[go: up one dir, main page]

CN115920088A - Biomedical polymer material-coated radioactive silica microsphere and preparation method and application thereof - Google Patents

Biomedical polymer material-coated radioactive silica microsphere and preparation method and application thereof Download PDF

Info

Publication number
CN115920088A
CN115920088A CN202211655675.0A CN202211655675A CN115920088A CN 115920088 A CN115920088 A CN 115920088A CN 202211655675 A CN202211655675 A CN 202211655675A CN 115920088 A CN115920088 A CN 115920088A
Authority
CN
China
Prior art keywords
solution
polymer material
silica microspheres
radioactive
biomedical polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211655675.0A
Other languages
Chinese (zh)
Inventor
王广林
金硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202211655675.0A priority Critical patent/CN115920088A/en
Publication of CN115920088A publication Critical patent/CN115920088A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于生物医药技术领域,本发明提供了一种生物医学高分子材料包裹的放射性二氧化硅微球及其制备方法和应用。该方法包括以下步骤:S1、将二氧化硅微球、水和放射性核素混合后得到放射性核素二氧化硅微球混合物;S2、将放射性核素二氧化硅微球混合物和碱性溶液混合后进行反应得到放射性二氧化硅微球;S3、将放射性二氧化硅微球与生物医学高分子材料溶液混合后进行包覆得到生物医学高分子材料包裹的放射性二氧化硅微球。本发明提供的制备方法简单,且所制备的生物医学高分子材料包裹的放射性二氧化硅微球核素标记率高、逃逸率低,放射稳定性好,生物安全性佳,可用于所有实体肿瘤栓塞的治疗。

Figure 202211655675

The invention belongs to the technical field of biomedicine, and provides a radioactive silicon dioxide microsphere wrapped with a biomedical polymer material, a preparation method and application thereof. The method comprises the following steps: S1, mixing the silica microspheres, water and radionuclide to obtain a radionuclide silica microsphere mixture; S2, mixing the radionuclide silica microsphere mixture with an alkaline solution Then carry out the reaction to obtain radioactive silica microspheres; S3, mix the radioactive silica microspheres with the biomedical polymer material solution, and then coat the radioactive silica microspheres to obtain biomedical polymer material-coated radioactive silica microspheres. The preparation method provided by the present invention is simple, and the prepared radioactive silica microspheres wrapped in biomedical polymer materials have high nuclide labeling rate, low escape rate, good radiation stability and good biological safety, and can be used for all solid tumors Treatment of embolism.

Figure 202211655675

Description

一种生物医学高分子材料包裹的放射性二氧化硅微球及其制备方法和应用A kind of radioactive silica microsphere wrapped by biomedical polymer material and its preparation method and application

技术领域technical field

本发明涉及生物医药技术领域,尤其涉及一种生物医学高分子材料包裹的放射性二氧化硅微球及其制备方法和应用。The invention relates to the technical field of biomedicine, in particular to a radioactive silicon dioxide microsphere wrapped with a biomedical polymer material and a preparation method and application thereof.

背景技术Background technique

肝癌是威胁人类生命健康的疾病之一,目前,肝癌的治疗方法主要为外科手术疗法、化学药物疗法、放射疗法等。但是,大多数肝癌患者在确诊时已经是晚期,无法使用外科手术治疗,错过了手术治疗的最佳时间。而肝动脉化疗栓塞术的治疗效果往往不尽如人意,外照射放疗的剂量则非常受限,难以控制肿瘤进展。由于放射性微球栓塞术对正常组织产生的影响很小,仅对肿瘤组织产生杀伤作用,且给药精度高,成为了热门的研究技术之一。Liver cancer is one of the diseases that threaten human life and health. At present, the treatment methods for liver cancer mainly include surgery, chemotherapy, and radiotherapy. However, most patients with liver cancer are already at an advanced stage when they are diagnosed, and surgery cannot be used, and the best time for surgical treatment has been missed. However, the therapeutic effect of hepatic arterial chemoembolization is often unsatisfactory, and the dose of external beam radiotherapy is very limited, making it difficult to control tumor progression. Because radioactive microsphere embolization has little effect on normal tissues, only has a lethal effect on tumor tissues, and has high drug delivery accuracy, it has become one of the popular research techniques.

目前部分临床使用的是90Y玻璃微球,是通过反应堆活化制备的,制备过程困难复杂。90Y树脂微球核素稳定性和生物相容性还有待提高。因此,简化放射性微球的制备,提高放射性微球的生物相容性和放射稳定性,是亟待解决的问题。At present, 90Y glass microspheres are used in some clinics, which are prepared by reactor activation, and the preparation process is difficult and complicated. The nuclide stability and biocompatibility of 90Y resin microspheres need to be improved. Therefore, simplifying the preparation of radioactive microspheres and improving the biocompatibility and radiostability of radioactive microspheres are urgent problems to be solved.

生物医学高分子材料(Biomedicalmaterials)是一类生物相容性好,安全性高的高分子材料,被广泛用于应用医学领域。如聚乳酸乙醇酸共聚物是一种FDA批准的可以用于人体的生物医学高分子材料,乳酸和羟基乙酸单体按特定比例聚合而成,在体内的最终降解产物为二氧化碳和水,无毒副作用,生物相容性好,可以通过高分子在微球表面形成一层薄膜,物理包覆放射性微球而提高放射性核素的稳定性。但是,目前尚未有成熟的理论研究和实际的技术方案将放射性微球包裹在生物医学高分子材料中,用于医药技术领域。Biomedical polymer materials (Biomedical materials) are a kind of polymer materials with good biocompatibility and high safety, which are widely used in the field of applied medicine. For example, poly(lactic-co-glycolic acid) is a biomedical polymer material approved by the FDA that can be used in the human body. Lactic acid and glycolic acid monomers are polymerized in a specific ratio, and the final degradation products in the body are carbon dioxide and water, which are non-toxic. Side effects, good biocompatibility, can improve the stability of radionuclides by forming a thin film on the surface of microspheres with polymers and physically coating radioactive microspheres. However, there are no mature theoretical studies and practical technical solutions for encapsulating radioactive microspheres in biomedical polymer materials for use in the field of medical technology.

因此,如何提供一种生物医学高分子材料包裹的放射性微球成为了本领域技术人员亟需解决的问题。Therefore, how to provide a radioactive microsphere wrapped with a biomedical polymer material has become an urgent problem to be solved by those skilled in the art.

发明内容Contents of the invention

有鉴于此,本发明提供了一种生物医学高分子材料包裹的放射性二氧化硅微球及其制备方法和应用,其目的是提高放射性微球的生物相容性和放射稳定性。In view of this, the present invention provides a radioactive silicon dioxide microsphere wrapped with a biomedical polymer material and its preparation method and application, with the purpose of improving the biocompatibility and radiation stability of the radioactive microsphere.

为了达到上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts following technical scheme:

本发明提供了一种生物医学高分子材料包裹的放射性二氧化硅微球的制备方法,包括以下步骤:The invention provides a preparation method of radioactive silica microspheres wrapped by biomedical polymer materials, comprising the following steps:

S1、将二氧化硅微球、水和放射性核素混合后得到放射性核素二氧化硅微球混合物;S1. Mixing silica microspheres, water and radionuclides to obtain a mixture of radionuclide silica microspheres;

S2、将放射性核素二氧化硅微球混合物和碱性溶液混合后进行反应得到放射性二氧化硅微球;S2. Mix the mixture of radionuclide silica microspheres and alkaline solution to react to obtain radioactive silica microspheres;

S3、将放射性二氧化硅微球与生物医学高分子材料溶液混合后进行包覆得到生物医学高分子材料包裹的放射性二氧化硅微球。S3. Mix the radioactive silica microspheres with the biomedical polymer material solution and then coat them to obtain radioactive silica microspheres coated with the biomedical polymer material.

进一步的,所述步骤S1中,二氧化硅微球和水的质量体积比为0.001~1000g:0.1~1000mL;Further, in the step S1, the mass volume ratio of silica microspheres and water is 0.001-1000g: 0.1-1000mL;

二氧化硅微球和放射性核素的质量活度比为0.001~1000g:1×10-3~1×106mCi;The mass activity ratio of silica microspheres and radionuclides is 0.001-1000g: 1×10 -3 ~1×10 6 mCi;

所述二氧化硅微球的直径为20~500μm,密度为1.0~2.4g/cm3The silicon dioxide microspheres have a diameter of 20-500 μm and a density of 1.0-2.4 g/cm 3 .

进一步的,所述步骤S1中,混合的温度为0~100℃,混合的时间为1~100min。Further, in the step S1, the mixing temperature is 0-100° C., and the mixing time is 1-100 min.

进一步的,所述步骤S1中,放射性核素为钪47Sc、铜64Cu、铜67Cu、镓66Ga、镓67Ga、镓68Ga、钇86Y、钇90Y、锆89Zr、锶89Sr、锝99mTc、钯109Pd、铟111In、铽149Tb、铽161Tb、钐153Sm、钬166Ho、镥177Lu、铼186Re、铼188Re、铅212Pb、铋212Bi、铋213Bi、镭223Ra、锕225Ac、锕227Ac、钍226Th和钍227Th中的一种或多种。Further, in the step S1, the radionuclides are scandium 47 Sc, copper 64 Cu, copper 67 Cu, gallium 66 Ga, gallium 67 Ga, gallium 68 Ga, yttrium 86 Y, yttrium 90 Y, zirconium 89 Zr, strontium 89 Sr, technetium 99m Tc, palladium 109 Pd, indium 111 In, terbium 149 Tb, terbium 161 Tb, samarium 153 Sm, holmium 166 Ho, lutetium 177 Lu, rhenium 186 Re, rhenium 188 Re, lead 212 Pb, bismuth 212 Bi , bismuth 213 Bi, radium 223 Ra, actinium 225 Ac, actinium 227 Ac, thorium 226 Th and thorium 227 Th.

进一步的,所述步骤S2中,反应的温度为0~100℃,反应的时间为1~100min;Further, in the step S2, the reaction temperature is 0-100°C, and the reaction time is 1-100 min;

步骤S1中的二氧化硅微球和步骤S2中的碱性溶液的质量体积比为0.001~1000g:0.001~100mL。The mass-volume ratio of the silica microspheres in step S1 to the alkaline solution in step S2 is 0.001-1000 g: 0.001-100 mL.

进一步的,所述步骤S2中,碱性溶液的浓度为10~100g/L;Further, in the step S2, the concentration of the alkaline solution is 10-100 g/L;

所述碱性溶液为氢氧化钠溶液、氢氧化钾溶液、草酸铵溶液、碳酸钠溶液、碳酸氢钠溶液、氨水、碳酸钾溶液、碳酸氢钾溶液、亚硫酸钠溶液、乙酸钠溶液、硫化钠溶液、硅酸钠溶液、磷酸钠溶液、偏铝酸钠溶液、次氯酸钠溶液、亚硫酸钾溶液、乙酸钾溶液、氢氧化钙溶液和氢氧化钡溶液中的一种或多种。Described alkaline solution is sodium hydroxide solution, potassium hydroxide solution, ammonium oxalate solution, sodium carbonate solution, sodium bicarbonate solution, ammoniacal liquor, potassium carbonate solution, potassium bicarbonate solution, sodium sulfite solution, sodium acetate solution, sodium sulfide solution , one or more of sodium silicate solution, sodium phosphate solution, sodium metaaluminate solution, sodium hypochlorite solution, potassium sulfite solution, potassium acetate solution, calcium hydroxide solution and barium hydroxide solution.

进一步的,所述步骤S3中,生物医学高分子材料溶液的浓度为0.001~2g/mL;Further, in the step S3, the concentration of the biomedical polymer material solution is 0.001-2 g/mL;

所述生物医学高分子材料为聚乳酸乙醇酸共聚物、纤维素、甲壳素、透明质酸、胶原蛋白、明胶、海藻酸钠、聚氨酯、聚酯纤维、聚乙烯基吡咯烷酮、硅橡胶、聚乙烯醇、聚乳酸、聚乙烯、聚丙烯酸、聚维酮、乙烯-醋酸乙烯共聚物、聚乙二醇、聚氧乙烯、聚原酸酯、聚原酸、聚磷腈、聚醚醚酮、聚甲基丙烯酸甲酯、聚丙烯、聚丙烯酸酯、芳香聚酯、脂肪族聚酯、聚氨基酸、聚己内酯、聚α-氰基丙烯酸烷基酯和二甲硅油中的一种或多种;The biomedical polymer material is poly(lactic-co-glycolic acid), cellulose, chitin, hyaluronic acid, collagen, gelatin, sodium alginate, polyurethane, polyester fiber, polyvinylpyrrolidone, silicone rubber, polyethylene Alcohol, polylactic acid, polyethylene, polyacrylic acid, povidone, ethylene-vinyl acetate copolymer, polyethylene glycol, polyoxyethylene, polyorthoester, polyorthoacid, polyphosphazene, polyether ether ketone, poly One or more of methyl methacrylate, polypropylene, polyacrylate, aromatic polyester, aliphatic polyester, polyamino acid, polycaprolactone, polyalkyl α-cyanoacrylate, and simethicone ;

所述生物医学高分子材料溶液的溶剂为二氯甲烷、三氯甲烷、四氢呋喃、丙酮、苯、甲苯、二甲苯、戊烷己烷、辛烷、环己烷、环己酮、甲苯环己酮、氯苯、二氯苯、甲醇、乙醇、异丙醇、乙醚、环氧丙烷、醋酸甲酯、醋酸乙酯、醋酸丙酯、甲基丁酮、甲基异丁酮、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、乙睛、吡啶和苯酚中的一种或多种。The solvent of the biomedical polymer material solution is dichloromethane, chloroform, tetrahydrofuran, acetone, benzene, toluene, xylene, pentane hexane, octane, cyclohexane, cyclohexanone, toluene cyclohexanone , chlorobenzene, dichlorobenzene, methanol, ethanol, isopropanol, ether, propylene oxide, methyl acetate, ethyl acetate, propyl acetate, methyl butanone, methyl isobutyl ketone, ethylene glycol monomethyl One or more of ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, acetonitrile, pyridine and phenol.

进一步的,所述步骤S3中,包覆的温度为0~100℃,包覆的时间为1~100min;Further, in the step S3, the coating temperature is 0-100°C, and the coating time is 1-100 min;

步骤S1中的二氧化硅微球和步骤S3中的生物医学高分子材料溶液的质量体积比为0.001~1000g:0.1~1000mL。The mass volume ratio of the silica microspheres in step S1 and the biomedical polymer material solution in step S3 is 0.001-1000 g: 0.1-1000 mL.

本发明提供了上述制备方法所制备的生物医学高分子材料包裹的放射性二氧化硅微球。The invention provides radioactive silicon dioxide microspheres wrapped with biomedical polymer materials prepared by the above preparation method.

本发明还提供了上述生物医学高分子材料包裹的放射性二氧化硅微球在制备治疗肿瘤栓塞的药物中的应用。The present invention also provides the application of the radioactive silicon dioxide microspheres wrapped by the biomedical macromolecule material in the preparation of a drug for treating tumor embolism.

经由上述的技术方案可知,与现有技术相比,本发明的有益效果如下:Via the above-mentioned technical scheme, it can be seen that compared with the prior art, the beneficial effects of the present invention are as follows:

在本发明中,使用碱性溶液调整溶液酸碱度,提高了标记效率;通过调节生物医学高分子材料溶液的浓度,从而调整放射性多孔二氧化硅微球表面的生物医学高分子材料的膜厚度,进而调整放射稳定性;并且可以控制α核素子体的逃逸,还可以控制单个微球的放射活度,满足个体化的精准治疗要求。In the present invention, the alkaline solution is used to adjust the pH of the solution, which improves the labeling efficiency; by adjusting the concentration of the biomedical polymer material solution, the film thickness of the biomedical polymer material on the surface of the radioactive porous silica microsphere is adjusted, and then Adjust the radiation stability; and can control the escape of α nuclide progeny, and can also control the radioactivity of a single microsphere to meet the requirements of individualized precision treatment.

本发明制备的生物医学高分子材料包裹的放射性二氧化硅微球为多孔二氧化硅微球,密度更低,吸附能力更强;且对放射性核素的吸附率达到100%,放射性核素的利用率高,产生放射性废物少,有利于环境保护;与现有技术相比,本发明制备的产品的放射稳定性更高,放射性核素在胎牛血清(FBS)中的释放率低于1%,安全性更好。The radioactive silica microspheres wrapped by biomedical polymer materials prepared by the present invention are porous silica microspheres with lower density and stronger adsorption capacity; and the adsorption rate of radionuclides reaches 100%. Utilization rate is high, radioactive waste is produced few, is conducive to environmental protection; Compared with prior art, the radiation stability of the product prepared by the present invention is higher, and the release rate of radionuclide in fetal bovine serum (FBS) is lower than 1 %, better security.

本发明的制备方法简单,耗时短,引入杂质少,产品纯度高,便于推广和应用。The preparation method of the invention is simple, time-consuming, less impurities are introduced, the product has high purity, and is convenient for popularization and application.

附图说明Description of drawings

图1为实施例1制备的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球(MS)和聚乳酸乙醇酸共聚物包裹的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球(MS@PLGA)的傅里叶红外光谱表征图;Figure 1 shows the lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres (MS) prepared in Example 1 and the lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres (MS) coated with poly(lactic-co-glycolic acid) copolymer. Fourier transform infrared spectrum characterization of silica microspheres (MS@PLGA);

图2为实施例1制备的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球(MS)和聚乳酸乙醇酸共聚物包裹的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球(MS@PLGA)的热重分析图;Figure 2 shows the lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres (MS) prepared in Example 1 and the lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres wrapped by poly(lactic-co-glycolic acid) copolymer. Thermogravimetric analysis of silica microspheres (MS@PLGA);

图3为实施例1制备的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球(MS)的光学显微镜照片,比例尺为50微米;Fig. 3 is the optical micrograph of the lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres (MS) prepared in Example 1, and the scale bar is 50 microns;

图4为实施例1制备的聚乳酸乙醇酸共聚物包裹的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球(MS@PLGA)的光学显微镜照片,比例尺为50微米;Fig. 4 is an optical micrograph of lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres (MS@PLGA) wrapped in poly(lactic-co-glycolic acid) prepared in Example 1, and the scale bar is 50 microns;

图5为实施例1制备的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球(MS)的扫描电子显微镜照片;5 is a scanning electron micrograph of lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres (MS) prepared in Example 1;

图6为实施例1制备的聚乳酸乙醇酸共聚物包裹的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球(MS@PLGA)的扫描电子显微镜照片;6 is a scanning electron micrograph of lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres (MS@PLGA) wrapped in poly(lactic-co-glycolic acid) prepared in Example 1;

图7为实施例1制备的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球(MS)和聚乳酸乙醇酸共聚物包裹的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球(MS@PLGA)在胎牛血清(FBS)中的稳定性对比图;Figure 7 shows the lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres (MS) prepared in Example 1 and the lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres (MS) coated with poly(lactic-co-glycolic acid) copolymer. Comparison of the stability of silica microspheres (MS@PLGA) in fetal bovine serum (FBS);

图8为实施例2~5和对比例1制备的不同浓度的聚乳酸乙醇酸共聚物包裹的氢氧化锕[225Ac(OH)3]多孔二氧化硅微球在胎牛血清(FBS)中的稳定性对比图。Fig. 8 is the actinium hydroxide [ 225 Ac(OH) 3 ] porous silica microspheres coated with different concentrations of poly(lactic-co-glycolic acid) prepared in Examples 2-5 and Comparative Example 1 in fetal bovine serum (FBS) The stability comparison chart.

具体实施方式Detailed ways

本发明提供了一种生物医学高分子材料包裹的放射性二氧化硅微球的制备方法,包括以下步骤:The invention provides a preparation method of radioactive silica microspheres wrapped by biomedical polymer materials, comprising the following steps:

S1、将二氧化硅微球、水和放射性核素混合后得到放射性核素二氧化硅微球混合物;S1. Mixing silica microspheres, water and radionuclides to obtain a mixture of radionuclide silica microspheres;

S2、将放射性核素二氧化硅微球混合物和碱性溶液混合后进行反应得到放射性二氧化硅微球;S2. Mix the mixture of radionuclide silica microspheres and alkaline solution to react to obtain radioactive silica microspheres;

S3、将放射性二氧化硅微球与生物医学高分子材料溶液混合后进行包覆得到生物医学高分子材料包裹的放射性二氧化硅微球。S3. Mix the radioactive silica microspheres with the biomedical polymer material solution and then coat them to obtain radioactive silica microspheres coated with the biomedical polymer material.

在本发明中,所述步骤S1中,混合采用震荡的方式,所述震荡的频率为200~2000rpm,优选为400~1600rpm,进一步优选为600~1200rpm。In the present invention, in the step S1, the mixing method is oscillating, and the frequency of the oscillating is 200-2000 rpm, preferably 400-1600 rpm, more preferably 600-1200 rpm.

在本发明中,所述步骤S1中,二氧化硅微球和水的质量体积比为0.001~1000g:0.1~1000mL,优选为0.1~500g:1~500mL,进一步优选为1~100g:5~100mL;In the present invention, in the step S1, the mass volume ratio of silica microspheres to water is 0.001-1000g: 0.1-1000mL, preferably 0.1-500g: 1-500mL, more preferably 1-100g: 5-5 100mL;

二氧化硅微球和放射性核素的质量活度比为0.001~1000g:1×10-3~1×106mCi,优选为0.1~500g:1×10-2~1×105mCi,进一步优选为1~100g:1×10-1~1×104mCi;The mass activity ratio of silica microspheres and radionuclides is 0.001-1000g: 1× 10-3-1 ×10 6 mCi, preferably 0.1-500g: 1× 10-2-1 ×10 5 mCi, further Preferably 1 to 100g: 1×10 -1 to 1×10 4 mCi;

所述二氧化硅微球的直径为20~500μm,优选为20~100μm,进一步优选为20~50μm;密度为1.0~2.4g/cm3,优选为1.0~1.5g/cm3,进一步优选为1.0~1.3g/cm3The silica microspheres have a diameter of 20-500 μm, preferably 20-100 μm, more preferably 20-50 μm; a density of 1.0-2.4 g/cm 3 , preferably 1.0-1.5 g/cm 3 , more preferably 1.0~1.3g/cm 3 .

在本发明中,所述步骤S1中,混合的温度为0~100℃,优选为20~80℃,进一步优选为40~60℃;混合的时间为1~100min,优选为10~90min,进一步优选为20~80min。In the present invention, in the step S1, the mixing temperature is 0-100°C, preferably 20-80°C, more preferably 40-60°C; the mixing time is 1-100min, preferably 10-90min, further Preferably it is 20 to 80 minutes.

在本发明中,所述步骤S1中,放射性核素为钪47Sc、铜64Cu、铜67Cu、镓66Ga、镓67Ga、镓68Ga、钇86Y、钇90Y、锆89Zr、锶89Sr、锝99mTc、钯109Pd、铟111In、铽149Tb、铽161Tb、钐153Sm、钬166Ho、镥177Lu、铼186Re、铼188Re、铅212Pb、铋212Bi、铋213Bi、镭223Ra、锕225Ac、锕227Ac、钍226Th和钍227Th中的一种或多种,优选为钪47Sc、铜64Cu、铜67Cu、镓66Ga、镓67Ga、镓68Ga、钇86Y、钇90Y、镥177Lu、铼186Re、铼188Re、铅212Pb、铋212Bi、铋213Bi、镭223Ra、锕225Ac、锕227Ac、钍226Th和钍227Th中的一种或多种,进一步优选为钪47Sc、铜64Cu、镓67Ga、镓68Ga、钇86Y、钇90Y、镥177Lu、铼186Re、铼188Re、铅212Pb、铋212Bi、铋213Bi、镭223Ra、锕225Ac、锕227Ac、钍226Th和钍227Th中的一种或多种。In the present invention, in the step S1, the radionuclides are scandium 47 Sc, copper 64 Cu, copper 67 Cu, gallium 66 Ga, gallium 67 Ga, gallium 68 Ga, yttrium 86 Y, yttrium 90 Y, zirconium 89 Zr , strontium 89 Sr, technetium 99m Tc, palladium 109 Pd, indium 111 In, terbium 149 Tb, terbium 161 Tb, samarium 153 Sm , holmium 166 Ho, lutetium 177 Lu, rhenium 186 Re, rhenium 188 Re, lead 212 Pb, bismuth One or more of 212 Bi, bismuth 213 Bi, radium 223 Ra, actinium 225 Ac, actinium 227 Ac, thorium 226 Th and thorium 227 Th, preferably scandium 47 Sc, copper 64 Cu, copper 67 Cu, gallium 66 Ga, gallium 67 Ga, gallium 68 Ga, yttrium 86 Y, yttrium 90 Y, lutetium 177 Lu, rhenium 186 Re, rhenium 188 Re, lead 212 Pb, bismuth 212 Bi, bismuth 213 Bi, radium 223 Ra, actinium 225 Ac, One or more of actinium 227 Ac, thorium 226 Th and thorium 227 Th, more preferably scandium 47 Sc, copper 64 Cu, gallium 67 Ga, gallium 68 Ga, yttrium 86 Y, yttrium 90 Y, lutetium 177 Lu, One or more of rhenium 186 Re, rhenium 188 Re, lead 212 Pb, bismuth 212 Bi, bismuth 213 Bi, radium 223 Ra, actinium 225 Ac, actinium 227 Ac, thorium 226 Th and thorium 227 Th.

在本发明中,所述步骤S2中,反应的温度为0~100℃,优选为20~80℃,进一步优选为40~60℃;反应的时间为1~100min,优选为10~90min,进一步优选为20~80min。In the present invention, in the step S2, the reaction temperature is 0-100°C, preferably 20-80°C, more preferably 40-60°C; the reaction time is 1-100min, preferably 10-90min, further Preferably it is 20 to 80 minutes.

在本发明中,所述步骤S2中,反应的pH为7~14,优选为8~12,进一步优选为9~10。In the present invention, in the step S2, the pH of the reaction is 7-14, preferably 8-12, more preferably 9-10.

在本发明中,步骤S1中的二氧化硅微球和步骤S2中的碱性溶液的质量体积比为0.001~1000g:0.001~100mL,优选为0.01~800g:0.01~80mL,进一步优选为1~500g:1~50mL。In the present invention, the mass volume ratio of the silica microspheres in step S1 to the alkaline solution in step S2 is 0.001-1000g: 0.001-100mL, preferably 0.01-800g: 0.01-80mL, more preferably 1-800mL 500g: 1~50mL.

在本发明中,所述步骤S2中,碱性溶液的浓度为10~100g/L,优选为20~80g/L,进一步优选为40~60g/L;In the present invention, in the step S2, the concentration of the alkaline solution is 10-100 g/L, preferably 20-80 g/L, more preferably 40-60 g/L;

所述碱性溶液为氢氧化钠溶液、氢氧化钾溶液、草酸铵溶液、碳酸钠溶液、碳酸氢钠溶液、氨水、碳酸钾溶液、碳酸氢钾溶液、亚硫酸钠溶液、乙酸钠溶液、硫化钠溶液、硅酸钠溶液、磷酸钠溶液、偏铝酸钠溶液、次氯酸钠溶液、亚硫酸钾溶液、乙酸钾溶液、氢氧化钙溶液和氢氧化钡溶液中的一种或多种,优选为氢氧化钠溶液、氢氧化钾溶液、草酸铵溶液、碳酸钠溶液、氢氧化钙溶液和氢氧化钡溶液中的一种或多种,进一步优选为氢氧化钠溶液、氢氧化钾溶液、草酸铵溶液、碳酸钠溶液和氢氧化钡溶液中的一种或多种。Described alkaline solution is sodium hydroxide solution, potassium hydroxide solution, ammonium oxalate solution, sodium carbonate solution, sodium bicarbonate solution, ammoniacal liquor, potassium carbonate solution, potassium bicarbonate solution, sodium sulfite solution, sodium acetate solution, sodium sulfide solution , one or more of sodium silicate solution, sodium phosphate solution, sodium metaaluminate solution, sodium hypochlorite solution, potassium sulfite solution, potassium acetate solution, calcium hydroxide solution and barium hydroxide solution, preferably sodium hydroxide solution, potassium hydroxide solution, ammonium oxalate solution, sodium carbonate solution, calcium hydroxide solution and barium hydroxide solution, more preferably sodium hydroxide solution, potassium hydroxide solution, ammonium oxalate solution, carbonate One or more of sodium solution and barium hydroxide solution.

在本发明中,所述步骤S2反应结束后进行离心,将得到的固体用水清洗,所述离心的转速为1000~14000rpm,优选为2000~12000rpm,进一步优选为5000~10000rpm;所述离心的时间为1~30min,优选为5~25min,进一步优选为10~20min,所述清洗的次数为2~5次,优选为3~4次。In the present invention, centrifugation is carried out after the reaction in step S2 is completed, and the obtained solid is washed with water. The rotational speed of the centrifugation is 1000-14000 rpm, preferably 2000-12000 rpm, and more preferably 5000-10000 rpm; the centrifugation time 1-30 min, preferably 5-25 min, more preferably 10-20 min, and the number of washings is 2-5 times, preferably 3-4 times.

在本发明中,所述步骤S3中,生物医学高分子材料溶液的浓度为0.001~2g/mL,优选为0.1~1.5g/mL,进一步优选为1~1g/mL;In the present invention, in the step S3, the concentration of the biomedical polymer material solution is 0.001-2 g/mL, preferably 0.1-1.5 g/mL, more preferably 1-1 g/mL;

所述生物医学高分子材料为聚乳酸乙醇酸共聚物、纤维素、甲壳素、透明质酸、胶原蛋白、明胶、海藻酸钠、聚氨酯、聚酯纤维、聚乙烯基吡咯烷酮、硅橡胶、聚乙烯醇、聚乳酸、聚乙烯、聚丙烯酸、聚维酮、乙烯-醋酸乙烯共聚物、聚乙二醇、聚氧乙烯、聚原酸酯、聚原酸、聚磷腈、聚醚醚酮、聚甲基丙烯酸甲酯、聚丙烯、聚丙烯酸酯、芳香聚酯、脂肪族聚酯、聚氨基酸、聚己内酯、聚α-氰基丙烯酸烷基酯和二甲硅油中的一种或多种,优选为聚乳酸乙醇酸共聚物、纤维素、甲壳素、透明质酸、胶原蛋白、明胶、海藻酸钠、聚氨酯、聚酯纤维、聚乙烯基吡咯烷酮、硅橡胶、聚乙烯醇、聚乳酸、聚乙烯、聚丙烯酸、聚维酮、乙烯-醋酸乙烯共聚物、聚乙二醇、聚氧乙烯、和二甲硅油中的一种或多种,进一步优选为聚乳酸乙醇酸共聚物、纤维素、硅橡胶、聚乙烯醇、聚乳酸、聚乙烯、聚丙烯酸、聚维酮、乙烯-醋酸乙烯共聚物、聚乙二醇、聚氧乙烯、和二甲硅油中的一种或多种;The biomedical polymer material is poly(lactic-co-glycolic acid), cellulose, chitin, hyaluronic acid, collagen, gelatin, sodium alginate, polyurethane, polyester fiber, polyvinylpyrrolidone, silicone rubber, polyethylene Alcohol, polylactic acid, polyethylene, polyacrylic acid, povidone, ethylene-vinyl acetate copolymer, polyethylene glycol, polyoxyethylene, polyorthoester, polyorthoacid, polyphosphazene, polyether ether ketone, poly One or more of methyl methacrylate, polypropylene, polyacrylate, aromatic polyester, aliphatic polyester, polyamino acid, polycaprolactone, polyalkyl α-cyanoacrylate, and simethicone , preferably polylactic-co-glycolic acid, cellulose, chitin, hyaluronic acid, collagen, gelatin, sodium alginate, polyurethane, polyester fiber, polyvinylpyrrolidone, silicone rubber, polyvinyl alcohol, polylactic acid, One or more of polyethylene, polyacrylic acid, povidone, ethylene-vinyl acetate copolymer, polyethylene glycol, polyoxyethylene, and simethicone, more preferably polylactic-co-glycolic acid copolymer, cellulose , silicone rubber, polyvinyl alcohol, polylactic acid, polyethylene, polyacrylic acid, povidone, ethylene-vinyl acetate copolymer, polyethylene glycol, polyoxyethylene, and one or more of simethicone;

所述生物医学高分子材料溶液的溶剂为二氯甲烷、三氯甲烷、四氢呋喃、丙酮、苯、甲苯、二甲苯、戊烷己烷、辛烷、环己烷、环己酮、甲苯环己酮、氯苯、二氯苯、甲醇、乙醇、异丙醇、乙醚、环氧丙烷、醋酸甲酯、醋酸乙酯、醋酸丙酯、甲基丁酮、甲基异丁酮、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、乙睛、吡啶和苯酚中的一种或多种,优选为二氯甲烷、四氢呋喃、丙酮、苯、甲苯、二甲苯、戊烷己烷、甲醇、乙醇、异丙醇、乙醚、环氧丙烷、醋酸甲酯、醋酸乙酯、醋酸丙酯、甲基丁酮、甲基异丁酮、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、乙睛、吡啶和苯酚中的一种或多种,进一步优选为二氯甲烷、四氢呋喃、甲苯、二甲苯、戊烷己烷、甲醇、乙醇、异丙醇、乙醚、环氧丙烷、醋酸甲酯、甲基异丁酮、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚、乙睛、吡啶和苯酚中的一种或多种。The solvent of the biomedical polymer material solution is dichloromethane, chloroform, tetrahydrofuran, acetone, benzene, toluene, xylene, pentane hexane, octane, cyclohexane, cyclohexanone, toluene cyclohexanone , chlorobenzene, dichlorobenzene, methanol, ethanol, isopropanol, ether, propylene oxide, methyl acetate, ethyl acetate, propyl acetate, methyl butanone, methyl isobutyl ketone, ethylene glycol monomethyl One or more of ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, acetonitrile, pyridine and phenol, preferably dichloromethane, tetrahydrofuran, acetone, benzene, toluene, xylene, pentane hexane , methanol, ethanol, isopropanol, ether, propylene oxide, methyl acetate, ethyl acetate, propyl acetate, methyl butanone, methyl isobutyl ketone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether , ethylene glycol monobutyl ether, acetonitrile, pyridine and phenol, more preferably dichloromethane, tetrahydrofuran, toluene, xylene, pentane hexane, methanol, ethanol, isopropanol, ether One or more of propylene oxide, methyl acetate, methyl isobutyl ketone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, acetonitrile, pyridine and phenol.

在本发明中,所述步骤S3中,包覆的温度为0~100℃,优选为20~80℃,进一步优选为40~60℃;包覆的时间为1~100min,优选为10~90min,进一步优选为20~80min。In the present invention, in the step S3, the coating temperature is 0-100°C, preferably 20-80°C, more preferably 40-60°C; the coating time is 1-100min, preferably 10-90min , more preferably 20 to 80 minutes.

在本发明中,所述步骤S3包覆结束后进行离心,将得到的固体用水清洗,所述离心的转速为1000~14000rpm,优选为2000~12000rpm,进一步优选为5000~10000rpm;所述离心的时间为1~30min,优选为5~25min,进一步优选为10~20min,所述清洗的次数为2~5次,优选为3~4次。In the present invention, centrifugation is performed after the coating in step S3 is completed, and the obtained solid is washed with water. The rotational speed of the centrifugation is 1000-14000 rpm, preferably 2000-12000 rpm, and more preferably 5000-10000 rpm; The time is 1-30 min, preferably 5-25 min, more preferably 10-20 min, and the number of washings is 2-5 times, preferably 3-4 times.

在本发明中,步骤S1中的二氧化硅微球和步骤S3中的生物医学高分子材料溶液的质量体积比为0.001~1000g:0.1~1000mL,优选为0.01~100g:1~800mL,进一步优选为0.1~80g:10~500mL。In the present invention, the mass volume ratio of the silica microspheres in step S1 to the biomedical polymer material solution in step S3 is 0.001-1000g: 0.1-1000mL, preferably 0.01-100g: 1-800mL, more preferably 0.1-80g: 10-500mL.

本发明提供了上述制备方法所制备的生物医学高分子材料包裹的放射性二氧化硅微球。The invention provides radioactive silicon dioxide microspheres wrapped with biomedical polymer materials prepared by the above preparation method.

本发明还提供了上述生物医学高分子材料包裹的放射性二氧化硅微球在制备治疗肿瘤栓塞的药物中的应用,所述肿瘤包括肺癌、胃癌、食道癌、肝癌、结直肠癌、乳腺癌、宫颈癌、胰腺癌、甲状腺癌、淋巴瘤、膀胱癌、肾癌、子宫体癌、前列腺癌、卵巢癌、皮肤癌、鼻咽癌、胆囊癌、唇口腔癌、喉癌、睾丸癌、骨肉瘤和软骨肉瘤。The present invention also provides the application of the above-mentioned radioactive silica microspheres coated with biomedical polymer materials in the preparation of drugs for the treatment of tumor embolism, the tumors include lung cancer, gastric cancer, esophageal cancer, liver cancer, colorectal cancer, breast cancer, Cervical cancer, pancreatic cancer, thyroid cancer, lymphoma, bladder cancer, kidney cancer, uterine body cancer, prostate cancer, ovarian cancer, skin cancer, nasopharyngeal cancer, gallbladder cancer, lip and mouth cancer, laryngeal cancer, testicular cancer, osteosarcoma and chondrosarcoma.

下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below. Obviously, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

实施例1Example 1

将10mg多孔二氧化硅微球分散在0.5mL纯水中,加入0.1mCi的177LuCl3溶液,在25℃下,在恒温混匀仪中混合5min制得放射性核素二氧化硅微球混合物;Disperse 10 mg of porous silica microspheres in 0.5 mL of pure water, add 0.1 mCi of 177 LuCl 3 solution, and mix in a constant temperature mixer for 5 minutes at 25 ° C to prepare a mixture of radionuclide silica microspheres;

将40g氢氧化钠固体溶解于1L去离子水中,制得pH值为14的氢氧化钠溶液。将120mg聚乳酸乙醇酸共聚物溶解于5mL二氯甲烷中,制得浓度为24mg/mL的聚乳酸乙醇酸共聚物的二氯甲烷溶液。在上述放射性核素二氧化硅微球混合物中逐滴加入0.1mL的氢氧化钠溶液,在20℃下反应30min,以转速为5000rpm离心20min,经固液分离后,再用纯水清洗3次,经固液分离后,制得放射性二氧化硅微球;用放射性活度计测放射性二氧化硅微球的放射性活度,氢氧化镥[177Lu(OH)3]二氧化硅微球对镥-177的吸附率达到100%。Dissolve 40 g of solid sodium hydroxide in 1 L of deionized water to prepare a sodium hydroxide solution with a pH of 14. Dissolve 120 mg of poly(lactic-co-glycolic acid) in 5 mL of dichloromethane to prepare a solution of poly(lactic-co-glycolic acid) with a concentration of 24 mg/mL in dichloromethane. Add 0.1 mL of sodium hydroxide solution dropwise to the radionuclide silica microsphere mixture, react at 20°C for 30 minutes, centrifuge at 5000 rpm for 20 minutes, and wash with pure water for 3 times after solid-liquid separation , after solid-liquid separation, the radioactive silica microspheres were prepared; the radioactivity of the radioactive silica microspheres was measured with a radioactivity meter, and the lutetium hydroxide [ 177 Lu(OH) 3 ] silica microspheres were The adsorption rate of lutetium-177 reaches 100%.

将制备好的放射性多孔二氧化硅微球均匀分散于1mL浓度为24mg/mL的聚乳酸乙醇酸共聚物的二氯甲烷溶液中,在25℃下包覆5min,以转速为8000rpm离心30min,经固液分离后,再用纯水清洗3次,再经固液分离后,制得聚乳酸乙醇酸共聚物包裹的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球。The prepared radioactive porous silica microspheres were evenly dispersed in 1 mL of poly(lactic-co-glycolic acid) dichloromethane solution with a concentration of 24 mg/mL, coated at 25°C for 5 min, centrifuged at 8000 rpm for 30 min, and passed through After solid-liquid separation, wash with pure water three times, and then through solid-liquid separation, lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres wrapped by poly(lactic-co-glycolic acid) copolymer are obtained.

实施例2Example 2

本实施例用1μCi的225AcCl3溶液替换实施例1中的0.1mCi的177LuCl3溶液,制备了聚乳酸乙醇酸共聚物包裹的氢氧化锕[225Ac(OH)3]多孔二氧化硅微球,其他步骤实施例1相同。In this example, 1 μCi of 225 AcCl 3 solution was used to replace the 0.1 mCi of 177 LuCl 3 solution in Example 1 to prepare poly(lactic-co-glycolic acid)-coated actinium hydroxide [ 225 Ac(OH) 3 ] porous silica microparticles. Ball, other steps are the same as in Example 1.

实施例3Example 3

本实施例将聚乳酸乙醇酸共聚物的二氯甲烷溶液的浓度调整为12mg/mL,制备了聚乳酸乙醇酸共聚物包裹的氢氧化锕[225Ac(OH)3]多孔二氧化硅微球,其他步骤实施例2相同。In this example, the concentration of the dichloromethane solution of the poly(lactic-co-glycolic acid) copolymer was adjusted to 12 mg/mL, and actinium hydroxide [ 225 Ac(OH) 3 ] porous silica microspheres wrapped in the poly(lactic-co-glycolic acid) copolymer were prepared. , other steps are the same as Embodiment 2.

实施例4Example 4

本实施例将聚乳酸乙醇酸共聚物的二氯甲烷溶液的浓度调整为6mg/mL,制备了聚乳酸乙醇酸共聚物包裹的氢氧化锕[225Ac(OH)3]多孔二氧化硅微球,其他步骤实施例2相同。In this example, the concentration of the dichloromethane solution of the poly(lactic-co-glycolic acid) copolymer was adjusted to 6 mg/mL, and actinium hydroxide [ 225 Ac(OH) 3 ] porous silica microspheres wrapped in the poly(lactic-co-glycolic acid) copolymer were prepared. , other steps are the same as Embodiment 2.

实施例5Example 5

本实施例将聚乳酸乙醇酸共聚物的二氯甲烷溶液的浓度调整为3mg/mL,制备了聚乳酸乙醇酸共聚物包裹的氢氧化锕[225Ac(OH)3]多孔二氧化硅微球,其他步骤实施例2相同。In this example, the concentration of the dichloromethane solution of the poly(lactic-co-glycolic acid) copolymer was adjusted to 3 mg/mL, and actinium hydroxide [ 225 Ac(OH) 3 ] porous silica microspheres wrapped in the poly(lactic-co-glycolic acid) copolymer were prepared. , other steps are the same as Embodiment 2.

实施例6Example 6

本实施例用100μCi的90YCl3溶液替换实施例1中的0.1mCi的177LuCl3溶液,制备了聚乳酸乙醇酸共聚物包裹的氢氧化钇[90Y(OH)3]多孔二氧化硅微球,其他步骤实施例1相同。用放射性活度计测放射性二氧化硅微球的放射性活度,氢氧化钇[90Y(OH)3]二氧化硅微球对钇-90的吸附率达到100%。In this example, 100 μCi of 90 YCl 3 solution was used to replace the 0.1 mCi of 177 LuCl 3 solution in Example 1 to prepare poly(lactic-co-glycolic acid)-coated yttrium hydroxide [ 90 Y(OH) 3 ] porous silica microparticles. Ball, other steps are the same as in Embodiment 1. The radioactivity of radioactive silica microspheres was measured by a radioactivity meter, and the adsorption rate of yttrium-90 by yttrium hydroxide [ 90 Y(OH) 3 ] silica microspheres reached 100%.

对比例1Comparative example 1

本实施例不使用生物医学高分子材料溶液,制备氢氧化锕[225Ac(OH)3]多孔二氧化硅微球,其他步骤实施例2相同。In this example, the actinium hydroxide [ 225 Ac(OH) 3 ] porous silica microspheres are prepared without using the biomedical polymer material solution, and other steps are the same as in Example 2.

性能表征Performance Characterization

红外光谱:将实施例1制得的粉末状的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球和聚乳酸乙醇酸共聚物包裹的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球分别置于傅里叶红外光谱仪的样品台上,测定红外光谱。结果如图1所示,聚乳酸乙醇酸共聚物包裹的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球同时具有聚乳酸乙醇酸共聚物和氢氧化镥[177Lu(OH)3]多孔二氧化硅微球的特征峰。Infrared spectrum: the powdered lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres prepared in Example 1 and the lutetium hydroxide [ 177 Lu(OH) 3 ] wrapped by poly(lactic-co-glycolic acid) copolymer The porous silica microspheres are respectively placed on the sample stage of the Fourier transform infrared spectrometer, and the infrared spectrum is measured. The results are shown in Figure 1. Poly(lactic-co-glycolic acid)-coated lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres have both poly(lactic-co-glycolic acid) and lutetium hydroxide [ 177 Lu(OH) 3 ] Characteristic peaks of porous silica microspheres.

热重分析:将实施例1制得的粉末状的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球和聚乳酸乙醇酸共聚物包裹的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球分别置于坩埚中,将坩埚放入同步热分析仪中,进行热重分析。结果如图2所示,与氢氧化镥[177Lu(OH)3]多孔二氧化硅微球相比,聚乳酸乙醇酸共聚物包裹的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球在280~360℃区间内有明显的质量下降。Thermogravimetric analysis: the powdered lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres prepared in Example 1 and the lutetium hydroxide [ 177 Lu(OH) 3 ] coated with poly(lactic-co-glycolic acid) copolymer ] The porous silica microspheres were respectively placed in crucibles, and the crucibles were placed in a synchronous thermal analyzer for thermogravimetric analysis. The results are shown in Figure 2. Compared with lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres, poly(lactic-co-glycolic acid)-coated lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica The quality of silicon microspheres decreased obviously in the range of 280-360°C.

光学显微镜:将实施例1制得的粉末状的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球和聚乳酸乙醇酸共聚物包裹的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球分别置于载玻片中,使用光学显微镜进行观察。结果如图3~4所示,微球外观无明显变化,均为单分散的微球。Optical microscope: the powdered lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres prepared in Example 1 and lutetium hydroxide [ 177 Lu(OH) 3 ] wrapped by poly(lactic-co-glycolic acid) copolymer The porous silica microspheres were respectively placed on glass slides and observed with an optical microscope. The results are shown in Figures 3-4, the appearance of the microspheres has no obvious change, and they are all monodisperse microspheres.

扫描电子显微镜:将实施例1制得的粉末状的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球和聚乳酸乙醇酸共聚物包裹的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球分别置于电镜台中,使用扫描电子显微镜观察。结果如图5~6所示,微球外观无明显变化,均为单分散的微球。Scanning electron microscope: the powdered lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres prepared in Example 1 and the lutetium hydroxide [ 177 Lu(OH) 3 ] coated with poly(lactic-co-glycolic acid) copolymer ] The porous silica microspheres were respectively placed in the electron microscope stage, and observed with a scanning electron microscope. The results are shown in Figures 5-6, the appearance of the microspheres has no obvious change, and they are all monodisperse microspheres.

体外稳定性:将实施例1制得的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球和聚乳酸乙醇酸共聚物包裹的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球分别用胎牛血清(FBS)浸泡,分别于第2、4、24、48、96小时经固液分离后用γ放射免疫计数器测微球的放射性活度。结果如图7所示,96小时内,氢氧化镥[177Lu(OH)3]多孔二氧化硅微球在胎牛血清(FBS)中的镥-177释放率近20%,聚乳酸乙醇酸共聚物包裹的氢氧化镥[177Lu(OH)3]多孔二氧化硅微球在胎牛血清(FBS)中的镥-177释放率少于2%,微球的放射稳定性明显提高。In vitro stability: Lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres prepared in Example 1 and poly(lactic-co-glycolic acid) coated lutetium hydroxide [ 177 Lu(OH) 3 ] porous Silica microspheres were soaked in fetal bovine serum (FBS), and the radioactivity of the microspheres was measured with a gamma radioimmunocounter after solid-liquid separation at 2, 4, 24, 48, and 96 hours respectively. The results are shown in Figure 7. Within 96 hours, the release rate of lutetium-177 from lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres in fetal bovine serum (FBS) was nearly 20%. The lutetium hydroxide [ 177 Lu(OH) 3 ] porous silica microspheres encapsulated by the copolymer have a lutetium-177 release rate of less than 2% in fetal bovine serum (FBS), and the radiation stability of the microspheres is obviously improved.

体外稳定性:将实施例2~5和对比例1制备的产品分别用胎牛血清(FBS)浸泡,分别于第2、4、24、48、96、192小时经固液分离后用γ放射免疫计数器测微球的放射性活度。结果如图8所示,192小时内,聚乳酸乙醇酸共聚物包裹的氢氧化锕[225Ac(OH)3]多孔二氧化硅微球在胎牛血清(FBS)中的锕-225释放率最低约为17%,随着聚乳酸乙醇酸共聚物浓度的增加,微球的放射稳定性明显提高,并且子体核素的逃逸降低。In vitro stability: soak the products prepared in Examples 2 to 5 and Comparative Example 1 with fetal bovine serum (FBS) respectively, and irradiate them with gamma after solid-liquid separation at 2, 4, 24, 48, 96, and 192 hours respectively The radioactivity of the microspheres was measured by an immunocounter. The results are shown in Figure 8, within 192 hours, the release rate of actinium-225 in fetal bovine serum (FBS) from actinium hydroxide [ 225 Ac(OH) 3 ] porous silica microspheres coated with poly(lactic-co-glycolic acid) copolymer The minimum is about 17%. With the increase of the concentration of the poly(lactic-co-glycolic acid) copolymer, the radiation stability of the microspheres is obviously improved, and the escape of daughter nuclides is reduced.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (10)

1. A preparation method of a radioactive silicon dioxide microsphere wrapped by a biomedical polymer material is characterized by comprising the following steps:
s1, mixing silicon dioxide microspheres, water and radionuclide to obtain a radionuclide-silicon dioxide microsphere mixture;
s2, mixing the radionuclide-silica microsphere mixture and an alkaline solution, and reacting to obtain radioactive silica microspheres;
and S3, mixing the radioactive silica microspheres with the biomedical polymer material solution, and then coating to obtain the radioactive silica microspheres coated by the biomedical polymer material.
2. The preparation method according to claim 1, wherein in the step S1, the mass-to-volume ratio of the silica microspheres to the water is 0.001 to 1000g: 0.1-1000 mL;
the mass activity ratio of the silicon dioxide microspheres to the radioactive nuclide is 0.001-1000 g:1 x 10 -3 ~1×10 6 mCi;
The diameter of the silicon dioxide microsphere is 20 to 500 mu m, and the density is 1.0 to 2.4g/cm 3
3. The method according to claim 2, wherein the mixing temperature in step S1 is 0 to 100 ℃ and the mixing time is 1 to 100min.
4. The method according to claim 2 or 3, wherein the radionuclide in step S1 is scandium 47 Sc, copper 64 Cu, copper 67 Cu, gallium 66 Ga. Gallium (Ga) compound 67 Ga. Gallium (Ga) compound 68 Ga. Yttrium salt 86 Y, Y 90 Y, zirconium 89 Zr, sr 89 Sr, technetium 99m Tc, palladium 109 Pd, indium 111 In, terbium 149 Tb, terbium 161 Tb, samarium 153 Sm and holmium 166 Ho, lu 177 Lu, re 186 Re, re 188 Re, lead 212 Pb and Bi 212 Bi. Bismuth (Bi) 213 Bi. Laser 223 Ra, actinium 225 Ac. Actinium 227 Ac. Thorium (Th) 226 Th and thorium 227 One or more of Th.
5. The method according to claim 4, wherein in step S2, the reaction temperature is 0-100 ℃, and the reaction time is 1-100 min;
the mass-volume ratio of the silicon dioxide microspheres in the step S1 to the alkaline solution in the step S2 is 0.001-1000 g:0.001 to 100mL.
6. The production method according to claim 1 or 5, wherein in the step S2, the concentration of the alkaline solution is 10 to 100g/L;
the alkaline solution is one or more of a sodium hydroxide solution, a potassium hydroxide solution, an ammonium oxalate solution, a sodium carbonate solution, a sodium bicarbonate solution, ammonia water, a potassium carbonate solution, a potassium bicarbonate solution, a sodium sulfite solution, a sodium acetate solution, a sodium sulfide solution, a sodium silicate solution, a sodium phosphate solution, a sodium metaaluminate solution, a sodium hypochlorite solution, a potassium sulfite solution, a potassium acetate solution, a calcium hydroxide solution and a barium hydroxide solution.
7. The method according to claim 2, 3 or 5, wherein in the step S3, the concentration of the biomedical polymer material solution is 0.001-2 g/mL;
the biomedical polymer material is one or more of polylactic acid-glycolic acid copolymer, cellulose, chitin, hyaluronic acid, collagen, gelatin, sodium alginate, polyurethane, polyester fiber, polyvinylpyrrolidone, silicone rubber, polyvinyl alcohol, polylactic acid, polyethylene, polyacrylic acid, povidone, ethylene-vinyl acetate copolymer, polyethylene glycol, polyoxyethylene, polyorthoester, polyortho acid, polyphosphazene, polyether ether ketone, polymethyl methacrylate, polypropylene, polyacrylate, aromatic polyester, aliphatic polyester, polyamino acid, polycaprolactone, poly alpha-alkyl cyanoacrylate and dimethicone;
the solvent of the biomedical polymer material solution is one or more of dichloromethane, trichloromethane, tetrahydrofuran, acetone, benzene, toluene, xylene, pentane hexane, octane, cyclohexane, cyclohexanone, toluene cyclohexanone, chlorobenzene, dichlorobenzene, methanol, ethanol, isopropanol, diethyl ether, propylene oxide, methyl acetate, ethyl acetate, propyl acetate, methyl butanone, methyl isobutyl ketone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, acetonitrile, pyridine and phenol.
8. The method according to claim 7, wherein in step S3, the temperature of coating is 0-100 ℃, and the time of coating is 1-100 min;
the mass-volume ratio of the silicon dioxide microspheres in the step S1 to the biomedical polymer material solution in the step S3 is 0.001-1000 g: 0.1-1000 mL.
9. The biomedical polymer material-coated radioactive silica microspheres prepared by the preparation method of any one of claims 1 to 8.
10. Use of the biomedical polymer material-coated radioactive silica microspheres of claim 9 in the preparation of a medicament for treating tumor embolization.
CN202211655675.0A 2022-12-22 2022-12-22 Biomedical polymer material-coated radioactive silica microsphere and preparation method and application thereof Pending CN115920088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211655675.0A CN115920088A (en) 2022-12-22 2022-12-22 Biomedical polymer material-coated radioactive silica microsphere and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211655675.0A CN115920088A (en) 2022-12-22 2022-12-22 Biomedical polymer material-coated radioactive silica microsphere and preparation method and application thereof

Publications (1)

Publication Number Publication Date
CN115920088A true CN115920088A (en) 2023-04-07

Family

ID=86655780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211655675.0A Pending CN115920088A (en) 2022-12-22 2022-12-22 Biomedical polymer material-coated radioactive silica microsphere and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN115920088A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030007928A1 (en) * 2000-10-25 2003-01-09 Gray Bruce Nathaniel Polymer based radionuclide containing particulate material
CN111603575A (en) * 2020-02-28 2020-09-01 彭盛 A core-shell structure radioembolization microsphere and its preparation method and application
CN112843260A (en) * 2021-02-02 2021-05-28 苏州大学 Medical radioactive silicon dioxide microsphere and preparation method and application thereof
WO2022077051A1 (en) * 2020-10-16 2022-04-21 Grag Technologies Pty Limited Method of manufacturing silica microspheres

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030007928A1 (en) * 2000-10-25 2003-01-09 Gray Bruce Nathaniel Polymer based radionuclide containing particulate material
CN111603575A (en) * 2020-02-28 2020-09-01 彭盛 A core-shell structure radioembolization microsphere and its preparation method and application
WO2022077051A1 (en) * 2020-10-16 2022-04-21 Grag Technologies Pty Limited Method of manufacturing silica microspheres
CN112843260A (en) * 2021-02-02 2021-05-28 苏州大学 Medical radioactive silicon dioxide microsphere and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US11052164B2 (en) Compositions and associated methods for radioisotope-binding microparticles
CA2520144C (en) Microspheres comprising therapeutic and diagnostic radioactive isotopes
CN114601918B (en) Glucose-responsive insulin microneedle patch and preparation method thereof
CN112843260B (en) Medical radioactive silicon dioxide microsphere and preparation method and application thereof
US11433149B2 (en) Microsphere and preparation method thereof
WO2020228558A1 (en) Radioactive particle, preparation method therefor, and use thereof
WO2018028644A1 (en) Medical yttrium phosphate carbon microsphere and preparation method therefor
WO2018028642A1 (en) Medical iodine-131 carbon microsphere and method for fabrication thereof
CN114306654A (en) Application of dopamine in improvement of stability of radionuclide in radioactive microspheres
CN115920088A (en) Biomedical polymer material-coated radioactive silica microsphere and preparation method and application thereof
WO2020228559A1 (en) Radioactive particle, preparation method therefor, and use thereof
CN115671321A (en) Surface phosphonated silica microsphere, preparation method thereof and application thereof in radiopharmaceuticals
WO2018028643A1 (en) Medical phosphorus-32 carbon microsphere and preparation method therefor
IL203512A (en) Compositions comprising polysacharides, processes for their preparation and uses thereof
CN116715805B (en) Multifunctional gel microsphere rich in bisphosphonic acid groups and preparation method and application thereof
WO2018028645A1 (en) Medical yttrium-90 carbon microsphere, and preparation method therefor
EP3558397B1 (en) Use of a body comprising an oxide of lanthanide supported on a sulphur containing carbon based particle in therapeutic applications
CN117414446A (en) Nuclide-loaded injectable temperature-sensitive gel synthesis method and application
CN115120749A (en) Preparation method of radiotherapy microspheres and radiotherapy microspheres
CN102727913A (en) Preparation method of iodine-labeled gelatin microspheres with high labeling rate
Horta et al. High yttrium retention in magnetite nanoparticles functionalized with hybrid silica-dextran shells
US3719750A (en) Radioactive preparation absorbable in organism and method of obtaining same
US20240335573A1 (en) Radionuclide microspheres and preparation method therefor and application thereof
CN221672722U (en) Radioactive microsphere
EP3628336A1 (en) Pharmaceutical composition comprising an oxide of yttrium supported on a sulfur-containing carbon-based particle for use in therapeutic applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination