CN115966412A - Non-woven fabric composite diaphragm for supercapacitor and preparation method and application thereof - Google Patents
Non-woven fabric composite diaphragm for supercapacitor and preparation method and application thereof Download PDFInfo
- Publication number
- CN115966412A CN115966412A CN202211405219.0A CN202211405219A CN115966412A CN 115966412 A CN115966412 A CN 115966412A CN 202211405219 A CN202211405219 A CN 202211405219A CN 115966412 A CN115966412 A CN 115966412A
- Authority
- CN
- China
- Prior art keywords
- composite diaphragm
- base film
- ceramic
- woven
- woven composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Cell Separators (AREA)
Abstract
本发明涉及复合隔膜领域,尤其涉及一种超级电容器用无纺布复合隔膜及其制备方法和应用。无纺布复合隔膜结构至少包括:基膜,陶瓷颗粒层以及粘结层;其中,所述基膜的孔隙直径为0.1~10μm;所述基膜的厚度为10~40μm;所述基膜的孔隙率为50~80%。本发明提供的一种超级电容器用无纺布复合隔膜,具有优异的透气度以及针刺强度,并且还能够与电容器等极片具有良好的粘结性能,适宜电池复合隔膜领域推广,具有广阔的发展前景。
The invention relates to the field of composite diaphragms, in particular to a non-woven composite diaphragm for supercapacitors and a preparation method and application thereof. The non-woven composite diaphragm structure at least includes: a base film, a ceramic particle layer and a bonding layer; wherein, the pore diameter of the base film is 0.1-10 μm; the thickness of the base film is 10-40 μm; The porosity is 50-80%. The invention provides a non-woven composite diaphragm for supercapacitors, which has excellent air permeability and acupuncture strength, and can also have good bonding performance with capacitors and other pole pieces, and is suitable for promotion in the field of battery composite diaphragms, and has broad application potential. Prospects.
Description
技术领域technical field
本发明涉及复合隔膜领域,尤其涉及一种超级电容器用无纺布复合隔膜及其制备方法和应用。The invention relates to the field of composite diaphragms, in particular to a non-woven composite diaphragm for supercapacitors and a preparation method and application thereof.
背景技术Background technique
随着新能源汽车、轨道交通、新能船舶、智能电网的高速发展,人们迫切需要具有高能量密度、高功率密度和良好循环寿命的储能器件。其中,锂离子电池和超级电容器分别因其在能量密度和功率密度方面的优势,在储能领域发挥着极其重要的作用。随着应用市场需求的进一步扩大,迫切需要更高能量的快充型储能器件。因此体积能量更高的储能系统是将来市场的重大需求。With the rapid development of new energy vehicles, rail transit, new energy ships, and smart grids, there is an urgent need for energy storage devices with high energy density, high power density, and good cycle life. Among them, lithium-ion batteries and supercapacitors play an extremely important role in the field of energy storage due to their advantages in energy density and power density, respectively. With the further expansion of the application market demand, there is an urgent need for higher-energy fast-charging energy storage devices. Therefore, energy storage systems with higher volumetric energy will be a major demand in the future market.
从系统角度出发,对单体的尺寸要求也提出新的方向。但是对于系统来说,小尺寸的单体外壳、连接件等配件占的比例将增高,因此活性材料占比将下降,不利于系统的体积比能量和质量比能量。如果进一步加大加厚单体尺寸,可以进一步提升系统的紧凑度。但是单体尺寸的加大也会随之带来诸多问题,如何保证极片/隔膜/电解液界面的动力学和热力学的稳定性、减少电芯转移过程中隔膜和极片的损伤以及移位问题亟需解决。From the perspective of the system, a new direction is also proposed for the size requirements of the monomer. However, for the system, the proportion of small-sized single shells, connectors and other accessories will increase, so the proportion of active materials will decrease, which is not conducive to the volume specific energy and mass specific energy of the system. If the size of the thickened monomer is further increased, the compactness of the system can be further improved. However, the increase in the size of the monomer will also bring many problems. How to ensure the dynamic and thermodynamic stability of the pole piece/diaphragm/electrolyte interface, and reduce the damage and displacement of the diaphragm and pole piece during the cell transfer process The problem needs to be solved urgently.
现有技术CN103199209A和CN112259911A也公开了制备陶瓷/无纺布复合隔膜的方法,但这些方法都只解决了无纺布隔膜孔径大,自放电大和短路率高的问题,并没有改善隔膜/极片的界面和粘接力,也未针对大尺寸电芯隔膜和极片移位提出解决方案。Prior art CN103199209A and CN112259911A also disclose the method for preparing ceramic/non-woven composite diaphragm, but these methods only solve the problem of large aperture of non-woven diaphragm, large self-discharge and high short-circuit rate, and do not improve diaphragm/pole piece The interface and adhesion force, and no solution has been proposed for the displacement of large-scale cell diaphragm and pole piece.
因此,本申请提供了一种能够解决上述技术问题的超级电容器用无纺布复合隔膜。Therefore, the application provides a non-woven composite separator for supercapacitors that can solve the above technical problems.
发明内容Contents of the invention
为了解决上述问题,本发明第一方面提供了一种超级电容器用无纺布复合隔膜,所述无纺布复合隔膜结构至少包括:基膜,陶瓷颗粒层以及粘结层;其中,所述基膜的孔隙直径为0.1~10μm;所述基膜的厚度为10~40μm;所述基膜的孔隙率为50~80%。In order to solve the above problems, the first aspect of the present invention provides a non-woven composite diaphragm for supercapacitors, the non-woven composite diaphragm structure at least includes: a base film, a ceramic particle layer and a bonding layer; wherein the base The pore diameter of the membrane is 0.1-10 μm; the thickness of the base membrane is 10-40 μm; the porosity of the base membrane is 50-80%.
作为一种优选的方案,所述基膜的孔隙直径为1~5μm;所述基膜的厚度为20~30μm;所述基膜的孔隙率为60~70%。As a preferred solution, the pore diameter of the base film is 1-5 μm; the thickness of the base film is 20-30 μm; the porosity of the base film is 60-70%.
作为一种优选的方案,所述基膜为无纺布基膜;所述无纺布基膜的材质为纤维素、聚对苯二甲酸乙二醇酯、芳纶、聚酰亚胺、氨纶、羧甲基纤维素、羟甲基纤维素、聚丙烯腈、聚对苯二甲酸丁二酯、聚酰胺中的至少一种。As a preferred solution, the base film is a non-woven base film; the material of the non-woven base film is cellulose, polyethylene terephthalate, aramid fiber, polyimide, spandex , carboxymethyl cellulose, hydroxymethyl cellulose, polyacrylonitrile, polybutylene terephthalate, polyamide at least one.
作为一种优选的方案,所述无纺布基膜的材质为纤维素、聚对苯二甲酸乙二醇酯、芳纶、聚酰亚胺中的任一种。As a preferred solution, the material of the non-woven fabric base film is any one of cellulose, polyethylene terephthalate, aramid, and polyimide.
作为一种优选的方案,所述无纺布基膜的材质为聚对苯二甲酸乙二醇酯。As a preferred solution, the material of the non-woven fabric base film is polyethylene terephthalate.
作为一种优选的方案,所述陶瓷颗粒层中成分至少包括陶瓷颗粒,所述陶瓷颗粒为氧化铝、二氧化钛,二氧化硅、勃姆石、二氧化锆、氧化锌、二氧化锡、氧化镁、氧化钙中的至少一种;所述陶瓷颗粒的平均粒径为0.1~1μm。As a preferred solution, the components in the ceramic particle layer at least include ceramic particles, and the ceramic particles are aluminum oxide, titanium dioxide, silicon dioxide, boehmite, zirconium dioxide, zinc oxide, tin dioxide,
作为一种优选的方案,所述陶瓷颗粒为氧化铝和/或二氧化硅;所述陶瓷颗粒的平均粒径为0.3~0.6μm。As a preferred solution, the ceramic particles are alumina and/or silicon dioxide; the average particle size of the ceramic particles is 0.3-0.6 μm.
作为一种优选的方案,所述粘结层的组成成分中至少包括聚合物颗粒,所述聚合物颗粒为聚偏氟乙烯-六氟丙烯共聚物、聚甲基丙烯酸甲酯、AFL、聚乙烯醇中的至少一种;所述聚合物颗粒的平均粒径为1~10μm。As a preferred solution, the composition of the bonding layer at least includes polymer particles, and the polymer particles are polyvinylidene fluoride-hexafluoropropylene copolymer, polymethyl methacrylate, AFL, polyethylene At least one of alcohols; the average particle diameter of the polymer particles is 1-10 μm.
作为一种优选的方案,所述聚合物颗粒为聚偏氟乙烯-六氟丙烯共聚物颗粒和/或聚甲基丙烯酸甲酯颗粒;所述聚合物颗粒的平均粒径为2~6μm。As a preferred solution, the polymer particles are polyvinylidene fluoride-hexafluoropropylene copolymer particles and/or polymethyl methacrylate particles; the average particle diameter of the polymer particles is 2-6 μm.
作为一种优选的方案,所述陶瓷颗粒层的成分包括,以质量百分计:20~40%陶瓷颗粒,0~5%分散剂,0~5%增稠剂,0~5%湿润剂,0.1~4%粘结剂,去离子水补充余量。As a preferred solution, the composition of the ceramic particle layer includes, by mass percentage: 20-40% ceramic particles, 0-5% dispersant, 0-5% thickener, 0-5% wetting agent , 0.1 ~ 4% binder, deionized water to make up the balance.
作为一种优选的方案,所述陶瓷颗粒与粘结剂的质量比为25~35:2~5。As a preferred solution, the mass ratio of the ceramic particles to the binder is 25-35:2-5.
作为一种优选的方案,所述陶瓷颗粒与粘结剂的质量比为32:2.5。As a preferred solution, the mass ratio of the ceramic particles to the binder is 32:2.5.
作为一种优选的方案,所述粘结层的成分包括,以质量百分计:5~20%聚合物颗粒,0~5%分散剂,0~5%增稠剂,0~5%湿润剂,0.2~2%粘结剂,去离子水补充余量。As a preferred solution, the composition of the adhesive layer includes, in mass percent: 5-20% polymer particles, 0-5% dispersant, 0-5% thickener, 0-5% wetting agent, 0.2-2% binder, and deionized water to make up the balance.
作为一种优选的方案,所述聚合物颗粒与粘结剂的质量比为6~12:1~1.5。As a preferred solution, the mass ratio of the polymer particles to the binder is 6-12:1-1.5.
作为一种优选的方案,所述聚合物颗粒与粘结剂的质量比为8.5:1.1。As a preferred solution, the mass ratio of the polymer particles to the binder is 8.5:1.1.
作为一种优选的方案,所述粘结剂为聚丙烯酸酯;所述聚丙烯酸酯的水分含量为0.05~0.1%。As a preferred solution, the binder is polyacrylate; the moisture content of the polyacrylate is 0.05-0.1%.
作为一种优选的方案,所述分散剂为聚乙烯吡咯烷酮、聚乙二醇、聚氧化乙烯、聚丙烯酸盐中的至少一种。As a preferred solution, the dispersant is at least one of polyvinylpyrrolidone, polyethylene glycol, polyethylene oxide and polyacrylate.
作为一种优选的方案,所述分散剂为聚乙烯吡咯烷酮。As a preferred solution, the dispersant is polyvinylpyrrolidone.
作为一种优选的方案,所述增稠剂为羧甲基纤维素钠、甲基纤维素、羟丙基甲基纤维素、聚丙烯酰胺、聚乙烯吡咯烷酮、聚乙烯醇、聚氧化乙烯、聚丙烯酸、聚丙烯酸盐中的至少一种。As a preferred scheme, the thickener is sodium carboxymethyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose, polyacrylamide, polyvinylpyrrolidone, polyvinyl alcohol, polyethylene oxide, poly At least one of acrylic acid and polyacrylate.
作为一种优选的方案,所述湿润剂为聚硅氧烷季铵盐、聚氧乙烯醚、硫醇缩醛中的至少一种。As a preferred solution, the wetting agent is at least one of polysiloxane quaternary ammonium salt, polyoxyethylene ether, and thiol acetal.
作为一种优选的方案,所述湿润剂为聚硅氧烷季铵盐。As a preferred solution, the wetting agent is polysiloxane quaternary ammonium salt.
作为一种优选的方案,所述陶瓷颗粒层的厚度为1~3μm;所述粘结层的厚度为1~3μm。As a preferred solution, the thickness of the ceramic particle layer is 1-3 μm; the thickness of the bonding layer is 1-3 μm.
本发明第二方面提供了一种上述超级电容器用无纺布复合隔膜的制备方法,步骤包括以下几步:(1)将陶瓷颗粒层所需成分混合搅拌得第一浆料;(2)将第一浆料涂覆在基膜两侧,得陶瓷/基膜复合隔膜;(3)将陶瓷/基膜复合隔膜用1~5MPa的压力室温25℃冷压10s~5min;(4)将粘结层所需成分混合搅拌得第二浆料;(5)将第二浆料涂覆在陶瓷/基膜复合隔膜两侧,即得。The second aspect of the present invention provides a method for preparing the above-mentioned non-woven composite separator for supercapacitors, the steps include the following steps: (1) mixing and stirring the required components of the ceramic particle layer to obtain the first slurry; (2) mixing The first slurry is coated on both sides of the base film to obtain a ceramic/base film composite diaphragm; (3) the ceramic/base film composite diaphragm is cold-pressed at room temperature at 25°C for 10 seconds to 5 minutes at a pressure of 1 to 5 MPa; (4) the adhesive Mix and stir the required components of the layer to obtain the second slurry; (5) coat the second slurry on both sides of the ceramic/base membrane composite diaphragm to obtain.
本发明第三方面提供了一种上述超级电容器用无纺布复合隔膜的应用,包括该无纺布复合隔膜在超级电容器以及快充型电力储能期间中的应用。The third aspect of the present invention provides an application of the above-mentioned non-woven composite diaphragm for supercapacitors, including the application of the non-woven composite diaphragm in supercapacitors and fast-charging electric energy storage periods.
有益效果:Beneficial effect:
1、本申请中通过选用特定粒径下的聚合物粘结颗粒以及陶瓷颗粒对于无纺布进行涂覆制备,能够有效的制备过程中将陶瓷颗粒填充到无纺布基膜的空隙中,在无纺布基膜的自放电大和短路率高的问题的同时,还能够协同作用进一步涂覆的大粒径的粘结性聚合物颗粒,通过热压实现无纺布复合隔膜与极片的粘接,改善了隔膜和极片的界面,提高隔膜和极片之间粘接力,减少大尺寸电芯隔膜和极片移位,从而提高大功率储能器件的容量、寿命和安全性。1. In this application, by selecting polymer bonding particles and ceramic particles with a specific particle size to coat the non-woven fabric, the ceramic particles can be effectively filled into the gaps of the non-woven fabric base film during the preparation process, and the In addition to the problems of large self-discharge and high short-circuit rate of the non-woven base film, it can also cooperate with the further coated large-size adhesive polymer particles to realize the adhesion of the non-woven composite separator and the pole piece by hot pressing. The interface between the diaphragm and the pole piece is improved, the adhesion between the diaphragm and the pole piece is improved, and the displacement of the diaphragm and the pole piece of the large-sized cell is reduced, thereby improving the capacity, life and safety of the high-power energy storage device.
2、本申请中提供的一种复合隔膜,通过优先涂覆陶瓷颗粒后涂覆粘结性聚合物颗粒的工艺顺序,除了能够有效的减少而来聚合物颗粒的用量,提高无纺布隔膜表面粘结性的同时,还给予了无纺布复合隔膜具备良好的吸液能力,热稳定性,穿刺强度和低透气度,使其能够更适合高功率快充型储能器件以及超级电容器,具有优异的适用性,界面一致性以及使用寿命。2. A composite diaphragm provided in this application, through the process sequence of first coating ceramic particles and then coating cohesive polymer particles, in addition to effectively reducing the amount of polymer particles, improving the surface of the non-woven diaphragm At the same time of adhesion, the non-woven composite separator also has good liquid absorption capacity, thermal stability, puncture strength and low air permeability, making it more suitable for high-power fast-charging energy storage devices and supercapacitors. Excellent applicability, interface consistency and service life.
附图说明Description of drawings
图1为本申请提供的复合隔膜的结构示意图。Fig. 1 is a schematic structural diagram of the composite diaphragm provided by the present application.
图中:1-基膜、2-陶瓷颗粒层、3-粘结层。In the figure: 1-base film, 2-ceramic particle layer, 3-bonding layer.
具体实施方式Detailed ways
实施例1Example 1
实施例1第一方面提供了一种超级电容器用无纺布复合隔膜,所述无纺布复合隔膜结构至少包括:基膜,陶瓷颗粒层以及粘结层;其中,所述基膜的孔隙直径为2.5μm;所述基膜的厚度为25μm;所述基膜的孔隙率为65%。
基膜为无纺布基膜,其材质为聚对苯二甲酸乙二醇酯。The base film is a non-woven base film made of polyethylene terephthalate.
陶瓷颗粒层的成分包括,以质量百分计:32%陶瓷颗粒,0.2%分散剂,0.2%增稠剂,0.1%湿润剂,2.5%粘结剂,去离子水补充余量。The composition of the ceramic particle layer includes, by mass percentage: 32% ceramic particles, 0.2% dispersant, 0.2% thickener, 0.1% wetting agent, 2.5% binder, and deionized water to make up the balance.
粘结层的成分包括,以质量百分计:8.5%聚合物颗粒,0.15%分散剂,0.15%增稠剂,0.1%湿润剂,1.1%粘结剂,去离子水补充余量。The composition of the bonding layer includes, by mass percentage: 8.5% polymer particles, 0.15% dispersant, 0.15% thickener, 0.1% wetting agent, 1.1% binder, and deionized water to make up the balance.
陶瓷颗粒为平均粒径为0.5μm的氧化铝颗粒;聚合物颗粒为2μm的聚偏氟乙烯-六氟丙烯共聚物颗粒。The ceramic particles are alumina particles with an average particle size of 0.5 μm; the polymer particles are polyvinylidene fluoride-hexafluoropropylene copolymer particles with a diameter of 2 μm.
分散剂为聚乙烯吡咯烷酮;增稠剂为羧甲基纤维素钠;湿润剂为聚硅氧烷季铵盐。粘结剂为聚丙烯酸酯,水分含量小于0.1%。The dispersant is polyvinylpyrrolidone; the thickener is sodium carboxymethyl cellulose; the wetting agent is polysiloxane quaternary ammonium salt. The binder is polyacrylate, and the moisture content is less than 0.1%.
陶瓷颗粒层的厚度为2.5μm;粘结层的厚度为1.5μm。The thickness of the ceramic particle layer is 2.5 μm; the thickness of the bonding layer is 1.5 μm.
实施例1第二方面提供了一种超级电容器用无纺布复合隔膜的制备方法,步骤包括以下几步:(1)将陶瓷颗粒层所需成分混合搅拌得第一浆料;(2)将第一浆料涂覆在基膜两侧,得陶瓷/基膜复合隔膜;(3)将陶瓷/基膜复合隔膜用4.5MPa的压力室温25℃冷压2min;(4)将粘结层所需成分混合搅拌得第二浆料;(5)将第二浆料涂覆在陶瓷/基膜复合隔膜两侧,即得。The second aspect of
实施例2Example 2
本实施例具体实施方式与实施例1一致,不同之处在于:26.5%陶瓷颗粒,0.25%分散剂,0.25%增稠剂,0.1%湿润剂,2.9%粘结剂,去离子水补充余量;其中陶瓷颗粒为平均粒径为0.3μm的二氧化硅。The specific implementation of this example is consistent with Example 1, the difference is: 26.5% ceramic particles, 0.25% dispersant, 0.25% thickener, 0.1% wetting agent, 2.9% binder, deionized water to supplement the balance ; Among them, the ceramic particles are silicon dioxide with an average particle size of 0.3 μm.
粘结层的成分包括,以质量百分计:10%聚合物颗粒,0.15%分散剂,0.15%增稠剂,0.1%湿润剂,1.1%粘结剂,去离子水补充余量;其中聚合物颗粒为平均粒径3μm的聚甲基丙烯酸甲酯颗粒。The composition of the bonding layer includes, in mass percentage: 10% polymer particles, 0.15% dispersant, 0.15% thickener, 0.1% wetting agent, 1.1% binder, and deionized water to supplement the balance; The particles are polymethyl methacrylate particles with an average particle size of 3 μm.
实施例3Example 3
本实施例具体实施方式与实施例1一致,不同之处在于:35%陶瓷颗粒,0.25%分散剂,0.2%增稠剂,0.15%湿润剂,3.4%粘结剂,去离子水补充余量;其中陶瓷颗粒为平均粒径为0.6μm的二氧化硅。The specific implementation of this example is consistent with Example 1, the difference is: 35% ceramic particles, 0.25% dispersant, 0.2% thickener, 0.15% wetting agent, 3.4% binder, deionized water to supplement the balance ; Among them, the ceramic particles are silicon dioxide with an average particle size of 0.6 μm.
粘结层的成分包括,以质量百分计:6%聚合物颗粒,0.15%分散剂,0.15%增稠剂,0.1%湿润剂,1.1%粘结剂,去离子水补充余量;其中聚合物颗粒为平均粒径6μm的聚甲基丙烯酸甲酯颗粒The composition of the bonding layer includes, by mass percentage: 6% polymer particles, 0.15% dispersant, 0.15% thickener, 0.1% wetting agent, 1.1% binder, and deionized water to supplement the balance; The particles are polymethyl methacrylate particles with an average particle size of 6 μm
对比例1Comparative example 1
本对比例的具体实施方式同实施例1,不同之处在于:复合隔膜的制备过程中不包括步骤(3)。The specific implementation of this comparative example is the same as that of Example 1, except that step (3) is not included in the preparation process of the composite diaphragm.
对比例2Comparative example 2
本对比例的具体实施方式同实施例1,不同之处在于:聚合物颗粒为0.2μm的聚偏氟乙烯-六氟丙烯共聚物颗粒。The specific implementation of this comparative example is the same as that of Example 1, except that the polymer particles are 0.2 μm polyvinylidene fluoride-hexafluoropropylene copolymer particles.
对比例3Comparative example 3
本对比例的具体实施方式同实施例1,不同之处在于:陶瓷颗粒为5μm的氧化铝颗粒。The specific implementation of this comparative example is the same as that of Example 1, except that the ceramic particles are 5 μm alumina particles.
对比例4Comparative example 4
本对比例的具体实施方式同实施例1,不同之处在于:聚合物颗粒为0.2μm的聚偏氟乙烯-六氟丙烯共聚物颗粒,陶瓷颗粒为5μm的氧化铝颗粒。The specific implementation of this comparative example is the same as that of Example 1, except that the polymer particles are 0.2 μm polyvinylidene fluoride-hexafluoropropylene copolymer particles, and the ceramic particles are 5 μm alumina particles.
性能评价performance evaluation
透气度:按照GB/T36363-2018测试方法进行测试,每个实施例对比例测试5个试样,测得的数值的平均值记入表1。Air permeability: Tested according to the GB/T36363-2018 test method, 5 samples were tested in each embodiment, and the average value of the measured values was recorded in Table 1.
针刺强度:按照GB/T36363-2018测试方法进行测试,每个实施例对比例测试5个试样,测得的数值的平均值记入表1。Acupuncture strength: Tested according to the GB/T36363-2018 test method, 5 samples were tested in each embodiment, and the average value of the measured values was recorded in Table 1.
隔膜与负极片的粘结强度:按照GB/T2792-2014测试方法进行测试,每个实施例对比例测试5个试样,测得的数值的平均值记入表1。The bond strength between the separator and the negative electrode sheet: the test was carried out according to the GB/T2792-2014 test method, and 5 samples were tested for each example and comparative example, and the average value of the measured values was recorded in Table 1.
表1Table 1
通过实施例1~3、对比例1~4和表1可以得知,本发明提供的一种超级电容器用无纺布复合隔膜,具有优异的透气度以及针刺强度,并且还能够与电容器等极片具有良好的粘结性能,适宜电池复合隔膜领域推广,具有广阔的发展前景。It can be known from Examples 1 to 3, Comparative Examples 1 to 4 and Table 1 that a nonwoven composite separator for a supercapacitor provided by the present invention has excellent air permeability and acupuncture strength, and can also be used with capacitors, etc. The pole piece has good bonding performance, is suitable for promotion in the field of battery composite separators, and has broad development prospects.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211405219.0A CN115966412A (en) | 2022-11-10 | 2022-11-10 | Non-woven fabric composite diaphragm for supercapacitor and preparation method and application thereof |
PCT/CN2023/128158 WO2024099164A1 (en) | 2022-11-10 | 2023-10-31 | Non-woven composite separator for supercapacitor, and preparation method therefor and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211405219.0A CN115966412A (en) | 2022-11-10 | 2022-11-10 | Non-woven fabric composite diaphragm for supercapacitor and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115966412A true CN115966412A (en) | 2023-04-14 |
Family
ID=87356877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211405219.0A Pending CN115966412A (en) | 2022-11-10 | 2022-11-10 | Non-woven fabric composite diaphragm for supercapacitor and preparation method and application thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115966412A (en) |
WO (1) | WO2024099164A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024099164A1 (en) * | 2022-11-10 | 2024-05-16 | 上海奥威科技开发有限公司 | Non-woven composite separator for supercapacitor, and preparation method therefor and use thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108123089A (en) * | 2017-12-12 | 2018-06-05 | 上海恩捷新材料科技股份有限公司 | Isolation film and electrochemical appliance |
CN112259911A (en) * | 2020-09-30 | 2021-01-22 | 上海恩捷新材料科技有限公司 | Electrochemical device, novel non-woven fabric ceramic diaphragm and preparation method thereof |
CN113394516A (en) * | 2021-05-25 | 2021-09-14 | 惠州锂威电子科技有限公司 | Lithium ion battery diaphragm, preparation method thereof and lithium ion battery |
CN113451708A (en) * | 2020-03-26 | 2021-09-28 | 广州汽车集团股份有限公司 | Functional coating diaphragm and preparation method thereof, lithium ion battery cell, lithium ion battery pack and application thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101236842A (en) * | 2008-02-02 | 2008-08-06 | 上海奥威科技开发有限公司 | An electric chemical super capacitor |
WO2018057416A1 (en) * | 2016-09-23 | 2018-03-29 | Global Energy Science, Llc | Ultralow resistance electrodes for electrochemical cells |
CN107910476B (en) * | 2017-11-06 | 2021-09-03 | 上海恩捷新材料科技有限公司 | Ceramic composite lithium ion battery diaphragm and preparation method thereof |
CN110350214B (en) * | 2019-07-11 | 2021-02-02 | 佛山市金辉高科光电材料股份有限公司 | Zinc-air battery diaphragm and preparation method thereof |
CN115966412A (en) * | 2022-11-10 | 2023-04-14 | 上海奥威科技开发有限公司 | Non-woven fabric composite diaphragm for supercapacitor and preparation method and application thereof |
-
2022
- 2022-11-10 CN CN202211405219.0A patent/CN115966412A/en active Pending
-
2023
- 2023-10-31 WO PCT/CN2023/128158 patent/WO2024099164A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108123089A (en) * | 2017-12-12 | 2018-06-05 | 上海恩捷新材料科技股份有限公司 | Isolation film and electrochemical appliance |
CN113451708A (en) * | 2020-03-26 | 2021-09-28 | 广州汽车集团股份有限公司 | Functional coating diaphragm and preparation method thereof, lithium ion battery cell, lithium ion battery pack and application thereof |
CN112259911A (en) * | 2020-09-30 | 2021-01-22 | 上海恩捷新材料科技有限公司 | Electrochemical device, novel non-woven fabric ceramic diaphragm and preparation method thereof |
CN113394516A (en) * | 2021-05-25 | 2021-09-14 | 惠州锂威电子科技有限公司 | Lithium ion battery diaphragm, preparation method thereof and lithium ion battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024099164A1 (en) * | 2022-11-10 | 2024-05-16 | 上海奥威科技开发有限公司 | Non-woven composite separator for supercapacitor, and preparation method therefor and use thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2024099164A1 (en) | 2024-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4131497A1 (en) | Lithium iron phosphate positive electrode sheet, preparation method therefor, and lithium iron phosphate lithium-ion battery | |
CN113451708A (en) | Functional coating diaphragm and preparation method thereof, lithium ion battery cell, lithium ion battery pack and application thereof | |
WO2023123751A1 (en) | Coated diaphragm and preparation method therefor | |
CN107528038B (en) | Mixed slurry for preparing composite diaphragm and preparation method of composite diaphragm | |
CN111525185A (en) | Flexible zinc ion battery polymer electrolyte and preparation and application thereof | |
CN110323391B (en) | Polymer diaphragm and preparation method thereof, dispersion, lithium ion battery and preparation method thereof | |
CN108933215B (en) | Graphene/cellulose composite material-containing slurry for battery, and preparation method and application thereof | |
WO2022068178A1 (en) | Electrochemical device, new non-woven fabric ceramic separator, and preparation method therefor | |
CN111916629B (en) | Composite solid electrolyte separator and preparation method and application thereof | |
CN115394961A (en) | Lithium iron phosphate thick electrode and preparation method and application thereof | |
WO2024099164A1 (en) | Non-woven composite separator for supercapacitor, and preparation method therefor and use thereof | |
CN114276159A (en) | Preparation method of porous alumina ceramic and preparation method of lithium ion battery diaphragm | |
CN117497835A (en) | Solid-state battery cell, preparation method thereof and solid-state battery | |
CN105870489A (en) | Single large-capacity polymer lithium-ion battery manufacturing method and assembling method thereof | |
JP2025506057A (en) | Lithium iron phosphate positive electrode active material, positive electrode sheet and lithium ion battery | |
CN114597590A (en) | Special edge-coated diaphragm and application thereof | |
CN114976492A (en) | High-cohesiveness polymer composite coating diaphragm and preparation method thereof | |
CN112795247B (en) | A kind of high-viscosity PVDF coated diaphragm and preparation method thereof | |
WO2025044731A1 (en) | Electrode sheet and battery | |
CN114552129A (en) | Two-sided differentiation lithium cell diaphragm and contain lithium cell of this diaphragm | |
CN113991074A (en) | Ultralow-temperature lithium manganate battery | |
CN113782705A (en) | Positive plate of lithium ion battery, preparation method of positive plate and lithium ion battery | |
CN113328063A (en) | Lithium battery pole piece and preparation method and application thereof | |
CN113363670A (en) | Diaphragm and lithium ion battery comprising same | |
CN115842217A (en) | Ion-electron-coated mixed conductor diaphragm and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |