGTTCTGGCAAGTTCTCCGGAGACATTCGAGAGGACCTGTTCCGATTCGCCTTCGAGGGTTCTGGCAAGTTCTCCGGAGACATTCGAGAGGACCTGTTCCGATTCGCCTTCGA
GTCTATCACCAACGTCATTTTCGGCGAGCGACTGGGAATGCTGGAGGAGATCGTGGGTCTATCACCAACGTCATTTTCGGCGAGCGACTGGGAATGCTGGAGGAGATCGTGG
ACCCCGAGGCCCAGAAGTTCATTGACGCTGTCTACCAGATGTTCCACACCTCCGTGCACCCCGAGGCCCAGAAGTTCATTGACGCTGTCTACCAGATGTTCCAACCTCCGTGC
CTATGCTGAACCTGCCTCCCGACCTGTTCCGACTGTTCCGAACCAAGACCTGGCGAGCTATGCTGAACCTGCCTCCCGACCTGTTCCGACTGTTCCGAACCAAGACCTGGCGAG
ATCACGTCGCCGCTTGGGACACCATCTTCAACAAGGCCGAGAAGTACACCCAGAACATCACGTCGCCGCTTGGGACACCATCTTCAACAAGGCCGAGAAGTACACCCAGAAC
TTCTACTGGGACCTGCGACGAAAGCGAGAGTTCAACAACTACCCCGGAATTCTGTACTTCTACTGGGACCTGCGACGAAAGCGAGAGTTCAACAACTACCCCGGAATTCTGTAC
CGACTGCTGGGTAACGACAAGCTGCTGTCTGAGGACGTCAAGGCCAACGTGACCGACGACTGCTGGGTAACGACAAGCTGCTGTCTGAGGACGTCAAGGCCAACGTGACCGA
GATGCTGGCTGGCGGAGTGGACACCACCTCTATGACCCTGCAGTGGCACCTGTACGGATGCTGGCTGGCGGAGTGGACACCACCTCTATGACCCTGCAGTGGCACCTGTACG
AGATGGCCCGATCCCTGAACGTCCAGGAGATGCTGCGAGAGGAGGTGCTGAACGCCAGATGGCCCGATCCCTGAACGTCCAGGAGATGCTGCGAGAGGAGGTGCTGAACGCC
CGACGACAGGCTCAGGGAGACACCTCCAAGATGCTGCAGCTGGTCCCCCTGCTGAACGACGACAGGCTCAGGGAGACACCTCCAAGATGCTGCAGCTGGTCCCCCTGCTGAA
GGCTTCTATCAAGGAGACTCTGCGACTGCACCCCATTTCCGTGACCCTGCAGCGATAGGCTTCTATCAAGGAGACTCTGCGACTGACCCCATTTCCGTGACCCTGCAGCGATA
CCTGGTCAACGACCTGGTGCTGCGAGACTACATGATCCCTGCTAAGACCCTGGTGCACCTGGTCAACGACCTGGTGCTGCGAGACTACATGATCCCTGCTAAGACCCTGGTGCA
GGTCGCTGTGTACGCTATGGGTCGAGATCCCGCTTTCTTCTCTAACCCCGGACAGTTGGTCGCTGTGTACGCTATGGGTCGAGATCCCGCTTTCTTCTCTAACCCCGGACAGTT
CGACCCTACCCGATGGCTGGGCAAGGAGCGGGACCTGATCCACTTCCGAAACCTGGCGACCCTACCCGATGGCTGGGCAAGGAGCGGGACCTGATCCACTTCCGAAACCTGG
GATTCGGTTGGGGCGTCCGACAGTGCGTCGGACGACGAATTGCCGAGCTGGAGATGGATTCGGTTGGGGCGTCCGACAGTGCGTCGGACGACGAATTGCCGAGCTGGAGATG
ACCCTGTTCCTGATCCACATTCTGGAGAACTTCAAGGTCGAGCTGCAGCACTTCTCCACCCTGTTCCTGATCCACATTCTGGAGAACTTCAAGGTCGAGCTGCAGCACTTCTCC
GACGTGGACACCATCTTCAACCTGATTCTGATGCCCGACAAGCCCATTTTCCTGGTGGACGTGGACACCATCTTCAACCTGATTCTGATGCCCGACAAGCCCATTTTCCTGGTG
TTCCGACCCTTCAACCAGGACCCCCTGCAGGCTTAATTCCGACCCTTCAACCAGGACCCCCTGCAGGCTTAA
Oa_CYP17A1(SEQ NO:6):Oa_CYP17A1 (SEQ NO: 6):
ATGTGGGTCCTGCTGGCCGTCTTCCTGCTGACCCTGGCCTACCTGTTCTGGCCCAAGATGTGGGTCCTGCTGGCCGTCTTCCTGCTGACCCTGGCCTACCTGTTCTGGCCCAAG
ACCAAGCACTCCGGCGCCAAGTACCCCCGATCCCTGCCCTCCCTGCCCCTGGTTGGCACCAAGCACTCCGGCGCCAAGTACCCCCGATCCCTGCCCTCCCTGCCCCTGGTTGGC
TCCCTGCCTTTCCTCCCCCGACGAGGCCAGCAGCACGAGAACTTCTTCAAGCTGCAGTCCCTGCCTTTCCTCCCGACGAGGCCAGCAGCACGAGAACTTCTTCAAGCTGCAG
GAGAAGTACGGCCCCATCTACTCCTTCCGACTGGGCTCCAAGACCACCGTCATGATTGAGAAGTACGGCCCCATCTACTCCTTCCGACTGGGCTCCAAGACCACCGTCATGATT
GGTCACCACCAGCTGGCCCGAGAGGTCCTGCTCAAGAAGGGTAAGGAGTTTTCCGGGGTCACCACCAGCTGGCCCGAGAGGTCCTGCTCAAGAAGGGTAAGGAGTTTCCGG
CCGACCCAAGGTCGCTACCCTGGACATCCTGTCCGACAACCAGAAGGGCATCGCCTTCCGACCCAAGGTCGCTACCCTGGACATCCTGTCCGACAACCAGAAGGGCATCGCCTT
CGCTGACCACGGCGCCCACTGGCAGCTGCACCGAAAGCTGGTCCTCAACGCCTTTGCCGCTGACCACGGCGCCCACTGGCAGCTGCACCGAAAGCTGGTCCTCAACGCCTTTTGC
CCTGTTCAAGGACGGCAACCTGAAGCTGGAGAAGATCATTAACCAGGAGGCTAACGCCTGTTCAAGGACGGCAACCTGAAGCTGGAGAAGATCATTAACCAGGAGGCTAACG
TCCTGTGCGACTTCCTGGCCACCCAGCACGGCCAGTCCATCGACCTCTCCGAGCCCCTCCTGTGCGACTTCCTGGCCACCCAGCACGGCCAGTCCATCGACCTCTCCGAGCCCC
TGTCCCTCGCCGTGACCAACATCATTTCCTTCATTTGCTTCAACTTCTCCTTTAAGAATGTCCCTCGCCGTGACCAACATCATTTCCTTCATTTGCTTCAACTTCTCCTTTAAGAA
CGAGGACCCCGCCCTCAAGGCCATCCAGAACGTTAACGACGGCATTCTCGAGGTGCCGAGGACCCCGCCCTCAAGGCCATCCAGAACGTTAACGACGGCATTCTCGAGGTGC
TCGGCAAGGAGGTGCTGCTGGACATCTTCCCTGCCCTGAAGATCTTCCCCTCCAAGGTCGGCAAGGAGGTGCTGCTGGACATCTTCCCTGCCCTGAAGATCTTCCCCTCCAAGG
CCATGGAGAAGATGAAGGGCTGCGTGGAGACTCGAAACGAGCTGCTGTCCGAGATTCCATGGAGAAGATGAAGGGCTGCGTGGAGACTCGAAACGAGCTGCTGTCCGAGATT
CTGGAGAAGTGCCAGGAGAACTTCACCTCCGACTCTATTACCAACCTGCTGCACATCCTGGAGAAGTGCCAGGAGAACTTCACCTCCGACTCTATTACCAACCTGCTGCACATC
CTGATGCAGGCCAAGGTCAACGCTGACAACAACAACACCGGCCCCGAGCAGGACTCCTGATGCAGGCCAAGGTCAACGCTGACAACAACACCGGCCCCGAGCAGGACTC
CAAGCTGCTGTCCAACCGACACATGCTCGCCACCATCGCCGACATCTTCGGCGCCGGCAAGCTGCTGTCCAACCGACACATGCTCGCCACCATCGCCGACATCTTCGGCGCCGG
CGTCGAGACTACCACCTCCGTCATCAAGTGGATCGTCGCCTACCTGCTGCACCACCCCGTCGAGACTACCACCTCCGTCATCAAGTGGATCGTCGCCTACCTGCTGCACCACCC
CTCCCTGAAGAAGCGAATCCAGGACTCCATCGACCAGAACATCGGATTCAACCGAACTCCCTGAAGAAGCGAATCCAGGACTCCATCGACCAGAACATCGGATTCAACCGAA
CCCCCACCATCTCCGACCGAAACCGACTGGTCCTGCTCGAGGCCACCATCCGAGAGCCCCCACCATCTCCGACCGAAACCGACTGGTCCTGCTCGAGGCCACCATCCGAGAG
GTCCTCCGAATCCGACCCGTCGCCCCCATGCTCATCCCCCACAAGGCCATCATCGACGTCCTCCGAATCCGACCCGTCGCCCCCATGCTCATCCCCCACAAGGCCATCATCGAC
TCCTCCATCGGCGACCTGACCATCGACAAGGGCACCGACGTCGTCGTCAACCTGTGGTCCTCCATCGGCGACCTGACCATCGACAAGGGCACCGACGTCGTCGTCAACCTGTGG
GCCCTGCACCACAACGAGAAGGAGTGGCAGCAGCCCGACCTCTTCATGCCCGAGCGGCCCTGCACCACAACGAGAAGGAGTGGCAGCAGCCCGACCTCTTCATGCCCGAGCG
ATTTCTGGACCCCACCGGAACCCAGCTGATCTCCCCCTCCCTGTCCTACCTCCCCTTCATTTCTGGACCCCACCGGAACCCAGCTGATCTCCCCCTCCCTGTCCTACCTCCCCTTC
GGCGCCGGTCCCCGATCCTGTGTCGGCGAGATGCTCGCCCGACAGGAGCTGTTTCTGGGCGCCGGTCCCCGATCCTGTGTCGGCGAGATGCTCGCCCGACAGGAGCTGTTTCTG
TTTATGTCTCGACTCCTGCAGCGATTCAACCTGGAGATCCCCGACGACGGCAAGCTCTTTATGTCTCGACTCCTGCAGCGATTCAACCTGGAGATCCCCGACGACGGCAAGCTC
CCCTCCCTGGAGGGCAACCCCTCCCTGGTTCTGCAGATCAAGCCCTTCAAGGTCAAGCCCTCCCTGGAGGGCAACCCCTCCCTGGTTCTGCAGATCAAGCCCTTCAAGGTCAAG
ATCGAGGTCCGACAGGCCTGGAAGGAGGCCCAGGCCGAGGGTTCTACCTCCTAAATCGAGGTCCGACAGGCCTGGAAGGAGGCCCAGGCCGAGGGTTCTACCTCCTAA
Ma_CYP17A1(SEQ NO:7):Ma_CYP17A1 (SEQ NO: 7):
ATGTGGGAGCTGGTCGCCCTGCTGCTGCTGACCCTGGCCTACTTCTTCTGGTCCAAGATGTGGGAGCTGGTCGCCCTGCTGCTGCTGACCCTGGCCTACTTCTTCTGGTCCAAG
TCCAAGACCTGCGGCGCCAAGTCCCCCAAGTCCCTGCCCTTCCTGCCCCTGGTCGGCTCCAAGACCTGCGGCGCCAAGTCCCCCAAGTCCCTGCCCTTCCTGCCCCTGGTCGGC
TCCCTGCCTTTTATCCCCCGACACGGCCACCCCCACGTCAACTTCTTCAAGCTGCAGTCCCTGCCTTTATCCCCCGACACGGCCACCCCCACGTCAACTTCTTCAAGCTGCAG
GAGAAGTACGGCCCCATCTACTCCCTCCGACTGGGCTCCACCACCACCGTCATCATTGAGAAGTACGGCCCCATCTACTCCCTCCGACTGGGCTCCACCACCACCGTCATCATT
GGCCAGTACCAGCTCGCCAAGGAGGTCCTGGTCAAGAAGGGTAAGGAGTTCTCCGGGGCCAGTACCAGCTCGCCAAGGAGGTCCTGGTCAAGAAGGGTAAGGAGTTCTCCGG
CCGACCCCACATGGTTACCCTGGGCCTGCTGTCCGACCAGGGCAAGGGCATCGCTTTCCGACCCCACATGGTTACCCTGGGCCTGCTGTCCGACCAGGGCAAGGGCATCGCTTT
CGCCGACTCCGGCGGATCTTGGCAGCTGCACCGAAAGCTGGCCCTCTCCTCCTTTGCCGCCGACTCCGGCGGATCTTGGCAGCTGCACCGAAAGCTGGCCCTCTCCTCCTTTGC
TCTGTTCCGAGATGGTAACCAGAAGCTGGAGAAGATCATCTGCCAGAAGGCTTCCTCTCTGTTCCGAGATGGTAACCAGAAGCTGGAGAAGATCATCTGCCAGAAGGCTTCCTC
CCTGTGTGACTTTCTGCTGACCCACAACGAGGAGTCCATCGACCTGTCCGAGCCCATCCTGTGTGACTTTCTGCTGACCCACAACGAGGAGTCCATCGACCTGTCCGAGCCCAT
CTTCAACTCCATCACCAACATCATCTGCATCATTTGCTTCGGCATCTCCTACGAGAACCTTCAACTCCATCACCAACATCATCTGCATCATTTGCTTCGGCATCTCCTACGAGAAC
CGAGATCCTATCCTCGCCACCATCAAGTCCTTTACCGAGGGCATTCTGAACTCCCTCCGAGATCCTATCCTCGCCACCATCAAGTCCTTTACCGAGGGCATTCTGAACTCCCTC
GGCAACGACCACCTCGTCGATATCTTCCCCTGGCTGACCATCTTCCCCAACAAGACCGGCAACGACCACCTCGTCGATATCTTCCCCTGGCTGACCATCTTCCCCCAACAAGACC
GTCGATATGATCAAGAAGAACGTCAAGATCCGAGATGAAGTGCTGTCCGGCATCCTGTCGATATGATCAAGAAGAACGTCAAGATCCGAGATGAAGTGCTGTCCGGCATCCT
GGAGAAGTGCAAGGAGAAGTTTAACTCCGACTCCATCTCCTCCCTGATGGACCTGCTGGAGAAGTGCAAGGAGAAGTTTAACTCCGACTCCATCTCCTCCCTGATGGACCTGCT
GATCCAGGCCAAGACCAACGCCGACAACAACAACACCTCCGAGGGCCAGGGCTCCAGATCCAGGCCAAGACCAACGCCGACAACAACACCTCCGAGGGCCAGGGCTCCA
ACGCCTTCTCCGACATGCACATCCTGGCCACCATCGCCGACATCTTCGGCGCCGGAAACGCCTTCTCCGACATGCACATCCTGGCCACCATCGCCGACATCTTCGGCGCCGGAA
TCGAGACTACCGCCTCCGTCCTGTCTTGGATCATCGCCTTCCTCCTGCACAACCCCGATCGAGACTACCGCCTCCGTCCTGTCTTGGATCATCGCCTTCCTCCTGCACAACCCCGA
GGTCAAGAAGAAGATCCAGAAGGAGATTGACCAGAACATCGGATTCTCCCGAACCCGGTCAAGAAGAAGATCCAGAAGGAGATTGACCAGAACATCGGATTCTCCCGAACCC
CCACCTTCAACGACCGAAACCACCTGCTGATGCTGGAGGCCACCATCCGAGAGGTCCCACCTTCAACGACCGAAACCACCTGCTGATGCTGGAGGCCACCATCCGAGAGGTC
CTGCGAATCCGACCCGTCGCCCCCATGCTGATCCCCCACCGAGCCAACTCCGACATGCTGCGAATCCGACCCGTCGCCCCCATGCTGATCCCCCACCGAGCCAACTCCGACATG
TCCATCGGCGAGTTCTCCATCCCCAAGTTCACCCCCGTCATCATCAACCTGTGGGCCTCCATCGGCGAGTTCTCCATCCCCAAGTTCACCCCCGTCATCATCAACCTGTGGGCC
CTGCACCACTCCGAGAAGGAGTGGGACCAGCCCGACCGATTCATGCCCGAGCGATTCTGCACCACTCCGAGAAGGAGTGGGACCAGCCCGACCGATTCATGCCCGAGCGATT
TCTGGACCCCACCGGATCTCACCTCATCACCCCCTCCCTCTCCTACCTGCCCTTCGGCTCTGGACCCCACCGGATCTCACCTCATCACCCCCTCCCTCTCCTACCTGCCCTTCGGC
GCCGGCGCTCGATCCTGTATCGGCGAGGTCCTCGCCCGACAGGAGCTGTTCCTGTTTGCCGGCGCTCGATCCTGTATCGGCGAGGTCCTCGCCCGACAGGAGCTGTTCCTGTTT
ATGGCCCACCTCCTGCAGCGATTCGACCTCGACGTCCCCGACGACGAGCAGCCCCCTATGGCCCACCTCCTGCAGCGATTCGACCTCGACGTCCCCGACGACGAGCAGCCCCCT
TGCCTGAAGGGTAACGCCAACGTCGTGTTTCTGATCGACCCCTTCAAGGTCAAGATTTGCCTGAAGGGTAACGCCAACGTCGTGTTTCTGATCGACCCCTTCAAGGTCAAGATT
ACCGTCCGACAGGCCTGGAAGGACGCCCAGGCCGAGGTTAACACCTGGCGACCCTAACCGTCCGACAGGCCTGGAAGGACGCCCAGGCCGAGGTTAACACCTGGCGACCCTA
AA
Ec_CYP17A1(SEQ NO:8):Ec_CYP17A1 (SEQ NO: 8):
ATGTGGGAGCTGCTGGCCTTCCTGCTGCTGGCCATCGCCTACTTCTTCCGACCCAAGATGTGGGAGCTGCTGGCCTTCCTGCTGCTGGCCATCGCCTACTTCTTCCGACCCAAG
GTCAAGTGCCCCGGCGCCAAGTACCCCAAGTCCCTGCCCTACCTGCCCCTGGTCGGCGTCAAGTGCCCCGGCGCCAAGTACCCCAAGTCCCTGCCCTACCTGCCCCTGGTCGGC
TCCCTGCCTTTCCTCCCCCGACACGGCCACCCCCACGTCAACTTCTTCAAGCTCCAGATCCCTGCCTTTCCTCCCGACACGGCCACCCCCACGTCAACTTCTTCAAGCTCCAGA
AGAAGTACGGTCCTATCTACTCCCTGCGAATGGGCACCAAGACCACCGTCATGGTCGAGAAGTACGGTCCTATCTACTCCCTGCGAATGGGCACCAAGACCACCGTCATGGTCG
GTCACTACCAGCTGGCCAAGGAGGTCCTGATCAAGAAGGGTAAGGAGTTCTCCGGCGTCACTACCAGCTGGCCAAGGAGGTCCTGATCAAGAAGGGTAAGGAGTTCTCCGGC
CGACCCCAGGTCGCCACCCTGAACATCCTCTCCGACAACCAGAAGGGCGTCGCCTTCCGACCCCAGGTCGCCACCCTGAACATCCTCTCCGACAACCAGAAGGGCGTCGCCTTC
GCTGACCACGGCGCCCCTTGGCAGCTGCACCGAAAGCTGGTCCGAGCCGCCTTCGCCGCTGACCACGGCGCCCCTTGGCAGCTGCACCGAAAGCTGGTCCGAGCCGCCTTCGCC
CTGTTCAAGGACGGCAACCAGAAGCTGGAGAAGATCATTTGCCACGAGACTTCCCTCTGTTCAAGGACGGCAACCAGAAGCTGGAGAAGATCATTTGCCACGAGACTTCCCT
GCTGTGCGACCTCCTGGCCACCCAGAACGGCCAGACCATCGACCTGTCCTCCCCCCTGCTGTGCGACCTCCTGGCCACCCAGAACGGCCAGACCATCGACCTGTCCTCCCCCCT
CTTCCTGGCCGTGACCAACGTCATCTGCTGGATCTGCTTCAACTCCTCCTACATGAACTTCCTGGCCGTGACCAACGTCATCTGCTGGATCTGCTTCAACTCCTCCTACATGAA
GGGCGACCCCGCCCTCGAGACTATGCAGAACTACCACAAGGGCATTCTCGAGACTCGGGCGACCCCGCCCTCGAGACTATGCAGAACTACCACAAGGGCATTCTCGAGACTC
TCGAGAAGGACAACGTCGTCGATATTTTCCCCGCCCTGAAGATCTTCCCCAACAAGTTCGAGAAGGACAACGTCGTCGATATTTTCCCCGCCCTGAAGATCTTCCCCAACAAGT
CCCTGGAGAAGATGCGACACTGTGTGAACATCCGAAACGAGCTGCTGTCCAAGATCCCCTGGAGAAGATGCGACACTGTGTGAACATCCGAAACGAGCTGCTGTCCAAGATC
TTCGAGAAGCACAAGGAGAACTTTAACTCCGACTCCATCACCTCCATGCTCGACCTCTTCGAGAAGCACAAGGAGAACTTTAACTCCGACTCCATCACCTCCATGCTCGACCTC
CTGATCCAGGCCAAGAAGAACTCCGACAACAACAACACCGGCCCCGACCAGGACTCCTGATCCAGGCCAAGAAGAACTCCGACAACAACAACACCGGCCCCGACCAGGACTC
CAAGCTCCTGTCCGACAAGCACATCCTCGCCACCATCGGCGACATCTTCGGCGCCGGCAAGCTCCTGTCCGACAAGCACATCCTCGCCACCATCGGCGACATCTTCGGCGCCGG
CGTCGAGACTACCACCTCCGTCGTCAAGTGGATCGTCGCCTTCCTGCTCCACGACCCCGTCGAGACTACCACCTCCGTCGTCAAGTGGATCGTCGCCTTCCTGCTCCACGACCC
CCAGCTGAAGAAGAAGATCCAGGAGGAGATCGACCAGAACGTCGGATTCTCCCGAACCAGCTGAAGAAGAAGATCCAGGAGGAGATCGACCAGAACGTCGGATTCTCCCGAA
CCCCCACCCTGTCCGACCGAAACCGACTGCTGCTGCTGGAGGCCACCATCCGAGAGCCCCCACCCTGTCCGACCGAAACCGACTGCTGCTGCTGGAGGCCACCATCCGAGAG
GTTCTCCGAATCCGACCCGTCGCCCCCATGCTGATCCCCCACAAGGCCCTCGTCGATGTTCTCCGAATCCGACCCGTCGCCCCCATGCTGATCCCCCACAAGGCCCTCGTCGAT
TCCTCCATCGGCGAGTTCGCCGTCGATGACGGCACCAACGTCATTATTAACCTGTGGTCCTCCATCGGCGAGTTCGCCGTCGATGACGGCACCAACGTCATTATTAACCTGTGG
GCCCTGCACCACAACGAGAAGGAGTGGCACCAGCCCGACCGATTCATGCCCGAGCGGCCCTGCACCACAACGAGAAGGAGTGGCACCAGCCCGACCGATTCATGCCCGAGCG
ATTTCTGGACCCCACCGGCTCCCAGCTGATCTCCCCCTCCCTGTCCTACCTGCCCTTCATTTCTGGACCCCACCGGCTCCCAGCTGATCTCCCCCTCCCTGTCCTACCTGCCCTTC
GGCGCCGGTCCCCGATCCTGTATCGGCGAGCTCCTCGCCCGACAGGAGCTGTTTCTGGGCGCCGGTCCCCGATCCTGTATCGGCGAGCTCCTCGCCCGACAGGAGCTGTTTCTG
TTCACCGCCTGGCTCCTGCAGCGATTCAACCTGGAGGTCCCCGACGACGGCCAGCTCTTCACCGCCTGGCTCCTGCAGCGATTCAACCTGGAGGTCCCCGACGACGGCAGCTC
CCTTCCCTGGAGGGCCACCCTACCGCCGTCTTTCTGATTGACTCCTTCAAGGTCAAGCCTTCCCTGGAGGGCCACCCTACCGCCGTCTTTCTGATTGACTCCTTCAAGGTCAAG
ATTAACGTCCGACAGGCCTGGCGAGAGGCTCAGGCCGAGGGTTCCACCTAAATTAACGTCCGACAGGCCTGGCGAGAGGCTCAGGCCGAGGGTTCACCTAA
Xl_CYP17A1(SEQ NO:9):Xl_CYP17A1 (SEQ NO: 9):
ATGATCTCCTACGTCGCCGGCGCCCTGCTGCTGGCTTTCGGTCTGGCCCTGATCTCCGATGATCTCCTACGTCGCCGGCGCCCTGCTGCTGGCTTTCGGTCTGGCCCTGATCTCCG
TCTGGAAGTTCGCTGGTGGCAAGCACCGAGGCGCTAAGTACCCCAACTCCCTGCCCTTCTGGAAGTTCGCTGGTGGCAAGCACCGAGGCGCTAAGTACCCCAACTCCCTGCCCT
GCCTGCCCTTCATCGGTTCCCTGCTGCACATCGGCAACCACCTGCCCCCCCACATCCTGCCTGCCCTTCATCGGTTCCCTGCTGCACATCGGCAACCACCTGCCCCCCCACATCCT
GTTTTGCAAGCTCCAGGAGAAGTACGGCTCCCTGTACTCCTTCCGAATGGGCTCCCAGTTTTGCAAGCTCCAGGAGAAGTACGGCTCCCTGTACTCCTTCCGAATGGGCTCCCA
CTACATCGTCATCGTCAACCACCACGAGCACGCCAAGGAGGTCCTCCTCAAGAAGGCTACATCGTCATCGTCAACCACCACGAGCACGCCAAGGAGGTCCTCCTCAAGAAGG
GCAAGACCTTTGGCGGCCGACCCCGAGCCGTTACCACCGACATCCTCACCCGAAACGCAAGACCTTTGGCGGCCGAACCCCGAGCCGTTACCACCGACATCCTCACCCGAAAC
GCCAAGGACATCGCCTTCGCCAACTACTCCCCCTCCTGGAAGTTCCACCGAAAGGTCGCCAAGGACATCGCCTTCGCCAACTACTCCCCCTCCTGGAAGTTCCACCGAAAGGTC
GTCCACGCCGCCCTCTCCATGTTTGGCGAGGGTACTGTCGCCATCGAGAAGATCATCGTCCACGCCGCCCTCTCCATGTTTGGCGAGGGTACTGTCGCCATCGAGAAGATCATC
TCCCGAGAGGCCACCTCCCTGTGCCAGTCCCTCATCTCCTTCCAGGACAACCCCCTGTCCCGAGAGGCCACCTCCCTGTGCCAGTCCCTCATCTCCTTTCCAGGACAACCCCCTG
GACATGGCCCCCGAGCTCACCCGAGCCGTTACCAACGTCGTCTGCGCCCTGTGCTTCGACATGGCCCCCGAGCTCACCCGAGCCGTTACCAACGTCGTTCTGCGCCCTGTGCTTC
AACACCCGATACAAGCGATGCGACCCCGAGTTCGAGGAGATGCTGGCCTACTCCAAAACACCCGATACAAGCGATGCGACCCCGAGTTCGAGGAGATGCTGGCCTACTCCAA
GGGCATCGTCGATACCGTGGCCAAGGACTCTCTGGTCGATATTTTCCCCTGGCTGCAGGGCATCGTCGATACCGTGGCCAAGGACTCTCTGGTCGATATTTTCCCCTGGCTGCA
GATCTTCCCCAACAAGGACCTGGACATTCTGAAGCGATCCGTGGCCATCCGAGACAGATCTTCCCCAACAAGGACCTGGACATTCTGAAGCGATCCGTGGCCATCCGAGACA
AGCTGCTGCAGAAGAAGCTCAAGGAGCACAAGGAGGCTTTCTGCAACGAGGAGGTTAGCTGCTGCAGAAGAAGCTCAAGGAGCACAAGGAGGCTTTCTGCAACGAGGAGGTT
AACGACCTGCTGGACGCCCTGCTGAAGGCCAAGCTGTCCATGGAGAACAACAACTCAACGACCTGCTGGACGCCCTGCTGAAGGCCAAGCTGTCCATGGAGAACAACAACTC
CAACATCTCCCAGGAGGTCGGCCTCACCGACGACCACCTGCTGATGACCGTCGGCGCAACATCTCCCAGGAGGTCGGCCTCACCGACGACCACCTGCTGATGACCGTCGGCG
ACATTTTCGTCGCCGGCGTGGAGACTACCACCACCGTCCTGAAGTGGACCATGGCCTACATTTTCGTCGCCGGCGTGGAGACTACCACCACCGTCCTGAAGTGGACCATGGCCT
ACCTCCTGCACTACCCCGAGGTCCAGACCAAGATTCAGGAGGAGCTGGACTTCAAGACCTCCTGCACTACCCCGAGGTCCAGACCAAGATTCAGGAGGAGCTGGACTTCAAG
GTTGGCTTCGGCCGACACCCCGTCCTGTCCGACCGACGAATTCTGCCCTACCTCGACGTTGGCTTCGGCCGACACCCCGTCCTGTCCGACCGACGAATTCTGCCCTACCTCGAC
GCCACCATCTCCGAGGTCCTCCGAATCCGACCCGTCGCCCCCCTGCTGATCCCCCACGCCACCATCTCCGAGGTCCTCCGAATCCGACCCGTCGCCCCCCTGCTGATCCCCCAC
GTTGCCCTGCAGGAGTCCTCCATCGCCGAGTACACCATCCCCCAGGACGCCCGAGTCGTTGCCCTGCAGGAGTCCTCCATCGCCGAGTACACCATCCCCCAGGACGCCCGAGTC
GTGATTAACCTGTGGTCCCTGCACCACGACCCCAACGAGTGGGAGAACCCCGAGGAGTGATTAACCTGTGGTCCCTGCACCACGACCCCAACGAGTGGGAGAACCCCGAGGA
GTTCAACCCCGAGCGATTTCTCGACGAGAACGGAAACCACGTCTACTCCCCCTCTCAGTTCAACCCCGAGCGATTTCTCGACGAGAACGGAAACCACGTCTACTCCCCCTCTCA
GTCTTACCTGCCCTTCGGCGCCGGCATCCGAGTCTGCCTGGGCGAGGCTCTGGCCAAGTCTTACCTGCCCTTTCGGCGCCGGCATCCGAGTCTGCCTGGGCGAGGCTCTGGCCAA
GATGGAGGTCTTTCTGTTCCTGTCCTGGATTCTGCAGCGATTCACCCTGGAGCTGCCCGATGGAGGTCTTTCTGTTCCTGTCCTGGATTCTGCAGCGATTCACCCTGGAGCTGCCC
GCCGGCGACTCTCTCCCTGACCTGGACGGCAAGTTTGGCGTGGTTCTGCAGGTCAAGGCCGGCGACTCTCTCCCTGACCTGGACGGCAAGTTTTGGCGTGGTTCTGCAGGTCAAG
AAGTTTCGAGTTACCACCAAGCTGCGAGAGGCCTGGAAGAACATCGACCTCACCACAAGTTTCGAGTTACCACCAAGCTGCGAGAGGCCTGGAAGAACATCGACCTCACCAC
CTAACTAA
Oa_POR(SEQ NO:10):Oa_POR (SEQ NO: 10):
ATGAACATGGGCGACTCCAACATGGACGCTGGCACCACCACCCCCGAGACTGTGGCATGAACATGGGCGACTCCAACATGGACGCTGGCACCACCACCCCCGAGACTGTGGC
CGAGGAGGTCAGCTTATTTTCCACCACCGACATGATCCTGTTCTCCCTGATCGTCGGCGAGGAGGTCAGCTTATTTTCCACCACCGACATGATCCTGTTTCCCTGATCGTCGG
CGTCATGACCTACTGGTTCCTCTTCCGAAAGAAGAAGGAGGAGGTCCCCGAGTTCACCGTCATGACCTACTGGTTCCTCTCCGAAAGAAGAAGGAGGAGGTCCCCGAGTTCAC
CAAGATTCAGACCACCACCTCCTCCGTCAAGGACCGATCCTTCGTGGAGAAGATGACAAGATTCAGACCACCACCTCCTCCGTCAAGGACCGATCCTTCGTGGAGAAGATGA
AGAAGACCGGCCGAAACATCATCGTCTTTTACGGCTCCCAGACCGGTACTGCCGAGAGAAGACCGGCCGAAACATCATCGTCTTTTACGGCTCCCAGACCGGTACTGCCGAG
GAGTTCGCCAACCGACTCTCCAAGGACGCCCACCGATACGGCATGCGAGGCATGGCGAGTTCGCCAACCGACTCTCCAAGGACGCCCACCGATACGGCATGCGAGGCATGGC
CGCCGACCCCGAGGAGTACGACCTCGCTGACCTCTCCTCCCTCCCCGAGATCGAGAACGCCGACCCCGAGGAGTACGACCTCGCTGACCTCTCCTCCCTCCCCGAGATCGAGAA
GGCCCTGGCTGTTTTCTGCATGGCCACCTACGGTGAGGGCGACCCCACCGACAACGCGGCCCTGGGCTGTTTTCTGCATGGCCACCTACGGTGAGGGCGACCCCACCGACAACGC
CCAGGACTTTTACGACTGGCTGCAGGAGACTGACGTCGATCTCTCCGGCGTCAAGTACCAGGACTTTTACGACTGGCTGCAGGAGACTGACGTCGATCTCTCCGGCGTCAAGTA
CGCCGTTTTCGCCCTGGGTAACAAGACCTACGAGCACTTCAACGCTATGGGCAAGTACGCCGTTTTCGCCCTGGGTAACAAGACCTACGAGCACTTCAACGCTATGGGCAAGTA
CGTCGATAAGCGACTGGAGCAGCTGGGCGCCCAGCGAATTTTTGACCTGGGTCTGGCGTCGATAAGCGACTGGAGCAGCTGGGCGCCCAGCGAATTTTTGACCTGGGTCTGG
GCGACGACGACGGCAACCTGGAGGAGGACTTCATCACCTGGCGAGAGCAGTTCTGGGCGACGACGACGGCAACCTGGAGGAGGACTTCATCACCTGGCGAGAGCAGTTCTGG
CCCGCCGTCTGCGAGCACTTTGGAGTCGAGGCTACCGGCGAGGAGTCTTCCATTCGACCCGCCGTCTGCGAGCACTTTGGAGTCGAGGCTACCGGCGAGGAGTCTTCCATTCGA
CAGTACGAGCTGATGGTGCACACCGACATGGACATGGCCAAGGTCTACACCGGCGACAGTACGAGCTGATGGTGCACACCGACATGGACATGGCCAAGGTCTACACCGGCGA
GATGGGCCGACTGAAGTCCTACGAGAACCAGAAGCCCCCCTTCGACGCCAAGAACCGATGGGCCGACTGAAGTCCTACGAGAACCAGAAGCCCCCCTTCGACGCCAAGAACC
CCTTCCTGGCCGTGGTCACCACCAACCGAAAGCTGAACCAGGGTACTGAGCGACACCCTTCCTGGCCGTGGTCACCACCAACCGAAAGCTGAACCAGGGTACTGAGCGACAC
CTGATGCACCTGGAGCTGGACATCTCCGACTCCAAGATCCGATACGAGTCCGGCGACTGATGCACCTGGAGCTGGACATCTCCGACTCCAAGATCCGATACGAGTCCGGCGA
CCACGTCGCCGTCTACCCTGCCAACGACTCCGCCCTGGTCAACCAGCTGGGCGAGATCCACGTCGCCGTCTACCCTGCCAACGACTCCGCCCTGGTCAACCAGCTGGGCGAGAT
CCTCGGCGCCGACCTCGACGTCATCATGTCCCTGAACAACCTCGACGAGGAGTCCAACCCTCGGCGCCGACCTCGACGTCATCATGTCCCTGAACAACCTCGACGAGGAGTCCAA
CAAGAAGCACCCCTTCCCCTGCCCCACCTCCTACCGAACCGCCCTGACCTACTACCTCAAGAAGCACCCCTTCCCCTGCCCCACCTCCTACCGAACCGCCCTGACCTACTACCT
GGACATCACCAACCCCCCCCGAACCAACGTCCTCTACGAGCTGGCCCAGTACGCCTCGGACATCACCAACCCCCCCCGAACCAACGTCCTCTACGAGCTGGCCCAGTACGCCTC
CGAGCCCGCTGAGCAGGAGCAGCTCCGAAAGATGGCCTCCTCCTCCGGCGAGGGCACGAGCCCGCTGAGCAGGAGCAGCTCCGAAAGATGGCCTCCTCCTCCGGCGAGGGCA
AGGAGCTGTACCTCCGATGGGTCCTGGAGGCCCGACGACACATTCTCGCCATTCTGCAGGAGCTGTACCTCCGATGGGTCCTGGAGGCCCGACGACACATTCTCGCCATTCTGC
AGGACTACCCCTCCCTGCGACCCCCCATCGACCACCTGTGCGAGCTCCTGCCCCGACAGGACTACCCCTCCCTGCGACCCCCCATCGACCACCTGTGCGAGCTCCTGCCCCGAC
TCCAGGCCCGATACTACTCCATTGCCTCTTCCTCCAAGGTTCACCCCAACTCCGTTCATCCAGGCCCGATACTACTCCATTGCCTCTTCTCCAAGGTTCACCCCAACTCCGTTCA
CATCTGCGCCGTCGCCGTCGAGTACGAGACTAAGACCGGTCGAATCAACAAGGGCGCATCTGCGCCGTCGCCGTCGAGTACGAGACTAAGACCGGTCGAATCAACAAGGGCG
TCGCCACCTCCTGGCTGCGAGCCAAGGAGCCCGCCTCCGAGAACGGCGGTCGAGCTTCGCCACCTCCTGGCTGCGAGCCAAGGAGCCCGCCTCCGAGAACGGCGGTCGAGCT
CTGGTCCCCATGTACGTGCGAAAGTCCCAGTTCCGACTGCCCTTCAAGGCCACCACCCTGGTCCCCCATGTACGTGCGAAAGTCCCAGTTCCGACTGCCCTTCAAGGCCACCACC
CCCGTCATCATGGTTGGCCCCGGCACCGGCGTGGCCCCTTTTATCGGCTTCATCCAGCCCGTCATCATGGTTGGCCCCGGCACCGGCGTGGCCCCTTTTATCGGCTTCATCCAG
GAGCGAGCCTGGCTGCGACAGCAGGGCAAGGAGGTTGGCGAGACTCTCCTGTACTAGAGCGAGCCTGGCTGCGACAGCAGGGCAAGGAGGTTGGCGAGACTCTCCTGTACTA
CGGCTGCCGACGATCCGACGAGGACTACCTGTACCGAGAGGAGCTGGCCGGCTTCCCGGCTGCCGACGATCCGACGAGGACTACCTGTACCGAGAGGAGCTGGCCGGCTTCC
ACAAGGACGGCACCCTGACCCAGCTCAACGTTGCCTTCTCTCGAGAGCAGCCCCAGACAAGGACGGCACCCTGACCCAGCTCAACGTTGCCTTCTCTCGAGAGCAGCCCCAG
AAGGTCTACGTCCAGCACCTGCTCAAGAAGGACAAGGAGCACCTGTGGAAGCTGATAAGGTCTACGTCCAGCACCTGCTCAAGAAGGACAAGGAGCACCTGTGGAAGCTGAT
TCACGAGGGAGGCGCTCACATCTACGTCTGCGGCGACGCCCGAAACATGGCCCGAGTCACGAGGGAGGCTCACATCTACGTCTGCGGCGACGCCCGAAACATGGCCCGAG
ATGTTCAGAACACCTTCTACGACATCGTCGCCGAGCAGGGAGCCATGGAGCAGGCCATGTTCAGAACACCTTCTACGACATCGTCGCCGAGCAGGGAGCCATGGAGCAGGCC
CAGGCCGTCGATTACGTGAAGAAGCTGATGACCAAGGGACGATACTCCCTGGACGTCAGGCCGTCGATTACGTGAAGAAGCTGATGACCAAGGGACGATACTCCCTGGACGT
CTGGTCCTAACTGGTCCTAA
Ma_POR(SEQ NO:11):Ma_POR (SEQ NO: 11):
ATGACCGAGGCCGTGGCCGAGGAGGTCAGCTTATTTTCCACCACCGACGTCGTCCTGATGACCGAGGCCGTGGCCGAGGAGGTCAGCTTATTTTCCACCACCGACGTCGTCCTG
TTCTCCCTGATCGTCGGCGTCCTGACCTACTGGTTCATCTTCCGAAAGAAGAAGGAGTTCTCCCTGATCGTCGGCGTCCTGACCTACTGGTTCATCTTCCGAAAGAAGAAGGAG
GAGGTCCCCGAGTTTTCTAAGATTCAGACCGCCACCCCCTCCGTCAAGGAGTCCTCTGAGGTCCCCGAGTTTTCTAAGATTCAGACCGCCACCCCCTCCGTCAAGGAGTCCTCT
TTCGTTGAGAAGATGAAGAAGACCGGCCGAAACATCATCGTGTTCTACGGATCTCATTCGTTGAGAAGATGAAGAAGACCGGCCGAAACATCATCGTGTTCTACGGATCTCA
GACCGGTACTGCCGAGGAGTTTGCCAACCGACTCTCCAAGGACGCCCACCGATACGGACCGGTACTGCCGAGGAGTTTGCCAACCGACTCTCCAAGGACGCCCACCGATACG
GCATGCGAGGCATGTCCGCCGACCCCGAGGAGTACGACCTCGCCGACCTCTCCTCTCGCATGCGAGGCATGTCCGCCGACCCCGAGGAGTACGACCTCGCCGACCTCTCCTCTC
TGCCCGAGATTGACAAGTCCCTGGTCGTTTTCTGCATGGCCACCTACGGAGAGGGCGTGCCCGAGATTGACAAGTCCCTGGGTCGTTTTCTGCATGGCCACCTACGGAGAGGGCG
ACCCCACCGACAACGCCCAGGACTTCTACGACTGGCTGCAGGAGACTGACGTCGATACCCCACCGACAACGCCCAGGACTTCTACGACTGGCTGCAGGAGACTGACGTCGAT
CTGACCGGCGTGAAGTTCGCCGTCTTCGGCCTGGGCAACAAGACCTACGAGCACTTTCTGACCGGCGTGAAGTTCGCCGTCTTCGGCCTGGGCAACAAGACCTACGAGCACTTT
AACGCCATGGGCAAGTACGTCGATCAGCGACTGGAGCAGCTGGGCGCCCAGCGAATAACGCCATGGGCAAGTACGTCGATCAGCGACTGGAGCAGCTGGGCGCCCAGCGAAT
CTTCGAGCTGGGTCTGGGCGACGACGACGGCAACCTCGAGGAGGACTTCATCACCTCTTCGAGCTGGGTCTGGGCGACGACGACGGCAACCTCGAGGAGGACTTCATCACCT
GGCGAGAGCAGTTCTGGCCCGCCGTCTGCGAGTTCTTTGGAGTCGAGGCTACCGGCGGGCGAGAGCAGTTCTGGCCCGCCGTCTGCGAGTTCTTTGGAGTCGAGGCTACCGGCG
AGGAGTCTTCCATCCGACAGTACGAGCTGCTGGTCCACGAGGACATCGACGCCGCCAGGAGTCTTCCATCCGACAGTACGAGCTGCTGGTCCACGAGGACATCGACGCCGCC
AAGGTCTACACCGGCGAGATGGGCCGACTGAAGTCCTACGAGAACCAGAAGCCCCCAAGGTCTACACCGGCGAGATGGGCCGACTGAAGTCCTACGAGAACCAGAAGCCCCC
CTTTGACGCCAAGAACCCCTTCCTCGCCGCCGTCACCACCAACCGAAAGCTGAACCACTTTGACGCCAAGAACCCCTTCCTCCGCCGCCGTCACCACCAACCGAAAGCTGAACCA
GGGTACTGAGCGACACCTGATGCACCTGGAGCTGGACATCTCCGACTCCAAGATCCGGGTACTGAGCGACACCTGATGCACCTGGAGCTGGACATCTCCGACTCCAAGATCC
GATACGAGTCCGGTGACCACGTCGCCGTCTACCCCGCCAACGACTCCACCCTGGTCAGATACGAGTCCGGTGACCACGTCGCCGTCTACCCCGCCAACGACTCCACCCTGGTCA
ACCAGATCGGCGAGATTCTCGGCGCCGACCTCGACGTCGTGATGTCCCTGAACAACCACCAGATCGGCGAGATTCTCGGCGCCGACCTCGACGTCGTGATGTCCCTGAACAACC
TGGACGAGGAGTCCAACAAGAAGCACCCCTTCCCCTGCCCCACCACCTACCGAACCTGGACGAGGAGTCCAACAAGAAGCACCCCTTCCCCTGCCCCACCACCTACCGAACC
GCTCTCACCTACTACCTGGACATCACCAACCCCCCCCGAACCAACGTCCTCTACGAGGCTCTCACCTACTACCTGGACATCACCAACCCCCCCCGAACCAACGTCCTCTACGAG
CTGGCCCAGTACGCCTCCGAGCCCTCCGAGCAGGAGCAGCTCCACAAGATGGCCTCCTGGCCCAGTACGCCTCCGAGCCCTCCGAGCAGGAGCAGCTCCACAAGATGGCCTC
CTCCTCCGGCGAGGGCAAGGAGCTGTACCTCTCCTGGGTCGTCGAGGCCCGACGACCTCCTCCGGCGAGGGCAAGGAGCTGTACCTCTCCTGGGTCGTCGAGGCCCGACGAC
ACATTCTCGCCATCCTCCAGGACTACCCCTCCCTGCGACCCCCCATCGACCACCTGTACATTCTCGCCATCCTCCAGGACTACCCCTCCCTGCGACCCCCCATCGACCACCTGT
GTGAGCTCCTCCCTCGACTGCAGGCCCGATACTACTCCATCGCCTCCTCCTCTAAGGGTGAGCTCCTCCCTCGACTGCAGGCCCGATACTACTCCATCGCCTCCTCCTCTAAGG
TCCACCCCAACTCCGTCCACATCTGCGCCGTCGCCGTCGAGTACGAGGCCAAGTCCGTCCACCCCAACTCCGTCCACATCTGCGCCGTCGCCGTCGAGTACGAGGCCAAGTCCG
GCCGAGTGAACAAGGGCGTTGCCACCTCCTGGCTGCGAGCCAAGGAGCCCGCCGGTGCCGAGTGAACAAGGGCGTTGCCACCTCCTGGCTGCGAGCCAAGGAGCCCGCCGGT
GAGAACGGCCGACGAGCTCTGGTCCCCATGTTTGTCCGAAAGTCCCAGTTTCGACTGGAGAACGGCCGACGAGCTCTGGTCCCCATGTTTGTCCGAAAGTCCCAGTTTCGACTG
CCCTTCAAGTCTGTCACCCCCGTTATTATGGTTGGTCCCGGCACCGGCATTGCCCCCTCCCTTCAAGTCTGTCACCCCCGTTATTATGGTTGGTCCCGGCACCGGCATTGCCCCCT
TCATGGGCTTCATTCAGGAGCGAGCCTGGCTGCGAGAGCAGGGCAAGGAGGTCGGCTCATGGGCTTCATTCAGGAGCGAGCCTGGCTGCGAGAGCAGGGCAAGGAGGTCGGC
GAGACTCTCCTGTACTACGGCTGCCGACGATCCGACGAGGACTACCTGTACCGAGAGAGACTCTCCTGTACTACGGCTGCCGACGATCCGACGAGGACTACCTGTACCGAGA
GGAGCTGGCCCGATTCCACAAGGACGGTGCCCTGACCCAGCTGAACGTGGCCTTTTCGGAGCTGGCCCGATTCCACAAGGACGGTGCCCTGACCCAGCTGAACGTGGCCTTTTC
CCGAGAGCAGGCCCACAAGGTCTACGTCCAGCACCTGCTGAAGCGAGACAGAGAGCCCGAGAGCAGGCCCACAAGGTCTACGTCCAGCACCTGCTGAAGCGAGACAGAGAGC
ACCTGTGGAAGCTGATCCACGAGGGCGGAGCTCACATCTACGTCTGCGGCGACGCCACCTGTGGAAGCTGATCCACGAGGGCGGAGCTCACATCTACGTCTGCGGCGACGCC
CGAAACATGGCCAAGGACGTCCAGAACACCTTCTACGACATTGTCGCCGAGTTTGGCGAAACATGGCCAAGGACGTCCAGAACACCTTCTACGACATTGTCGCCGAGTTTGG
CCCCATGGAGCACGCCCAGGCCGTCGATTACGTGAAGAAGCTGATGACCAAGGGTCCCCCATGGAGCACGCCCAGGCCGTCGATTACGTGAAGAAGCTGATGACCAAGGGTC
GATACTCCCTGGACGTCTGGTCCTAAGATACTCCCTGGACGTCTGGTCCTAA
Ec_POR(SEQ NO:12):Ec_POR (SEQ NO: 12):
ATGGGCGACTCCAACATGGACGCCTCCGCCCCCACCTCCGAGACTGTCGCTGAGGAATGGGCGACTCCAACATGGACGCCTCCGCCCCCACCTCCGAGACTGTCGCTGAGGA
GGTCAGCTTATTTTCCATGATGGACATGTTCCTGTTCTCCCTGATCGTCGGCCTGCTGGGTCAGCTTATTTTCCATGATGGACATGTTCCTGTTCTCCCTGATCGTCGGCCTGCTG
ACCTACTGGTTCCTCTTCCGAAAGAAGAAGGACGAGATCCCCGAGTTCACCAAGATACCTACTGGTTCCTCTTCCGAAAGAAGAAGGACGAGATCCCCGAGTTCACCAAGAT
CCAGACCACCACCACCTCCGTCAAGGACTCCTCCTTCGTCGAGAAGATGAAGAAGACCAGACCACCACCACCTCCGTCAAGGACTCCTCCTTCGTCGAGAAGATGAAGAAGA
CCGGCCGAAACATCATCGTCTTCTACGGCTCCCAGACCGGAACCGCCGAGGAGTTCCCGGCCGAAACATCATCGTCTTCTACGGCTCCCAGACCGGAACCGCCGAGGAGTTC
GCCAACCGACTCTCCAAGGACGCCCACCGATACGGCATGCGAGGTATGGCCGCCGAGCCAACCGACTCTCCAAGGACGCCCACCGATACGGCATGCGAGGTATGGCCGCCGA
CCCCGAGGAGTACGACCTCGCTGACCTCGGCTCCCTCTCCGAGATCGAGAACTCCCTCCCCGAGGAGTACGACCTCGCTGACCTCGGCTCCCTCTCCGAGATCGAGAACTCCCT
GGCCGTCTTCTGCATGGCCACCTACGGAGAGGGTGACCCCACCGACAACGCCCAGGGGCCGTCTTCTGCATGGCCACCTACGGAGAGGGTGACCCCACCGACAACGCCCAGG
ACTTCTACGACTGGCTGCAGGAGGCCGACGTCGATCTGTCCGGCGTCAAGTACGCCGACTTCTACGACTGGCTGCAGGAGGCCGACGTCGATCTGTCCGGCGTCAAGTACGCCG
TCTTCGGTCTGGGCAACAAGACCTACGAGCACTTTAACGCCATGGGCAAGTACGTCGTCTTCGGTCTGGGCAACAAGACCTACGAGCACTTTAACGCCATGGGCAAGTACGTCG
ATAAGCGACTGGAGCAGCTCGGTGCCCAGCGAATCTTCGAGCTGGGTCTGGGCGACATAAGCGACTGGAGCAGCTCGGTGCCCAGCGAATCTTCGAGCTGGGTCTGGGCGAC
GACGACGGTAACCTGGAGGAGGACTTCATCACCTGGCGAGAGCAGTTCTGGCCCGCGACGACGGTAACCTGGAGGAGGACTTCATCACCTGGCGAGAGCAGTTCTGGCCCGC
CGTGTGCGAGCACTTTGGAGTCGAGGCTACCGGCGAGGAGTCCTCCATTCGACAGTCGTGTGCGAGCACTTTGGAGTCGAGGCTACCGGCGAGGAGTCCTCCATTCGACAGT
ACGAGCTGCTGGTGCACACCGACATTGACGCCGCCAAGGTCTACGTGGGCGAGATGACGAGCTGCTGGTGCACACCGACATTGACGCCGCCAAGGTCTACGTGGGCGAGATG
GGCCGACTGAAGTCCTACGAGACTCAGAAGCCCCCCTTTGACGCCAAGAACCCCTTCGGCCGACTGAAGTCCTACGAGACTCAGAAGCCCCCCTTTGACGCCAAGAACCCCTTC
CTGGCCGTTGTCACCACCAACCGAAAGCTGAACCAGGGTACTGAGCGACACCTGATCTGGCCGTTGTCACCACCAACCGAAAGCTGAACCAGGGTACTGAGCGACACCTGAT
GCACCTGGAGCTGGACATCTCCGACTCCAAGATCCGATACGAGTCCGGCGACCACGGCACCTGGAGCTGGACATCTCCGACTCCAAGATCCGATACGAGTCCCGGCGACCACG
TCGCCGTCTACCCCGCTAACGACTCCGCCCTGGTCAACCAGCTGGGCGAGATCCTCGTCGCCGTCTACCCCGCTAACGACTCCGCCCTGGTCAACCAGCTGGGCGAGATCCTCG
GCGCCGACCTCGACGTCATCATGTCCCTGAACAACCTCGACGAGGAGTCCAACAAGGCGCCGACCTCGACGTCATCATGTCCCTGAACAACCTCGACGAGGAGTCCAACAAG
AAGCACCCCTTCCCCTGCCCCACCTCCTACCGAACCGCCCTGACCTACTACCTGGACAAGCACCCCTTCCCCTGCCCCACCTCCTACCGAACCGCCCTGACCTACTACCTGGAC
ATCACCAACCCCCCCCGAACCAACGTCCTCTACGAGCTGGCCCAGTACGCCTCCGAGATCACCAACCCCCCCCGAACCAACGTCCTCTACGAGCTGGCCCAGTACGCCTCCGAG
CCCTTCGAGCAGGAGCAGCTGCGAAAGATGGCCTCCTCCTCCGGCGAGGGCAAGGACCCTTCGAGCAGGAGCAGCTGCGAAAGATGGCCTCCTCCTCCGGCGAGGGCAAGGA
GCTGTACCTCACCTGGGTCGTCGAGGCCCGACGACACATTCTCGCCATCCTGCAGGAGCTGTACCTCACCTGGGTCGTCGAGGCCCGACGACACATTCTCGCCATCCTGCAGGA
CTACCCCTCCCTGCGACCCCCCATCGACCACCTGTGCGAGCTCCTGCCCCGACTGCACTACCCCTCCCTGCGACCCCCCATCGACCACCTGTGCGAGCTCCTGCCCGACTGCA
GGCCCGATACTACTCCATCGCCTCCTCCTCTAAGGTCCACCCCAACTCCGTCCACATGGCCCGATACTACTCCATCGCCTCCTCCTCTAAGGTCCACCCCAACTCCGTCCACAT
CTGCGCCGTCGCCGTCGAGTACGAGACTAAGACCGGCCGAATTAACAAGGGCGTTGCTGCGCCGTCGCCGTCGAGTACGAGACTAAGACCGGCCGAATTAACAAGGGCGTTG
CCACCACCTGGCTGCGAGCCAAGGAGCCCGCCAAGGAGAACGGCCGACGAGCCCTCCCACCACCTGGCTGCGAGCCAAGGAGCCCGCCAAGGAGAACGGCCGACGAGCCCTC
GTCCCCATGTTCGTGCGAAAGTCCCAGTTTCGACTGCCCTTCAAGGCCACCACCCCCGTCCCCATGTTCGTGCGAAAGTCCCAGTTTCGACTGCCCTTCAAGGCCACCACCCCC
GTCATCATGGTCGGCCCCGGCACCGGAATCGCCCCTTTCATTGGCTTCATCCAGGAGGTCATCATGGTCGGCCCCGGCACCGGAATCGCCCCTTTCATTGGCTTCATCCAGGAG
CGAGCCTGGCTGCAGCAGCAGGGCAAGGAGGTTGGCGAGACTCTCCTGTACTACGGCGAGCCTGGCTGCAGCAGCAGGGCAAGGAGGTTGGCGAGACTCTCCTGTACTACGG
CTGCCGACGATCCGACGAGGACTACCTGTACCGAGATGAACTGGCCCAGTTCCACCCTGCCGACGATCCGACGAGGACTACCTGTACCGAGATGAACTGGCCCAGTTCCACC
GAGATGGTTCTCTGACCCAGCTCAACGTGGCCTTCTCTCGAGAGCAGGCCCACAAGGGAGATGGTTCTCTGACCCAGCTCAACGTGGCCTTCTCTCGAGAGCAGGCCCACAAGG
TCTACGTCCAGCACCTGCTGAAGCGAGACAAGGAGCACCTGTGGAAGCTGATCCACTCTACGTCCAGCACCTGCTGAAGCGAGACAAGGAGCACCTGTGGAAGCTGATCCAC
GAGGGCGGCGCCCACATTTACGTCTGCGGCGACGCCCGAAACATGGCCCGAGATGTGAGGGCGGCGCCCACATTTACGTCTGCGGCGACGCCCGAAACATGGCCCGAGATGT
TCAGAACACCTTCTACGACATCGTCGCCGAGCTGGGAACCATGGAGCACGCCCAGGTCAGAACACCTTCTACGACATCGTCGCCGAGCTGGGAACCATGGAGCACGCCCAGG
CCGTCGATTACATTAAGAAGCTGATGACCAAGGGTCGATACTCCCTGGACGTCTGGTCCGTCGATTACATTAAGAAGCTGATGACCAAGGGTCGATACTCCCTGGACGTCTGGT
CCTAACCTAA
Xl_POR(SEQ NO:13):Xl_POR (SEQ NO: 13):
ATGGGCGAGTCCTGCACCGAGCAGGACATGTGCACCTCCGAGCAGGGCAACGGCTCATGGGCGAGTCCTGCACCGAGCAGGACATGTGCACCTCCGAGCAGGGCAACGGCTC
CCCCGAGGAGGCTTTCTTCTCCATGGCCGACATGTTCCTGCTGTCCCTGATCGTCGGCCCCCGAGGAGGCTTTCTTCTCCATGGCCGACATGTTCCTGCTGTCCCTGATCGTCGGC
CTGCTGACCTACTGGTTTTTCTTTCGAAAGAAGAAGGAGGAGACTATCGAGTTCACCCTGCTGACCTACTGGTTTTTCTTTCGAAAGAAGAAGGAGGAGACTATCGAGTTCACC
AAGATCCAGCCCACCGTGAACAACTCCGTTCGAGAGTCCTCCTTTATCGAGAAGATGAAGATCCAGCCCACCGTGAACAACTCCGTTCGAGAGTCCTCCTTTATCGAGAAGATG
AAGAAGACCGGCAAGAACATCGTCGTCTTCTACGGCTCCCAGACCGGCACCGGCGAAAGAAGACCGGCAAGAACATCGTCGTCTTCTACGGCTCCCAGACCGGCACCGGCGA
GGAGTTCGCCAACCGACTGGCCAAGGACGCCCACCGATACGGCGTCCGAGGAATGGGGAGTTCGCCAACCGACTGGCCAAGGACGCCCACCGATACGGCGTCCGAGGAATGG
CCGCCGACCCCGAGGAGTTCGAGATGGCCGACCTGTCCCGACTGACCGAGATTGAGCCGCCGACCCCGAGGAGTTTCGAGATGGCCGACCTGTCCCGACTGACCGAGATTGAG
AACGCCCTGGCTGTCTTCTGCATGGCCACCTACGGCGAGGGCGACCCCACCGACAAAACGCCCTGGCTGTCTCTGCATGGCCACCTACGGCGAGGGCGAACCCACCGACAA
CGCCCAGGACTTTTACGACTGGCTGCAGGAGACTGACATCGACCTGACCGGCCTGACGCCCAGGACTTTTACGACTGGCTGCAGGAGACTGACATCGACCTGACCGGCCTGA
AGTACGCCGTTTTCGGACTGGGCAACAAGACCTACGAGCACTTTAACGCCATGGGCAGTACGCCGTTTTCGGACTGGGCAACAAGACCTACGAGCACTTTAACGCCATGGGC
AAGTACGTCGATAAGCGACTGGAGGAGCTGGGCGCCGAGCGAATCTTTGAGCTGGGAAGTACGTCGATAAGCGACTGGAGGAGCTGGGCGCCGAGCGAATCTTTGAGCTGGG
TATGGGCGACGACGACGGCAACCTGGAGGAGGACTTCATCACCTGGCGAGAGCAGTTATGGGCGACGACGACGGCAACCTGGAGGAGGACTTCATCACCTGGCGAGAGCAGT
TCTGGCCCGCCGTGTGCGAGCACTTTGGTGTGGAGGCTACCGGAGAGGACTCCTCCATCTGGCCCGCCGTGTCGAGCACTTTGGTGTGGAGGCTACCGGAGAGGACTCCTCCA
TTCGACAGTACGAGCTGGTGGTGCACACCGACGAGAACATGAACAAGGTCTACACCTTCGACAGTACGAGCTGGTGGTGCACACCGACGAGAACATGAACAAGGTCTACACC
GGAGAGATGGGCCGACTGAAGTCCTACGAGACTCAGAAGCCCCCCTTCGACGCCAAGGAGAGATGGGCCGACTGAAGTCCTACGAGACTCAGAAGCCCCCCTTCGACGCCAA
GAACCCCTTCCTGGCCAACGTCACCGTCAACCGAAAGCTGAACGAGGGCGGCGACCGAACCCCTTCCTGGCCAACGTCACCGTCAACCGAAAGCTGAACGAGGGCGGCGACC
GACACCTGATGCACCTGGAGCTGGACGTTACCGGCTCTAAGATCCGATACGAGTCCGACACCTGATGCACCTGGAGCTGGACGTTACCGGCTCTAAGATCCGATACGAGTCC
GGAGATCATGTCGCCGTCTACCCCGCCAACGACACCGCCCTGGTCAACAAGCTGGGGGAGATCATGTCGCCGTCTACCCCGCCAACGACACCGCCCTGGTCAACAAGCTGGG
AGAGATTCTGGGCGCCGACCTGGACACCGTGATTTCCCTGAACAACCTGGACGAGGAGAGATTCTGGGCGCCGACCTGGACACCGTGATTTCCCTGAACAACCTGGACGAGG
AGTCCAACAAGAAGCACCCCTTCCCCTGCCCCACCACCTACCGAACCGCCCTGACCTAGTCCAACAAGAAGCACCCCTTCCCCTGCCCCACCACCTACCGAACCGCCCTGACCT
ACTACCTGGACATCACCAACCCCCCCCGAACCAACGTCCTCTACGAGCTGGCCCAGTACTACCTGGACATCACCAACCCCCCCCGAACCAACGTCCTTCTACGAGCTGGCCCAGT
ACGCCACCGACTCCAAGGAGCAGGAGAACCTGCGAAAGATGGCCTCCTCCGCCCAGACGCCACCGACTCCAAGGAGCAGGAGAACCTGCGAAAGATGGCCTCCTCCGCCCAG
GACGGCAAGGGCCTGTACCTCTCCTGGGTCGTCGAGTCCCGACGAAACATTCTGGCCGACGGCAAGGGCCTGTACCTCTCCTGGGTCGTCGAGTCCCGACGAAACATTCTGGCC
ATCCTGGAGGACGTGCCCTCCCTGCGACCCCCTCTGGACCACCTGTGCGAGCTGCTGATCCTGGAGGACGTGCCCTCCCTGCGACCCCCTCTGGACCACCTGTGCGAGCTGCTG
CCCCGACTGCAGGCTCGATACTACTCTATCGCCTCCTCCTCCAAGGTCCACCCCTCCTCCCCGACTGCAGGCTCGATACTACTCTATCGCCTCCTCCTCCAAGGTCCACCCTCCT
CCATCCACGTGTGCGCCGTCCTCGTCGAGTACGAGACTAAGACCGGCCGAGAGAACCCATCCACGTGTGCGCCGTCCTCGTCGAGTACGAGACTAAGACCGGCCGAGAGAAC
AAGGGCGTTGCCACCAACTGGCTCAAGAACAAGCAGCCCTCCGACAACGGCCACAAAAGGGCGTTGCCACCAACTGGCTCAAGAACAAGCAGCCCTCCGACAACGGCCACAA
GTCCTCCGTCCCCATGTACGTTCGAAAGTCTCAGTTCCGACTCCCCTTCAAGCCCTCCGTCCTCCGTCCCCCATGTACGTTCGAAAGTCTCAGTTCCGACTCCCCTTCAAGCCCTCC
ACCCCCGTCATCATGATCGGCCCCGGCACCGGCATCGCCCCTTTCATCGGCTTTATCACCCCCGTCATCATGATCGGCCCCGGCACCGGCATCGCCCCTTTCATCGGCTTTATC
CAGGAGCGAGAGTGGCTCAAGCAGCAGGGCAAGGACGTTGGCGAGACTGTCCTGTACAGGAGCGAGAGTGGCTCAAGCAGCAGGGCAAGGACGTTGGCGAGACTGTCCTGTA
CTACGGCTGCCGACACGAGCACGAGGACTTTCTGTACAAGGACGAGCTGAAGCGATCTACGGCTGCCGACACGAGCACGAGGACTTTCTGTACAAGGACGAGCTGAAGCGAT
ACCACAAGGACGGCGTCCTGACCCAGCTCAACGTCGCCTTCTCCCGAGATCAAGACACCACAAGGACGGCGTCCTGACCCAGCTCAACGTCGCCTTCTCCCGAGATCAAGAC
CGAAAGGTGTACGTCCAGCACCTGCTCAAGGACAACAAGGAGATGGTGTGGAAGCTCGAAAGGTGTACGTCCAGCACCTGCTCAAGGACAACAAGGAGATGGTGTGGAAGCT
GATTCACGAGGACAACGCTCACATTTACGTCTGCGGCGACGCCCGAAACATGGCTCGATTCACGAGGACAACGCTCACATTTACGTCTGCGGCGACGCCCGAAACATGGCTC
GAGATGTTCAGAACACCTTCTACGACATCGTGGCCGAGTACGGCAAGATCGACCACGAGATGTTCAGAACACCTTCTACGACATCGTGGCCGAGTACGGCAAGATCGACCAC
GCCCAGGCCGTCGATTACATCAAGAAGCTGATGACCAAGGGACGATACTCCCAGGAGCCCAGGCCGTCGATTACATCAAGAAGCTGATGACCAAGGGACGATACTCCCAGGA
CGTTTGGTCCTAACGTTTGGTCCTAA
Oa_CYB5(SEQ NO:14):Oa_CYB5 (SEQ NO: 14):
ATGGCCGAGGAGTCTAGTAAACCAGTCAAGTACTACACCCTAGAGGAAATCCAGAAATGGCCGAGGAGTCTAGTAAACCAGTCAAGTACTACACCCTAGAGGAAATCCAGAA
GCACAACCACAGCAAATCGACCTGGCTGATTCTGCACTACAAGGTCTACGACCTCACGCACAACCACAGCAAATCGACCTGGCTGATTCTGCACTACAAGGTCTACGACCTCAC
AAAGTTCCTGGAAGAGCACCCGGGAGGAGAGGAGGTGCTTAGAGAGCAGGCTGGTAAAGTTCCTGGAAGAGCACCCGGGAGGAGAGGAGGTGCTTAGAGAGCAGGCTGGT
GGTGATGCAACTGAGAACTTTGAGGACGTTGGCCATTCAACGGATGCCCGAGAACTGGTGATGCAACTGAGAACTTTGAGGACGTTGGCCATTCAACGGATGCCCGAGAACT
TAGCAAGACCTTCATCATTGGCGAGCTGCATCCCGACGACCGGTCCAAGATCACCATAGCAAGACCTTCATCATTGGCGAGCTGCATCCCGACGACCGGTCCAAGATCACCA
AGCCCTCTGAGTCCATCATCACAACTATTGACTCCAACTCGTCGTGGTGGACCAACTAGCCCTCTGAGTCCATCATCACAACTATTGACTCCAACTCGTCGTGGTGGACCAACT
GGCTCATTCCTGCCATTTCTGCTCTGGTGGTTGCGCTCATGTACCATTTGTATACTTCGGCTCATTCCTGCCATTTCTGCTCTGGTGGTTGCGCTCATGTACCATTTGTATACTTC
TGAAAATTAATGAAAATTAA
Ma_CYB5(SEQ NO:15):Ma_CYB5 (SEQ NO: 15):
ATGGCCGGCCAGGCAGACAAGGATGTCAAATACTATACGTTGGAAGAAATCCAGAAATGGCCCGGCCAGGCAGACAAGGATGTCAAATACTATACGTTGGAAGAAATCCAGAA
GCACAAAGACTCCAAGTCTACGTGGGTCATTCTTCACCACAAGGTCTACGACCTGACGCACAAAGACTCCAAGTCTACGTGGGTCATTCTTCACCACAAGGTCTACGACCTGAC
CAAGTTTCTGGAGGAACATCCCGGTGGCGAGGAGGTACTTCGGGAGCAGGCTGGAGCAAGTTTCTGGAGGAACATCCCGGTGGCGAGGAGGTACTTCGGGAGCAGGCTGGAG
GAGATGCCACCGAGAACTTTGAGGATGTGGGCCACTCGACCGACGCTCGAGAGCTCGAGATGCCACCGAGAACTTTGAGGATTGTGGGCCACTCGACCGACGCTCGAGAGCTC
TCAAAGACATTCATCATTGGAGAGCTGCATCCTGACGACCGCAGCAAGATTGCCAATCAAAGACATTCATCATTGGAGAGCTGCATCCTGACGACCGCAGCAAGATTGCCAA
GCCCAGCGAGAGTCTCATCACCACTGTGGAGTCCAACTCCTCTTGGTGGACCAACTGGCCCAGCGAGAGTCTCATCACCACTGTGGAGTCCAACTCCTCTTGGTGGACCAACTG
GGTTATTCCGGCAGTTTCTGCGCTGGCCGTGGCTCTGATGTACCGACTCTACATGGGGGTTATTCCGGCAGTTTCTGCGCTGGCCGTGGCTCTGATGTACCGACTCTACATGGG
CAGACGACTGACCTGTTTCTCGAAACCTGGAACAGGGGAGGGTCTGCCCCAACGACCAGACGACTGACCTGTTTCTCGAAACCTGGAACAGGGGAGGGTCTGCCCCAACGAC
GAGGTGAAAAGAAGCCTGTGTTGATCACTTCGGCCGATAGAAATCTACCACTTAAGGAGGTGAAAAGAAGCCTGTGTTGATCACTTCGGCCGATAGAAATCTACCACTTAAG
GGCAAGTAAGGCAAGTAA
Ec_CYB5(SEQ NO:16):Ec_CYB5 (SEQ NO: 16):
ATGGCCGAGCAGAGCGACAAGGCAGTCAAGTACTACACCCTCGAAGAGATCAAGAATGGCCGAGCAGAGCGACAAGGCAGTCAAGTACTACACCCTCGAAGAGATCAAGA
AGCACAACCACTCGAAATCTACCTGGCTGATTCTGCACCACAAGGTCTATGACCTCAAGCACAACCACTCGAAATCTACCTGGCTGATTCTGCACCACAAGGTCTATGACCTCA
CCAAGTTCCTGGAGGATCATCCAGGAGGAGAGGAGGTGCTTCGAGAACAGGCTGGTCCAAGTTCCTGGAGGATCATCCAGGAGGAGAGGAGGTGCTTCGAGAACAGGCTGGT
GGTGATGCCACAGAGAACTTTGAGGATATTGGCCATTCTACAGACGCGAGAGAACTGGTGATGCCACAGAGAACTTTGAGGATATTGGCCATTCTACAGACGCGAGAGAACT
TAGTAAAACGTTCATCATCGGCGAGCTGCATCCCGACGACCGGTCCAAGATTGCCATAGTAAAACGTTCATCATCGGCGAGCTGCATCCCGACGACCGGTCCAAGATTGCCA
AGCCCGTGGAGACTTTGATCACCACTGTGGACTCCAATTCATCGTGGTGGACCAACTAGCCCGTGGAGACTTTGATCACCACTGTGGACTCCAATTCATCGTGGTGGACCAACT
GGGTCATTCCTGCCATTTCTGCTGTAGTTGTTGCTCTCATGTACCGAATCTACACTGCGGGTCATTCCTGCCATTTCTGCTGTAGTTGTTGCTCTCATGTACCGAATCTACACTGC
AGAAGATTAAAGAAGATTAA
Ss_CYB(SEQ NO:17):Ss_CYB (SEQ NO: 17):
ATGGCCGAGCAGTCCGACAAGGCCGTCAAGTACTACACCCTGGAGGAGATCCAGAAATGGCCGAGCAGTCCGACAAGGCCGTCAAGTACTACACCCTGGAGGAGATCCAGAA
GCACAACAACTCCAAGTCCACCTGGCTGATCCTGCACCACAAGGTCTACGACCTGACGCACAACAACTCCAAGTCCACCTGGGCTGATCCTGCACCACAAGGTCTACGACCTGAC
CAAGTTCCTGGAGGAGCACCCCGGCGGTGAGGAGGTCCTGCGAGAGCAGGCCGGCGCAAGTTCCTGGAGGAGCACCCCGGCGGTGAGGAGGTCCTGCGAGAGCAGGCCGGCG
GTGACGCTACCGAGAACTTCGAGGACGTCGGCCACTCCACCGACGCCCGAGAGCTGGTGACGCTACCGAGAACTTCGAGGACGTCGGCCACTCCACCGACGCCCGAGAGCTG
TCCAAGACCTTTATCATTGGCGAGCTCCACCCCGACGACCGATCCAAGATCGCCAAGTCCAAGACCTTTATCATTGGCGAGCTCCACCCCGACGACCGATCCAAGATCGCCAAG
CCCTCCGAGACTCTGATCACCACCGTCGAGTCCAACTCCTCCTGGTGGACCAACTGGCCCTCCGAGACTCTGATCACCACCGTCGAGTCCAACTCCTCCTGGTGGACCAACTGG
GTCATCCCCGCCATCTCCGCCCTGGTTGTCTCCCTGATGTACCACTTCTACACCTCCGGTCATCCCCGCCATCTCCGCCCTGGTTGTCTCCCTGATGTACCACTTCTACACCTCCG
AGAACTAAAGAACTAA
Hs_3β-HSD2(L236S)(SEQ NO:18):Hs_3β-HSD2(L236S)(SEQ NO: 18):
ATGGGTTGGTCCTGTCTGGTGACCGGAGCTGGTGGACTGCTGGGTCAGCGAATCGTGATGGGTTGGTCCTGTCTGGTGACCGGAGCTGGTGGACTGCTGGGTCAGCGAATCGTG
CGACTGCTGGTCGAGGAGAAGGAGCTGAAGGAGATTCGAGCCCTGGACAAGGCTTTCGACTGCTGGTCGAGGAGAAGGAGCTGAAGGAGATTCGAGCCCTGGACAAGGCTTT
CCGACCCGAGCTGCGAGAGGAGTTCTCTAAGCTGCAGAACCGAACCAAGCTGACCGCCGACCCGAGCTGCGAGAGGAGTTCTCTAAGCTGCAGAACCGAACCAAGCTGACCG
TGCTGGAGGGAGACATCCTGGACGAGCCCTTCCTGAAGCGAGCCTGTCAGGACGTCTGCTGGAGGGAGACATCCTGGACGAGCCCTTCCTGAAGCGAGCCTGTCAGGACGTC
TCCGTGGTCATTCACACCGATTGCATCATTGACGTGTTCGGCGTCACCCACCGAGAGTCCGTGGTCATTCACACCGATTGCATCATTGACGTGTTCGGCGTCACCCACCGAGAG
TCTATCATGAACGTGAACGTCAAGGGAACCCAGCTGCTGCTGGAGGCCTGTGTGCATCTATCATGAACGTGAACGTCAAGGGAACCCAGCTGCTGCTGGAGGCCTGTGTGCA
GGCTTCCGTGCCCGTCTTCATCTACACCTCTTCCATTGAGGTCGCCGGACCCAACTCTGGCTTCCGTGCCCGTCTTCATCTACACCTCTTCCATTGAGGTCGCCGGACCCAACTCT
TACAAGGAGATCATTCAGAACGGTCACGAGGAGGAGCCTCTGGAGAACACCTGGCCTACAAGGAGATCATTCAGAACGGTCACGAGGAGGAGCCTCTGGAGAACACCTGGCC
TACCCCCTACCCCTACTCCAAGAAGCTGGCCGAGAAGGCTGTCCTGGCCGCTAACGGTACCCCCTACCCCTACTCCAAGAAGCTGGCCGAGAAGGCTGTCCTGGCCGCTAACGG
CTGGAACCTGAAGAACGGAGACACCCTGTACACCTGCGCTCTGCGACCCACCTACACTGGAACCTGAAGAACGGAGACACCCTGTACACCTGCGCTCTGCGACCCACCTACA
TCTACGGAGAGGGTGGCCCCTTCCTGTCTGCCTCCATCAACGAGGCTCTGAACAACATCTACGGAGAGGGTGGCCCCTTCCTGTCTGCCTCCATCAACGAGGCTCTGAACAACA
ACGGTATTCTGTCTTCCGTGGGCAAGTTCTCTACCGTCAACCCCGTGTACGTCGGAAACGGTATTCTGTCTTCCGTGGGCAAGTTCCTACCGTCAACCCCGTGTACGTCGGAA
ACGTGGCTTGGGCTCACATCCTGGCTTCGCGAGCTCTGCGAGATCCCAAGAAGGCCCACGTGGCTTGGGCTCACATCCTGGCTTCGCGAGCTCTGCGAGATCCCAAGAAGGCCC
CCTCCGTCCGAGGACAGTTCTACTACATCTCCGACGACACCCCCCACCAGTCTTACGCCTCCGTCCGAGGACAGTTCTACTACATCTCCGACGACACCCCCCACCAGTCTTACG
ACAACCTGAACTACATTCTGTCTAAGGAGTTCGGTCTGCGACTGGACTCTCGATGGTACAACCTGAACTACATTCTGTCTAAGGAGTTCGGTCTGCGACTGGACTCTCGATGGT
CCCTGCCCCTGACCCTGATGTACTGGATCGGCTTCCTGCTGGAGGTGGTGTCTTTCCTCCCTGCCCCTGACCCTGATGTACTGGATCGGCTTCCTGCTGGAGGTGGTGTCTTTCCT
GCTGTCCCCCATCTACTCTTACCAGCCCCCCTTCAACCGACACACCGTGACCCTGTCTGCTGTCCCCCATCTACTCTTACCAGCCCCCCTTCAACCGACACACCGTGACCCTGTCT
AACTCCGTCTTCACCTTCTCCTACAAGAAGGCCCAGCGGGACCTGGCTTACAAGCCCAACTCCGTCTTCACCTTCTCCTACAAGAAGGCCCAGCGGGACCTGGCTTACAAGCCC
CTGTACTCTTGGGAGGAGGCTAAGCAGAAGACCGTGGAGTGGGTCGGATCCCTGGTCTGTACTCTTGGGAGGAGGCTAAGCAGAAGACCGTGGAGTGGGTCGGATCCCTGGT
GGACCGACACAAGGAGACTCTGAAGTCTAAGACCCAGTAAGGACCGACACAAGGAGACTCTGAAGTCTAAGACCCAGTAA
Hs_3β-HSD2(SEQ NO:19):Hs_3β-HSD2 (SEQ NO: 19):
ATGGGTTGGTCCTGTCTGGTGACCGGAGCTGGTGGACTGCTGGGTCAGCGAATCGTGATGGGTTGGTCCTGTCTGGTGACCGGAGCTGGTGGACTGCTGGGTCAGCGAATCGTG
CGACTGCTGGTCGAGGAGAAGGAGCTGAAGGAGATTCGAGCCCTGGACAAGGCTTTCGACTGCTGGTCGAGGAGAAGGAGCTGAAGGAGATTCGAGCCCTGGACAAGGCTTT
CCGACCCGAGCTGCGAGAGGAGTTCTCTAAGCTGCAGAACCGAACCAAGCTGACCGCCGACCCGAGCTGCGAGAGGAGTTCTCTAAGCTGCAGAACCGAACCAAGCTGACCG
TGCTGGAGGGAGACATCCTGGACGAGCCCTTCCTGAAGCGAGCCTGTCAGGACGTCTGCTGGAGGGAGACATCCTGGACGAGCCCTTCCTGAAGCGAGCCTGTCAGGACGTC
TCCGTGGTCATTCACACCGCTTGCATCATTGACGTGTTCGGCGTCACCCACCGAGAGTCCGTGGTCATTCACACCGCTTGCATCATTGACGTGTTCGGCGTCACCCACCGAGAG
TCTATCATGAACGTGAACGTCAAGGGAACCCAGCTGCTGCTGGAGGCCTGTGTGCATCTATCATGAACGTGAACGTCAAGGGAACCCAGCTGCTGCTGGAGGCCTGTGTGCA
GGCTTCCGTGCCCGTCTTCATCTACACCTCTTCCATTGAGGTCGCCGGACCCAACTCTGGCTTCCGTGCCCGTCTTCATCTACACCTCTTCCATTGAGGTCGCCGGACCCAACTCT
TACAAGGAGATCATTCAGAACGGTCACGAGGAGGAGCCTCTGGAGAACACCTGGCCTACAAGGAGATCATTCAGAACGGTCACGAGGAGGAGCCTCTGGAGAACACCTGGCC
TACCCCCTACCCCTACTCCAAGAAGCTGGCCGAGAAGGCTGTCCTGGCCGCTAACGGTACCCCCTACCCCTACTCCAAGAAGCTGGCCGAGAAGGCTGTCCTGGCCGCTAACGG
CTGGAACCTGAAGAACGGAGACACCCTGTACACCTGCGCTCTGCGACCCACCTACACTGGAACCTGAAGAACGGAGACACCCTGTACACCTGCGCTCTGCGACCCACCTACA
TCTACGGAGAGGGTGGCCCCTTCCTGTCTGCCTCCATCAACGAGGCTCTGAACAACATCTACGGAGAGGGTGGCCCCTTCCTGTCTGCCTCCATCAACGAGGCTCTGAACAACA
ACGGTATTCTGTCTTCCGTGGGCAAGTTCTCTACCGTCAACCCCGTGTACGTCGGAAACGGTATTCTGTCTTCCGTGGGCAAGTTCCTACCGTCAACCCCGTGTACGTCGGAA
ACGTGGCTTGGGCTCACATCCTGGCTCTGCGAGCTCTGCGAGATCCCAAGAAGGCCCACGTGGCTTGGGCTCACATCCTGGCTCTGCGAGCTCTGCGAGATCCCAAGAAGGCCC
CCTCCGTCCGAGGACAGTTCTACTACATCTCCGACGACACCCCCCACCAGTCTTACGCCTCCGTCCGAGGACAGTTCTACTACATCTCCGACGACACCCCCCACCAGTCTTACG
ACAACCTGAACTACATTCTGTCTAAGGAGTTCGGTCTGCGACTGGACTCTCGATGGTACAACCTGAACTACATTCTGTCTAAGGAGTTCGGTCTGCGACTGGACTCTCGATGGT
CCCTGCCCCTGACCCTGATGTACTGGATCGGCTTCCTGCTGGAGGTGGTGTCTTTCCTCCCTGCCCCTGACCCTGATGTACTGGATCGGCTTCCTGCTGGAGGTGGTGTCTTTCCT
GCTGTCCCCCATCTACTCTTACCAGCCCCCCTTCAACCGACACACCGTGACCCTGTCTGCTGTCCCCCATCTACTCTTACCAGCCCCCCTTCAACCGACACACCGTGACCCTGTCT
AACTCCGTCTTCACCTTCTCCTACAAGAAGGCCCAGCGGGACCTGGCTTACAAGCCCAACTCCGTCTTCACCTTCTCCTACAAGAAGGCCCAGCGGGACCTGGCTTACAAGCCC
CTGTACTCTTGGGAGGAGGCTAAGCAGAAGACCGTGGAGTGGGTCGGATCCCTGGTCTGTACTCTTGGGAGGAGGCTAAGCAGAAGACCGTGGAGTGGGTCGGATCCCTGGT
GGACCGACACAAGGAGACTCTGAAGTCTAAGACCCAGTAAGGACCGACACAAGGAGACTCTGAAGTCTAAGACCCAGTAA
Hs_3β-HSD1(SEQ NO:20):Hs_3β-HSD1 (SEQ NO: 20):
ATGACCGGCTGGTCCTGCCTGGTGACCGGTGCTGGTGGCTTCCTGGGCCAGCGAATCATGACCGGCTGGTCCTGCCTGGTGACCGGTGCTGGTGGCTTCCTGGGCCAGCGAATC
ATCCGACTGCTGGTCAAGGAGAAGGAGCTGAAGGAGATCCGAGTGCTGGACAAGGCATCCGACTGCTGGTCAAGGAGAAGGAGCTGAAGGAGATCCGAGTGCTGGACAAGGC
CTTCGGCCCCGAGCTGCGAGAGGAGTTTTCCAAGCTGCAGAACAAGACCAAGCTGACTTCGGCCCCGAGCTGCGAGAGGAGTTTTTCCAAGCTGCAGAACAAGACCAAGCTGA
CCGTCCTGGAGGGCGACATCCTGGACGAGCCCTTTCTGAAGCGAGCCTGCCAGGACCCGTCCTGGAGGGCGACATCCTGGACGAGCCCTTTCTGAAGCGAGCCTGCCAGGAC
GTCAGCGTTATTATCCACACCGCCTGTATTATCGACGTCTTCGGCGTCACCCACCGAGTCAGCGTTATTATCCACACCGCCTGTATTATCGACGTCTTCGGCGTCACCCACCGA
GAGTCCATTATGAACGTCAACGTCAAGGGAACCCAGCTGCTGCTGGAGGCCTGCGTGAGTCCATATGAACGTCAACGTCAAGGGAACCCAGCTGCTGCTGGAGGCCTGCGT
CCAGGCTTCCGTCCCTGTCTTCATCTACACCTCCTCCATCGAGGTCGCTGGCCCCAACCCAGGCTTCCGTCCCTGTCTTCATCTACACCTCCTCCATCGAGGTCGCTGGCCCCAAC
TCCTACAAGGAGATCATCCAGAACGGCCACGAGGAGGAGCCCCTGGAGAACACCTGTCCTACAAGGAGATCATCCAGAACGGCCACGAGGAGGAGCCCCTGGAGAACACCTG
GCCCGCTCCTTACCCCCACTCCAAGAAGCTCGCCGAGAAGGCCGTGCTGGCCGCTAAGCCCGCTCCTTACCCCCACTCCAAGAAGCTCGCCGAGAAGGCCGTGCTGGCCGCTAA
CGGTTGGAACCTGAAGAACGGCGGCACCCTCTACACCTGTGCCCTGCGACCCATGTACGGTTGGAACCTGAAGAACGGCGGCACCCTCTACACCTGTGCCCTGCGACCCATGTA
CATCTACGGTGAGGGCTCCCGATTCCTGTCCGCCTCCATTAACGAGGCTCTCAACAACATCTACGGTGAGGGCTCCCGATTCCTGTCCGCCTCCATTAACGAGGCTCTCAACAA
CAACGGCATCCTGTCCTCCGTCGGCAAGTTCTCCACCGTCAACCCCGTCTACGTCGGCAACGGCATCCTGTCCTCCGTCGGCAAGTTCTCCACCGTCAACCCCGTCTACGTCGG
CAACGTCGCCTGGGCTCACATCCTCGCCCTCCGAGCTCTGCAGGACCCTAAGAAGGCCAACGTCGCCTGGGCTCACATCCTCGCCCTCCGAGCTCTGCAGGACCCTAAGAAGGC
CCCCTCCATTCGAGGTCAGTTCTACTACATCTCCGACGACACCCCCCACCAGTCCTACCCCTCCATTCGAGGTCAGTTCTACTACATCTCCGACGACACCCCCCACCAGTCCTA
CGACAACCTCAACTACACCCTCTCCAAGGAGTTCGGCCTGCGACTCGACTCCCGATGCGACAACCTCAACTACACCCTCTCCAAGGAGTTCGGCCTGCGACTCGACTCCCGATG
GTCCTTCCCCCTGTCCCTGATGTACTGGATCGGCTTCCTGCTGGAGATCGTCAGCTTTGTCCTCCCCCTGTCCCTGATGTACTGGATCGGCTTCCTGCTGGAGATCGTCAGCTTT
TTACTGCGACCCATCTACACCTACCGACCCCCCTTCAACCGACACATCGTGACCCTCTTACTGCGACCCATCTACACCTACCGACCCCCCTTCAACCGACACATCGTGACCTC
TCTAACTCCGTCTTCACCTTCTCCTACAAGAAGGCTCAGCGAGACTTGGCCTACAAGTCTAACTCCGTCTTCACCTTCTCCTACAAGAAGGCTCAGCGAGACTTGGCCTACAAG
CCCCTGTACTCCTGGGAGGAGGCCAAGCAGAAGACCGTCGAGTGGGTCGGCTCTCTCCCCTGTACTCCTGGGGAGGAGGCCAAGCAGAAGACCGTCGAGTGGGTCGGCTCTCT
GGTCGATCGACACAAGGAGACTCTGAAGTCCAAGACCCAGTAAGGTCGATCGACACAAGGAGACTCTGAAGTCCAAGACCCAGTAA
Hs_3β-HSD1(L237S)(SEQ NO:21):Hs_3β-HSD1(L237S)(SEQ NO: 21):
ATGACCGGCTGGTCCTGCCTGGTGACCGGTGCTGGTGGCTTCCTGGGCCAGCGAATCATGACCGGCTGGTCCTGCCTGGTGACCGGTGCTGGTGGCTTCCTGGGCCAGCGAATC
ATCCGACTGCTGGTCAAGGAGAAGGAGCTGAAGGAGATCCGAGTGCTGGACAAGGCATCCGACTGCTGGTCAAGGAGAAGGAGCTGAAGGAGATCCGAGTGCTGGACAAGGC
CTTCGGCCCCGAGCTGCGAGAGGAGTTTTCCAAGCTGCAGAACAAGACCAAGCTGACTTCGGCCCCGAGCTGCGAGAGGAGTTTTTCCAAGCTGCAGAACAAGACCAAGCTGA
CCGTCCTGGAGGGCGACATCCTGGACGAGCCCTTTCTGAAGCGAGCCTGCCAGGACCCGTCCTGGAGGGCGACATCCTGGACGAGCCCTTTCTGAAGCGAGCCTGCCAGGAC
GTCAGCGTTATTATCCACACCGCCTGTATTATCGACGTCTTCGGCGTCACCCACCGAGTCAGCGTTATTATCCACACCGCCTGTATTATCGACGTCTTCGGCGTCACCCACCGA
GAGTCCATTATGAACGTCAACGTCAAGGGAACCCAGCTGCTGCTGGAGGCCTGCGTGAGTCCATATGAACGTCAACGTCAAGGGAACCCAGCTGCTGCTGGAGGCCTGCGT
CCAGGCTTCCGTCCCTGTCTTCATCTACACCTCCTCCATCGAGGTCGCTGGCCCCAACCCAGGCTTCCGTCCCTGTCTTCATCTACACCTCCTCCATCGAGGTCGCTGGCCCCAAC
TCCTACAAGGAGATCATCCAGAACGGCCACGAGGAGGAGCCCCTGGAGAACACCTGTCCTACAAGGAGATCATCCAGAACGGCCACGAGGAGGAGCCCCTGGAGAACACCTG
GCCCGCTCCTTACCCCCACTCCAAGAAGCTCGCCGAGAAGGCCGTGCTGGCCGCTAAGCCCGTCCCTTACCCCCACTCCAAGAAGCTCGCCGAGAAGGCCGTGCTGGCCGCTAA
CGGTTGGAACCTGAAGAACGGCGGCACCCTCTACACCTGTGCCCTGCGACCCATGTACGGTTGGAACCTGAAGAACGGCGGCACCCTCTACACCTGTGCCCTGCGACCCATGTA
CATCTACGGTGAGGGCTCCCGATTCCTGTCCGCCTCCATTAACGAGGCTCTCAACAACATCTACGGTGAGGGCTCCCGATTCCTGTCCGCCTCCATTAACGAGGCTCTCAACAA
CAACGGCATCCTGTCCTCCGTCGGCAAGTTCTCCACCGTCAACCCCGTCTACGTCGGCAACGGCATCCTGTCCTCCGTCGGCAAGTTCTCCACCGTCAACCCCGTCTACGTCGG
CAACGTCGCCTGGGCTCACATCCTCGCCTCCCGAGCTCTGCAGGACCCTAAGAAGGCCAACGTCGCCTGGGCTCACATCCTCGCCTCCCGAGCTCTGCAGGACCCTAAGAAGGC
CCCCTCCATTCGAGGTCAGTTCTACTACATCTCCGACGACACCCCCCACCAGTCCTACCCCTCCATTCGAGGTCAGTTCTACTACATCTCCGACGACACCCCCCACCAGTCCTA
CGACAACCTCAACTACACCCTCTCCAAGGAGTTCGGCCTGCGACTCGACTCCCGATGCGACAACCTCAACTACACCCTCTCCAAGGAGTTCGGCCTGCGACTCGACTCCCGATG
GTCCTTCCCCCTGTCCCTGATGTACTGGATCGGCTTCCTGCTGGAGATCGTCAGCTTTGTCCTCCCCCTGTCCCTGATGTACTGGATCGGCTTCCTGCTGGAGATCGTCAGCTTT
TTACTGCGACCCATCTACACCTACCGACCCCCCTTCAACCGACACATCGTGACCCTCTTACTGCGACCCATCTACACCTACCGACCCCCCTTCAACCGACACATCGTGACCTC
TCTAACTCCGTCTTCACCTTCTCCTACAAGAAGGCTCAGCGAGACTTGGCCTACAAGTCTAACTCCGTCTTCACCTTCTCCTACAAGAAGGCTCAGCGAGACTTGGCCTACAAG
CCCCTGTACTCCTGGGAGGAGGCCAAGCAGAAGACCGTCGAGTGGGTCGGCTCTCTCCCCTGTACTCCTGGGGAGGAGGCCAAGCAGAAGACCGTCGAGTGGGTCGGCTCTCT
GGTCGATCGACACAAGGAGACTCTGAAGTCCAAGACCCAGTAAGGTCGATCGACACAAGGAGACTCTGAAGTCCAAGACCCAGTAA
Mm_3β-HSD(SEQ NO:22):Mm_3β-HSD (SEQ NO: 22):
ATGCCCGGATGGTCCTGTCTGGTGACCGGAGCTGGCGGATTCCTGGGTCAGCGAATCATGCCCGGATGGTCCTGTCTGGTGACCGGAGCTGGCGGATTCCTGGGTCAGCGAATC
ATTCAGCTGCTGGTGCAGGAGGAGGACCTGGAGGAGATTCGAGTGCTGGACAAGGTATTCAGCTGCTGGTGCAGGAGGAGGACCTGGAGGAGATTCGAGTGCTGGACAAGGT
CTTCCGACCCGAGACTCGAAAGGAGTTCTTCAACCTGGAGACTTCCATTAAGGTGACCTTCCGACCCGAGACTCGAAAGGAGTTCTTCAACCTGGAGACTTCCATTAAGGTGAC
CGTCCTGGAGGGAGACATCCTGGACACCCAGTACCTGCGACGAGCCTGCCAGGGTACGTCCTGGAGGGAGACATCCTGGACACCCAGTACCTGCGACGAGCCTGCCAGGGTA
TTTCTGTGGTCATCCACACCGCCGCTATCATTGACGTGACCGGCGTCATTCCCCGACTTTCTGTGGTCATCCACACCGCCGCTATCATTGACGTGACCGGCGTCATTCCCCGAC
AGACCATCCTGGACGTGAACCTGAAGGGAACCCAGAACCTGCTGGAGGCCTGTATTAGACCATCCTGGACGTGAACCTGAAGGGAACCCAGAACCTGCTGGAGGCCTGTATT
CAGGCTTCCGTCCCCGCCTTCATCTTCTCTTCCTCTGTGGACGTCGCTGGTCCCAACTCAGGCTTCCGTCCCCGCCTTCATCTTCTCTTCCTCTGTGGACGTCGCTGGTCCCAACT
CTTACAAGGAGATCGTGCTGAACGGCCACGAGGAGGAGTGCCACGAGTCCACCTGGCTTACAAGGAGATCGTGCTGAACGGCCACGAGGAGGAGTGCCACGAGTCCACCTGG
TCTGACCCCTACCCCTACTCCAAGAAGATGGCCGAGAAGGCTGTCCTGGCCGCTAACTCTGACCCCTACCCCTACTCCAAGAAGATGGCCGAGAAGGCTGTCCTGGCCGCTAAC
GGATCTATGCTGAAGAACGGTGGTACCCTGCAGACCTGTGCTCTGCGACCCATGTGCGGATCTATGCTGAAGAACGGTGGTACCCTGCAGACCTGTGCTCTGCGACCCATGTGC
ATCTACGGAGAGCGATCCCCCCTGATCTCTAACATCATTATCATGGCTCTGAAGCACATCTACGGAGAGCGATCCCCCCTGATCTCTAACATCATTATCATGGCTCTGAAGCAC
AAGGGCATTCTGCGATCCTTCGGAAAGTTCAACACCGCCAACCCCGTGTACGTCGGAAAGGGCATTCTGCGATCCTTCGGAAAGTTCAACACCGCCAACCCCGTGTACGTCGGA
AACGTGGCTTGGGCTCACATCCTGGCTGCTCGAGGTCTGCGAGATCCCAAGAAGTCTAACGTGGCTTGGGCTCACATCCTGGCTGCTCGAGGTCTGCGAGATCCCAAGAAGTCT
CCCAACATTCAGGGCGAGTTCTACTACATCTCCGACGACACCCCCCACCAGTCTTTCCCCAACATTCAGGGCGAGTTCTACTACATCTCCGACGACACCCCCCACCAGTCTTTC
GACGACATTTCCTACACCCTGTCTAAGGAGTGGGGATTCTGTCTGGACTCCTCTTGGGACGAATTTCCTACACCCTGTCTAAGGAGTGGGGATTCTGTCTGGACTCCTCTTGG
TCCCTGCCTGTGCCTCTGCTGTACTGGCTGGCCTTCCTGCTGGAGACTGTGTCTTTCCTCCCTGCCTGTGCCTCTGCTGTACTGGCTGGCCTTCCTGCTGGAGACTGTGTCTTTCC
TGCTGTCTCCCATCTACCGATACATCCCCCCCTTCAACCGACACCTGGTGACCCTGTCTGCTGTCTCCCATCTACCGATACATCCCCCCCTTCAACCGACACCTGGTGACCCTGTC
CGGTTCTACCTTCACCTTCTCCTACAAGAAGGCTCAGCGGGACCTGGGTTACGAGCCCGGTTCTACCTTCACCTTCTCCTACAAGAAGGCTCAGCGGGACCTGGGTTACGAGCC
TCTGGTGTCCTGGGAGGAGGCCAAGCAGAAGACCTCTGAGTGGATCGGCACCCTGGTCTGGTGTCCTGGGAGGAGGCCAAGCAGAAGACCTCTGAGTGGATCGGCACCCTGG
TCGAGCAGCACCGAGAGACTCTGGACACCAAGTCTCAGTAATCGAGCAGCACCGAGAGACTCTGGACACCAAGTCTCAGTAA
At_3β-HSD(SEQ NO:23):At_3β-HSD (SEQ NO: 23):
ATGGCCGCTCCCGACTCTTCCATCAACAACCACCAGCTGCAGTACTCTGTGAACGTCATGGCCGCTCCCGACTCTTCCATCAACAACCACCAGCTGCAGTACTCTGTGAACGTC
CAGGGAACCCAGAACGTCATCGACGCTTGTGTGGACGTCGGTGTGAAGCGACTGATCAGGGAACCCAGAACGTCATCGACGCTTGTGTGGACGTCGGTGTGAAGCGACTGAT
CTACACCTCTTCCCCCTCTGTGGTCTTCGACGGCGTGCACGGAATCCTGAACGGCACCTACACCTCTTCCCCTTCTGTGGTCTTCGACGGCGTGCACGGAATCCTGAACGGCAC
CGAGTCCATGGCTTACCCCATTAAGCACAACGACTCTTACTCCGCTACCAAGGCCGACGAGTCCATGGCTTACCCCATTAAGCACAACGACTCTTACTCCGCTACCAAGGCCGA
GGGAGAGGAGCTGATTATGAAGGCCAACGGTCGAAACGGCCTGCTGACCTGTTGCAGGGAGAGGAGCTGATTATGAAGGCCAACGGTCGAAACGGCCTGCTGACCTGTTGCA
TCCGACCCTCTTCCATTTTCGGTCCTGGCGACCGACTGCTGGTCCCTTCTCTGGTGGCTCCGACCCTCTTCCATTTTCGGTCCTGGCGACCGACTGCTGGTCCCTTCTCTGGTGGC
CGCTGCCCGAGCTGGCAAGTCCAAGTTCATCATTGGAGACGGTAACAACCTGTACGCGCTGCCCGAGCTGGCAAGTCCAAGTTCATCATTGGAGACGGTAACAACCTGTACG
ACTTCACCTACGTCGAGAACGTGGCTCACGCTCACGTCTGCGCTGAGCGAGCTCTGGACTTCACCTACGTCGAGAACGTGGCTCACGCTCACGTCTGCGCTGAGCGAGCTCTGG
CTTCTGGAGGAGACGTGTCCACCAAGGCTGCCGGACAGGTGTTCGCCTTCTCCTAABt_3β-HSD(SEQNO:24):CTTCTGGAGGAGACGTGTCCACCAAGGCTGCCGGACAGGTGTTCGCCTTCTCCTAABt_3β-HSD (SEQNO: 24):
ATGGCCGGATGGTCTTGTCTGGTGACCGGTGGAGGTGGCTTCCTGGGTCAGCGAATCATGGCCGGATGGTCTTGTCTGGTGACCGGTGGAGGTGGCTTCCTGGGTCAGCGAATC
ATTTGCCTGCTGGTCGAGGAGAAGGACCTGCAGGAGATCCGAGTGCTGGACAAGGTATTTGCCTGCTGGTCGAGGAGAAGGACCTGCAGGAGATCCGAGTGCTGGACAAGGT
CTTCCGACCCGAGGTGCGAGAGGAGTTCTCTAAGCTGCAGTCCAAGATCAAGCTGACTTCCGACCCGAGGTGCGAGAGGAGTCTCTAAGCTGCAGTCCAAGATCAAGCTGA
CCCTGCTGGAGGGCGACATTCTGGACGAGCAGTGTCTGAAGGGAGCTTGCCAGGGTCCCTGCTGGAGGGCGACATTCTGGACGAGCAGTGTCTGAAGGGAGCTTGCCAGGGT
ACCTCTGTGGTCATCCACACCGCCTCCGTGATTGACGTCCGAAACGCTGTCCCCCGAACCTCTGTGGTCATCCACACCGCCTCCGTGATTGACGTCCGAAACGCTGTCCCCGA
GAGACTATTATGAACGTGAACGTCAAGGGAACCCAGCTGCTGCTGGAGGCCTGTGTGAGACTATTATGAACGTGAACGTCAAGGGAACCCAGCTGCTGCTGGAGGCCTGTGT
GCAGGCTTCTGTGCCCGTCTTCATCCACACCTCCACCATTGAGGTCGCCGGTCCCAAGCAGGCTTCTGTGCCCGTCTTCATCCACACCTCCACCATTGAGGTCGCCGGTCCCAA
CTCTTACCGAGAGATCATTCAGGACGGCCGAGAGGAGGAGCACCACGAGTCTGCTTCTCTTACCGAGAGATCATTCAGGACGGCCGAGAGGAGGAGCACCACGAGTCTGCTT
GGTCTTCCCCCTACCCCTACTCCAAGAAGCTGGCCGAGAAGGCTGTGCTGGGTGCCAGGTCTTCCCCCTACCCCTACTCCAAGAAGCTGGCCGAGAAGGCTGTGCTGGGTGCCA
ACGGCTGGGCTCTGAAGAACGGAGGTACCCTGTACACCTGTGCCCTGCGACCCATGTACGGCTGGGCTCTGAAGAACGGAGGTACCCTGTACACCTGTGCCCTGCGACCCATGT
ACATCTACGGCGAGGGATCTCCCTTCCTGTCCGCCTACATGCACGGCGCTCTGAACAACATCTACGGCGAGGGATCTCCCTTCCTGTCCGCCTACATGCACGGCGCTCTGAACA
ACAACGGAATTCTGACCAACCACTGCAAGTTCTCCCGAGTGAACCCCGTGTACGTCGACAACGGAATTCTGACCAACCACTGCAAGTTTCCCGAGTGAACCCCGTGTACGTCG
GTAACGTCGCTTGGGCTCACATCCTGGCTCTGCGAGCTCTGCGAGATCCCAAGAAGGGTAACGTCGCTTGGGCTCACATCCTGGCTCTGCGAGCTCTGCGAGATCCCAAGAAGG
TGCCCAACATCCAGGGACAGTTCTACTACATTTCTGACGACACCCCCCACCAGTCCTTGCCCAACATCCAGGGACAGTTCTACTACATTTCTGACGACACCCCCCACCAGTCCT
ACGACGACCTGAACTACACCCTGTCTAAGGAGTGGGGCTTCTGTCTGGACTCTCGAAACGACGACCTGAACTACACCCTGTCTAAGGAGTGGGGCTTCTGTCTGGACTCTCGAA
TGTCCCTGCCCATTTCCCTGCAGTACTGGCTGGCCTTCCTGCTGGAGATCGTCTCTTTTGTCCCTGCCCATTTCCCTGCAGTACTGGCTGGCCTTCCTGCTGGAGATCGTCTCTTT
CCTGCTGTCCCCCATCTACAAGTACAACCCCTGCTTCAACCGACACCTGGTGACCCTCCTGCTGTCCCCCATCTACAAGTACAACCCCTGCTTCAACCGACACCTGGTGACCCT
GTCTAACTCCGTCTTCACCTTCTCTTACAAGAAGGCTCAGCGGGACCTGGGTTACGAGTCTAACTCCGTCTTCACCTTCTCTTACAAGAAGGCTCAGCGGGACCTGGGTTACGA
GCCTCTGTACACCTGGGAGGAGGCTAAGCAGAAGACCAAGGAGTGGATCGGATCCCGCCTCTGTACACCTGGGAGGAGGCTAAGCAGAAGACCAAGGAGTGGATCGGATCCC
TGGTGAAGCAGCACAAGGAGACTCTGAAGACCAAGATTCACTAATGGTGAAGCAGCACAAGGAGACTCTGAAGACCAAGATTCACTAA
Mt_3β-HSD(SEQ NO:25):Mt_3β-HSD (SEQ NO: 25):
ATGCTGCGACGAATGGGAGACGCCTCTCTGACCACCGAGCTGGGTCGAGTGCTGGTATGCTGCGACGAATGGGAGACGCCTCTCTGACCACCGAGCTGGGTCGAGTGCTGGT
CACCGGTGGAGCTGGTTTCGTCGGAGCTAACCTGGTGACCACCCTGCTGGACCGAGCACCGGTGGAGCTGGTTTCGTCGGAGCTAACCTGGTGACCACCCTGCTGGACCGAG
GACACTGGGTCCGATCTTTCGACCGAGCTCCTTCCCTGCTGCCTGCTCACCCTCAGCTGACACTGGGTCCGATCTTTCGACCGAGCTCCTTCCCTGCTGCCTGCTCACCCTCAGCT
GGAGGTGCTGCAGGGCGACATCACCGACGCTGACGTCTGTGCCGCTGCCGTGGACGGGAGGTGCTGCAGGGCGACATCACCGACGCTGACGTCTGTGCCCGCTGCCGTGGACG
GAATCGACACCATTTTCCACACCGCTGCCATCATTGAGCTGATGGGTGGCGCCTCTGGAATCGACACCATTTTCCACACCGCTGCCATCATTGAGCTGATGGGTGGCGCCTCTG
TCACCGACGAGTACCGACAGCGATCCTTCGCTGTGAACGTCGGAGGTACCGAGAACTCACCGACGAGTACCGACAGCGATCCTTCGCTGTGAACGTCGGAGGTACCGAGAAC
CTGCTGCACGCTGGACAGCGAGCTGGTGTCCAGCGATTCGTGTACACCTCTTCCAACCTGCTGCACGCTGGACAGCGAGCTGGTGTCCAGCGATTCGTGTACACCTCTTCCAAC
TCCGTGGTCATGGGCGGACAGAACATTGCCGGTGGCGACGAGACTCTGCCCTACACTCCGTGGTCATGGGCGGACAGAACATTGCCGGTGGCGACGAGACTCTGCCCTACAC
CGACCGATTCAACGACCTGTACACCGAGACTAAGGTGGTCGCCGAGCGATTCGTCCTCGACCGATTCAACGACCTGTACACCGAGACTAAGGGTGGTCGCCGAGCGATTCGTCCT
GGCTCAGAACGGTGTGGACGGCATGCTGACCTGCGCCATCCGACCCTCTGGAATTTGGGCTCAGAACGGTGTGGACGGCATGCTGACCTGCGCCATCCGACCCTCTGGAATTTG
GGGAAACGGTGACCAGACCATGTTCCGAAAGCTGTTCGAGTCCGTGCTGAAGGGTCGGGAAACGGTGACCAGACCATGTTCCGAAAGCTGTTCGAGTCCGTGCTGAAGGGTC
ACGTGAAGGTCCTGGTGGGCCGAAAGTCTGCTCGACTGGACAACTCCTACGTCCACACGTGAAGGTCCTGGTGGGCCGAAAGTCTGCTCGACTGGACAACTCCTACGTCCAC
AACCTGATCCACGGTTTCATTCTGGCTGCCGCTCACCTGGTGCCTGACGGTACCGCTAACCTGATCCACGGTTTCATTCTGGCTGCCGCTCACCTGGTGCCTGACGGTACCGCT
CCTGGACAGGCTTACTTCATCAACGACGCCGAGCCCATTAACATGTTCGAGTTCGCCCCTGGACAGGCTTACTTCATCAACGACGCCGAGCCCATTAACATGTTCGAGTTCGCC
CGACCCGTCCTGGAGGCTTGTGGTCAGCGATGGCCCAAGATGCGAATCTCTGGCCCCCGACCCGTCCTGGAGGCTTGTGGTCAGCGATGGCCCAAGATGCGAATCTCTGGCCCC
GCTGTCCGATGGGTCATGACCGGATGGCAGCGACTGCACTTCCGATTCGGTTTCCCTGCTGTCCGATGGGTCATGACCGGATGGCAGCGACTGCACTTCCGATTCGGTTTCCCT
GCTCCTCTGCTGGAGCCTCTGGCTGTGGAGCGACTGTACCTGGACAACTACTTCTCTGCTCCTCTGCTGGAGCCTCTGGCTGTGGAGCGACTGTACCTGGACAACTACTTCTCT
ATTGCCAAGGCTCGACGGGACCTGGGTTACGAGCCTCTGTTCACCACCCAGCAGGCTATTGCCAAGGCTCGACGGGACCTGGGTTACGAGCCTCTGTTCACCACCCAGCAGGCT
CTGACCGAGTGCCTGCCCTACTACGTCTCCCTGTTCGAGCAGATGAAGAACGAGGCCCTGACCGAGTGCCTGCCCTACTACGTCTCCCTGTTCGAGCAGATGAAGAACGAGGCC
CGAGCTGAGAAGACCGCCGCTACCGTGAAGCCCTAACGAGCTGAGAAGACCGCCGCTACCGTGAAGCCCTAA
Vv_3β-HSD(SEQ NO:26):Vv_3β-HSD (SEQ NO: 26):
ATGGCTGTGTACGCTGTCACCGGTGGAGCTGGATTCCTGGGTCGATACATCGTGAAGATGGCTGTGTACGCTGTCACCGGTGGAGCTGGATTCCTGGGTCGATACATCGTGAAG
CTGCTGATTTCCGCTGACGACGTCCAGGAGATCCGAGTGATCGACATTGTCGAGGACCTGCTGATTTCCGCTGACGACGTCCAGGAGATCCGAGTGATCGACATTGTCGAGGAC
CCCCAGCCCATTACCTCTAAGGTGAAGGTCATCAACTACATTCAGTGTGACATCAACCCCCAGCCCATTACCTCTAAGGTGAAGGTCATCAACTACATTCAGTGTGACATCAAC
GACTTCGACAAGGTGCGAGAGGCCCTGGACGGTGTCAACCTGATCATTCACACCGCGACTTCGACAAGGTGCGAGAGGCCCTGGACGGTGTCAACCTGATCATTCACACCGC
CGCTCTGGTGGACGTCTTCGGCAAGTACACCGACAACGAGATCATGAAGGTGAACTCGCTCTGGTGGACGTCTTCGGCAAGTACACCGACAACGAGATCATGAAGGTGAACT
ACTACGGAACCCAGACCATTCTGGCCGCTTGCGTCGACCTGGGTATCAAGTACCTGAACTACGGAACCCAGACCATTCTGGCCGCTTGCGTCGACCTGGGTATCAAGTACCTGA
TCTACACCTCTTCCATGGAGGCCATTGGTCCCAACAAGCACGGCGACCCCTTCATCGTCTACACCTCTTCCATGGAGGCCATTGGTCCCAACAAGCACGGCGACCCCTTCATCG
GACACGAGCACACCCTGTACGACATTTCCCCCGGACACGTGTACGCCAAGTCTAAGGACACGAGCACACCCTGTACGACATTTCCCCCGGACACGTGTACGCCAAGTCTAAG
CGAATGGCTGAGCAGCTGGTCATGAAGGCCAACAACTCCGTCATCATGAACGGCGCCGAATGGCTGAGCAGCTGGTCATGAAGGCCAACAACTCCGTCATCATGAACGGCGC
TAAGCTGTACACCTGTTGCCTGCGACCCACCGGAATCTACGGAGAGGGCGACAAGCTAAGCTGTACACCTGTTGCCTGCGACCCACCGGAATCTACGGAGAGGGCGACAAGC
TGACCAAGGTCTTCTACGAGCAGTGTAAGCAGCACGGAAACATCATGTACCGAACCTGACCAAGGTCTTCTACGAGCAGTGTAAGCAGCACGGAAACATCATGTACCGAACC
GTGGACGACGACGCTGTCCACTCCCGAGTGTACGTCGGTAACGTGGCTTGGATGCACGTGGACGACGACCGCTGTCCACTCCCGAGTGTACGTCGGTAACGTGGCTTGGATGCAC
GTCCTGGCCGCTAAGTACATCCAGTACCCCGGTTCTGAGATTAAGGGCAACGCCTACGTCCTGGCCGCTAAGTACATCCAGTACCCCGGTTCTGAGATTAAGGGCAACGCCTAC
TTCTGTTACGACTACTCTCCCTCCTGCTCTTACGACATGTTCAACCTGCTGCTGATGATTCTGTTACGACTACTCTCCCTCCTGCTCTTACGACATGTTCAACCTGCTGCTGATGA
AGCCCCTGGGCATCGAGCAGGGATCTCGAATTCCCCGATGGATGCTGAAGATGTACAGCCCCTGGGCATCGAGCAGGGATCTCGAATTCCCCGATGGATGCTGAAGATGTAC
GCTTGCAAGAACGACATGAAGCGAATCCTGTTCCGAAAGCCCTCCCTGCTGAACAAGCTTGCAAGAACGACATGAAGCGAATCCTGTTCCGAAAGCCCTCCCTGCTGAACAA
CTACACCCTGAAGATTTCTAACACCACCTTCGAGGTGCGAACCAACAACGCCGAGCTCTACACCCTGAAGATTTCTAACACCACCTTCGAGGTGCGAACCAACAACGCCGAGCT
GGACTTCAACTACTCCCCCATTTTCAACGTGGACGTCGCTTTCGAGCGAACCCGAAAGGACTTCAACTACTCCCCATTTTCAACGTGGACGTCGCTTTCGAGCGAACCCGAAA
GTGGCTGGAGGAGTCTGAGTAAGTGGCTGGAGGAGTCTGAGTAA
Homo sapiens(I型,L237S突变)的3β-HSD,突变位点为下划线AA处(SEQ NO:27):3β-HSD of Homo sapiens (type I, L237S mutation), the mutation site is underlined AA (SEQ NO: 27):
Homo sapiens(II型,L236S突变)的3β-HSD,突变位点为下划线AA处(SEQ NO:28):3β-HSD of Homo sapiens (type II, L236S mutation), the mutation site is underlined AA (SEQ NO: 28):
本发明提供的网状路径产物定向合成中所用原料及试剂均可由市场购得。The raw materials and reagents used in the directional synthesis of the network path product provided by the present invention can all be purchased from the market.
下面结合实施例,进一步阐述本发明:The present invention will be further described below in conjunction with embodiments:
实施例1:4AD路径关键组分底物特异性异源表征(3β-HSD)与孕酮的定向合成Example 1: Heterologous characterization of substrate specificity of key components of the 4AD pathway (3β-HSD) and directed synthesis of progesterone
1、底盘菌株的获得1. Obtaining chassis strains
野生型解脂耶氏酵母菌株编号为ATCC201249由元英进课题组提供。在Multiplexgene editing ofthe Yarrowia lipolytica genome using the CRISPR-Cas9 system文献中所提及。The wild-type Yarrowia lipolytica strain number is ATCC201249 and was provided by Yuan Yingjin's research group. It was mentioned in the paper Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system.
2、外源功能基因元件的获得2. Acquisition of exogenous functional gene elements
本发明涉及的基因CYP17A1(17-alpha-hydroxylase/17,20-lyase)、POR(NADPH-cytochrome P450 reductase)、3β-HSD(3β-hydroxysteroid dehydrogenase)、CYB5(细胞色素B5,Cytochrome b5)、mCYP11A1(成熟P450scc)来源见表3。The sources of the genes CYP17A1 (17-alpha-hydroxylase/17, 20-lyase), POR (NADPH-cytochrome P450 reductase), 3β-HSD (3β-hydroxysteroid dehydrogenase), CYB5 (cytochrome B5, Cytochrome b5), and mCYP11A1 (mature P450scc) involved in the present invention are shown in Table 3.
表3本发明涉及的基因来源Table 3 Sources of genes involved in the present invention
本发明所用的以上四个组分基因均为经过解脂耶氏酵母密码子优化并适当规避常用限制性酶切位点后,在基因两端额外添加5’端gcggccgcggtctcca(如SEQ NO:1所示);3’taaaggagaccgcggccgc(如SEQ NO:2所示)通过人工合成得到。孕烯醇酮合成雄烯二酮路径如图1所示,合成路径中包括孕烯醇酮合成孕酮(图2)、孕烯醇酮合成去氢表雄酮(图3)、孕烯醇酮合成17-羟孕酮(图4)、孕烯醇酮合成17-羟孕烯醇酮(图5)等步骤。The above four component genes used in the present invention are all obtained by artificial synthesis by adding 5' gcggccgcggtctcca (as shown in SEQ NO: 1) and 3' taaaggagaccgcggccgc (as shown in SEQ NO: 2) to both ends of the gene after codon optimization of Yarrowia lipolytica and appropriate avoidance of common restriction enzyme sites. The synthesis pathway of androstenedione from pregnenolone is shown in Figure 1, and the synthesis pathway includes the steps of synthesizing progesterone from pregnenolone (Figure 2), synthesizing dehydroepiandrosterone from pregnenolone (Figure 3), synthesizing 17-hydroxyprogesterone from pregnenolone (Figure 4), and synthesizing 17-hydroxypregnenolone from pregnenolone (Figure 5).
3、试验方法:3. Test methods:
种子培养基:20g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉;Seed culture medium: 20g/L glucose, 20g/L peptone, 10g/L yeast extract powder;
生物转化培养基:20g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉。Biotransformation medium: 20 g/L glucose, 20 g/L peptone, 10 g/L yeast extract powder.
类固醇底物母液:1.75g/L(50%EtOH-Tween80)P4溶液、1.75g/L(50%Steroid substrate stock solution: 1.75 g/L (50% EtOH-Tween80) P4 solution, 1.75 g/L (50%
EtOH-Tween80)17OHP4溶液EtOH-Tween80)17OHP4 solution
3β-HSD异构化转化实验:将重组菌株RS3B-1~RS3B-9(见下述模块化整合质粒的构建部分)接种于5mL种子培养基中,在30℃、220rpm培养14~16h,以初始菌体浓度OD600=0.2分别接种于5mL生物转化培养基中,在28℃、220rpm培养24h,分别加入150μL P4溶液、17OHP4溶液继续孵育40h得到发酵液,并通过下述方法对甾体产物定量。3β-HSD isomerization transformation experiment: The recombinant strains RS3B-1 to RS3B-9 (see the construction of modular integration plasmids below) were inoculated into 5 mL of seed culture medium, cultured at 30°C and 220 rpm for 14 to 16 h, and inoculated into 5 mL of biotransformation medium with an initial cell concentration of OD600 = 0.2, cultured at 28°C and 220 rpm for 24 h, and 150 μL of P4 solution and 17OHP4 solution were added respectively and incubated for another 40 h to obtain fermentation broth, and the steroid products were quantified by the following method.
孕烯醇酮定量方法:取1mL的发酵液,12000g离心2min收集菌体,并水洗两次。加入1mL 3mol/L盐酸重悬菌体,置于100℃沸水中煮沸5min,12000rpm离心1min收集细胞沉淀。用1mL蒸馏水洗细胞沉淀3次。向破碎的细胞沉淀中加入,420μL 2mol/L氢氧化钾-甲醇溶液,在37℃恒温培养箱中反应2h。将皂化反应离心管取出,冷却至室温(25℃±5℃)后,加入等体积的正己烷,涡旋震荡10min,12000rpm离心1min,取上层正己烷相至新的离心管中。对下层用正己烷重复萃取一次,两次的正己烷相合并。将正己烷相用真空离心浓缩仪浓缩(样品溶剂为正己烷时:25℃,30min,7000rpm),浓缩后管中剩余的固体则为甾体类物质,加入100μL MSTFA于37℃反应2h,加入100μL正己烷,过滤后于气相质谱检测。Pregnenolone quantitative method: Take 1mL of fermentation broth, centrifuge at 12000g for 2min to collect the bacteria, and wash twice with water. Add 1mL of 3mol/L hydrochloric acid to resuspend the bacteria, boil in 100℃ boiling water for 5min, and centrifuge at 12000rpm for 1min to collect the cell precipitate. Wash the cell precipitate 3 times with 1mL of distilled water. Add 420μL of 2mol/L potassium hydroxide-methanol solution to the broken cell precipitate and react in a 37℃ constant temperature incubator for 2h. Take out the saponification reaction centrifuge tube, cool to room temperature (25℃±5℃), add an equal volume of n-hexane, vortex for 10min, centrifuge at 12000rpm for 1min, and take the upper n-hexane phase to a new centrifuge tube. Repeat the extraction of the lower layer with n-hexane once, and combine the two n-hexane phases. The n-hexane phase was concentrated using a vacuum centrifugal concentrator (when the sample solvent was n-hexane: 25°C, 30 min, 7000 rpm). The solid remaining in the tube after concentration was steroidal substances. 100 μL MSTFA was added and reacted at 37°C for 2 h. 100 μL n-hexane was added and the mixture was filtered and detected by gas mass spectrometry.
孕酮、17-羟孕烯醇酮、17-羟孕酮、DHEA、雄烯二酮定量方法:取1mL的发酵液,加入玻璃珠和700μL乙酸乙酯振荡萃取10min,收集上层有机相并用新鲜乙酸乙酯重新萃取一次水相,两次萃取有机相合并,并用真空离心浓缩仪浓缩液体(样品溶剂为乙酸乙酯时:25℃,1200min,7000rpm),浓缩后管中剩余的固体则为甾体类物质,加入100μLMSTFA于37℃反应2h,加入100μL正己烷并过滤。P5、P4、DHEA、4AD、17OHP4、17OHP5于GC-MS下检测。(17OHP4、17OHP5产量以P5标准曲线相对定量)Quantitative method for progesterone, 17-hydroxypregnenolone, 17-hydroxyprogesterone, DHEA, and androstenedione: Take 1 mL of fermentation broth, add glass beads and 700 μL ethyl acetate, shake and extract for 10 minutes, collect the upper organic phase and re-extract the aqueous phase with fresh ethyl acetate, combine the two extracted organic phases, and concentrate the liquid with a vacuum centrifugal concentrator (when the sample solvent is ethyl acetate: 25°C, 1200min, 7000rpm). The solid remaining in the tube after concentration is steroidal substances. Add 100 μL MSTFA and react at 37°C for 2 hours, add 100 μL n-hexane and filter. P5, P4, DHEA, 4AD, 17OHP4, and 17OHP5 are detected under GC-MS. (The yield of 17OHP4 and 17OHP5 is relatively quantified using the P5 standard curve)
4、模块化整合质粒的构建4. Construction of modular integration plasmids
模块三的构建:在人体中存在两种不同催化特异性的3β-HSD:I型3β-HSD活性较高且以DHEA为主要底物,II型3β-HSD倾向以P5和17OHP5为底物。本发明将上述两种人源3β-HSD经密码子优化后,依次简写为Hs_3β-HSD1和Hs_3β-HSD2。1999年Moisan等指出Hs_3β-HSD2的L236S突变可提升该蛋白的最大反应速率,该突变蛋白简写为Hs_3β-HSD2mut。经过同原序列比较,本发明也对Hs_3β-HSD1引入相应突变L237S,并命名为Hs_3β-HSD1mut。本实施例还选取了具有种属代表性的五个不同来源的3β-HSD,分别是小鼠Mus musculus来源的Mm_3β-HSD,牛Bos taurus来源的3β-HSD2、牛痘病毒Vaccinia virus来源的3β-HSD、结核分枝杆菌Mycobacterium tuberculosis来源的3β-HSD、以及拟南芥Arabidopsis thaliana来源的At_3β-HSD,经密码子优化后,依次简写为Mm_3β-HSD、Bt_3β-HSD、Vv_3β-HSD、Mt_3β-HSD和At_3β-HSD。为了方便通过Gibson组装整合入载体pINA1269-Nat(将商业载体质粒pINA1269 BglII和ClaI酶切位点之间的LEU2标记替换为诺尔斯菌素抗性标记Nat后的载体质粒。),通过PCR反应在上述基因5'端引入载体BamHI位点上游21bp同源臂序列gggaacccgaaactaaggatc(如SEQ NO:3所示),以及在基因3'端引入载体KpnI位点下游21bp同源臂序列gtacctccatggcctgtcccc(如SEQ NO:4所示)。经过与BamHI、KpnI线性化的载体组装后,得到9个相应的pINA1269-Nat-3β-HSD整合重组质粒pRS3B-1~pRS3B-9(即pINA1269-Nat-Mm_3β-HSD、pINA1269-Nat-Bt_3β-HSD、pINA1269-Nat-Vv_3β-HSD、pINA1269-Nat-At_3β-HSD、pINA1269-Nat-Mt_3β-HSD、pINA1269-Nat-Hs_3β-HSD1、pINA1269-Nat-Hs_3β-HSD2、pINA1269-Nat-Hs_3β-HSD1mut、pINA1269-Nat-Hs_3β-HSD2mut),即模块三。上述构建的质粒分别转化入大肠杆菌感受态DH5α中,菌落PCR筛选,提质粒进行单、双酶切验证以及测序验证,以确保目的片段连接正确且碱基序列未发生突变。pINA1269为整合型质粒名称,该质粒经NotI酶切线性化后,可用于整合于酵母基因组的pBR322位点,其中pBR322为整合位点名称。Construction of module three: There are two types of 3β-HSD with different catalytic specificity in the human body: Type I 3β-HSD has higher activity and uses DHEA as the main substrate, and Type II 3β-HSD tends to use P5 and 17OHP5 as substrates. In the present invention, the above two human 3β-HSDs are abbreviated as Hs_3β-HSD1 and Hs_3β-HSD2 respectively after codon optimization. In 1999, Moisan et al. pointed out that the L236S mutation of Hs_3β-HSD2 can increase the maximum reaction rate of the protein, and the mutant protein is abbreviated as Hs_3β-HSD2mut. After comparison with the original sequence, the present invention also introduced the corresponding mutation L237S into Hs_3β-HSD1 and named it Hs_3β-HSD1mut. This example also selected 3β-HSD from five different species-representative sources, namely Mm_3β-HSD from mouse Mus musculus, 3β-HSD2 from cattle Bos taurus, 3β-HSD from Vaccinia virus, 3β-HSD from Mycobacterium tuberculosis, and At_3β-HSD from Arabidopsis thaliana. After codon optimization, they are abbreviated as Mm_3β-HSD, Bt_3β-HSD, Vv_3β-HSD, Mt_3β-HSD and At_3β-HSD, respectively. In order to facilitate integration into the vector pINA1269-Nat by Gibson assembly (the LEU2 marker between the BglII and ClaI restriction sites of the commercial vector plasmid pINA1269 was replaced with the vector plasmid after the nourseoinhibin resistance marker Nat was replaced), a 21 bp homology arm sequence gggaacccgaaactaaggatc (as shown in SEQ NO: 3) upstream of the vector BamHI site was introduced at the 5' end of the above gene by PCR reaction, and a 21 bp homology arm sequence gtacctccatggcctgtcccc (as shown in SEQ NO: 4) downstream of the vector KpnI site was introduced at the 3' end of the gene. After assembly with the linearized vector of BamHI and KpnI, 9 corresponding pINA1269-Nat-3β-HSD integration recombinant plasmids pRS3B-1 to pRS3B-9 (i.e., pINA1269-Nat-Mm_3β-HSD, pINA1269-Nat-Bt_3β-HSD, pINA1269-Nat-Vv_3β-HSD, pINA1269-Nat-At_3β-HSD, pINA1269-Nat-Mt_3β-HSD, pINA1269-Nat-Hs_3β-HSD1, pINA1269-Nat-Hs_3β-HSD2, pINA1269-Nat-Hs_3β-HSD1mut, and pINA1269-Nat-Hs_3β-HSD2mut), i.e., module three, were obtained. The plasmids constructed above were transformed into competent E. coli DH5α, colony PCR screening was performed, and the plasmids were extracted for single and double restriction enzyme verification and sequencing verification to ensure that the target fragments were correctly connected and the base sequence had not mutated. pINA1269 is the name of the integrative plasmid. After linearization by NotI, the plasmid can be used to integrate into the pBR322 site of the yeast genome, where pBR322 is the name of the integration site.
5、实验结果5. Experimental results
以相应异构体合成量表征甾体底物转化效率。3β-HSD全细胞催化结果如图6所示。The conversion efficiency of steroidal substrates was characterized by the amount of corresponding isomers synthesized. The results of 3β-HSD whole cell catalysis are shown in FIG6 .
从三种底物的全细胞转化结果可以看出:(1)在以孕烯醇酮(P5)为底物的转化实验中,其中Vv_3β-HSD表现出最强孕烯醇酮转化效率,达6.8%。I型人源及突变体3β-HSD表现了次强催化效率,达4.6~4.8%(2)对于以17-羟基孕烯醇酮(17OHP5)为底物的转化实验中,四种人源3β-HSD及突变体均表现出较强转化效率,其中I型人源3β-HSD得孕酮转化率最高达到3.1%。(3)以去氢表雄酮(DHEA)为底物时,II型人源、牛源、分枝杆菌源均表现较强催化活性,其中II型人源3β-HSD转化效率高达10.5%。From the whole cell conversion results of the three substrates, we can see that: (1) In the conversion experiment with pregnenolone (P5) as the substrate, Vv_3β-HSD showed the strongest pregnenolone conversion efficiency, reaching 6.8%. Type I human and mutant 3β-HSD showed the second strongest catalytic efficiency, reaching 4.6-4.8% (2) For the conversion experiment with 17-hydroxypregnenolone (17OHP5) as the substrate, the four human 3β-HSDs and mutants all showed strong conversion efficiency, among which type I human 3β-HSD had the highest progesterone conversion rate of 3.1%. (3) When dehydroepiandrosterone (DHEA) was used as the substrate, type II human, bovine, and mycobacterium sources all showed strong catalytic activity, among which type II human 3β-HSD had a conversion efficiency of up to 10.5%.
通过在野生型酵母底盘单独表达异源3β-HSD,本发明实现了以P5为底物合成4AD路径节点产物:P4。此外,不同来源的3β-HSD全细胞催化效率表现较强底物偏好性差异:(1)除人、低催化活性的拟南芥源外的几种3β-HSD对孕烯醇酮均表现较强底物偏好性,而对17OHP5转化能力相对较低;(2)与3β-HSD在人体细胞内表现的底物倾向性不同,解脂耶氏酵母体系下人源3β-HSD对三种甾体底物普遍表现较均衡的催化能力。特别的,野生型II型人源3β-HSD表现了高于I型人源3β-HSD的DHEA转化能力。By expressing heterologous 3β-HSD alone in a wild-type yeast chassis, the present invention achieves the synthesis of 4AD pathway node product: P4 using P5 as substrate. In addition, the whole-cell catalytic efficiency of 3β-HSD from different sources shows strong differences in substrate preference: (1) Several 3β-HSDs except human and low-catalytic Arabidopsis sources all show strong substrate preference for pregnenolone, while the conversion ability for 17OHP5 is relatively low; (2) Different from the substrate preference of 3β-HSD in human cells, human 3β-HSD in the Yarrowia lipolytica system generally shows a relatively balanced catalytic ability for three steroid substrates. In particular, wild-type II human 3β-HSD shows a higher DHEA conversion ability than type I human 3β-HSD.
实施例2:4AD路径关键组分底物特异性异源表征(CYP17A1)与17-羟孕烯醇酮的定向合成Example 2: Heterologous Characterization of Substrate Specificity of Key Components of 4AD Pathway (CYP17A1) and Directed Synthesis of 17-Hydroxypregnenolone
1、实验材料的获得1. Acquisition of experimental materials
CYP17羟化酶处于类固醇合成代谢路径中关键节点,催化以C21类固醇为底物的17α-羟化及17,20-裂解反应。其中细胞色素b5(CYB5,Cytochrome b5)的参与会促进CYP17的17,20-裂解酶活性。CYP17A1催化活性具有很强物种特异性,根据底物催化特异性,CYP17A1通常被分为△4,5型、△5型和△4型。本研究CYP17的选择基于Gilep及其同事整理的多来源CYP17体外催化活性参数,由于报道中唯一△4型CYP17催化活性较弱,依据体外酶活参数以及蛋白进化关系,本发明仅选取绵羊源(Ovis aries)△5型CYP17A1和黄金仓鼠(Mesocricetus auratus)、马(Equus caballus)、非洲爪蟾(Xenopus laevis)源的△4,5型CYP17A1,并经密码子优化后依次简写为Oa_CYP17A1、Ma_CYP17A1、Ec_CYP17A1、Xl_CYP17A1。类似的,上述CYP17A1原配体NADPH细胞色素P450还原酶(NADPH-cytochrome P450reductase,POR)同样经密码子优化后简写为Oa_POR、Ma_POR、Ec_POR、Xl_POR。考虑到CYP17的17,20-裂解酶活性受CYB5影响,来自绵羊、黄金仓鼠、马、猪(Sus scrofa)源的CYB5被引入测试,4个CYB5经密码子优化后分别缩写为Oa_CYB5、Ma_CYB5、Ec_CYB5、Ss_CYB5。CYP17 hydroxylase is a key node in the steroid anabolic pathway, catalyzing the 17α-hydroxylation and 17,20-cleavage reactions of C21 steroids as substrates. The participation of cytochrome b5 (CYB5) promotes the 17,20-lyase activity of CYP17. The catalytic activity of CYP17A1 has strong species specificity. According to the substrate catalytic specificity, CYP17A1 is usually divided into △ 4,5 type, △ 5 type and △ 4 type. The selection of CYP17 in this study was based on the in vitro catalytic activity parameters of CYP17 from multiple sources compiled by Gilep and his colleagues. Since the catalytic activity of the only △ 4 type CYP17 reported was weak, based on the in vitro enzyme activity parameters and protein evolution relationship, the present invention only selected the △ 5 type CYP17A1 from sheep (Ovis aries) and the △ 4, 5 type CYP17A1 from golden hamsters (Mesocricetus auratus), horses (Equus caballus), and African clawed frogs (Xenopus laevis), and after codon optimization, they were abbreviated as Oa_CYP17A1, Ma_CYP17A1, Ec_CYP17A1, and Xl_CYP17A1, respectively. Similarly, the above-mentioned CYP17A1 original ligand NADPH-cytochrome P450 reductase (POR) was also abbreviated as Oa_POR, Ma_POR, Ec_POR, and Xl_POR after codon optimization. Considering that the 17,20-lyase activity of CYP17 is affected by CYB5, CYB5 from sheep, golden hamster, horse, and pig (Sus scrofa) sources were introduced into the test, and the four CYB5s were abbreviated as Oa_CYB5, Ma_CYB5, Ec_CYB5, and Ss_CYB5 after codon optimization.
野生型醇解脂耶氏酵母的获得的获得同实施例1中所述。The wild type Yarrowia lipolytica was obtained as described in Example 1.
模块一的构建:将IntD整合位点左臂、酿酒酵母GPM1t终止子通过OE-PCR方法拼接起来;将酿酒酵母FBA1t终止子40bp末端序列、两端带有LoxP位点的亮氨酸营养筛选标签Leu2、IntD整合位点右臂通过OE-PCR方法拼接起来得到两端包含NotI酶切位点的片段,分别命名为IntD-L和IntD-R;后将4种不同来源的人工合成的CYP17A1和POR分别与经BsmBI酶切后的表达模块TEF1inp-LIP2t-GPDt、GPDt-TEF1inp-OCT1t-FBA1t连接得到整合质粒,将带有相同物种来源的CYP17A1和POR模块与IntD-L、IntD、HincII酶切后的pUC18H通过Gibson组装,得到整合质粒,经过NotI酶切后获得模块一。模块二的构建:将IntB整合位点左臂、营养缺陷型尿嘧啶标签Ura3、IntB整合位点右臂、启动子TEF1in、终止子ACOt分别和4种来源的CYB5通过Gibson法拼接起来得到整合质粒,经过NotI酶切后获得模块二。上述构建的模块整合质粒分别转化入大肠杆菌感受态DH5α中,菌落PCR筛选,提质粒进行单、双酶切验证以及测序验证,以确保目的片段连接正确且碱基序列未发生突变。Construction of module one: The left arm of the IntD integration site and the Saccharomyces cerevisiae GPM1t terminator were spliced together by the OE-PCR method; the 40bp terminal sequence of the Saccharomyces cerevisiae FBA1t terminator, the leucine nutritional screening tag Leu2 with LoxP sites at both ends, and the right arm of the IntD integration site were spliced together by the OE-PCR method to obtain fragments containing NotI restriction sites at both ends, named IntD-L and IntD-R, respectively; then, the artificially synthesized CYP17A1 and POR from four different sources were connected with the expression modules TEF1inp-LIP2t-GPDt and GPDt-TEF1inp-OCT1t-FBA1t after digestion with BsmBI to obtain integration plasmids, and the CYP17A1 and POR modules with the same species source were assembled with pUC18H after digestion with IntD-L, IntD, and HincII by Gibson to obtain integration plasmids, and module one was obtained after NotI digestion. Construction of module 2: The left arm of the IntB integration site, the auxotrophic uracil tag Ura3, the right arm of the IntB integration site, the promoter TEF1in, the terminator ACOt and the CYB5 from four sources were spliced together by the Gibson method to obtain an integration plasmid, and
模块四的构建:将IntF整合位点左臂、HincII酶切后的pUC18H、两端带有LoxP位点的亮氨酸营养筛选标签Leu2、IntF整合位点右臂、Equus caballus来源的CYP17A1和POR(方法同模块一构建)通过Gibson方法拼接起来得到两端包含NotI酶切位点的片段,经过NotI酶切后获得模块四。Construction of module four: The left arm of the IntF integration site, pUC18H after HincII digestion, the leucine nutritional screening tag Leu2 with LoxP sites at both ends, the right arm of the IntF integration site, CYP17A1 and POR from Equus caballus (the method is the same as that of module one) were spliced together by the Gibson method to obtain a fragment containing NotI digestion sites at both ends, and module four was obtained after NotI digestion.
17-羟化转化实验验证菌株的构建,将含有4种含有不同来源基因的模块一分别整合入ATCC201249中,获得菌株SyBE_Yl2091001~SyBE_Yl2091004。The 17-hydroxylation transformation experiment verified the construction of the strain, and the modules containing four genes from different sources were respectively integrated into ATCC201249 to obtain strains SyBE_Yl2091001~SyBE_Yl2091004.
17,20-裂解转化实验验证菌株的构建,将将含有4种含有不同来源基因的模块二分别整合入上述构建的菌株SyBE_Yl2091001~SyBE_Yl2091004中,获得菌株SyBE_Yl2091005~SyBE_Yl2091016及SyBE_Yl2090013~SyBE_Yl2090016。The construction of the strain was verified by 17,20-lysis transformation experiments, and
2、实验方法2. Experimental methods
生物转化培养基:20g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉;Biotransformation medium: 20 g/L glucose, 20 g/L peptone, 10 g/L yeast extract powder;
种子培养基:20g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉;Seed culture medium: 20g/L glucose, 20g/L peptone, 10g/L yeast extract powder;
YPD发酵培养基:50g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉。YPD fermentation medium: 50g/L glucose, 20g/L peptone, 10g/L yeast extract powder.
类固醇底物母液:1.75g/L(50%EtOH-Tween80)P5溶液、1.75g/L(50%Steroid substrate stock solution: 1.75 g/L (50% EtOH-Tween80) P5 solution, 1.75 g/L (50%
EtOH-Tween80)P4溶液、1.75g/L(50%EtOH-Tween80)17OHP5溶液、1.75g/L(50%EtOH-Tween80) P4 solution, 1.75g/L (50% EtOH-Tween80) 17OH P5 solution, 1.75g/L (50%
EtOH-Tween80)17OHP4溶液EtOH-Tween80)17OHP4 solution
17-羟化转化实验:将SyBE_Yl2091001~SyBE_Yl2091004接种于5mL种子培养基中,在30℃、220rpm培养14~16h,以初始菌体浓度OD600=0.2分别接种于5mL生物转化培养基中,在28℃、220rpm培养24h,分别加入150μL P4和P5底物母液继续孵育16h,取1mL样品按实例1中方法检测17OHP4含量。17-Hydroxylation conversion experiment: SyBE_Yl2091001~SyBE_Yl2091004 were inoculated into 5 mL seed culture medium, cultured at 30°C, 220 rpm for 14-16 h, inoculated into 5 mL biotransformation medium with an initial bacterial concentration of OD600 = 0.2, cultured at 28°C, 220 rpm for 24 h, 150 μL of P4 and P5 substrate mother solutions were added respectively and incubated for another 16 h, and 1 mL of sample was taken to detect the 17OHP4 content according to the method in Example 1.
17,20-裂解转化实验:将SyBE_Yl2091005~SyBE_Yl2091016接种于5mL种子培养基中,在30℃、220rpm培养14~16h,以初始菌体浓度OD600=0.2分别接种于5mL生物转化培养基中,在28℃、220rpm培养24h,分别加入150μL 17OHP4和17OHP5底物母液继续孵育144h,取1mL样品按实例1中方法检测DHEA或4AD含量。17,20-cleavage conversion experiment: SyBE_Yl2091005~SyBE_Yl2091016 were inoculated into 5 mL of seed culture medium, cultured at 30°C and 220 rpm for 14-16 h, and inoculated into 5 mL of biotransformation medium with an initial bacterial concentration of OD600 = 0.2, cultured at 28°C and 220 rpm for 24 h, and 150 μL of 17OHP4 and 17OHP5 substrate mother solutions were added respectively and incubated for another 144 h. 1 mL of sample was taken and the DHEA or 4AD content was detected according to the method in Example 1.
3、实验结果3. Experimental results
17-羟化转化实验:通过在野生型酵母底盘单独表达异源3β-HSD,本发明实现了以P5为底物合成4AD路径节点产物:17OHP5。由实验结果可知(图7),绵羊、黄金仓鼠、非洲爪蟾源CYP17A1均对孕酮的17α-羟基化活性为以孕烯醇酮为底物催化下的1.2~14.5倍。在测试的△4,5型CYP17A1中,虽然黄金仓鼠源CYP17A1分别以孕烯醇酮和孕酮为底物的条件下均表现最强17α-羟基化活性,但分别只有△5型绵羊源CYP17A1活性的39.2%和13.8%。来自马和非洲爪蟾的CYP17A1对两种底物均表现了非常弱的催化活性。17-Hydroxylation conversion experiment: By expressing heterologous 3β-HSD alone in the wild-type yeast chassis, the present invention realizes the synthesis of 4AD pathway node product: 17OHP5 using P5 as substrate. It can be seen from the experimental results (Figure 7) that the 17α-hydroxylation activity of sheep, golden hamster, and African clawed frog CYP17A1 for progesterone is 1.2 to 14.5 times that of pregnenolone as substrate. Among the tested △ 4 and 5 type CYP17A1, although the golden hamster CYP17A1 showed the strongest 17α-hydroxylation activity under the conditions of pregnenolone and progesterone as substrates, it was only 39.2% and 13.8% of the activity of △ 5 type sheep CYP17A1, respectively. CYP17A1 from horses and African clawed frogs showed very weak catalytic activity for both substrates.
17,20-裂解转化实验:由实验结果可知(图8),所有测试菌株对两种底物均表现17,20-裂解酶活性。(1)对于3种测试的△4,5型CYP17A1:含有非洲爪蟾源CYP17A1的工程菌均表现低17,20-裂解酶活性,表明该来源CYP17在当前体系下不能有效实现功能性表达;对于黄金仓鼠源和马源CYP17A1,CYB5的参与均能对17,20-裂解酶活性有明显提升。(2)对△5型绵羊源CYP17A1:该来源蛋白对17-羟基孕烯醇酮较17-羟基孕酮有更强底物偏好性及生物转化能力;该来源蛋白对17α-羟基孕酮的17,20-裂解酶活性有很强CYB5来源依赖性。(3)对于CYB5:在大多数情况下,CYB5可以对CYP17A1的17,20-裂解酶活性起到促进作用;猪和马来源CYB5作为高效配体,当与多来源CYP17A1适配时,往往能更大程度促进后者对17α-羟基孕酮的转化效率。17,20-cleavage conversion experiment: As shown in the experimental results (Figure 8), all tested strains showed 17,20-lyase activity for both substrates. (1) For the three tested △ 4,5 type CYP17A1: the engineered bacteria containing African clawed frog CYP17A1 all showed low 17,20-lyase activity, indicating that the CYP17 from this source cannot effectively achieve functional expression under the current system; for golden hamster and horse CYP17A1, the participation of CYB5 can significantly improve the 17,20-lyase activity. (2) For △ 5 type sheep CYP17A1: the protein from this source has a stronger substrate preference and biotransformation ability for 17-hydroxypregnenolone than 17-hydroxyprogesterone; the 17,20-lyase activity of the protein from this source for 17α-hydroxyprogesterone has a strong CYB5 source dependence. (3) Regarding CYB5: In most cases, CYB5 can promote the 17,20-lyase activity of CYP17A1. As highly efficient ligands, CYB5 from pigs and horses, when adapted to CYP17A1 from multiple sources, can often promote the latter's conversion efficiency of 17α-hydroxyprogesterone to a greater extent.
对于解脂耶氏酵母异源4AD路径重建的酶来源选择上,本发明总结可知:(1)对于异构(脱氢)反应,Vv_3β-HSD是以P5为底物催化反应的优先蛋白;(野生型)I型和II型Hs_3β-HSD是以7OHP5、DHEA为底物催化反应的优先蛋白(2)以P5和P4为底物时,Oa_CYP17A1为催化17α-羟基化反应的最优选来源;(3)对于17α-羟基孕烯醇酮为底物的17,20-裂解反应,虽然绵羊来源蛋白具备高催化活性,△4,5型黄金仓鼠来源CYP17A1也是可靠的备选来源;对于17α-羟基孕酮为底物的17,20-裂解反应,马来源CYP17A1可实现被CYB5调控的高效催化;同时猪、黄金仓鼠源和马来源CYB5均可作为高效配体用于路径搭建。Regarding the selection of enzyme sources for the reconstruction of the heterologous 4AD pathway of Yarrowia lipolytica, the present invention summarizes that: (1) for the isomerization (dehydrogenation) reaction, Vv_3β-HSD is the preferred protein for catalyzing the reaction with P5 as the substrate; (wild type) type I and type II Hs_3β-HSD are the preferred proteins for catalyzing the reaction with 7OHP5 and DHEA as the substrates; (2) when P5 and P4 are used as substrates, Oa_CYP17A1 is the most preferred source for catalyzing the 17α-hydroxylation reaction; (3) for the 17,20-cleavage reaction with 17α-hydroxypregnenolone as the substrate, although the sheep-derived protein has high catalytic activity, the △ 4,5 -type golden hamster-derived CYP17A1 is also a reliable alternative source; for the 17,20-cleavage reaction with 17α-hydroxyprogesterone as the substrate, the horse-derived CYP17A1 can achieve efficient catalysis regulated by CYB5; at the same time, the pig, golden hamster and horse-derived CYB5 can all be used as efficient ligands for pathway construction.
实施例3:以P5为底物合成DHEA、以P4为底物合成4ADExample 3: Synthesis of DHEA using P5 as substrate and synthesis of 4AD using P4 as substrate
1、实验材料的获得1. Acquisition of experimental materials
菌株SyBE_Yl2091005~SyBE_Yl2091016的获得同实施例2所述。The acquisition of strains SyBE_Yl2091005~SyBE_Yl2091016 is the same as described in Example 2.
模块四的获得同实施例2所述。The acquisition of
模块五的构建:利用Cre-loxP系统敲除SyBE_Yl2091004的Leu2筛选标记,获得无Leu2标签的SyBE_Yl2091004。将NotI线性化后的模块四和含有马源Ec_CYB5的模块二通过酵母转化整合于无Leu2标签的SyBE_Yl2091004基因组,获得菌株SyBE_Yl2091030。Construction of module 5: The Leu2 screening marker of SyBE_Y12091004 was knocked out using the Cre-loxP system to obtain SyBE_Y12091004 without Leu2 tag.
2、实验方法2. Experimental methods
种子培养基:20g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉;Seed culture medium: 20g/L glucose, 20g/L peptone, 10g/L yeast extract powder;
生物转化培养基:20g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉。Biotransformation medium: 20 g/L glucose, 20 g/L peptone, 10 g/L yeast extract powder.
类固醇底物母液:3.5g/L(50%EtOH-Tween80)P5溶液、3.5g/L(50%EtOH-Tween80)P4溶液Steroid substrate stock solution: 3.5 g/L (50% EtOH-Tween80) P5 solution, 3.5 g/L (50% EtOH-Tween80) P4 solution
DHEA合成实验:将SyBE_Yl2091030(实验组)、SyBE_Yl2091016(对照)接种于5mL种子培养基中,在30℃、220rpm培养14~16h,以初始菌体浓度OD600=0.2分别接种于5mL生物转化培养基中,在28℃、220rpm培养24h,分别加入150μL P5底物母液继续孵育120h,取1mL样品按实例1中方法检测DHEA含量。DHEA synthesis experiment: SyBE_Yl2091030 (experimental group) and SyBE_Yl2091016 (control) were inoculated into 5 mL of seed culture medium and cultured at 30°C and 220 rpm for 14 to 16 h. They were inoculated into 5 mL of biotransformation medium with an initial cell concentration of OD600 = 0.2 and cultured at 28°C and 220 rpm for 24 h. 150 μL of P5 substrate mother solution was added and the culture was continued for 120 h. 1 mL of sample was taken and the DHEA content was detected according to the method in Example 1.
4AD合成实验:将SyBE_Yl2091030(实验组)、SyBE_Yl2091016(对照)分别接种于5mL种子培养基中,在30℃、220rpm培养14~16h,以初始菌体浓度OD600=0.2分别接种于5mL生物转化培养基中,在28℃、220rpm培养24h,分别加入150μL P4底物母液继续孵育120h,取1mL样品按实例1中方法检测4AD含量。4AD synthesis experiment: SyBE_Yl2091030 (experimental group) and SyBE_Yl2091016 (control) were inoculated in 5 mL of seed culture medium, cultured at 30°C and 220 rpm for 14-16 h, inoculated in 5 mL of biotransformation medium with an initial bacterial concentration of OD600 = 0.2, cultured at 28°C and 220 rpm for 24 h, 150 μL of P4 substrate mother solution were added and incubated for another 120 h, and 1 mL of sample was taken to detect the 4AD content according to the method in Example 1.
3、实验结果3. Experimental results
本实施例通过在菌株SyBE_Yl2091030中组合表征Oa_CYP17A1(强17α-羟基化活性)、Ec_CYP17A1(强17,20-裂解活性)、Ec_CYB5(对Oa_CYP17A1和Ec_CYP17A1的17,20-裂解活性均有较强促进作用)以实现高效转化P5/P4合成DHEA/4AD。In this example, Oa_CYP17A1 (strong 17α-hydroxylation activity), Ec_CYP17A1 (strong 17,20-cleavage activity), and Ec_CYB5 (which has a strong promoting effect on the 17,20-cleavage activity of both Oa_CYP17A1 and Ec_CYP17A1) were combined and characterized in strain SyBE_Yl2091030 to achieve efficient conversion of P5/P4 to DHEA/4AD.
DHEA合成实验:在以P5为底物的生物转化中,SyBE_Yl2091030的DHEA合成量达12.6mg/L,较对照组SyBE_Yl2091016高7.32倍(图9)。DHEA synthesis experiment: In the biotransformation with P5 as substrate, the DHEA synthesis amount of SyBE_Yl2091030 reached 12.6 mg/L, which was 7.32 times higher than that of the control group SyBE_Yl2091016 (Figure 9).
4AD合成实验:在以P4为底物的生物转化中,菌株SyBE_Yl2091030实现了13.9mg/L的雄烯二酮合成量,较对照菌株SyBE_Yl2091016产量高86.2倍(图10)。4AD synthesis experiment: In the biotransformation with P4 as the substrate, strain SyBE_Yl2091030 achieved an androstenedione synthesis of 13.9 mg/L, which was 86.2 times higher than that of the control strain SyBE_Yl2091016 (Figure 10).
在本实施例,本发明实现了以P5为底物定向合成DHEA以及以P4为底物定向合成4AD,并通过组合表达高效路径组分蛋白实现了催化效率提升。In this embodiment, the present invention realizes the directed synthesis of DHEA using P5 as a substrate and the directed synthesis of 4AD using P4 as a substrate, and improves the catalytic efficiency by combining and expressing the high-efficiency pathway component proteins.
实施例4:以P5为底物合成17OHP4Example 4: Synthesis of 17OHP4 using P5 as substrate
由P5合成17OHP4涉及两类反应:以P4或P5为底物的17α-羟基化反应、以P5或17OHP5为底物的异构化反应。本发明选择了Ma_CYP17A1催化两种17α-羟基化反应,并选择对两种中间体(P5、17OHP5)表现较强催化特异性的Hs_3β-HSD2、以及对P5强催化特异性的Vv_3β-HSD。并将上述三个高效催化蛋白共同用于17OHP4路径构建。The synthesis of 17OHP4 from P5 involves two types of reactions: 17α-hydroxylation reaction with P4 or P5 as substrate, and isomerization reaction with P5 or 17OHP5 as substrate. The present invention selects Ma_CYP17A1 to catalyze two 17α-hydroxylation reactions, and selects Hs_3β-HSD2, which has strong catalytic specificity for two intermediates (P5 and 17OHP5), and Vv_3β-HSD, which has strong catalytic specificity for P5. The above three highly efficient catalytic proteins are used together for the construction of the 17OHP4 pathway.
1、实验材料的获得1. Acquisition of experimental materials
模块一、二、三、四构建同实例1、2所述。The construction of
模块六的构建:将IntC整合位点左臂、人工启动子hp8d、Hs_3β-HSD2、解脂耶氏酵母终止子OCTt、两端带有LoxP位点的亮氨酸营养筛选标签Leu2、IntC整合位点右臂通过OE-PCR方法拼接起来得到两端包含NotI酶切位点的片段;上述片段与经HindIII线性化的质粒pUC57-Kan-Simple连接得到整合质粒,即模块六。上述构建的模块整合质粒分别转化入大肠杆菌感受态DH5α中,菌落PCR筛选,提质粒进行单、双酶切验证以及测序验证,以确保目的片段连接正确且碱基序列未发生突变。Construction of module six: The left arm of the IntC integration site, the artificial promoter hp8d, Hs_3β-HSD2, the Yarrowia lipolytica terminator OCTt, the leucine nutritional screening tag Leu2 with LoxP sites at both ends, and the right arm of the IntC integration site were spliced together by OE-PCR to obtain a fragment containing NotI restriction sites at both ends; the above fragment was connected with the plasmid pUC57-Kan-Simple linearized by HindIII to obtain an integration plasmid, namely module six. The module integration plasmids constructed above were transformed into Escherichia coli competent DH5α, colony PCR screening, and plasmid extraction for single and double restriction enzyme verification and sequencing verification to ensure that the target fragment was correctly connected and the base sequence had not mutated.
模块七的构建:将表达黄金仓鼠(Mesocricetus auratus)来源CYP17A1-POR的模块一(pIntD-Ma_CYP17-POR)、模块六、表达Vv_3β-HSD的模块三同时整合入ATCC201249,获得解脂酵母重组菌株SyBE_Yl2090007。Construction of module seven: Module one (pIntD-Ma_CYP17-POR) expressing CYP17A1-POR from golden hamster (Mesocricetus auratus), module six, and module three expressing Vv_3β-HSD were simultaneously integrated into ATCC201249 to obtain the recombinant lipolytic yeast strain SyBE_Yl2090007.
2、实验方法2. Experimental methods
种子培养基:20g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉;Seed culture medium: 20g/L glucose, 20g/L peptone, 10g/L yeast extract powder;
生物转化培养基:20g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉。Biotransformation medium: 20 g/L glucose, 20 g/L peptone, 10 g/L yeast extract powder.
类固醇底物母液:3.5g/L(50%EtOH-Tween80)P5溶液。Steroid substrate stock solution: 3.5 g/L (50% EtOH-Tween80) P5 solution.
4AD合成实验:将SyBE_Yl2090007分别接种于5mL种子培养基中,在30℃、220rpm培养14~16h,以初始菌体浓度OD600=0.2分别接种于5mL生物转化培养基中,在28℃、220rpm培养24h,加入150μL P5底物母液继续孵育120h,取1mL样品按实例1中方法检测17OHP4含量。(17OHP4以P5标准曲线相对定量)4AD synthesis experiment: SyBE_Yl2090007 was inoculated into 5 mL seed culture medium, cultured at 30°C and 220 rpm for 14-16 h, inoculated into 5 mL biotransformation culture medium with an initial bacterial concentration of OD 600 = 0.2, cultured at 28°C and 220 rpm for 24 h, added with 150 μL P5 substrate mother solution and continued to incubate for 120 h, and 1 mL sample was taken to detect the 17OHP4 content according to the method in Example 1. (17OHP4 was relatively quantified using the P5 standard curve)
3、实验结果3. Experimental results
菌株模块七的17OHP4合成量达3.90mg/L(图11)。在本实施例,本发明实现了以P5为底物定向合成17OHP4,并通过组合表达高效路径组分蛋白实现了催化效率提升。The synthesis amount of 17OHP4 in
实施例5:利用葡萄糖从头合成孕酮Example 5: De novo synthesis of progesterone using glucose
1、底盘菌株的获得1. Obtaining chassis strains
由元英进课题组提供,高产菜油甾醇解脂耶氏酵母底盘菌株编号为SyBE_Yl2060077,野生型解脂耶氏酵母菌株编号为ATCC201249。SyBE_Yl2060077菌株在文献Pregnenolone Overproduction in Yarrowia lipolyticaby Integrative ComponentsPairing ofthe Cytochrome P450scc System中提及。Provided by Yuan Yingjin's research group, the high-yield campesterol Yarrowia lipolytica chassis strain number is SyBE_Yl2060077, and the wild-type Yarrowia lipolytica strain number is ATCC201249. SyBE_Yl2060077 strain is mentioned in the literature Pregnenolone Overproduction in Yarrowia lipolytica by Integrative Components Pairing of the Cytochrome P450scc System.
2、外源功能基因元件的获得2. Acquisition of exogenous functional gene elements
本发明涉及的基因CYP17A1(17-alpha-hydroxylase/17,20-lyase)、POR(NADPH-cytochrome P450 reductase)、3β-HSD(3β-hydroxysteroid dehydrogenase)、CYB5(细胞色素B5,Cytochrome b5)、mCYP11A1(成熟P450scc)来源见表4。The sources of the genes CYP17A1 (17-alpha-hydroxylase/17, 20-lyase), POR (NADPH-cytochrome P450 reductase), 3β-HSD (3β-hydroxysteroid dehydrogenase), CYB5 (cytochrome B5, Cytochrome b5), and mCYP11A1 (mature P450scc) involved in the present invention are shown in Table 4.
表4本发明涉及的基因来源Table 4 Sources of genes involved in the present invention
本发明所用的以上四个组分基因均为经过解脂耶氏酵母密码子优化并适当规避常用限制性酶切位点后,在基因两端额外添加5’端gcggccgcggtctcca(如SEQ NO:1所示);3’taaaggagaccgcggccgc(如SEQ NO:2所示)通过人工合成得到。The above four component genes used in the present invention are all obtained by artificial synthesis after Yarrowia lipolytica codon optimization and appropriate avoidance of common restriction enzyme cutting sites, and additional 5' gcggccgcggtctcca (as shown in SEQ NO: 1) and 3' taaaggagaccgcggccgc (as shown in SEQ NO: 2) are added to both ends of the gene.
3、试验方法:3. Test methods:
种子培养基:20g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉;Seed culture medium: 20g/L glucose, 20g/L peptone, 10g/L yeast extract powder;
YPD发酵培养基:50g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉。YPD fermentation medium: 50g/L glucose, 20g/L peptone, 10g/L yeast extract powder.
孕烯醇酮(P5)、菜油甾醇(Campsterol)定量方法:取1mL的发酵液,12000g离心2min收集菌体,并水洗两次。加入1mL 3mol/L盐酸重悬菌体,置于100℃沸水中煮沸5min,12000rpm离心1min收集细胞沉淀。用1mL蒸馏水洗细胞沉淀3次。向破碎的细胞沉淀中加入,420μL 2mol/L氢氧化钾-甲醇溶液,在37℃恒温培养箱中反应2h。将皂化反应离心管取出,冷却至室温(25℃±5℃)后,加入等体积的正己烷,涡旋震荡10min,12000rpm离心1min,取上层正己烷相至新的离心管中。对下层用正己烷重复萃取一次,两次的正己烷相合并。将正己烷相用真空离心浓缩仪浓缩(样品溶剂为正己烷时:25℃,30min,7000rpm),浓缩后管中剩余的固体则为甾体类物质,加入100μL MSTFA于37℃反应2h,加入100μL正己烷,过滤后于气相质谱检测。Quantitative method for pregnenolone (P5) and campsterol: Take 1 mL of fermentation broth, centrifuge at 12000g for 2 minutes to collect the cells, and wash twice with water. Add 1 mL of 3 mol/L hydrochloric acid to resuspend the cells, boil them in 100℃ boiling water for 5 minutes, and centrifuge at 12000rpm for 1 minute to collect the cell precipitate. Wash the cell precipitate 3 times with 1 mL of distilled water. Add 420 μL of 2 mol/L potassium hydroxide-methanol solution to the broken cell precipitate and react in a 37℃ constant temperature incubator for 2 hours. Take out the saponification reaction centrifuge tube, cool it to room temperature (25℃±5℃), add an equal volume of n-hexane, vortex and shake for 10 minutes, centrifuge at 12000rpm for 1 minute, and take the upper n-hexane phase to a new centrifuge tube. Repeat the extraction of the lower layer with n-hexane once, and combine the two n-hexane phases. The n-hexane phase was concentrated using a vacuum centrifugal concentrator (when the sample solvent was n-hexane: 25°C, 30 min, 7000 rpm). The solid remaining in the tube after concentration was steroidal substances. 100 μL MSTFA was added and reacted at 37°C for 2 h. 100 μL n-hexane was added and the mixture was filtered and detected by gas mass spectrometry.
孕酮、17-羟孕烯醇酮(17OHP5)、17-羟孕酮(17OHP4)、去氢表雄酮、雄烯二酮、睾酮定量方法:取1mL的发酵液,加入玻璃珠和700μL乙酸乙酯振荡萃取10min,收集上层有机相并用新鲜乙酸乙酯重新萃取一次水相,两次萃取有机相合并,并用真空离心浓缩仪浓缩液体(样品溶剂为乙酸乙酯时:25℃,1200min,7000rpm),浓缩后管中剩余的固体则为甾体类物质。孕酮(P4)、去氢表雄酮(DHEA)、雄烯二酮(4AD)、睾酮(TS)样品,加入100μL MSTFA于37℃反应2h,加入100μL正己烷并过滤后于气相质谱检测,17-羟孕烯醇酮、17-羟孕酮样品经200μL无水乙醇溶解过滤后于超高效液相色谱检测。Quantitative method for progesterone, 17-hydroxypregnenolone (17OHP5), 17-hydroxyprogesterone (17OHP4), dehydroepiandrosterone, androstenedione, and testosterone: Take 1 mL of fermentation broth, add glass beads and 700 μL ethyl acetate, shake and extract for 10 min, collect the upper organic phase and re-extract the aqueous phase with fresh ethyl acetate, combine the two extracted organic phases, and concentrate the liquid with a vacuum centrifugal concentrator (when the sample solvent is ethyl acetate: 25°C, 1200 min, 7000 rpm). The solid remaining in the tube after concentration is the steroidal substance. For progesterone (P4), dehydroepiandrosterone (DHEA), androstenedione (4AD), and testosterone (TS) samples, add 100 μL MSTFA and react at 37°C for 2 h, add 100 μL n-hexane and filter, and then detect by gas mass spectrometry. For 17-hydroxypregnenolone and 17-hydroxyprogesterone samples, dissolve in 200 μL anhydrous ethanol, filter, and then detect by ultra-high performance liquid chromatography.
4、模块化整合质粒的构建4. Construction of modular integration plasmids
对于上游模块菌株构建;mCYP11A1于TEF1p启动子下表达,3β-HSD于EXP1p启动子下表达,二者同时整合至pBR322位点。对于下游模块菌株构建,CYP17A1、POR均于启动子TEF1inp下表达,整合于底盘菌株基因组IntD位点上。For the construction of upstream module strains, mCYP11A1 was expressed under the TEF1p promoter, 3β-HSD was expressed under the EXP1p promoter, and both were integrated into the pBR322 site. For the construction of downstream module strains, CYP17A1 and POR were expressed under the promoter TEF1inp and integrated into the IntD site of the chassis strain genome.
模块A的构建:将IntD整合位点左臂、酿酒酵母GPM1t终止子通过OE-PCR方法拼接起来;将酿酒酵母FBA1t终止子40bp末端序列、两端带有LoxP位点的亮氨酸营养筛选标签Leu2、IntD整合位点右臂通过OE-PCR方法拼接起来得到两端包含NotI酶切位点的片段,分别命名为IntD-L和IntD-R;后将4种不同来源的人工合成的CYP17A1和POR分别与经BsmBI酶切后的表达模块TEF1inp-LIP2t-GPDt、GPDt-TEF1inp-OCT1t-FBA1t连接得到整合质粒,将带有相同物种来源的CYP17A1和POR模块与IntD-L、IntD、HincII酶切后的pUC18H通过Gibson组装,得到整合质粒,经过NotI酶切后获得模块A。模块B的构建:将IntB整合位点左臂、影响缺陷型尿嘧啶标签Ura3、IntB整合位点右臂、启动子TEF1in、终止子ACOt分别和3种来源的CYB5通过Gibson法拼接起来得到整合质粒,经过NotI酶切后获得模块B。模块C的构建:猪来源mCYP11A1分别整合于带有TEF1p启动子的表达盒中、6种不同来源得3β-HSD分别整合于带有EXP1p启动子的表达盒中,并将mCYP11A1表达盒分别6种不同3β-HSD表达盒通过Gibson组装入经SalI、ClaI酶切后的pINA1269整合质粒,最后经NotI酶切后将质粒线性化,得到模块C。上述构建的模块A~C整合质粒分别转化入大肠杆菌感受态DH5α中,菌落PCR筛选,提质粒进行单、双酶切验证以及测序验证,以确保目的片段连接正确且碱基序列未发生突变。Construction of module A: The left arm of the IntD integration site and the Saccharomyces cerevisiae GPM1t terminator were spliced together by the OE-PCR method; the 40bp terminal sequence of the Saccharomyces cerevisiae FBA1t terminator, the leucine nutritional screening tag Leu2 with LoxP sites at both ends, and the right arm of the IntD integration site were spliced together by the OE-PCR method to obtain fragments containing NotI restriction sites at both ends, named IntD-L and IntD-R, respectively; then, the artificially synthesized CYP17A1 and POR from four different sources were connected with the expression modules TEF1inp-LIP2t-GPDt and GPDt-TEF1inp-OCT1t-FBA1t after digestion with BsmBI to obtain integration plasmids, and the CYP17A1 and POR modules with the same species source were assembled with pUC18H digested with IntD-L, IntD, and HincII by Gibson to obtain integration plasmids, and module A was obtained after NotI digestion. Construction of module B: The left arm of the IntB integration site, the defective uracil tag Ura3, the right arm of the IntB integration site, the promoter TEF1in, the terminator ACOt and the CYB5 from three sources were spliced together by the Gibson method to obtain an integration plasmid, and module B was obtained after NotI digestion. Construction of module C: The porcine mCYP11A1 was integrated into the expression cassette with the TEF1p promoter, and the 3β-HSD from six different sources was integrated into the expression cassette with the EXP1p promoter, and the mCYP11A1 expression cassette and the six different 3β-HSD expression cassettes were assembled by Gibson into the pINA1269 integration plasmid after SalI and ClaI digestion, and finally the plasmid was linearized after NotI digestion to obtain module C. The module A to C integration plasmids constructed above were transformed into competent E. coli DH5α, respectively, and colony PCR was performed for screening. The plasmids were extracted for single and double restriction enzyme digestion verification and sequencing verification to ensure that the target fragments were correctly connected and the base sequence had not mutated.
5、实验结果5. Experimental results
上游模块:通过将6种不同模块C整合入酵母SyBE_Yl2060077中,得到上游模块SyBE_Yl2090018、SyBE_Yl2090006、SyBE_Yl2091025~SyBE_Yl2091028Upstream modules: By integrating 6 different modules C into yeast SyBE_Yl2060077, upstream modules SyBE_Yl2090018, SyBE_Yl2090006, SyBE_Yl2091025 to SyBE_Yl2091028 were obtained
首先本发明通过上游模块菌株单培养获得孕酮。将上游模块菌株接种于5mL种子培养基中,在30℃、220rpm培养14~16h,以初始菌体浓度OD600=0.1分别接种于50mLYPD发酵培养基中,于28℃、220rpm条件下培养,监测发酵过程中的菌体密度(OD600)及孕酮产量。将带有Vaccinia virus来源、II型Homo sapiens来源和Bos taurus来源的上游模块菌株于含50g/L葡萄糖的YPD发酵培养基中,28℃ 220rpm培养8天,可分别获得孕酮产量9.56mg/L、9.12mg/L和5.53mg/L(图12)。在本实施例中各来源物种3β-HSD的孕酮从头合成能力与实施例1生物转化实验结果不完全一致,表明3β-HSD催化效率受到不同反应条件、宿主基因型影响。其中II型人源3β-HSD(Hs_3β-HSD)在从头合成和全细胞催化合成孕酮实验中表现催化优势。First, the present invention obtains progesterone by single culture of upstream module strains. The upstream module strains were inoculated in 5 mL seed culture medium, cultured at 30 ° C and 220 rpm for 14 to 16 h, and inoculated in 50 mL YPD fermentation medium with an initial bacterial concentration of OD 600 = 0.1, cultured at 28 ° C and 220 rpm, and the bacterial density (OD 600 ) and progesterone production during the fermentation process were monitored. The upstream module strains with Vaccinia virus source, type II Homo sapiens source and Bos taurus source were cultured in YPD fermentation medium containing 50 g / L glucose at 28 ° C and 220 rpm for 8 days, and progesterone production of 9.56 mg / L, 9.12 mg / L and 5.53 mg / L were obtained respectively (Figure 12). In this example, the progesterone de novo synthesis ability of 3β-HSD of each source species is not completely consistent with the results of the bioconversion experiment in Example 1, indicating that the catalytic efficiency of 3β-HSD is affected by different reaction conditions and host genotypes. Among them, type II human 3β-HSD (Hs_3β-HSD) showed catalytic advantages in de novo synthesis and whole-cell catalytic synthesis of progesterone experiments.
实施例6:利用葡萄糖从头合成17-羟孕酮和17-羟孕烯醇酮Example 6: De novo synthesis of 17-hydroxyprogesterone and 17-hydroxypregnenolone using glucose
1、菌株的获得1. Acquisition of strains
模块A、模块B、SyBE_Yl2091025、SyBE_Yl2091006、SyBE_Yl2091016如实施例5所述。Module A, module B, SyBE_Yl2091025, SyBE_Yl2091006, and SyBE_Yl2091016 are as described in Example 5.
2、实验方法2. Experimental methods
种子培养基:20g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉;Seed culture medium: 20g/L glucose, 20g/L peptone, 10g/L yeast extract powder;
YPD发酵培养基:50g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉。YPD fermentation medium: 50g/L glucose, 20g/L peptone, 10g/L yeast extract powder.
3、实验结果3. Experimental results
本发明首先含有相同物种来源基因的模块A、模块B整合至野生型解脂耶氏酵母菌株ATCC201249中,获得菌株SyBE_Yl2091006(含Mesocricetus auratus基因)和SyBE_Yl2091016(含Ovis aries基因)作为下游模块菌株。将含有不同物种来源基因的实施例5所述的模块C分别整合至高产菜油甾醇解脂耶氏酵母底盘菌SyBE_Yl2060077中,获得菌株SyBE_Yl2091025~SyBE_Yl2091028、SyBE_Yl2090006和SyBE_Yl2090018,作为上游模块菌株。The present invention firstly integrates module A and module B containing genes from the same species into the wild-type Yarrowia lipolytica strain ATCC201249, and obtains strains SyBE_Yl2091006 (containing Mesocricetus auratus genes) and SyBE_Yl2091016 (containing Ovis aries genes) as downstream module strains. Module C described in Example 5 containing genes from different species is respectively integrated into the high-yielding campesterol Yarrowia lipolytica chassis strain SyBE_Yl2060077, and obtains strains SyBE_Yl2091025-SyBE_Yl2091028, SyBE_Yl2090006 and SyBE_Yl2090018 as upstream module strains.
本发明通过组合模块混菌发酵获得目标类固醇。将带有Bos taurus来源的上游模块菌株SyBE_Yl2091025、2个下游模块菌株SyBE_Yl2091006和SyBE_Yl2091016分别接种于5mL种子培养基中,在30℃、220rpm培养14~16h。将菌株SyBE_Yl2091025分别与SyBE_Yl2091006和SyBE_Yl2091016以10:1的OD600比例,以终OD600=0.1分别接种于50mLYPD发酵培养基中,于28℃、220rpm条件下培养8天,监测发酵过程中的菌体密度(OD600)及类固醇产量。The present invention obtains the target steroid by combined module mixed fermentation. The upstream module strain SyBE_Yl2091025 with Bos taurus source and two downstream module strains SyBE_Yl2091006 and SyBE_Yl2091016 are inoculated in 5 mL seed culture medium respectively, and cultured at 30°C and 220 rpm for 14 to 16 hours. The strain SyBE_Yl2091025 is inoculated with SyBE_Yl2091006 and SyBE_Yl2091016 at an OD600 ratio of 10:1, and the final OD600 is 0.1. The culture is carried out at 28°C and 220 rpm for 8 days, and the cell density ( OD600 ) and steroid yield during the fermentation process are monitored.
在SyBE_Yl2091025-SyBE_Yl2091006混菌体系中,合成17-羟孕酮0.25mg/L,17-羟孕烯醇酮0.74mg/L,雄烯二酮产量为0.88mg/L。在SyBE_Yl2091025-SyBE_Yl2091016混菌体系中合成17-羟孕酮0.91mg/L,17-羟孕酮0.29mg/L,雄烯二酮产量为1.03mg/L(图13)。至此本发明实现了利用混菌系统从头合成17-羟孕烯醇和17-羟孕酮。混菌体系合成的Δ4甾体(P4,17OHP4,4AD)在总甾体产物中占比达56.5~83.1%。难以转化的中间产物17OHP5占比仅为甾体总量的12.2%~37.3%,远高于单菌系统中的17OHP5占比(90.4~99.1%)。这些结果表明,共培养体系设计通过迫使底物P5优先被3β-HSD利用,成功缓解3β-HSD与CYP17A1间底物竞争,使更多甾体通量用于△4-甾体合成。In the SyBE_Yl2091025-SyBE_Yl2091006 mixed bacteria system, 0.25 mg/L of 17-hydroxyprogesterone, 0.74 mg/L of 17-hydroxypregnenolone, and the production of androstenedione were 0.88 mg/L. In the SyBE_Yl2091025-SyBE_Yl2091016 mixed bacteria system, 0.91 mg/L of 17-hydroxyprogesterone, 0.29 mg/L of 17-hydroxyprogesterone, and the production of androstenedione were 1.03 mg/L (Figure 13). So far, the present invention has achieved the de novo synthesis of 17-hydroxypregnenolone and 17-hydroxyprogesterone using a mixed bacteria system. The Δ 4 steroids (P4, 17OHP4, 4AD) synthesized by the mixed bacteria system account for 56.5 to 83.1% of the total steroid products. The difficult-to-convert intermediate 17OHP5 accounted for only 12.2% to 37.3% of the total steroids, which was much higher than the 17OHP5 proportion in the single-bacteria system (90.4% to 99.1%). These results indicate that the co-culture system design successfully alleviated the substrate competition between 3β-HSD and CYP17A1 by forcing the substrate P5 to be preferentially utilized by 3β-HSD, allowing more steroid flux to be used for Δ 4 -steroid synthesis.
实施例7:利用葡萄糖从头合成去氢表雄酮Example 7: De novo synthesis of dehydroepiandrosterone using glucose
1、菌株的获得1. Acquisition of strains
SyBE_Yl2091026、SyBE_Yl2091006如实施例5所述。SyBE_Yl2091026 and SyBE_Yl2091006 are as described in Example 5.
2、实验方法2. Experimental methods
种子培养基:20g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉;Seed culture medium: 20g/L glucose, 20g/L peptone, 10g/L yeast extract powder;
YPD发酵培养基:50g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉。YPD fermentation medium: 50g/L glucose, 20g/L peptone, 10g/L yeast extract powder.
3、实验结果3. Experimental results
将上游模块菌株SyBE_Yl2091026、下游模块菌株SyBE_Yl2091006分别接种于5mL种子培养基中,在30℃、220rpm培养14~16h。将菌株SyBE_Yl2091026与SyBE_Yl2091006以10:1的OD600比例,以终OD600=0.1分别接种于50mLYPD发酵培养基中,于28℃、220rpm条件下培养8天,监测发酵过程中的菌体密度(OD600)及类固醇产量。The upstream module strain SyBE_Yl2091026 and the downstream module strain SyBE_Yl2091006 were inoculated into 5 mL seed culture medium and cultured at 30°C and 220 rpm for 14-16 h. The strains SyBE_Yl2091026 and SyBE_Yl2091006 were inoculated into 50 mL YPD fermentation medium at an OD 600 ratio of 10:1 and a final OD 600 = 0.1, and cultured at 28°C and 220 rpm for 8 days, and the cell density (OD 600 ) and steroid production during the fermentation process were monitored.
在SyBE_Yl2091026-SyBE_Yl2091006混菌体系中,合成去氢表雄酮2.13mg/L(图14)。与实施例6中利用牛源3β-HSD表达工程菌作为上游模块,并倾向于4AD合成的混菌体系相比,当前混菌体系的甾体合成倾向于DHEA积累,证明不同3β-HSD来源菌株对系统甾体合成与代谢流走向影响较大。In the SyBE_Y12091026-SyBE_Y12091006 mixed bacteria system, 2.13 mg/L of dehydroepiandrosterone was synthesized (Figure 14). Compared with the mixed bacteria system in Example 6, which used bovine 3β-HSD expression engineering bacteria as the upstream module and tended to synthesize 4AD, the steroid synthesis in the current mixed bacteria system tended to accumulate DHEA, proving that different 3β-HSD source strains have a greater impact on the system steroid synthesis and metabolic flow.
实施例8:利用葡萄糖从头合成雄烯二酮和睾酮Example 8: De novo synthesis of androstenedione and testosterone using glucose
1、实验材料的获得1. Acquisition of experimental materials
野生型醇解脂耶氏酵母的获得、模块化整合质粒(模块A~C)的构建与外源功能基因元件的获得同实施例5中所述。The acquisition of wild-type Yarrowia lipolytica, the construction of modular integration plasmids (modules A to C) and the acquisition of exogenous functional gene elements are the same as described in Example 5.
模块D的构建:将IntF整合位点左臂、HincII酶切后的pUC18H、两端带有LoxP位点的亮氨酸营养筛选标签Leu2、IntD整合位点右臂、实施例5带有相同物种来源(Ovis aries和Mesocricetus auratus)的CYP17A1和POR模块通过Gibson方法拼接起来得到两端包含NotI酶切位点的片段,经过NotI酶切后获得模块D。Construction of module D: The left arm of the IntF integration site, pUC18H after HincII digestion, the leucine nutritional screening tag Leu2 with LoxP sites at both ends, the right arm of the IntD integration site, and the CYP17A1 and POR modules with the same species origin (Ovis aries and Mesocricetus auratus) in Example 5 were spliced together by the Gibson method to obtain a fragment containing NotI digestion sites at both ends, and module D was obtained after NotI digestion.
SyBE_Yl2091030的获得同实施例3所述The acquisition of SyBE_Y12091030 was the same as described in Example 3
17-羟化转化实验验证菌株的构建,将含有4种含有不同来源基因的模块A分别整合入ATCC201249中,获得菌株SyBE_Yl2091001~SyBE_Yl2091004。The 17-hydroxylation transformation experiment verified the construction of the strain, and the module A containing four genes from different sources was integrated into ATCC201249 to obtain strains SyBE_Yl2091001 to SyBE_Yl2091004.
17,20-裂解转化实验验证菌株的构建,将将含有3种含有不同来源基因的模块B分别整合入上述构建的菌株SyBE_Yl2091001~SyBE_Yl2091004中,获得菌株SyBE_Yl2091005~SyBE_Yl2091016.The construction of the strain was verified by 17,20-lysis transformation experiments. The module B containing three genes from different sources was respectively integrated into the strains SyBE_Yl2091001 to SyBE_Yl2091004 constructed above to obtain strains SyBE_Yl2091005 to SyBE_Yl2091016.
2、实验方法2. Experimental methods
生物转化培养基:20g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉;Biotransformation medium: 20 g/L glucose, 20 g/L peptone, 10 g/L yeast extract powder;
种子培养基:20g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉;Seed culture medium: 20g/L glucose, 20g/L peptone, 10g/L yeast extract powder;
YPD发酵培养基:50g/L葡萄糖、20g/L蛋白胨、10g/L酵母浸粉。YPD fermentation medium: 50g/L glucose, 20g/L peptone, 10g/L yeast extract powder.
类固醇底物母液:1.75g/L(50%EtOH-Tween80)孕酮、1.75g/L(50%EtOH-Tween80)17-羟孕酮溶液Steroid substrate stock solution: 1.75 g/L (50% EtOH-Tween80) progesterone, 1.75 g/L (50% EtOH-Tween80) 17-hydroxyprogesterone solution
17-羟化转化实验:将SyBE_Yl2091001-SyBE_Yl2091004接种于5mL种子培养基中,在30℃、220rpm培养14~16h,以初始菌体浓度OD600=0.1分别接种于5mL生物转化培养基中,在28℃、220rpm培养24h,加入150μL孕酮底物母液继续孵育16h,取1mL样品按实例1中方法检测17OHP4含量17-Hydroxylation transformation experiment: SyBE_Yl2091001-SyBE_Yl2091004 were inoculated into 5 mL seed culture medium, cultured at 30°C and 220 rpm for 14-16 h, inoculated into 5 mL biotransformation culture medium with an initial bacterial concentration of OD600 = 0.1, cultured at 28°C and 220 rpm for 24 h, added 150 μL progesterone substrate mother solution and continued to incubate for 16 h, and took 1 mL sample to detect the 17OHP4 content according to the method in Example 1
17,20-裂解转化实验:将SyBE_Yl2091005-SyBE_Yl2091016接种于5mL种子培养基中,在30℃、220rpm培养14~16h,以初始菌体浓度OD600=0.1分别接种于5mL生物转化培养基中,在28℃、220rpm培养24h,加入150μL 17-羟孕酮底物母液继续孵育120h,取1mL样品按实例1中方法检测雄烯二酮含量。17,20-cleavage transformation experiment: SyBE_Yl2091005-SyBE_Yl2091016 were inoculated into 5 mL of seed culture medium and cultured at 30°C and 220 rpm for 14-16 h. They were inoculated into 5 mL of biotransformation medium with an initial cell concentration of OD600 = 0.1 and cultured at 28°C and 220 rpm for 24 h. 150 μL of 17-hydroxyprogesterone substrate mother solution was added and incubated for another 120 h. 1 mL of sample was taken and the androstenedione content was detected according to the method in Example 1.
混菌合成雄烯二酮实验:将上游模块菌株SyBE_Yl2091025、两种下游模块菌株SyBE_Yl2091016、SyBE_Yl2091030分别接种于5mL种子培养基中,在30℃、220rpm培养14~16h。将上游模块菌株和两种下游模块菌株分别以10:1的OD600比例,以终OD600=0.1分别接种于50mLYPD发酵培养基中,于28℃、220rpm条件下培养8天,测定类固醇产量。Mixed bacteria synthesis of androstenedione experiment: The upstream module strain SyBE_Yl2091025 and the two downstream module strains SyBE_Yl2091016 and SyBE_Yl2091030 were inoculated into 5 mL seed culture medium and cultured at 30°C and 220 rpm for 14-16 h. The upstream module strain and the two downstream module strains were inoculated into 50 mL YPD fermentation medium at an OD 600 ratio of 10:1 and a final OD 600 of 0.1, and cultured at 28°C and 220 rpm for 8 days to determine the steroid yield.
3、实验结果3. Experimental results
在生物转化实验中,含有Ovis aries来源CYP17A1的菌株表现出对孕酮最强的17-羟化能力。In the biotransformation experiment, the strain containing Ovis aries-derived CYP17A1 showed the strongest 17-hydroxylation ability for progesterone.
由图15(左)可看出,Ec_CYP17A1和Xl_CYP17A1对P4的17α-羟基化催化活性较弱。Ma_CYP17A1、Oa_CYP17A1对P4的17α-羟基化活性较强。在测试的△4,5型CYP17A1中Ma_CYP17A1对P4的17α-羟基化活性最强,但仅为△5型绵羊源CYP17A1相应活性的13.8%。As shown in Figure 15 (left), Ec_CYP17A1 and Xl_CYP17A1 have weak catalytic activity for the 17α-hydroxylation of P4. Ma_CYP17A1 and Oa_CYP17A1 have strong activity for the 17α-hydroxylation of P4. Among the tested △ 4, 5 type CYP17A1, Ma_CYP17A1 has the strongest activity for the 17α-hydroxylation of P4, but it is only 13.8% of the corresponding activity of △ 5 type sheep-derived CYP17A1.
由图15(右)可看出,Ma_CYP17A1和Ec_CYP17A1在以17OHP4为底物时17,20-裂解活性最强。而Oa_CYP17A1对17OHP4的17,20-裂解活性依赖于CYB5来源选择。其中Oa_CYB5和Ec_CYB5与上述三种来源CYP17A1匹配时,可使CYP17A1表现较强17,20-裂解活性。As shown in Figure 15 (right), Ma_CYP17A1 and Ec_CYP17A1 have the strongest 17,20-cleavage activity when using 17OHP4 as substrate. The 17,20-cleavage activity of Oa_CYP17A1 on 17OHP4 depends on the selection of CYB5 source. When Oa_CYB5 and Ec_CYB5 match the above three sources of CYP17A1, CYP17A1 can show strong 17,20-cleavage activity.
由图16可知,17,20-裂解转化实验中,在当前的CYP17A1-CYB5组合中Equuscaballus来源的CYP17A1和CYB5表现了普适17,20-裂解能力。因此在下游菌株的重新构建中,利用Cre-loxp的方法,移除SyBE_Yl2091004的Leu2标签,并引入带有Equus caballus来源基因的模块二和模块四,获得菌株SyBE_Yl2091030。在As shown in Figure 16, in the 17,20-cleavage conversion experiment, the CYP17A1 and CYB5 from Equus caballus in the current CYP17A1-CYB5 combination showed universal 17,20-cleavage ability. Therefore, in the reconstruction of the downstream strain, the Cre-loxp method was used to remove the Leu2 tag of SyBE_Yl2091004, and the module two and module four with genes from Equus caballus were introduced to obtain the strain SyBE_Yl2091030.
SyBE_Yl2091025-SyBE_Yl2091030混菌发酵实验中,雄烯二酮为主要产物,获得雄烯二酮5.02mg/L,睾酮1.09mg/L。在SyBE_Yl2091025-SyBE_Yl2091030混菌发酵实验中雄烯二酮较优化前的共培养体系提高3.9倍。上述结果表明通过引入强17,20-裂解能力的Equuscaballus来源的Ec_CYP17A1,强17α-羟基化能力的绵羊源Oa_CYP17A1,以及可同时促进Ec_CYP17A1和Oa_CYP17A1的17,20-裂解能力的马源Ec_CYB5,可有效提升下游路径的底物转化效率有效拉动甾体中间体向4AD转化。In the SyBE_Yl2091025-SyBE_Yl2091030 mixed fermentation experiment, androstenedione was the main product, and 5.02 mg/L of androstenedione and 1.09 mg/L of testosterone were obtained. In the SyBE_Yl2091025-SyBE_Yl2091030 mixed fermentation experiment, androstenedione increased by 3.9 times compared with the co-culture system before optimization. The above results show that by introducing Equuscaballus-derived Ec_CYP17A1 with strong 17,20-cleavage ability, sheep-derived Oa_CYP17A1 with strong 17α-hydroxylation ability, and horse-derived Ec_CYB5 that can simultaneously promote the 17,20-cleavage ability of Ec_CYP17A1 and Oa_CYP17A1, the substrate conversion efficiency of the downstream pathway can be effectively improved, effectively driving the conversion of steroid intermediates to 4AD.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention. It should be pointed out that for ordinary technicians in this technical field, several improvements and modifications can be made without departing from the principle of the present invention. These improvements and modifications should also be regarded as the scope of protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211741254.XA CN115975962B (en) | 2022-12-30 | 2022-12-30 | Directional synthesis of network path products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211741254.XA CN115975962B (en) | 2022-12-30 | 2022-12-30 | Directional synthesis of network path products |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115975962A true CN115975962A (en) | 2023-04-18 |
CN115975962B CN115975962B (en) | 2025-07-08 |
Family
ID=85975778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211741254.XA Active CN115975962B (en) | 2022-12-30 | 2022-12-30 | Directional synthesis of network path products |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115975962B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104805027A (en) * | 2015-05-27 | 2015-07-29 | 天津大学 | Recombinant yarrowia lipolytica bacterial strain as well as construction method and application thereof |
CN106190881A (en) * | 2016-07-26 | 2016-12-07 | 天津大学 | Bacterial strain and construction method, application |
CN107034150A (en) * | 2017-04-13 | 2017-08-11 | 天津大学 | One kind restructuring Ye Shi solution fat yeast strains and its construction method and application |
CN108753626A (en) * | 2018-06-01 | 2018-11-06 | 天津科技大学 | One plant of 16 beta-hydroxy -19- of biosynthesis goes bacterial strain and its application of first -4-AD |
CN112251458A (en) * | 2020-10-13 | 2021-01-22 | 天津大学 | A method for genome integration of Yarrowia lipolytica based on a non-homologous end joining mechanism |
-
2022
- 2022-12-30 CN CN202211741254.XA patent/CN115975962B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104805027A (en) * | 2015-05-27 | 2015-07-29 | 天津大学 | Recombinant yarrowia lipolytica bacterial strain as well as construction method and application thereof |
CN106190881A (en) * | 2016-07-26 | 2016-12-07 | 天津大学 | Bacterial strain and construction method, application |
CN107034150A (en) * | 2017-04-13 | 2017-08-11 | 天津大学 | One kind restructuring Ye Shi solution fat yeast strains and its construction method and application |
CN108753626A (en) * | 2018-06-01 | 2018-11-06 | 天津科技大学 | One plant of 16 beta-hydroxy -19- of biosynthesis goes bacterial strain and its application of first -4-AD |
CN112251458A (en) * | 2020-10-13 | 2021-01-22 | 天津大学 | A method for genome integration of Yarrowia lipolytica based on a non-homologous end joining mechanism |
Also Published As
Publication number | Publication date |
---|---|
CN115975962B (en) | 2025-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Pregnenolone overproduction in Yarrowia lipolytica by integrative components pairing of the cytochrome P450scc system | |
EP3231870B1 (en) | Mutant lacking the hydroxyacyl-coenzyme a dehydrogenase gene and use thereof | |
CN106754993B (en) | Gene, recombinant saccharomyces cerevisiae strain and construction method and application thereof | |
CN112812983B (en) | A kind of Saccharomyces cerevisiae engineering bacteria for producing campesterol and construction method | |
CN107034150A (en) | One kind restructuring Ye Shi solution fat yeast strains and its construction method and application | |
CN114703077B (en) | Recombinant yeast engineering strain for producing 7-dehydrocholesterol and application thereof | |
JP2017537656A5 (en) | ||
SK18896A3 (en) | Dna sequence coding protein of a. thaliana organism with the activity of delta-5,7-sterol, delta-7-reductase, protein delta-7-red, method of manufacture thereof, transformed yeast strains, applications | |
CN107779423A (en) | Cofactor regeneration mycobacteria and its application in the fermentation of profit Two Liquid Phases | |
Chang et al. | A combined strategy of metabolic pathway regulation and two-step bioprocess for improved 4-androstene-3, 17-dione production with an engineered Mycobacterium neoaurum | |
Dumas et al. | Hydrocortisone made in yeast: Metabolic engineering turns a unicellular microorganism into a drug‐synthesizing factory | |
CN114717124B (en) | Saccharomyces cerevisiae engineering strain for high-yield ergosterol, construction method and application | |
CN111484961B (en) | Genetically engineered bacterium for producing 5 alpha-androstanedione and application thereof | |
US10774355B2 (en) | Genetically-engineered mycobacterium strain and a use thereof in the preparation of steroidal compounds | |
CN115975962A (en) | Net path product directed synthesis | |
DK175631B1 (en) | Hybrid host cell of a microorganism, methods for preparing a mixture of P45017alpha and P450C21 proteins and for selective multiple oxidation of progesterone and expression cassette relevant in this regard. | |
CN114717173B (en) | Genetically engineered strain for producing sterol side chain incomplete degradation product, construction method and application thereof | |
CN118028344A (en) | Engineering bacterium for dynamically regulating squalene synthesis, construction method and application thereof | |
CN115851640A (en) | Module for avoiding path competition by mixed bacteria and application thereof | |
Kong et al. | Structures and molecular mechanisms of action of the cholesterol C17 side-chain-degrading enzymes | |
Murooka et al. | Genetic and protein engineering of diagnostic enzymes, cholesterol oxidase and xylitol oxidase | |
CN116751698A (en) | Genetically engineered bacterium for producing 7-dehydrocholesterol and construction method and application thereof | |
CN115927030A (en) | A kind of recombinant yeast and its construction method | |
Horinouchi | Identification of Dehydrogenase, Hydratase, and Aldolase Required for C17 Propionyl Residue Removal in Steroid Degradation by Comamonas testosteroni TA441: Structural and Functional Insights into the (ChsE1-ChsE2) 2 and (ChsH1-ChsH2MaoC) 2-(Ltp2-ChsH2DUF35) 2 Complexes | |
WO2025087051A1 (en) | 17β-HYDROXYSTEROID DEHYDROGENASE MUTANT AND USE THEREOF IN PREPARATION OF STEROID HORMONE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |