CN115975140A - Two-dimensional covalent organic framework quantum dot, preparation method thereof and application thereof in two-photon fluorescence imaging - Google Patents
Two-dimensional covalent organic framework quantum dot, preparation method thereof and application thereof in two-photon fluorescence imaging Download PDFInfo
- Publication number
- CN115975140A CN115975140A CN202310008614.3A CN202310008614A CN115975140A CN 115975140 A CN115975140 A CN 115975140A CN 202310008614 A CN202310008614 A CN 202310008614A CN 115975140 A CN115975140 A CN 115975140A
- Authority
- CN
- China
- Prior art keywords
- organic framework
- covalent organic
- quantum dot
- dimensional covalent
- dot material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013310 covalent-organic framework Substances 0.000 title claims abstract description 79
- 239000002096 quantum dot Substances 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 238000000482 two photon fluorescence microscopy Methods 0.000 title abstract description 8
- 239000000463 material Substances 0.000 claims description 45
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 9
- 239000003054 catalyst Substances 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 6
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000000799 fluorescence microscopy Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000000047 product Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 239000012265 solid product Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 3
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000006228 supernatant Substances 0.000 claims description 3
- 125000003172 aldehyde group Chemical group 0.000 claims description 2
- 125000003277 amino group Chemical group 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 125000005647 linker group Chemical group 0.000 claims description 2
- 239000012046 mixed solvent Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 2
- 238000001291 vacuum drying Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 150000001408 amides Chemical class 0.000 claims 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 claims 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000005284 excitation Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- DMVOXQPQNTYEKQ-UHFFFAOYSA-N biphenyl-4-amine Chemical group C1=CC(N)=CC=C1C1=CC=CC=C1 DMVOXQPQNTYEKQ-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 229920001992 poloxamer 407 Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001144 powder X-ray diffraction data Methods 0.000 description 2
- 238000006862 quantum yield reaction Methods 0.000 description 2
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 2
- ISDBWOPVZKNQDW-UHFFFAOYSA-N 4-phenylbenzaldehyde Chemical group C1=CC(C=O)=CC=C1C1=CC=CC=C1 ISDBWOPVZKNQDW-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 238000000944 Soxhlet extraction Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- -1 acetoxymethoxy ester Chemical class 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
技术领域technical field
本发明涉及多孔有机晶态材料技术领域,以及双光子荧光成像领域,具体涉及一类新型二维共价有机框架量子点材料及其制备方法及在细胞成像中的应用。The invention relates to the technical field of porous organic crystalline materials and the field of two-photon fluorescence imaging, in particular to a new type of two-dimensional covalent organic framework quantum dot material and its preparation method and application in cell imaging.
背景技术Background technique
荧光成像技术因其简单性、可视性、高选择性等特点,对生物医学治疗学具有重要意义。然而,单光子荧光成像通常受限于生物学应用,因为它的深层组织成像不令人满意,归因于短激发波长下微弱的组织穿透能力;另外,内在生物环境的自发荧光也会干扰真实的荧光信号,导致单光子荧光成像的信噪比低。双光子荧光成像本身具有高分辨率、高通量、非侵入、成像深度大等特点,与荧光蛋白以及荧光染料等标记物在细胞中的定位与表达技术相结合,能够在生命体和细胞仍具有活性的状态下对其功能进行动态观察,使得人们可以研究处于生理状态时的动物大脑内的神经元活动。Fluorescence imaging is of great significance for biomedical therapeutics due to its simplicity, visibility, and high selectivity. However, single-photon fluorescence imaging is generally limited to biological applications due to its unsatisfactory deep tissue imaging due to poor tissue penetration at short excitation wavelengths; in addition, autofluorescence of the intrinsic biological environment can also interfere. True fluorescence signal, resulting in low signal-to-noise ratio for single-photon fluorescence imaging. Two-photon fluorescence imaging itself has the characteristics of high resolution, high throughput, non-invasiveness, and large imaging depth. Combined with the localization and expression technology of markers such as fluorescent proteins and fluorescent dyes in cells, it can be used in living organisms and cells. The dynamic observation of its function in the active state allows people to study the neuronal activity in the animal brain in a physiological state.
二维(2D)荧光共价有机框架(FCOFs)作为一类新兴的具有长程π共轭结构的新型结晶性多孔聚合物,在生物传感和生物成像领域备受关注。2D高度有序的π骨架赋予其较大的双光子吸收横截面,但2D FCOFs层间强烈的π-π堆叠导致其双光子荧光减弱。将2D FCOFs经超声剥离分散等方法制备高度分散的FCOFs纳米片或纳米点则可以避免π-π键在水溶液中的堆叠和聚集引起的荧光衰减或淬灭。到目前为止,关于双光子2D FCOFs的报道很少,而且它们在体内和体外生物成像中的应用受到其大尺寸和不令人满意的荧光发射的限制。因此,研究一种制备简单、高分散和高量子产率的双光子共价有机框架量子点(FCOF QDs)具有重要意义。Two-dimensional (2D) fluorescent covalent organic frameworks (FCOFs), as a new class of emerging crystalline porous polymers with long-range π-conjugated structures, have attracted much attention in the fields of biosensing and bioimaging. The 2D highly ordered π framework endows it with a large two-photon absorption cross-section, but the strong π-π stacking between layers of 2D FCOFs leads to its weakened two-photon fluorescence. The preparation of highly dispersed FCOFs nanosheets or nanodots by 2D FCOFs by ultrasonic stripping and dispersion can avoid the fluorescence attenuation or quenching caused by the stacking and aggregation of π-π bonds in aqueous solution. So far, there have been few reports on two-photon 2D FCOFs, and their application in in vivo and in vitro bioimaging is limited by their large size and unsatisfactory fluorescence emission. Therefore, it is of great significance to study a facile, highly dispersed, and high quantum yield two-photon covalent organic framework quantum dots (FCOF QDs).
Pluronic F-127是一种非离子型表面活性剂(平均分子量约12.6kDa),能够促进非水溶性染料或其他材料在生理培养环境内的溶解分散能力。通常与含有乙酰甲氧基酯(AM)形式的染料一起使用,用以增强染料在水溶液内的分散性。Pluronic F-127适合用来分离膜蛋白,另其UV吸光度很低,在某些使用UV法检测溶解蛋白的实验步骤中很有价值。Pluronic F-127 is a non-ionic surfactant (average molecular weight about 12.6kDa), which can promote the dissolution and dispersion of water-insoluble dyes or other materials in a physiological culture environment. Usually used with dyes containing acetoxymethoxy ester (AM) form to enhance the dispersibility of dyes in aqueous solution. Pluronic F-127 is suitable for the separation of membrane proteins, and its UV absorbance is very low, which is valuable in some experimental procedures using UV methods to detect dissolved proteins.
发明内容Contents of the invention
本发明目的在于提供一种新型三苯胺类二维共价有机框架量子点及其制备方法与应用。本发明中三苯胺类二维共价有机框架具有高结晶性,高量子产率,大比表面积和灵敏的光响应,以及双光子吸收特性,在双光子细胞荧光成像方面具有良好的应用前景。The purpose of the present invention is to provide a novel triphenylamine two-dimensional covalent organic framework quantum dot and its preparation method and application. The triphenylamine two-dimensional covalent organic framework in the invention has high crystallinity, high quantum yield, large specific surface area, sensitive light response, and two-photon absorption characteristics, and has good application prospects in two-photon cell fluorescence imaging.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种二维共价有机框架量子点材料,由三连接节点A和三连接节点B在二维空间相互连接形成;A two-dimensional covalent organic framework quantum dot material formed by interconnecting three-connected nodes A and three-connected nodes B in two-dimensional space;
在所述的二维共价有机框架量子点材料的至少一部分中,每个三连接节点A分别与相邻的3个三连接节点B连接,构成具有均匀六边形孔道的共价有机框架结构;三连接节点A与三连接节点B的摩尔比可任意,不同比例的连接点会产生不同的形貌,优选为1:1;In at least a part of the two-dimensional covalent organic framework quantum dot material, each three-connected node A is respectively connected to three adjacent three-connected nodes B to form a covalent organic framework structure with a uniform hexagonal channel ; The molar ratio of three-connected node A to three-connected node B can be arbitrary, and different ratios of connected points will produce different shapes, preferably 1:1;
所述的三连接节点A如式(1)所示:The three-connection node A is as shown in formula (1):
所述的三连接节点B如式(2a)、(2b)或(2c)所示:The three-connection node B is shown in formula (2a), (2b) or (2c):
式(2a)、(2b)或(2c)中,In formula (2a), (2b) or (2c),
式(1)、(2a)、(2b)或(2c)中,In formula (1), (2a), (2b) or (2c),
X表示连接位点。X indicates the linking site.
本发明所述的二维共价有机框架量子点材料的BET比表面积为40~2000m2/g,孔径为1.0~5.0nm。The BET specific surface area of the two-dimensional covalent organic framework quantum dot material of the present invention is 40-2000m 2 /g, and the pore diameter is 1.0-5.0nm.
所述的二维共价有机框架量子点材料具有规则的六边形孔道。The two-dimensional covalent organic framework quantum dot material has regular hexagonal channels.
所述的二维共价有机框架量子点材料的连接基团含有动态共价键,连接方式选自-C=N-、-C=N-N=C-、-C=N-NH-、-C=C-、-C=C(CN)-中的一种,优选-C=N-。The linking group of the two-dimensional covalent organic framework quantum dot material contains dynamic covalent bonds, and the linking mode is selected from -C=N-, -C=N-N=C-, -C=N-NH-, -C One of =C-, -C=C(CN)-, preferably -C=N-.
优选的,当连接方式为-C=N-时,二维共价有机框架量子点材料的基本框架如下所示:Preferably, when the connection mode is -C=N-, the basic framework of the two-dimensional covalent organic framework quantum dot material is as follows:
一种二维共价有机框架量子点材料的制备方法,包括如下步骤:A method for preparing a two-dimensional covalent organic framework quantum dot material, comprising the steps of:
(1)二维共价有机框架材料的制备(1) Preparation of two-dimensional covalent organic framework materials
将三连接节点分子(I)、三连接节点分子(II)、有机溶剂和催化剂混合,液氮冷冻,冻融脱气,密封后置于80~180℃(优选120℃)下反应72~168h,过滤分离出固体产物,浸泡洗涤并干燥,得到二维共价有机框架材料;Mix three-connected node molecules (I), three-connected node molecules (II), organic solvents and catalysts, freeze in liquid nitrogen, freeze-thaw and degas, seal and place at 80-180°C (preferably 120°C) for 72-168 hours , the solid product was separated by filtration, soaked, washed and dried to obtain a two-dimensional covalent organic framework material;
所述有机溶剂为苯甲醚和乙醇体积比1:1的混合溶剂;Described organic solvent is the mixed solvent of anisole and ethanol volume ratio 1:1;
所述催化剂为6M乙酸的水溶液;优选催化剂与有机溶剂的体积比为0.1:1;The catalyst is an aqueous solution of 6M acetic acid; the volume ratio of the catalyst to the organic solvent is preferably 0.1:1;
具体的,固体产物浸泡洗涤的方法为:先在N,N-二甲基甲酰胺中浸泡6h,重复两次,接着在丙酮中浸泡6h,重复两次,然后用四氢呋喃和丙酮分别索氏提取12h;干燥的条件为:在真空干燥箱中,80℃下抽真空至20mTorr,干燥24h;Specifically, the method of soaking and washing the solid product is as follows: first soak in N,N-dimethylformamide for 6h, repeat twice, then soak in acetone for 6h, repeat twice, and then use THF and acetone to Soxhlet extract respectively 12h; the drying conditions are: in a vacuum drying oven, vacuumize to 20mTorr at 80°C, and dry for 24h;
(2)二维共价有机框架量子点材料的制备(2) Preparation of two-dimensional covalent organic framework quantum dot materials
将步骤(1)所得二维共价有机框架材料加入到PF-127水溶液中,然后用细胞粉碎机超声处理25h以上,之后在2000rpm/min下离心10min(以除去大尺寸的残留物),取上清液在21000rpm/min下离心15min,取下层固体用去离子水洗涤,得到二维共价有机框架量子点材料(记作COF@PF-127QDs,分散在去离子水中以备后续使用);Add the two-dimensional covalent organic framework material obtained in step (1) into the PF-127 aqueous solution, then use a cell pulverizer to sonicate for more than 25 h, and then centrifuge at 2000 rpm/min for 10 min (to remove large-sized residues), and take The supernatant was centrifuged at 21000rpm/min for 15min, and the lower layer of solid was washed with deionized water to obtain a two-dimensional covalent organic framework quantum dot material (referred to as COF@PF-127QDs, dispersed in deionized water for subsequent use);
所述PF-127水溶液的浓度为4.95mg/mL;在PF-127作为模板保护剂和改性剂的前提下,经过一系列的超声和离心处理,获得平均尺寸约为5nm左右的共价有机框架量子点;The concentration of the PF-127 aqueous solution is 4.95 mg/mL; under the premise that PF-127 is used as a template protecting agent and modifier, after a series of ultrasonic and centrifugation treatments, a covalent organic compound with an average size of about 5 nm is obtained. frame quantum dots;
式(I)、(II)中,In formula (I), (II),
R1、R2中的一个为氨基(-NH2),另一个为醛基(-CHO)。One of R 1 and R 2 is an amino group (-NH 2 ), and the other is an aldehyde group (-CHO).
本发明所述的二维共价有机框架量子点材料可应用于双光子细胞荧光成像。The two-dimensional covalent organic framework quantum dot material described in the present invention can be applied to two-photon cell fluorescence imaging.
与现有技术相比,本发明具有以下有益的技术效果:Compared with the prior art, the present invention has the following beneficial technical effects:
本发明结合构筑单元设计和形貌调控制备特定结构的二维共价有机框架(COFs),并通过PF-127作为模板保护和改性,将COF转换成平均直径5nm左右的双亲型量子点,首次制备出一种可用于双光子荧光成像的COF量子点材料。The present invention combines building unit design and morphology control to prepare two-dimensional covalent organic frameworks (COFs) with specific structures, and uses PF-127 as template protection and modification to convert COFs into amphiphilic quantum dots with an average diameter of about 5nm. For the first time, a COF quantum dot material that can be used for two-photon fluorescence imaging has been prepared.
本发明的显著优点在于:Significant advantage of the present invention is:
(1)共价有机框架是一类具有结构可调控,可功能化等优点,同时还具有高的孔隙率,纳米级孔径,高温稳定性,化学稳定性等优异性能的有序多孔材料。本发明首次设计出几种新型的COFs,并将这些COFs制备成平均直径5nm左右的量子点材料,可用于双光子荧光成像,这在COF材料中是首创。(1) Covalent organic frameworks are a class of ordered porous materials with the advantages of adjustable structure and functionalization, as well as high porosity, nanoscale pore size, high temperature stability, and chemical stability. The present invention designs several new COFs for the first time, and prepares these COFs into quantum dot materials with an average diameter of about 5nm, which can be used for two-photon fluorescence imaging, which is the first in COF materials.
(2)本发明用于双光子荧光成像的共价有机框架量子点材料,其制备条件温和简单、普适易行,有利于大规模的推广,具有广阔的应用前景。(2) The covalent organic framework quantum dot material used for two-photon fluorescence imaging of the present invention has mild and simple preparation conditions, is universal and easy to implement, is conducive to large-scale promotion, and has broad application prospects.
(3)在优选条件中,所制备的COF量子点的双光子吸收横截面为49GM时显示出突出的双光子荧光,并且在生理条件下具有良好的分散性和光稳定性。(3) In the preferred condition, the as-prepared COF quantum dots exhibit outstanding two-photon fluorescence with a two-photon absorption cross-section of 49 GM, and have good dispersion and photostability under physiological conditions.
附图说明Description of drawings
图1为二维共价有机框架材料(TAPBA-TFBPA-COF)的制备流程图。Figure 1 is a flow chart of the preparation of two-dimensional covalent organic framework material (TAPBA-TFBPA-COF).
图2为二维共价有机框架材料(TAPBA-TFBPA-COF)的粉末X-射线测试谱图和模拟谱图。Fig. 2 is a powder X-ray test spectrum and a simulated spectrum of a two-dimensional covalent organic framework material (TAPBA-TFBPA-COF).
图3为二维共价有机框架材料(TAPBA-TFBPA-COF)的红外光谱图。Fig. 3 is the infrared spectrum of the two-dimensional covalent organic framework material (TAPBA-TFBPA-COF).
图4为二维共价有机框架材料(TAPBA-TFBPA-COF)的透射电镜图。Fig. 4 is a transmission electron microscope image of a two-dimensional covalent organic framework material (TAPBA-TFBPA-COF).
图5为二维共价有机框架量子点(TAPBA-TFBPA-COF QDs)的透射电镜图及颗粒尺寸分布。Figure 5 shows the transmission electron microscope image and particle size distribution of two-dimensional covalent organic framework quantum dots (TAPBA-TFBPA-COF QDs).
图6为TAPBA-TFPBA-COF QDs在不同激发波长下的荧光发射谱图。Figure 6 shows the fluorescence emission spectra of TAPBA-TFPBA-COF QDs at different excitation wavelengths.
图7为TAPBA-TFPBA-COF QDs在不同激发波长下的双光子吸收横截面。Figure 7 shows the two-photon absorption cross-sections of TAPBA-TFPBA-COF QDs at different excitation wavelengths.
图8为TAPBA-TFPBA-COF QDs在不同激发波长下的双光子荧光发射谱图。Figure 8 shows the two-photon fluorescence emission spectra of TAPBA-TFPBA-COF QDs at different excitation wavelengths.
具体实施方式Detailed ways
下面通过具体实施例进一步描述本发明,以下实例有助于相关领域人员进一步理解本发明,但并不以任何形式限制本发明,应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。The present invention is further described below through specific examples, and the following examples help those in the relevant fields to further understand the present invention, but do not limit the present invention in any form. It should be noted that for those of ordinary skill in the art, without departing from Under the premise of the concept of the present invention, several modifications and improvements can also be made, which all belong to the protection scope of the present invention.
实施例1Example 1
一种二维共价有机框架量子点的制备及在双光子荧光成像中的应用,包括以下步骤:A preparation of a two-dimensional covalent organic framework quantum dot and its application in two-photon fluorescence imaging, comprising the following steps:
(1)二维共价有机框架(TAPBA-TFBPA-COF)材料的制备(1) Preparation of two-dimensional covalent organic framework (TAPBA-TFBPA-COF) materials
参阅图1,将三(4-氨基联苯基)胺(TAPBA,28mg,0.055mmol)和三(4-醛基基联苯基)胺(TFPBA,31mg,0.055mmol)加入至含有苯甲醚(0.9mL)和乙醇(0.9mL)的Schlenk管中。将该溶液超声5分钟使其均匀分散以获得黄色浑浊溶液。将6M乙酸水溶液(0.18mL)加入到Schlenk管中作为催化剂。使用液氮浴将Schlenk管快速冷冻在77K,并通过冻融脱气法脱气3次,待恢复室温后将Schlenk管放入120℃烘箱中静置3天。反应结束后,通过过滤分离出绿色固体产物,先在N,N-二甲基甲酰胺中浸泡6h,重复两次,然后在丙酮中浸泡6h,重复两次。待样品自然风干后,然后用四氢呋喃和丙酮分别索氏提取12h,以进一步活化样品,索氏提取结束后将样品转移到真空烘箱中,并在80℃下抽真空至20mTorr 24h,得到绿色粉末TAPBA-TFPBA-COF材料(产率:50.1mg,85%)。Referring to Fig. 1, tris (4-aminobiphenyl) amine (TAPBA, 28mg, 0.055mmol) and tris (4-formyl biphenyl) amine (TFPBA, 31mg, 0.055mmol) were added to the solution containing anisole (0.9mL) and ethanol (0.9mL) in a Schlenk tube. The solution was sonicated for 5 minutes to disperse evenly to obtain a yellow cloudy solution. Aqueous 6M acetic acid (0.18 mL) was added to the Schlenk tube as a catalyst. The Schlenk tube was quickly frozen at 77K using a liquid nitrogen bath, and degassed three times by freeze-thaw degassing. After returning to room temperature, the Schlenk tube was placed in an oven at 120°C for 3 days. After the reaction, the green solid product was separated by filtration, soaked in N,N-dimethylformamide for 6 hours, repeated twice, and then soaked in acetone for 6 hours, repeated twice. After the sample is naturally air-dried, it is then extracted with tetrahydrofuran and acetone for 12 hours to further activate the sample. After the Soxhlet extraction, the sample is transferred to a vacuum oven and vacuumed at 80°C to 20mTorr for 24 hours to obtain green powder TAPBA - TFPBA-COF material (yield: 50.1 mg, 85%).
(2)共价有机框架量子点(TAPBA-TFBPA-COF QDs)的制备(2) Preparation of covalent organic framework quantum dots (TAPBA-TFBPA-COF QDs)
将TABPA-TFBPA(13.5mg)加入3mL PF-127(Sigma-Aldrich,CAS:9003-11-6,Mn~12600g/mol)水溶液(4.95mg mL-1)中,然后用细胞粉碎机(P=350W)超声处理超过25h。之后,将反应溶液以2000rpm离心10min以除去大尺寸的残留物。将所得上清液在21000rpm下进一步离心15min,然后取下层固体用去离子水洗涤两次,得到TAPBA-TFPBA-COF QDs,分散在去离子水中以备后续使用。Add TABPA-TFBPA (13.5mg) into 3mL PF-127 (Sigma-Aldrich, CAS: 9003-11-6, Mn~12600g/mol) aqueous solution (4.95mg mL -1 ), and then use a cell disruptor (P = 350W) ultrasonic treatment over 25h. Afterwards, the reaction solution was centrifuged at 2000 rpm for 10 min to remove large-sized residues. The resulting supernatant was further centrifuged at 21,000 rpm for 15 min, and then the lower layer of solid was washed twice with deionized water to obtain TAPBA-TFPBA-COF QDs, which were dispersed in deionized water for subsequent use.
(3)产物表征与性能测试(3) Product characterization and performance testing
参阅图2,通过粉末X-射线衍射测量,TAPBA-TFBPA-COF在3.1,5.2,7.8度均出现衍射峰,证明了TAPBA-TFPBA-COF的成功合成。通过Materials Studio软件进行结构模拟,解析了TAPBA-TFPBA-COF的晶体结构,所对应的模拟结构产生的模拟PXRD图案与实验PXRD图案匹配良好,证明了结构的正确性。Referring to Figure 2, TAPBA-TFBPA-COF has diffraction peaks at 3.1, 5.2, and 7.8 degrees as measured by powder X-ray diffraction, which proves the successful synthesis of TAPBA-TFPBA-COF. The structure simulation was carried out by Materials Studio software, and the crystal structure of TAPBA-TFPBA-COF was analyzed. The simulated PXRD pattern generated by the corresponding simulated structure matched well with the experimental PXRD pattern, which proved the correctness of the structure.
参阅图3,傅里叶变换红外(FT-IR)光谱测试,通过对合成所需相关单体与对应产物TAPBA-TFPBA-COF的红外光谱图对比,产物在1623cm-1处产生了C=N键的特征拉伸震动,证明了TAPBA-TFPBA-COF的成功合成。Referring to Figure 3, Fourier transform infrared (FT-IR) spectrum test, by comparing the infrared spectrum of the relevant monomers required for synthesis with the corresponding product TAPBA-TFPBA-COF, the product produced C=N at 1623cm -1 The characteristic stretching vibration of the bond, demonstrates the successful synthesis of TAPBA-TFPBA-COF.
参阅图4,透射电子显微镜图显示所制备的TAPBA-TFPBA-COF为均匀的层状形貌。Referring to FIG. 4 , the transmission electron microscope image shows that the prepared TAPBA-TFPBA-COF has a uniform layered morphology.
参阅图5,透射电子显微镜图显示所制备的TAPBA-TFPBA-COF QDs为均匀分散的纳米颗粒,直径约在5nm左右。Referring to Figure 5, the transmission electron microscope image shows that the prepared TAPBA-TFPBA-COF QDs are uniformly dispersed nanoparticles with a diameter of about 5 nm.
参阅图6,通过不同波长光源激发下的荧光测试,显示了TAPBA-TFBPA-COF QDs具有典型的双光子荧光特性。Referring to Figure 6, through fluorescence tests excited by light sources of different wavelengths, it is shown that TAPBA-TFBPA-COF QDs have typical two-photon fluorescence characteristics.
参阅图7,通过不同波长光源激发下的双光子吸收横截面测试,显示了TAPBA-TFBPA-COF QDs在800nm激发波长下其双光子荧光吸收横截面达49GM。Referring to Figure 7, through the two-photon absorption cross-section test under the excitation of different wavelength light sources, it shows that the two-photon fluorescence absorption cross-section of TAPBA-TFBPA-COF QDs reaches 49GM at the excitation wavelength of 800nm.
以上所述实施例仅表达了本发明的较优实施方式,其描述较为具体和详细,但不能因此而理解为对本发明保护范围的限制。所述实施例的各技术特征可进行任意组合,为了表述简洁,未对上述实施例中的各技术特征所有可能的组合都进行描述,但只要所涉及的这些组合不存在矛盾,都应当认为是本说明书记载的范围。对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干修改和变化,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。The above-mentioned embodiments only express the preferred implementation modes of the present invention, and the description thereof is more specific and detailed, but should not be construed as limiting the protection scope of the present invention. The technical features of the embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above embodiments are not described, but as long as there is no contradiction in the combinations involved, they should be considered as the scope described in this manual. For those skilled in the art, without departing from the concept of the present invention, several modifications and changes can be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310008614.3A CN115975140A (en) | 2023-01-04 | 2023-01-04 | Two-dimensional covalent organic framework quantum dot, preparation method thereof and application thereof in two-photon fluorescence imaging |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310008614.3A CN115975140A (en) | 2023-01-04 | 2023-01-04 | Two-dimensional covalent organic framework quantum dot, preparation method thereof and application thereof in two-photon fluorescence imaging |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115975140A true CN115975140A (en) | 2023-04-18 |
Family
ID=85957749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310008614.3A Pending CN115975140A (en) | 2023-01-04 | 2023-01-04 | Two-dimensional covalent organic framework quantum dot, preparation method thereof and application thereof in two-photon fluorescence imaging |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115975140A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113004532A (en) * | 2021-02-22 | 2021-06-22 | 浙江大学 | Metamaterial based on covalent organic framework and application of metamaterial in optical device |
CN114761452A (en) * | 2020-09-24 | 2022-07-15 | 浙江大学 | Method for preparing hollow covalent organic framework material |
-
2023
- 2023-01-04 CN CN202310008614.3A patent/CN115975140A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114761452A (en) * | 2020-09-24 | 2022-07-15 | 浙江大学 | Method for preparing hollow covalent organic framework material |
CN113004532A (en) * | 2021-02-22 | 2021-06-22 | 浙江大学 | Metamaterial based on covalent organic framework and application of metamaterial in optical device |
Non-Patent Citations (2)
Title |
---|
KEYU GENG: "Covalent Organic Frameworks: Design, Synthesis, and Functions", CHEMICAL REVIEWS, vol. 120, no. 16, 26 August 2020 (2020-08-26), XP093141211, DOI: 10.1021/acs.chemrev.9b00550 * |
YANG LIU: "Rational design of a phenothiazine-based donor–acceptor covalent organic framework for enhanced photocatalytic oxidative coupling of amines and cyclization of thioamides", J. MATER. CHEM. A, vol. 11, no. 3, 18 November 2022 (2022-11-18), pages 1209 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019095751A1 (en) | Cellulose/two-dimensional layered material composite hydrogel and preparation method therefor | |
Yu et al. | Open-air preparation of cross-linked CO 2-responsive polymer vesicles by enzyme-assisted photoinitiated polymerization-induced self-assembly | |
Liu et al. | Preparation of graphene/poly (2-hydroxyethyl acrylate) nanohybrid materials via an ambient temperature “grafting-from” strategy | |
KR101610890B1 (en) | Carbon nanotube composite and method of matufacturing the same | |
CN110257060B (en) | Method, product and application for preparing carbon dots by using resveratrol | |
Metanawin et al. | Cytotoxicity and photocytotoxicity of structure-defined water-solubleC60/micelle supramolecular nanoparticles | |
JP5745616B2 (en) | Water-soluble fluorescent fullerene derivative and method for producing the same | |
CN110316719A (en) | A kind of MXene/ nitrogen-doped carbon nanometer pipe laminated film and preparation method thereof | |
CN101250325A (en) | Nano graphite flake/polyaniline composite rod material and preparation method thereof | |
CN110218313B (en) | A kind of preparation and application method of light-controlled fluorescent polymer nanoparticles | |
CN109970896B (en) | A method for constructing thermosensitive carbon nanotube composites based on carbon dot modification | |
CN101037504A (en) | Preparation method of size-controllable nano structural conductive polyaniline | |
CN111588852B (en) | Polypyrrole/manganese dioxide-methylene blue nano composite particle and preparation method thereof | |
CN112268882A (en) | Preparation method and application of a carbon dot-manganese dioxide nano-fluorescent probe for highly selective detection of glutathione | |
Huang et al. | Water-soluble fluorescent nanobowls constructed by multiple supramolecular assembly | |
CN111423596A (en) | A kind of traceable auxiliary agent and preparation method thereof | |
CN110257061A (en) | Method for preparing yellow fluorescence carbon dots using 2,3- diamino-pyridine and products thereof and application | |
CN101838344A (en) | Chitosan nanoparticle with fluorescence labeling characteristic and method for preparing same | |
CN115975140A (en) | Two-dimensional covalent organic framework quantum dot, preparation method thereof and application thereof in two-photon fluorescence imaging | |
CN113651911B (en) | Near-infrared two-region fluorescence imaging contrast agent prepared through atom transfer radical polymerization and application thereof | |
CN106807255A (en) | Three-dimensional structure TiO2Stannic oxide/graphene nano composite in-situ polymerization doped polyimide film and its preparation | |
CN110240146B (en) | A method for constructing pH-sensitive carbon nanotube composites based on carbon dot modification and its application | |
CN110317606B (en) | Method and product for preparing carbon dots by using bromoacetonitrile and imidazole compounds | |
CN102627783B (en) | Crosslinked polyethylene pyrrolidone-base fluorescent composite thin film and preparation method thereof | |
Yang et al. | Preparation of water-soluble multi-walled carbon nanotubes by Ce (IV)-induced redox radical polymerization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |