CN115959906A - A strontium niobate-based perovskite layered structure lead-free piezoelectric ceramic and its preparation method - Google Patents
A strontium niobate-based perovskite layered structure lead-free piezoelectric ceramic and its preparation method Download PDFInfo
- Publication number
- CN115959906A CN115959906A CN202111193216.0A CN202111193216A CN115959906A CN 115959906 A CN115959906 A CN 115959906A CN 202111193216 A CN202111193216 A CN 202111193216A CN 115959906 A CN115959906 A CN 115959906A
- Authority
- CN
- China
- Prior art keywords
- layered structure
- piezoelectric ceramic
- based perovskite
- free piezoelectric
- structure lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 77
- VIUKNDFMFRTONS-UHFFFAOYSA-N distrontium;niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Sr+2].[Sr+2].[Nb+5].[Nb+5] VIUKNDFMFRTONS-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000000203 mixture Substances 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 4
- 239000000843 powder Substances 0.000 claims description 24
- 238000000498 ball milling Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 16
- 238000005245 sintering Methods 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 12
- 230000015556 catabolic process Effects 0.000 claims description 11
- 239000011230 binding agent Substances 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 238000009413 insulation Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 5
- 229920003023 plastic Polymers 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 239000002033 PVDF binder Substances 0.000 claims description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 10
- 230000007812 deficiency Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000000227 grinding Methods 0.000 description 5
- 229910001427 strontium ion Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910003237 Na0.5Bi0.5TiO3 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- WFPQISQTIVPXNY-UHFFFAOYSA-N niobium strontium Chemical compound [Sr][Nb] WFPQISQTIVPXNY-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000002490 spark plasma sintering Methods 0.000 description 1
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及一种铌酸锶基钙钛矿层状结构无铅压电陶瓷材料及其制备方法,属于压电陶瓷材料的制备领域。The invention relates to a strontium niobate-based perovskite layered structure lead-free piezoelectric ceramic material and a preparation method thereof, belonging to the field of preparation of piezoelectric ceramic materials.
背景技术Background Art
高温压电振动传感器在我国航空发动机的进气涵道、机匣、涡轮叶片,以及核反堆的燃料组件、控制棒、冷却管道等关键部件的工作状态监测方面,具有不可替代的重要作用,但国内这一方面却是空白。因此,我国急需自主开发高稳定高温压电振动传感器,打破国际技术封锁的垄断局面。压电材料是高温压电振动传感器的核心敏感材料。我国研制的高温压电陶瓷材料已基本能满足260℃和482℃压电振动传感器的使用要求,但是对更高温度650℃及以上高温压电陶瓷材料的研究还相当少,极大制约了我国高温压电振动传感器的研制进程。钙钛矿层状结构压电陶瓷由于具有高稳定稳定性和高的高温电阻率等特点,是650℃及以上高温振动传感器的重要候选材料。High-temperature piezoelectric vibration sensors play an irreplaceable and important role in monitoring the working status of key components such as the intake duct, casing, turbine blades of my country's aviation engines, as well as the fuel assemblies, control rods, cooling pipes of nuclear reactors, but this aspect is blank in China. Therefore, my country urgently needs to independently develop high-stability high-temperature piezoelectric vibration sensors to break the monopoly of international technology blockade. Piezoelectric materials are the core sensitive materials of high-temperature piezoelectric vibration sensors. The high-temperature piezoelectric ceramic materials developed in my country can basically meet the use requirements of 260℃ and 482℃ piezoelectric vibration sensors, but there is still little research on high-temperature piezoelectric ceramic materials at higher temperatures of 650℃ and above, which greatly restricts the development process of high-temperature piezoelectric vibration sensors in my country. Perovskite layered structure piezoelectric ceramics are important candidate materials for high-temperature vibration sensors of 650℃ and above due to their high stability and high high-temperature resistivity.
然而,钙钛矿层状压电陶瓷研制面临的主要问题包括:(1)介电击穿场强相对矫顽场强较低,压电陶瓷难以极化;(2)压电系数偏低这些因素极大地制约了钙钛矿层状压电陶瓷在高温压电振动传感器领域中的应用。However, the main problems faced in the development of perovskite layered piezoelectric ceramics include: (1) the dielectric breakdown field strength is relatively low relative to the coercive field strength, and the piezoelectric ceramics are difficult to polarize; (2) the piezoelectric coefficient is relatively low. These factors greatly restrict the application of perovskite layered piezoelectric ceramics in the field of high-temperature piezoelectric vibration sensors.
目前,本领域采用固溶第二组元、离子掺杂优化组成设计以及织构化工艺调控微结构等手段来提高钙钛矿层状结构压电陶瓷材料的压电性。如通过将钙钛矿结构的Na0.5Bi0.5TiO3压电陶瓷引入到Sr2Nb2O7中,将压电系数度d33提高至1.0pC/N;通过织构化放电等离子体烧结工艺调节微结构后,可使钙钛矿结构压电陶瓷的压电系数d33提高1.5pC/N。但是,织构化工艺如热压、热锻、快速等离子体烧结等手段,工艺较为复杂、重复性较差。虽然通过离子掺杂、固溶第二组元以及工艺改进等方式一定程度上提高了钙钛矿层状结构压电陶瓷的压电性能,但是压电系数仍然偏小。因此,如何在保持钙钛矿层状结构压电陶瓷高温电阻率的同时,提高钙钛矿层状结构材料的介电击穿场强和压电系数,是高温压电陶瓷应用领域的研究重点和关键难题。At present, the piezoelectricity of perovskite layered piezoelectric ceramic materials is improved by solid solution of the second component, ion doping to optimize the composition design, and texturing process to control the microstructure. For example, by introducing the perovskite structure Na 0.5 Bi 0.5 TiO 3 piezoelectric ceramics into Sr 2 Nb 2 O 7 , the piezoelectric coefficient d 33 is increased to 1.0pC/N; after adjusting the microstructure through the texturing spark plasma sintering process, the piezoelectric coefficient d 33 of the perovskite structure piezoelectric ceramic can be increased by 1.5pC/N. However, texturing processes such as hot pressing, hot forging, rapid plasma sintering, etc. are relatively complex and have poor repeatability. Although the piezoelectric properties of perovskite layered piezoelectric ceramics have been improved to a certain extent by ion doping, solid solution of the second component, and process improvement, the piezoelectric coefficient is still relatively small. Therefore, how to improve the dielectric breakdown field strength and piezoelectric coefficient of perovskite layered structure materials while maintaining the high-temperature resistivity of perovskite layered structure piezoelectric ceramics is the research focus and key problem in the application field of high-temperature piezoelectric ceramics.
发明内容Summary of the invention
针对上述问题,为了保持保持钙钛矿层状结构压电陶瓷高温电阻率的同时,协同提高其压电系数,本发明提供了一种基于非化学计量比的A位Sr离子缺量的方法,通过调整钙钛矿层状结构中氧八面体的倾斜和旋转以及禁带宽度大小,获得了一种具有高压电系数、高介电击穿场强和高的高温电阻率的无铅高温压电陶瓷,以满足高温压电振动传感器用高温压电陶瓷材料的要求,为钙钛矿层状结构压电陶瓷材料在650℃及以上高温领域的应用起到了推进作用。In view of the above problems, in order to maintain the high-temperature resistivity of perovskite layered structure piezoelectric ceramics and synergistically improve their piezoelectric coefficient, the present invention provides a method based on non-stoichiometric A-site Sr ion deficiency, by adjusting the inclination and rotation of the oxygen octahedron in the perovskite layered structure and the size of the bandgap width, a lead-free high-temperature piezoelectric ceramic with a high piezoelectric coefficient, a high dielectric breakdown field strength and a high high-temperature resistivity is obtained, which meets the requirements of high-temperature piezoelectric ceramic materials for high-temperature piezoelectric vibration sensors and promotes the application of perovskite layered structure piezoelectric ceramic materials in high-temperature fields of 650°C and above.
一方面,本发明提供了一种铌酸锶基钙钛矿层状结构无铅压电陶瓷,所述铌酸锶基钙钛矿层状结构无铅压电陶瓷的化学组成为Sr2-xNb2O7,其中0<x≤0.16。In one aspect, the present invention provides a strontium niobate-based perovskite layered structure lead-free piezoelectric ceramic, wherein the chemical composition of the strontium niobate-based perovskite layered structure lead-free piezoelectric ceramic is Sr 2-x Nb 2 O 7 , wherein 0<x≤0.16.
本发明的基于非化学计量比的A位Sr离子缺量的钙钛矿层状结构压电陶瓷材料压电性能、电阻性能以及击穿性能均优异,可望应用于温度高于650℃及以上的高温领域。The perovskite layered structure piezoelectric ceramic material based on non-stoichiometric ratio of A-site Sr ion deficiency of the present invention has excellent piezoelectric properties, resistance properties and breakdown properties, and is expected to be applied in high-temperature fields with temperatures higher than 650°C and above.
较佳的,采用ZJ-3A型准静态d33测试仪测试所述铌酸锶基钙钛矿层状结构无铅压电陶瓷在室温25℃下的压电系数为(0.8~2.1)pC/N。Preferably, the piezoelectric coefficient of the strontium niobate-based perovskite layered structure lead-free piezoelectric ceramic tested by a ZJ-3A quasi-static d33 tester at room temperature 25° C. is (0.8-2.1) pC/N.
较佳的,采用HP4339B高温电阻测试仪测试所述铌锶基钙钛矿层状结构无铅压电陶瓷在700℃的直流电阻率为6.7×106~1.1×107Ω·cm。Preferably, the direct current resistivity of the niobium-strontium-based perovskite layered lead-free piezoelectric ceramic at 700° C. is tested by using an HP4339B high temperature resistance tester and is 6.7×10 6 to 1.1×10 7 Ω·cm.
较佳的,采用SD-DC200kV直流电压发生器测试所述铌酸锶基钙钛矿层状结构无铅压电陶瓷的介电击穿场强为206.2kV/cm~435.7kV/cm。Preferably, the dielectric breakdown field strength of the strontium niobate-based perovskite layered structure lead-free piezoelectric ceramic tested by using an SD-
另一方面,本发明提供了一种铌酸锶基钙钛矿层状结构无铅压电陶瓷的制备方法,包括:On the other hand, the present invention provides a method for preparing a strontium niobate-based perovskite layered structure lead-free piezoelectric ceramic, comprising:
(1)以SrCO3和Nb2O5为原料,按照Sr2-xNb2O7化学计量比称量并混合,经预烧合成,得到陶瓷粉体;(1) SrCO 3 and Nb 2 O 5 are weighed and mixed according to the stoichiometric ratio of Sr 2-x Nb 2 O 7 , and pre-sintered to obtain ceramic powder;
(2)将陶瓷粉体和粘结剂混合,再经造粒、陈化、压制成型和排塑,得到陶瓷坯体。(2) The ceramic powder and the binder are mixed, and then granulated, aged, pressed and molded to obtain a ceramic body.
(3)陶瓷坯体放入高温炉,并采用所得陶瓷粉体覆盖陶瓷坯体,经过烧结,得到所述铌酸锶基钙钛矿层状结构无铅压电陶瓷。(3) The ceramic body is placed in a high-temperature furnace, and the obtained ceramic powder is used to cover the ceramic body, and after sintering, the strontium niobate-based perovskite layered structure lead-free piezoelectric ceramic is obtained.
较佳的,步骤(1)中,所述混合方式为球磨混合;所述球磨混合的参数包括:球磨介质为玛瑙球;球磨转速为240~360转/分钟,时间为4~6小时;原料:球磨介质:酒精的质量比为1:2:(1.8~2.0)。Preferably, in step (1), the mixing method is ball milling; the parameters of the ball milling mixing include: the ball milling medium is agate balls; the ball milling speed is 240 to 360 rpm, and the time is 4 to 6 hours; the mass ratio of raw material: ball milling medium: alcohol is 1:2:(1.8 to 2.0).
较佳的,步骤(1)中,所述预烧合成的温度为1000~1300℃,保温时间不超过24小时;优选地,所述预烧合成的升温速率≤2℃/分钟。Preferably, in step (1), the pre-sintering temperature is 1000-1300°C, and the holding time does not exceed 24 hours; preferably, the pre-sintering heating rate is ≤2°C/min.
较佳的,步骤(2)中,所述粘结剂为聚乙烯醇、聚乙烯醇缩丁醛和聚偏氟乙烯中的至少一种,粘结剂的加入量为陶瓷粉料重量的6~7wt.%。Preferably, in step (2), the binder is at least one of polyvinyl alcohol, polyvinyl butyral and polyvinylidene fluoride, and the amount of the binder added is 6-7wt.% of the weight of the ceramic powder.
较佳的,步骤(2)中,所述排塑的温度为700~800℃,保温时间为1~3小时;优选地,所述排塑的升温速率≤2℃/分钟。Preferably, in step (2), the temperature of the plastic discharge is 700-800°C, and the insulation time is 1-3 hours; preferably, the heating rate of the plastic discharge is ≤2°C/min.
较佳的,步骤(3)中,所述烧结的温度为1350~1500℃,保温时间不超过24小时;优选地,所述烧结的升温速率≤2℃/分钟。Preferably, in step (3), the sintering temperature is 1350-1500° C., and the holding time does not exceed 24 hours; preferably, the sintering heating rate is ≤2° C./min.
较佳的,将所得铌酸锶基钙钛矿层状结构无铅压电陶瓷片加工成所需尺寸,再经超声清洁、丝网印金属电极、烘干和烧金属电极;所述金属电极为银或铂;所述烧金属电极的温度为1000~1200℃,保温时间为5~40分钟。Preferably, the obtained strontium niobate-based perovskite layered structure lead-free piezoelectric ceramic sheet is processed into a desired size, and then ultrasonically cleaned, screen-printed with a metal electrode, dried and fired; the metal electrode is silver or platinum; the temperature of the fired metal electrode is 1000-1200°C, and the insulation time is 5-40 minutes.
有益效果:Beneficial effects:
本发明提出的铌酸锶基钙钛矿层状结构无铅压电陶瓷在室温25℃下的压电系数为(0.8~2.1)pC/N,700℃时的电阻率为6.7×106~1.1×107Ω·cm,介电击穿场强为206.2kV/cm~435.7kV/cm,为制备出满足650℃以上的高温振动传感器用钙钛矿层状压电陶瓷提供了新方法和新材料组成设计。The strontium niobate-based perovskite layered structure lead-free piezoelectric ceramics proposed in the present invention have a piezoelectric coefficient of (0.8-2.1) pC/N at room temperature 25°C, a resistivity of 6.7×10 6 -1.1×10 7 Ω·cm at 700°C, and a dielectric breakdown field strength of 206.2 kV/cm-435.7 kV/cm, providing a new method and new material composition design for preparing perovskite layered piezoelectric ceramics for high-temperature vibration sensors that meet the requirements of temperatures above 650°C.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为室温下不同Sr缺量Sr2-xNb2O7陶瓷的介电击穿场强;Figure 1 shows the dielectric breakdown field strength of Sr 2-x Nb2O7 ceramics with different Sr deficiencies at room temperature;
图2为室温下不同Sr缺量Sr2-xNb2O7陶瓷的压电系数d33。Figure 2 shows the piezoelectric coefficient d 33 of Sr 2-x Nb 2 O 7 ceramics with different Sr deficiencies at room temperature.
具体实施方式DETAILED DESCRIPTION
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。The present invention is further described below by the following embodiments. It should be understood that the following embodiments are only used to illustrate the present invention, but not to limit the present invention.
在本公开中,采用基于非化学计量比的A位Sr离子缺量的设计思路,来提高铌酸基钙钛矿层状结构压电陶瓷高压电性、高温高电阻率和高介电击穿场强。In the present disclosure, a design concept based on a non-stoichiometric ratio of A-site Sr ion deficiency is adopted to improve the high piezoelectric properties, high temperature high resistivity and high dielectric breakdown field strength of niobate-based perovskite layered structure piezoelectric ceramics.
在本发明一实施方式中,钙钛矿层状结构压电陶瓷的化学组成为:Sr2-xNb2O7,其中0<x≤0.16,优选为x=0.02~0.16。In one embodiment of the present invention, the chemical composition of the perovskite layered structure piezoelectric ceramic is: Sr 2-x Nb 2 O 7 , wherein 0<x≤0.16, preferably x=0.02-0.16.
在可选的实施方式中,基于非化学计量比的A位Sr离子缺量的钙钛矿层状压电陶瓷的退极化温度高达1100℃,x=0.04的组分具有最高的压电系数,并且具有良好的温度稳定性,压电系数在25℃-1100℃的范围内保持较高的值,在1100℃时的压电系数仍在2.1pC/N,同时击穿场强为264.96kV/cm,在700℃的高温电阻率满足实际使用的需求,为1.1×107Ω·cm。In an optional embodiment, the depolarization temperature of the perovskite layered piezoelectric ceramic based on a non-stoichiometric ratio of A-site Sr ion deficiency is as high as 1100°C, the component with x=0.04 has the highest piezoelectric coefficient and good temperature stability, the piezoelectric coefficient maintains a high value in the range of 25°C-1100°C, the piezoelectric coefficient at 1100°C is still 2.1pC/N, and the breakdown field strength is 264.96kV/cm. The high temperature resistivity at 700°C meets the needs of practical use and is 1.1×107Ω·cm.
以下示例性地说明铌酸锶基钙钛矿层状结构无铅压电陶瓷的制备方法。The following is an exemplary description of a method for preparing a strontium niobate-based perovskite layered structure lead-free piezoelectric ceramic.
配料。采用固相法制备陶瓷粉体,以SrCO3粉体和Nb2O5粉体为原料,按照化学计量比配制。Ingredients. The ceramic powder is prepared by a solid phase method, with SrCO 3 powder and Nb 2 O 5 powder as raw materials and prepared according to a stoichiometric ratio.
混料。将原料粉体进行一次球磨,得到混合粉体。作为一个球磨的示例,该球磨为湿式行星球磨,球磨时间为4小时,转速为360转/分钟,原料:球:酒精的质量比为1:2:(1.8~2.0),其中球磨介质为玛瑙球。Mixing. The raw material powder is ball-milled once to obtain a mixed powder. As an example of ball milling, the ball mill is a wet planetary ball mill, the ball milling time is 4 hours, the rotation speed is 360 rpm, the mass ratio of raw material: ball: alcohol is 1:2: (1.8-2.0), and the ball milling medium is agate ball.
预烧合成。将混合粉体进行预烧合成,得到陶瓷粉体。其中混合粉体的合成温度可为1000℃~1300℃。合成温度的保温时间为不超过24小时,优选为1~3小时。作为一个示例,以不高于2℃/min的升温速率升温至1200℃,保温1~3小时,随炉冷却至室温。Pre-sintering synthesis. The mixed powder is pre-sintered to obtain ceramic powder. The synthesis temperature of the mixed powder can be 1000°C to 1300°C. The insulation time of the synthesis temperature is no more than 24 hours, preferably 1 to 3 hours. As an example, the temperature is increased to 1200°C at a heating rate not higher than 2°C/min, kept at this temperature for 1 to 3 hours, and cooled to room temperature with the furnace.
细磨和造粒。将陶瓷粉体经细磨、烘干后加入粘结剂造粒,得到造粒粉体。粘结剂可为聚乙烯醇(PVA)等。粘结剂的加入量可为陶瓷粉料重量的6~7wt.%。所述细磨的参数包括:球磨介质为玛瑙球;球磨转速为240~360转/分钟,时间为4~6小时;原料:球磨介质:酒精的质量比为1:2:(1.8~2.0)。作为一个示例,细磨为湿式行星球磨,球磨时间为4小时,转速为360转/分钟,原料:球:酒精的质量比为1:2:(1.6~1.8),其中球磨介质为玛瑙球。Fine grinding and granulation. The ceramic powder is finely ground and dried, and then a binder is added to granulate to obtain granulated powder. The binder may be polyvinyl alcohol (PVA) or the like. The amount of binder added may be 6 to 7 wt.% of the weight of the ceramic powder. The parameters of the fine grinding include: the ball milling medium is agate balls; the ball milling speed is 240 to 360 rpm, and the time is 4 to 6 hours; the mass ratio of raw material: ball milling medium: alcohol is 1:2: (1.8 to 2.0). As an example, the fine grinding is wet planetary ball milling, the ball milling time is 4 hours, the speed is 360 rpm, the mass ratio of raw material: ball: alcohol is 1:2: (1.6 to 1.8), and the ball milling medium is agate balls.
成型。将造粒粉体经过陈化后压制成型,得到陶瓷素坯。陈化的温度可为0~40℃,时间可为≤48小时,目的在于增强粉体的流动性。成型方式可为等静压成型或/和干压成型等。Molding. The granulated powder is pressed and molded after aging to obtain a ceramic green body. The aging temperature can be 0-40°C and the time can be ≤48 hours, in order to enhance the fluidity of the powder. The molding method can be isostatic pressing and/or dry pressing.
排塑。将陶瓷素坯进行升温排塑,得到陶瓷坯体。作为一个示例,以不高于2℃/min的升温速率升温至700~800℃,保温1~3小时。The ceramic green body is heated and molded to obtain a ceramic green body. As an example, the temperature is increased to 700-800°C at a heating rate of no more than 2°C/min and kept at this temperature for 1-3 hours.
烧结。将陶瓷坯体放入高温炉,用具有与所得的组成成分相同的陶瓷粉体覆盖陶瓷坯体,然后按照一定的条件烧结后得到所述的陶瓷片。烧结温度可为1350℃~1500℃。烧结的保温时间不超过24小时,优选为1~3小时。作为一个示例,以不高于2℃/min的升温速率升温至1350~1400℃,保温1~3小时,随炉冷却至室温。Sintering. Place the ceramic body into a high-temperature furnace, cover the ceramic body with a ceramic powder having the same composition as the obtained one, and then sinter under certain conditions to obtain the ceramic sheet. The sintering temperature may be 1350°C to 1500°C. The sintering holding time does not exceed 24 hours, preferably 1 to 3 hours. As an example, heat up to 1350 to 1400°C at a heating rate not higher than 2°C/min, keep warm for 1 to 3 hours, and cool to room temperature with the furnace.
电极制备。将烧结好的陶瓷片加工成所需尺寸,超声清洁,丝网印银,烘干,烧银得到所述的压电陶瓷材料。所述的烧银条件可为1000~1200℃,保温时间可为5~40分钟。Electrode preparation: The sintered ceramic sheet is processed into the required size, ultrasonically cleaned, screen-printed with silver, dried, and calcined to obtain the piezoelectric ceramic material. The calcination conditions can be 1000-1200°C, and the holding time can be 5-40 minutes.
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。以下各百分含量如无特别说明均指质量百分含量。The following further examples are given to explain the present invention in detail. It should also be understood that the following examples are only used to further illustrate the present invention and cannot be construed as limiting the scope of protection of the present invention. Some non-essential improvements and adjustments made by those skilled in the art based on the above content of the present invention belong to the scope of protection of the present invention. The specific process parameters and the like in the following examples are only examples within a suitable range, that is, those skilled in the art can make selections within a suitable range through the description of this article, and are not limited to the specific values exemplified below. The following percentages refer to mass percentages unless otherwise specified.
实施例1:Embodiment 1:
采用固相反应法制备了A位缺量的钙钛矿层状结构Sr2-xNb2O7陶瓷。其中,Sr缺量的摩尔比分别为0、0.04、0.08、0.12以SrCO3、Nb2O5为原料,采用湿式球磨法混料,按照原料:研磨介质:酒精=1:2:1.8的质量比混合4小时,使其混合均匀。100℃烘干之后,过30目筛,在3MPa压力下成型,以2℃/min的升温速率升温至1200℃,保温2小时,合成所需的陶瓷粉体。A-site defective perovskite layered structure Sr 2-x Nb 2 O 7 ceramics were prepared by solid phase reaction method. The molar ratio of Sr defect was 0, 0.04, 0.08 and 0.12 respectively. SrCO 3 and Nb 2 O 5 were used as raw materials, and the materials were mixed by wet ball milling method. The raw materials: grinding medium: alcohol = 1:2:1.8 were mixed for 4 hours to make them uniform. After drying at 100℃, the mixture was passed through a 30-mesh sieve and formed under a pressure of 3MPa. The temperature was raised to 1200℃ at a heating rate of 2℃/min and kept at this temperature for 2 hours to synthesize the required ceramic powder.
将所得陶瓷粉体进行研磨,过30目筛之后,采用湿式球磨法进行细磨,按照陶瓷粉体:研磨介质:酒精计=1:2:1.5的质量比混合4小时,使其混合均匀,将所得的粉料进行烘干,加入6wt.%的PVA粘结剂,进行造粒,5MPa压力下成型,陈化24小时,过40目筛,在1.0~1.2MPa压力下压制成直径为13mm的圆片,再在低温炉中升温至800℃,保温60分钟,进行排塑,得到陶瓷坯体。The obtained ceramic powder is ground, passed through a 30-mesh sieve, and then finely ground by a wet ball mill. The powder is mixed for 4 hours at a mass ratio of ceramic powder: grinding medium: alcohol meter = 1:2:1.5 to make it uniformly mixed. The obtained powder is dried, 6 wt.% of PVA binder is added, granulated, formed under a pressure of 5 MPa, aged for 24 hours, passed through a 40-mesh sieve, and pressed into a disc with a diameter of 13 mm under a pressure of 1.0-1.2 MPa. The disc is then heated to 800°C in a low-temperature furnace, kept warm for 60 minutes, and extruded to obtain a ceramic green body.
将陶瓷坯体放入氧化铝坩埚内,以2℃/min的升温速率升至1400℃,保温2小时,随炉冷却即得到陶瓷片。The ceramic body was placed in an alumina crucible, heated to 1400°C at a heating rate of 2°C/min, kept at that temperature for 2 hours, and then cooled in the furnace to obtain a ceramic sheet.
将烧结好的陶瓷片磨薄至0.15mm,清洗,烘干,丝网印刷铂浆,再烘干,以2℃/min的升温速率升至1200℃,保温30分钟烧铂,得到所述的压电陶瓷材料。The sintered ceramic sheet was ground to a thickness of 0.15 mm, cleaned, dried, screen-printed with platinum slurry, dried again, and heated to 1200° C. at a heating rate of 2° C./min. The platinum was sintered for 30 minutes to obtain the piezoelectric ceramic material.
对极化过的陶瓷进行压电性能、击穿性能以及其它性能的测试,结果见图1和表1。The piezoelectric properties, breakdown properties and other properties of the polarized ceramics were tested, and the results are shown in Figure 1 and Table 1.
表1为本发明制备的不同Sr缺量Sr2-xNb2O7陶瓷的性能参数对比:Table 1 is a comparison of the performance parameters of Sr 2-x Nb 2 O 7 ceramics with different Sr deficiencies prepared by the present invention:
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111193216.0A CN115959906A (en) | 2021-10-13 | 2021-10-13 | A strontium niobate-based perovskite layered structure lead-free piezoelectric ceramic and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111193216.0A CN115959906A (en) | 2021-10-13 | 2021-10-13 | A strontium niobate-based perovskite layered structure lead-free piezoelectric ceramic and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115959906A true CN115959906A (en) | 2023-04-14 |
Family
ID=87353540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111193216.0A Pending CN115959906A (en) | 2021-10-13 | 2021-10-13 | A strontium niobate-based perovskite layered structure lead-free piezoelectric ceramic and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115959906A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101062864A (en) * | 2007-05-28 | 2007-10-31 | 北京科技大学 | Niobic acid sodium potassium lithium radical leadless piezo-electric ceramic and preparation method thereof |
WO2015148367A1 (en) * | 2014-03-26 | 2015-10-01 | Drexel University | Chemically switchable ultraviolet photoluminescence |
CN106365636A (en) * | 2016-08-26 | 2017-02-01 | 中国科学院上海硅酸盐研究所 | High-Curie-temperature strontium-barium niobate pyroelectric ceramic material and preparation method thereof |
CN109704762A (en) * | 2019-02-22 | 2019-05-03 | 中国科学院上海硅酸盐研究所 | A kind of strontium niobate-based antiferroelectric ceramic and its preparation method and application |
CN111533555A (en) * | 2020-04-28 | 2020-08-14 | 太原理工大学 | A kind of preparation method of layered dense strontium potassium niobate lead-free piezoelectric ceramics |
-
2021
- 2021-10-13 CN CN202111193216.0A patent/CN115959906A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101062864A (en) * | 2007-05-28 | 2007-10-31 | 北京科技大学 | Niobic acid sodium potassium lithium radical leadless piezo-electric ceramic and preparation method thereof |
WO2015148367A1 (en) * | 2014-03-26 | 2015-10-01 | Drexel University | Chemically switchable ultraviolet photoluminescence |
CN106365636A (en) * | 2016-08-26 | 2017-02-01 | 中国科学院上海硅酸盐研究所 | High-Curie-temperature strontium-barium niobate pyroelectric ceramic material and preparation method thereof |
CN109704762A (en) * | 2019-02-22 | 2019-05-03 | 中国科学院上海硅酸盐研究所 | A kind of strontium niobate-based antiferroelectric ceramic and its preparation method and application |
CN111533555A (en) * | 2020-04-28 | 2020-08-14 | 太原理工大学 | A kind of preparation method of layered dense strontium potassium niobate lead-free piezoelectric ceramics |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102249659B (en) | Bismuth ferrite-based leadless piezoelectric ceramic with high Curie temperature and preparation method thereof | |
CN108546125B (en) | Piezoelectric ceramic material for high temperature environment application and preparation method thereof | |
CN102180665A (en) | Bismuth scandate-lead titanate high-temperature piezoelectric ceramic material and preparation method thereof | |
CN111320468A (en) | Preparation method of doped bismuth ferrite-barium titanate lead-free piezoelectric ceramic material | |
CN110342933A (en) | A method of regulation sodium niobate ceramics Curie temperature | |
CN113213918B (en) | Strontium bismuth titanate-bismuth scandium acid-lead titanate series high-temperature piezoelectric ceramic material with high piezoelectric performance and low loss and preparation method thereof | |
CN103922722B (en) | A kind of lithium, cerium, tantalum mix bismuth niobate calcium based piezoelectric ceramic materials and preparation method thereof altogether | |
CN115073160B (en) | A hot-pressing sintering preparation method for bismuth ferrite-barium titanate ceramics with micro-nano electric domain structure | |
CN114292102B (en) | A kind of bismuth ferrite-barium titanate-based lead-free piezoelectric ceramic material and preparation method thereof | |
CN102351533A (en) | Calcium barium zirconate titanate based leadless piezoelectric ceramics with low temperature sintering and high piezoelectric properties and preparation method thereof | |
CN117602927B (en) | Ceramic material and preparation method and application thereof | |
CN116589278B (en) | Lead nickel tantalate-lead zirconate titanate ceramic with high electromechanical properties and temperature stability, preparation method and application thereof | |
CN115959906A (en) | A strontium niobate-based perovskite layered structure lead-free piezoelectric ceramic and its preparation method | |
CN114276128B (en) | Method for reducing leakage current of bismuth ferrite-barium titanate piezoelectric ceramic and improving high-temperature resistivity of bismuth ferrite-barium titanate piezoelectric ceramic | |
CN114031395B (en) | BNT-BKT-BT-AlN composite piezoelectric material and its preparation and application | |
CN107021754B (en) | Dispersant modified relaxation type niobium nickel zirconium lead titanate piezoelectric ceramic and preparation method thereof | |
CN101265092A (en) | Oxide modified lead barium niobate high temperature piezoelectric ceramic and preparation method thereof | |
CN116462506A (en) | Bismuth layered ceramic with excellent high-temperature insulation and piezoelectricity and preparation method thereof | |
CN104944946A (en) | Preparation method for titanium and yttrium co-doped zirconia normal-temperature semiconductor ceramic material | |
CN115477538A (en) | A method for preparing potassium sodium niobate based piezoelectric ceramics by two-step sintering | |
CN115385688A (en) | Barium strontium zirconate titanate-based dielectric ceramic material and preparation method thereof | |
CN114621009A (en) | Lead magnesium niobate-lead titanate-based piezoelectric ceramic material and preparation method thereof | |
CN113248247A (en) | Ternary piezoelectric ceramic and preparation method and application thereof | |
CN115073159B (en) | A bismuth ferrite-barium titanate ceramic with high Curie temperature and high voltage electrical properties and its preparation method by low-temperature oxygen-containing hot-pressing sintering | |
CN115745605B (en) | Method for preparing potassium sodium bismuth iron niobate zirconate by pretreated niobium pentoxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20230414 |