CN115882523A - Power system optimization operation method, system and equipment including distributed energy storage - Google Patents
Power system optimization operation method, system and equipment including distributed energy storage Download PDFInfo
- Publication number
- CN115882523A CN115882523A CN202310081216.4A CN202310081216A CN115882523A CN 115882523 A CN115882523 A CN 115882523A CN 202310081216 A CN202310081216 A CN 202310081216A CN 115882523 A CN115882523 A CN 115882523A
- Authority
- CN
- China
- Prior art keywords
- power
- energy storage
- distribution network
- storage device
- cost
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 214
- 238000005457 optimization Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000009826 distribution Methods 0.000 claims abstract description 130
- 238000007599 discharging Methods 0.000 claims abstract description 43
- 230000005611 electricity Effects 0.000 claims description 31
- 238000010248 power generation Methods 0.000 claims description 21
- 230000008901 benefit Effects 0.000 claims description 19
- 230000006870 function Effects 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000004590 computer program Methods 0.000 claims description 10
- 230000009194 climbing Effects 0.000 claims description 7
- 230000006872 improvement Effects 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 5
- 230000000670 limiting effect Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 238000003860 storage Methods 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 7
- 238000013486 operation strategy Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000013178 mathematical model Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明涉及分布式储能技术领域,涉及一种含分布式储能的电力系统优化运行方法、系统及设备,包括:步骤1:获取系统的初始参数;步骤2:建立含分布式储能的配电网优化运行模型;以配电网一日运行成本最低为优化目标,确定出系统运行各部分约束条件,使用混合整数规划法与二阶锥线性规划法,对建立的配电网日前经济调度模型进行求解;步骤3:调用Gurobi求解器对模型进行优化求解;步骤4:通过改变储能装置接入配电网系统的位置或储能装置的充放电功率参数,研究储能装置接入配电网位置或充放电功率参数对风电消纳与系统运行经济状况的影响。本发明能较佳地优化电力系统。
The present invention relates to the technical field of distributed energy storage, and relates to a power system optimization operation method, system and equipment including distributed energy storage, including: step 1: obtaining initial parameters of the system; The optimization operation model of the distribution network; with the lowest daily operation cost of the distribution network as the optimization goal, the constraints of each part of the system operation are determined, and the established distribution network is established using the mixed integer programming method and the second-order cone linear programming method. Dispatch the model to solve; Step 3: call the Gurobi solver to optimize the model; Step 4: Study the energy storage device access by changing the location of the energy storage device connected to the distribution network system or the charging and discharging power parameters of the energy storage device The impact of distribution network location or charging and discharging power parameters on wind power consumption and system operation economic status. The invention can better optimize the power system.
Description
技术领域Technical Field
本发明涉及分布式储能技术领域,具体地说,涉及一种含分布式储能的电力系统优化运行方法、系统及设备。The present invention relates to the field of distributed energy storage technology, and in particular to a method, system and device for optimizing operation of a power system containing distributed energy storage.
背景技术Background Art
当前,新能源接入配电网后优化运行策略的研究成为了电力系统领域的热点课题之一。与传统电力系统的能源出力相比,新能源发电有绿色环保、能源利用率高、经济效益高等优点,但同时,新能源出力的不确定性,也给电网稳定运行带来了挑战。新能源出力不确定性引起的配电网安全性及可靠性下降问题可通过接入储能装置进行解决,同时,分布式储能装置接入对降低配电网经济成本有积极作用。At present, the research on optimizing operation strategies after the access of renewable energy to distribution networks has become one of the hot topics in the field of power systems. Compared with the energy output of traditional power systems, renewable energy power generation has the advantages of green environmental protection, high energy utilization rate, and high economic benefits. However, the uncertainty of renewable energy output also brings challenges to the stable operation of the power grid. The problem of reduced safety and reliability of the distribution network caused by the uncertainty of renewable energy output can be solved by accessing energy storage devices. At the same time, the access of distributed energy storage devices has a positive effect on reducing the economic cost of the distribution network.
风力发电技术是指将风能转化为电能,是目前的新能源发电中技术理论发展较为完善的、最具有发展潜力的新能源技术之一。风电等新能源大规模接入电网丰富了能源结构,但配电网结构也因此会发生深刻转变,由于系统供电侧与用电侧随机性都太强,且独立性高,电网出力与负荷可能发生失衡,电网运行的安全性与经济性都降低。经大量研究证明,对于新能源发电所遇到的瓶颈,可以采用接入分布式储能装置的方法,降低由于风电等新能源发电方式出力不确定性与间歇性给电网带来的危害。Wind power generation technology refers to the conversion of wind energy into electrical energy. It is one of the new energy technologies with the most complete technical theory and development potential in the current new energy power generation. The large-scale access of new energy such as wind power to the power grid has enriched the energy structure, but the distribution network structure will also undergo a profound change. Since the system power supply side and the power consumption side are too random and highly independent, the power grid output and load may be unbalanced, and the safety and economy of the power grid operation will be reduced. A large number of studies have shown that for the bottlenecks encountered in new energy power generation, the method of connecting to distributed energy storage devices can be used to reduce the harm to the power grid caused by the uncertainty and intermittency of the output of new energy power generation methods such as wind power.
分布式储能技术是指根据负荷、电源位置将储能装置在接入配电网中的特定位置接入,多应用于本实施例提供了一种分布式储能参与含风电并网的配电网调峰填谷优化运行策略方法,通过在系统中加入多个分布式储能装置优化风电的消纳情况,降低弃风情况发生概率,通过分布式储能装置调峰填谷的作用,增加系统经济效益。建立了以优化全网一日运行经济效益最高为目标函数,考虑了节点功率平衡约束、电压降与支路电流约束、火电机组出力约束、火电机组爬坡率约束、火电机组启停约束、风电出力约束、分布式储能装置容量约束、分布式储能装置充放电运行约束,再对节点平衡非线性约束进行一定程度的松弛,将其转化为混合整数二阶锥优化模型进行求解。输配电侧、微电网与用户侧,参与调峰填谷、缓解电网阻塞与提升供电可靠性等多方面,接入方式更灵活,且分布式储能的功率、容量的规模相对较小。Distributed energy storage technology refers to the connection of energy storage devices to specific locations in the distribution network according to the load and power supply location. It is mostly used in this embodiment to provide a distributed energy storage participating in the peak-shaving and valley-filling optimization operation strategy method of the distribution network including wind power grid connection. By adding multiple distributed energy storage devices to the system, the consumption of wind power is optimized, the probability of wind abandonment is reduced, and the peak-shaving and valley-filling effect of distributed energy storage devices is increased. The objective function is established to optimize the highest economic benefit of the entire network operation in one day, taking into account the node power balance constraint, voltage drop and branch current constraint, thermal power unit output constraint, thermal power unit climbing rate constraint, thermal power unit start-stop constraint, wind power output constraint, distributed energy storage device capacity constraint, distributed energy storage device charging and discharging operation constraint, and then the node balance nonlinear constraint is relaxed to a certain extent, and it is converted into a mixed integer second-order cone optimization model for solution. The transmission and distribution side, microgrid and user side participate in peak-shaving and valley-filling, alleviate grid congestion and improve power supply reliability. The access method is more flexible, and the power and capacity of distributed energy storage are relatively small.
分布式储能技术在可再生能源领域的项目最多,增势也最明显,这一类项目通常是指将分布式储能技术应用于风电等新能源接入的电网,采用储能及技术进行电力系统的调峰填谷与能量的协同调度。Distributed energy storage technology has the most projects in the field of renewable energy and its growth is the most obvious. This type of project usually refers to the application of distributed energy storage technology to the power grid to which new energy sources such as wind power are connected, and the use of energy storage and technology to perform peak-shaving and valley-filling of the power system and coordinated energy scheduling.
要实现能源结构由煤炭为主进入到以新能源为主的跨越式转型。以新能源为主的分布式电源并网很大程度上影响着配电网的安全、经济运行,因此,分布式电源的并网导致的诸多电能质量问题引起了国内外的高度重视。To achieve a leapfrog transformation of the energy structure from coal-based to new energy-based. The grid connection of distributed power sources based on new energy has a great impact on the safe and economic operation of the distribution network. Therefore, many power quality problems caused by the grid connection of distributed power sources have attracted great attention at home and abroad.
新能源渗透率不断增加,这给配电网也带来了巨大的挑战。引入分布式储能装置与分布式电源构成多能互补的综合能源电力系统,进行协同配合调度、调峰填谷,维持系统的安全性与经济性。分布式储能装置接入系统的目的是参与配电网的优化调度,例如削峰填谷,以此降低配电网运行成本。现有技术对分布式储能装置的投资优化的根本目的是“提升配电网资产经济性”,在其优化策略中仅单一的讨论了分布式储能装置的投资优化问题,若做出相应的优化,可能导致系统其他机组出力变化进而出现整个系统运行成本不降反升的情况,这样的情况显然不利于配电网长期运行健康发展。因此,在考虑对分布式储能装置的配置与运行优化时,因将系统中的其它机组与电力负荷并入考虑范围,做出对整个系统的运行成本优化。The penetration rate of new energy sources continues to increase, which also brings huge challenges to the distribution network. The introduction of distributed energy storage devices and distributed power sources constitutes a comprehensive energy and power system with multi-energy complementarity, and conducts coordinated scheduling, peak-shaving and valley-filling to maintain the safety and economy of the system. The purpose of connecting distributed energy storage devices to the system is to participate in the optimization scheduling of the distribution network, such as peak-shaving and valley-filling, so as to reduce the operating cost of the distribution network. The fundamental purpose of the existing technology for investment optimization of distributed energy storage devices is to "improve the economic efficiency of distribution network assets". In its optimization strategy, only the investment optimization problem of distributed energy storage devices is discussed. If corresponding optimization is made, it may cause changes in the output of other units in the system, and then the operating cost of the entire system will increase instead of decrease. Such a situation is obviously not conducive to the long-term operation and healthy development of the distribution network. Therefore, when considering the configuration and operation optimization of distributed energy storage devices, other units and power loads in the system are taken into consideration to optimize the operating cost of the entire system.
发明内容Summary of the invention
本发明的内容是提供一种含分布式储能的电力系统优化运行方法、系统及设备,其能够解决分布式储能装置参与含分布式电源能源系统的优化调度问题。The present invention provides a method, system and device for optimizing the operation of an electric power system including distributed energy storage, which can solve the problem of optimizing the scheduling of distributed energy storage devices participating in an energy system including distributed power sources.
根据本发明的一种含分布式储能的电力系统优化运行方法,其包括以下步骤:According to the present invention, a method for optimizing operation of a power system containing distributed energy storage comprises the following steps:
步骤1:获取系统的初始参数,包括配电网结构参数、风电场预测出力、储能装置运行参数、向上级电网购电费用、弃风惩罚成本、火电机组运行成本、储能装置运行成本、切负荷成本;Step 1: Obtain the initial parameters of the system, including distribution network structure parameters, wind farm forecast output, energy storage device operating parameters, electricity purchase costs from the superior power grid, wind power abandonment penalty costs, thermal power unit operating costs, energy storage device operating costs, and load shedding costs;
步骤2:建立含分布式储能的配电网优化运行模型,模型包括:火电机组、风力发电机组、储能装置、电力负荷;以配电网一日运行成本最低为优化目标,确定出系统运行各部分约束条件,使用混合整数规划法与二阶锥线性规划法,对建立的配电网日前经济调度模型进行求解;Step 2: Establish an optimal operation model of the distribution network with distributed energy storage. The model includes: thermal power units, wind turbines, energy storage devices, and power loads. Take the lowest daily operation cost of the distribution network as the optimization goal, determine the constraints of each part of the system operation, and use mixed integer programming and second-order cone linear programming to solve the established distribution network day-ahead economic dispatch model.
步骤3:在Matlab软件中调用Gurobi求解器对模型进行优化求解,形成日前购电量、风电机组与火电机组出力及分布式储能装置充放电计划,以及分布式储能装置在参与系统调峰填谷的作用及其对系统经济效益的提高情况;Step 3: Invoke the Gurobi solver in Matlab software to optimize and solve the model, and form the day-ahead power purchase amount, wind turbine and thermal power unit output, and distributed energy storage device charging and discharging plan, as well as the role of distributed energy storage devices in participating in system peak-shaving and valley-filling and their improvement on system economic benefits;
步骤4:通过改变储能装置接入配电网系统的位置或储能装置的充放电功率参数,研究储能装置接入配电网位置或充放电功率参数对风电消纳与系统运行经济状况的影响。Step 4: By changing the location where the energy storage device is connected to the distribution network system or the charging and discharging power parameters of the energy storage device, the impact of the location where the energy storage device is connected to the distribution network or the charging and discharging power parameters on wind power consumption and the economic conditions of system operation is studied.
作为优选,步骤2中,建立含分布式储能的配电网优化运行模型,以最小化配电网的总运行成本为优化目标;配电网运行成本包括:配电网从上级电网的购电成本、火电机组发电成本、风电机组弃风惩罚成本、储能装置的运行成本以及失负荷成本,由此得出配电网优化运行模型的目标函数如下:As a preferred embodiment, in
; ;
其中:为配电网从上级电网购电费用,为火电机组运行成本,为弃风惩罚成本,为储能装置运行成本,为失负荷成本;为t时段配电网从上级电网的购电成本,为t时段配电网从上级电网的购电有功功率;A、B、C为火电机组发电成本系数;表示火电机组g在t时段的出力;风电机组的弃风惩罚成本;表示风电场w在t时段的预测出力;表示风电场w在t时段的出力;为储能使用成本,表示储能d在t时段的放电量;为配电网切负荷成本,表示在shed处在t时段的切负荷电量。in: The cost of electricity purchased by the distribution network from the upper power grid. is the operating cost of thermal power units, Penalty costs for wind curtailment, is the operating cost of the energy storage device, is the loss of load cost; is the cost of electricity purchased by the distribution network from the upper power grid during period t , is the active power purchased by the distribution network from the upper power grid during period t ; A, B, C are the power generation cost coefficients of thermal power units; It represents the output of thermal power unit g in period t ; Wind turbines The penalty cost of wind curtailment; represents the predicted output of wind farm w in period t ; represents the output of wind farm w in period t ; is the cost of energy storage, It represents the discharge amount of energy storage d in time period t ; is the load shedding cost of the distribution network, It represents the load shedding power in the shed during the period t .
作为优选,步骤2中,利用DistFlow模型来描述配电网节点功率平衡,系统运行约束条件表示为:Preferably, in
节点功率平衡约束:Node power balance constraints:
; ;
其中,集合为连接到配电网节点j的设备集合;为配电网中以j为首端节点的支路末端节点集合;为配电线路ij的电阻,为配电线路ij的电抗;为t时段配电线路ij的电流;为t时段节点i的电压大小;为t时段第g台火电机组的有功发电功率;为第w台风电机组在t时段的有功发电功率;表示分布式储能装置d在t时段的有功放电量,表示储能d在t时段的有功充电量;为t时段上级电网向配电网输送的有功功率;为t时段上级电网向配电网输送的无功功率;为t时刻失电负荷功率,为t时段负荷d的功率因数;指t时段配电线路ij段的有功功率;指t时段配电线路ij段的无功功率;指t时段配电线路ij段的有功功率;指t时段配电线路ij段的无功功率;分别为t时段负荷d的有功负荷值和无功负荷值;和为输电线路ij段的电流大小限制;和为节点i的电压大小限制。Among them, the collection is the set of devices connected to the distribution network node j ; is the set of branch end nodes with j as the head end node in the distribution network; is the resistance of the distribution line ij , is the reactance of the distribution line ij ; is the current of the distribution line ij during period t ; is the voltage of node i at time period t ; is the active power generation of the g- th thermal power unit in period t ; is the active power generated by the w- th wind turbine in period t ; represents the active discharge of distributed energy storage device d in period t , It represents the active charge of energy storage d in period t ; is the active power transmitted from the upper power grid to the distribution network during period t ; is the reactive power transmitted from the upper power grid to the distribution network during period t ; is the power of the power-off load at time t , is the power factor of load d in period t ; Refers to the active power of the ij section of the distribution line during time period t ; Refers to the reactive power of the ij section of the distribution line during time period t ; Refers to the active power of the ij section of the distribution line during time period t ; Refers to the reactive power of the ij section of the distribution line during time period t ; are respectively the active load value and reactive load value of load d in period t ; and is the current limit of the ij section of the transmission line; and is the voltage limit of node i .
作为优选,步骤2中,火电机组具体运行约束条件表示为:As a preference, in
火电机组出力约束:;Output constraints of thermal power units: ;
火电机组爬坡约束:;Thermal power unit climbing constraints: ;
火电机组启停约束:;Constraints on starting and stopping thermal power units: ;
其中:为状态变量,表示火电机组的工作状态;火电机组出力的最小限制;火电机组提供出力的最大限制;和分别为火电机组g的上、下爬坡率;和分别指火电机组g的开机和停机时间计数器;和分别指燃气机组g的最小开机和停机时间。in: is a state variable, indicating the working state of the thermal power unit; Minimum limit on the output of thermal power units; The maximum limit of the output provided by thermal power units; and are the up and down climbing rates of thermal power unit g respectively; and They refer to the start-up and shutdown time counters of thermal power unit g respectively; and They respectively refer to the minimum startup and shutdown time of gas generator set g .
作为优选,步骤2中,风电机组具体运行约束条件表示为:Preferably, in
风电机组出力约束:;Wind turbine output constraints: ;
风电机组实际出力、弃风大小、风电机组预测出力的关系:;The relationship between the actual output of wind turbines, the amount of wind abandonment, and the predicted output of wind turbines: ;
其中:为第w台风电机组在t时段的预测发电功率,为第w台风电机组在t时段的弃风量。in: is the predicted power generation of the w- th wind turbine in period t , is the wind abandonment volume of the w- th wind turbine in period t .
作为优选,步骤2中,储能装置具体约束条件表示为:Preferably, in
储能装置充放电功率约束:;Energy storage device charging and discharging power constraints: ;
每次充放电前后电量约束:;Capacity limit before and after each charge and discharge: ;
每次充放电功率限制:;Each charge and discharge power limit: ;
24小时充放电后电量与当天初始时刻的电量相等约束: The power after 24 hours of charging and discharging is equal to the power at the beginning of the day:
其中:、为储能装置充放电功率限制的最小值与最大值;是储能装置t时段的电量;是储能装置初始时刻的电量, 是储能装置一天结束时刻的电量;是储能装置的在t时段的充放电功率;是储能装置的充放电效率;为储能装置在t时段充放电的状态变量,取值为0或1;为储能装置充放电功率的最大值限制。in: , The minimum and maximum values of the charging and discharging power limits of the energy storage device; is the amount of electricity in the energy storage device during period t ; is the initial charge of the energy storage device, is the amount of electricity in the energy storage device at the end of the day; is the charging and discharging power of the energy storage device in period t ; is the charging and discharging efficiency of the energy storage device; is the state variable of the energy storage device charging and discharging during period t , and its value is 0 or 1; It is the maximum value limit of charging and discharging power of energy storage device.
作为优选,步骤2中,电压降与支路电流约束表示的配电网节点电流方程是线性非凸的,所以对节点平衡非线性约束进行一定程度的松弛,将其转化为二阶锥优化模型进行求解:Preferably, in
首先定义和这两个中间变量,结合支路电流与功率关系式:First define and These two intermediate variables, combined with the branch current and power relationship:
; ;
对接点电压降落方程进行松弛处理得到:Relaxing the junction voltage drop equation yields:
; ;
进一步转换得到二阶锥方程:Further transformation yields the second-order cone equation:
; ;
二阶锥松弛后的电流和电压约束为:。The current and voltage constraints after the second-order cone relaxation are: .
作为优选,步骤3中,将系统参数、目标函数与约束条件转换成Matlab软件中的语句进行编译,并在Matlab软件中调用Gurobi商业求解器对模型进行优化求解,得出风电机组、火电机组的出力计划,以及分布式储能装置在参与系统调峰填谷的作用与对系统经济效应的提高情况。Preferably, in
本发明还提供了一种含分布式储能的电力系统优化运行系统,其采用上述的含分布式储能的电力系统优化运行方法,并包括:The present invention also provides a power system optimization operation system including distributed energy storage, which adopts the above-mentioned power system optimization operation method including distributed energy storage, and comprises:
数据获取模块,用于获取一日内配电网结构参数、风电场预测出力、储能装置运行参数、向上级电网购电费用、弃风惩罚成本、火电机组运行成本、储能装置运行成本、切负荷成本;The data acquisition module is used to obtain the distribution network structure parameters, wind farm forecast output, energy storage device operating parameters, electricity purchase costs from the superior power grid, wind abandonment penalty costs, thermal power unit operating costs, energy storage device operating costs, and load shedding costs within a day;
建模模块,用于基于日前配电网各机组出力与运行状态、储能装置运行状态数据构建风电并网的分布式储能装置参与配电网优化调度模型;Modeling module, used to build a model for distributed energy storage devices connected to the wind power grid to participate in the distribution network optimization dispatching based on the output and operating status of each unit in the distribution network and the operating status data of the energy storage device;
优化计算模块,用于将调度模型构建为易于求解的混合整数规划模型,引入0-1二进制状态变量对部分变量进行约束,采用混合整数二阶锥规划法对配电网节点的非线性潮流约束进行改写处理,并通过设置实例分析求解结果;The optimization calculation module is used to construct the dispatch model into an easy-to-solve mixed integer programming model, introduce 0-1 binary state variables to constrain some variables, use mixed integer second-order cone programming to rewrite the nonlinear power flow constraints of distribution network nodes, and analyze the solution results by setting examples;
输出出力计划模块,用于输出优化计算模块的优化计算结果,并且得出系统各机组出力日前计划。The output plan module is used to output the optimization calculation results of the optimization calculation module and obtain the day-ahead output plan of each unit in the system.
本发明还提供了一种含分布式储能的电力系统优化运行设备,其包括处理器,处理器执行计算机程序时实现如上述的含分布式储能的电力系统优化运行方法。The present invention also provides an optimized operation device for an electric power system including distributed energy storage, which includes a processor. When the processor executes a computer program, the optimized operation method for an electric power system including distributed energy storage as described above is implemented.
本发明模拟了含分布式储能的配电网系统,建立了风电、分布式储能装置接入的配电网日前优化调度模型,模拟实际系统运行情况。本发明能达到的技术效果内容如下:The present invention simulates a distribution network system containing distributed energy storage, establishes a day-ahead optimization dispatching model for a distribution network connected to wind power and distributed energy storage devices, and simulates the actual system operation. The technical effects that the present invention can achieve are as follows:
(1)确定配电网系统框架,对配电网内风力发电、火电机组发电、分布式储能装置建立出力数学模型。在数学模型的基础上,建立了并网模式下配电网日前经济调度模型;根据各分布式电源出力特点,提出以一日运行成本最小为目的的目标函数,目标函数中考虑了配电网从上级电网的购电成本、火电机组发电成本、风电机组弃风惩罚成本、储能一日运行成本、失负荷成本,并通过如功率平衡约束、电网电压电流安全约束、风力发电机出来约束、电网安全约束、火电机组出力爬坡率约束、储能装置充放电功率约束等将模型变得更贴近实际配电网系统。(1) Determine the distribution network system framework and establish a mathematical model for the output of wind power generation, thermal power generation, and distributed energy storage devices in the distribution network. Based on the mathematical model, a day-ahead economic dispatch model for the distribution network under the grid-connected mode is established; according to the output characteristics of each distributed power source, an objective function with the goal of minimizing the daily operating cost is proposed. The objective function takes into account the distribution network's electricity purchase cost from the upper power grid, the thermal power generation cost, the wind turbine wind abandonment penalty cost, the energy storage daily operating cost, and the load loss cost. The model is made closer to the actual distribution network system through power balance constraints, grid voltage and current safety constraints, wind turbine output constraints, grid safety constraints, thermal power output ramp rate constraints, and energy storage device charging and discharging power constraints.
(2)将调度模型构建为易于求解的混合整数规划模型,引入0-1二进制状态变量对部分变量进行约束,采用混合整数二阶锥规划法对配电网节点的非线性潮流约束进行改写处理,并通过设置实例分析求解结果体现本发明的技术效果,在Matlab中编程后采用商业求解器Gurobi进行求解。在不同的实例中,分别考虑了接入风电机组和分布式储能装置、风电渗透率、储能装置位置与功率参数对系统运行和系统经济效益的影响,并且得出系统各机组出力日前计划。通过对各实例数据分析,通过本发明的技术可得出结论:分布式储能装置的引入,可使配电网在负荷低谷时段将剩余电量存入储能装置,提高系统对风电的消纳;在有功率缺额时由分布式储能装置进行放电来进行补偿,避免在电价较高时大量购电,达到调峰填谷的效果,提高系统运行的经济效益。分布式储能装置的位置、装置的参数也影响着其参与系统能源调度的情况。(2) The dispatch model is constructed as a mixed integer programming model that is easy to solve. 0-1 binary state variables are introduced to constrain some variables. The nonlinear power flow constraints of the distribution network nodes are rewritten using the mixed integer second-order cone programming method. The technical effect of the present invention is reflected by setting examples to analyze the solution results. After programming in Matlab, the commercial solver Gurobi is used to solve. In different examples, the influence of the connected wind turbines and distributed energy storage devices, wind power penetration rate, energy storage device location and power parameters on the system operation and system economic benefits are considered respectively, and the day-ahead output plan of each unit in the system is obtained. Through the analysis of the data of each example, it can be concluded that the introduction of distributed energy storage devices can enable the distribution network to store the remaining electricity in the energy storage device during the low load period, thereby improving the system's absorption of wind power; when there is a power shortage, the distributed energy storage device discharges to compensate, avoiding the purchase of a large amount of electricity when the electricity price is high, achieving the effect of peak-to-valley shifting, and improving the economic benefits of system operation. The location and parameters of the distributed energy storage device also affect its participation in the system energy dispatch.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为实施例1中一种含分布式储能的电力系统优化运行方法的流程图;FIG1 is a flow chart of a method for optimizing operation of a power system including distributed energy storage in Example 1;
图2为实施例1中电力系统动态经济调度优化方法的应用环境图;FIG2 is an application environment diagram of the power system dynamic economic dispatch optimization method in Example 1;
图3为实施例1中计算机设备的示意图;FIG3 is a schematic diagram of a computer device in Example 1;
图4为实施例2中配电网系统节点结构图;FIG4 is a node structure diagram of the distribution network system in Example 2;
图5(a)为实施例2中实例1经过优化后得出的各机组出力日前计划示意图;FIG5 (a) is a schematic diagram of the day-ahead output plan of each unit obtained after optimization of Example 1 in Example 2;
图5(b)为实施例2中实例2经过优化后得出的各机组出力日前计划示意图;FIG5( b ) is a schematic diagram of the day-ahead output plan of each unit obtained after optimization of Example 2 in
图6为实施例2中实例3中三种运行方式的系统结构示意图;FIG6 is a schematic diagram of the system structure of three operating modes in Example 3 of
图7为实施例2中实例3中储能装置内部电量 的变化情况示意图;FIG. 7 is a diagram showing the internal charge of the energy storage device in Example 3 of
图8为实施例2中实例4中储能装置内部电量的变化情况示意图。FIG. 8 is a diagram showing the internal charge of the energy storage device in Example 4 of
具体实施方式DETAILED DESCRIPTION
为进一步了解本发明的内容,结合附图和实施例对本发明作详细描述。应当理解的是,实施例仅仅是对本发明进行解释而并非限定。In order to further understand the content of the present invention, the present invention is described in detail in conjunction with the accompanying drawings and embodiments. It should be understood that the embodiments are only for explaining the present invention and are not intended to limit it.
实施例1:Embodiment 1:
如图1所示,本实施例提供了一种含分布式储能的电力系统优化运行方法,其包括以下步骤:As shown in FIG1 , this embodiment provides a method for optimizing operation of a power system including distributed energy storage, which includes the following steps:
步骤1:获取系统的初始参数,包括配电网结构参数、风电场预测出力、储能装置运行参数、向上级电网购电费用、弃风惩罚成本、火电机组运行成本、储能装置运行成本、切负荷成本;Step 1: Obtain the initial parameters of the system, including distribution network structure parameters, wind farm forecast output, energy storage device operating parameters, electricity purchase costs from the superior power grid, wind power abandonment penalty costs, thermal power unit operating costs, energy storage device operating costs, and load shedding costs;
步骤2:建立含分布式储能的配电网优化运行模型,模型包括:火电机组、风力发电机组、储能装置、电力负荷;以配电网一日运行成本最低为优化目标,确定出系统运行各部分约束条件,使用混合整数规划法与二阶锥线性规划法,对建立的配电网日前经济调度模型进行求解;Step 2: Establish an optimal operation model of the distribution network with distributed energy storage. The model includes: thermal power units, wind turbines, energy storage devices, and power loads. Take the lowest daily operation cost of the distribution network as the optimization goal, determine the constraints of each part of the system operation, and use mixed integer programming and second-order cone linear programming to solve the established distribution network day-ahead economic dispatch model.
步骤3:在Matlab软件中调用Gurobi求解器对模型进行优化求解,形成日前购电量、风电机组与火电机组出力及分布式储能装置充放电计划,以及分布式储能装置在参与系统调峰填谷的作用及其对系统经济效益的提高情况;Step 3: Invoke the Gurobi solver in Matlab software to optimize and solve the model, and form the day-ahead power purchase amount, wind turbine and thermal power unit output, and distributed energy storage device charging and discharging plan, as well as the role of distributed energy storage devices in participating in system peak-shaving and valley-filling and their improvement on system economic benefits;
步骤4:通过改变储能装置接入配电网系统的位置或储能装置的充放电功率参数,研究储能装置接入配电网位置或充放电功率参数对风电消纳与系统运行经济状况的影响。Step 4: By changing the location where the energy storage device is connected to the distribution network system or the charging and discharging power parameters of the energy storage device, the impact of the location where the energy storage device is connected to the distribution network or the charging and discharging power parameters on wind power consumption and the economic conditions of system operation is studied.
图2是本实施例提供的电力系统动态经济调度优化方法的应用环境图。本实施例提供的电力系统动态经济调度优化方法可以但不限于应用于该应用环境。如图2所示,该应用环境包括:电力数据采集设备、计算机设备104和调度中心105。FIG2 is an application environment diagram of the power system dynamic economic dispatch optimization method provided in this embodiment. The power system dynamic economic dispatch optimization method provided in this embodiment can be applied to, but is not limited to, this application environment. As shown in FIG2 , the application environment includes: power data acquisition equipment,
电力数据采集设备101~103可以是机电一体式电表、全电子式电表等智能电表,在此不作限定。具有用户端控制、多种数据传输模式的双向数据通信等智能化的功能。计算机设备104可以是服务器(Server)、终端(Terminal)等,在此不作限定。服务器,可以在网络环境下为客户机(Client,此处通常指可以发出调度需求指令的计算机)提供某种服务的专用计算机,服务器安装有网络操作系统(如Windows Server、Linux、Unix等)和各种服务器应用系统软件(此处主要指可以完成含分布式储能的电力系统优化运行策略过程的Matlab软件)的计算机。终端通常是指那些与集中式主机系统(例如IBM大型计算机)相连的用户设备,终端从用户接收键盘输入的数据采集指令与优化运算指令,并且将这些输入发送给主机系统。调度中心105配置在线调度计算机设备104,通过人机对话方式完成对含分布式储能的电力系统优化运行策略的计算。The power
调度中心105向计算机设备104发送优化指令。计算机设备104用于在收到优化指令后,向目标区域内的电力数据采集设备101~103发送采集指令。电力数据采集设备101~103用于在收到采集指令后,采集电力系统在一日内的各机组运行数据和储能装置运行数据,并将采集到的数据发送到计算机设备104中。计算机设备104在接收到电力系统在一日内的各机组运行数据和储能装置运行数据后,建立风电、分布式储能装置接入的配电网日前优化调度模型,并将得到的各机组一日运行计划出力结果发送到调度中心105中。The
步骤2中,建立含分布式储能的配电网优化运行模型,以最小化配电网的总运行成本为优化目标;配电网运行成本包括:配电网从上级电网的购电成本、火电机组发电成本、风电机组弃风惩罚成本、储能装置的运行成本以及失负荷成本,由此得出配电网优化运行模型的目标函数如下:In
; ;
其中:为配电网从上级电网购电费用,为火电机组运行成本,为弃风惩罚成本,为储能装置运行成本,为失负荷成本;为t时段配电网从上级电网的购电成本,为t时段配电网从上级电网的购电有功功率;A、B、C为火电机组发电成本系数;表示火电机组g在t时段的出力;风电机组的弃风惩罚成本;表示风电场w在t时段的预测出力;表示风电场w在t时段的出力;为储能使用成本,表示储能d在t时段的放电量;为配电网切负荷成本,表示在shed处在t时段的切负荷电量。in: The cost of electricity purchased by the distribution network from the upper power grid. is the operating cost of thermal power units, Penalty costs for wind curtailment, is the operating cost of the energy storage device, is the loss of load cost; is the cost of electricity purchased by the distribution network from the upper power grid during period t , is the active power purchased by the distribution network from the upper power grid during period t ; A, B, C are the power generation cost coefficients of thermal power units; It represents the output of thermal power unit g in period t ; Wind turbines The penalty cost of wind curtailment; represents the predicted output of wind farm w in period t ; represents the output of wind farm w in period t ; is the cost of energy storage, It represents the discharge amount of energy storage d in time period t ; is the load shedding cost of the distribution network, It represents the load shedding power in the shed during the period t .
约束条件Constraints
1)利用DistFlow模型来描述配电网节点功率平衡,系统运行约束条件表示为:1) The DistFlow model is used to describe the power balance of distribution network nodes, and the system operation constraints are expressed as:
节点功率平衡约束:Node power balance constraints:
; ;
其中,集合为连接到配电网节点j的设备集合;为配电网中以j为首端节点的支路末端节点集合;为配电线路ij的电阻,为配电线路ij的电抗;为t时段配电线路ij的电流;为t时段节点i的电压大小;为t时段第g台火电机组的有功发电功率;为第w台风电机组在t时段的有功发电功率;表示分布式储能装置d在t时段的有功放电量,表示储能d在t时段的有功充电量;为t时段上级电网向配电网输送的有功功率;为t时段上级电网向配电网输送的无功功率;为t时刻失电负荷功率,为t时段负荷d的功率因数;指t时段配电线路ij段的有功功率;指t时段配电线路ij段的无功功率;指t时段配电线路ij段的有功功率;指t时段配电线路ij段的无功功率;分别为t时段负荷d的有功负荷值和无功负荷值;和为输电线路ij段的电流大小限制;和为节点i的电压大小限制。Among them, the collection is the set of devices connected to the distribution network node j ; is the set of branch end nodes with j as the head end node in the distribution network; is the resistance of the distribution line ij , is the reactance of the distribution line ij ; is the current of the distribution line ij during period t ; is the voltage of node i at time period t ; is the active power generation of the g- th thermal power unit in period t ; is the active power generated by the w- th wind turbine in period t ; represents the active discharge of distributed energy storage device d in period t , It represents the active charge of energy storage d in period t ; is the active power transmitted from the upper power grid to the distribution network during period t ; is the reactive power transmitted from the upper power grid to the distribution network during period t ; is the power of the power-off load at time t , is the power factor of load d in period t ; Refers to the active power of the ij section of the distribution line during time period t ; Refers to the reactive power of the ij section of the distribution line during time period t ; Refers to the active power of the ij section of the distribution line during time period t ; Refers to the reactive power of the ij section of the distribution line during time period t ; are respectively the active load value and reactive load value of load d in period t ; and is the current limit of the ij section of the transmission line; and is the voltage limit of node i .
2)由于火电机组性能与数量是确定的,其出力有一定的限制,此外,火电机组还有启停约束与爬坡约束,火电机组具体运行约束条件表示为:2) Since the performance and quantity of thermal power units are fixed, their output is limited. In addition, thermal power units are subject to start-stop constraints and ramp constraints. The specific operating constraints of thermal power units are expressed as:
火电机组出力约束:;Output constraints of thermal power units: ;
火电机组爬坡约束:;Thermal power unit climbing constraints: ;
火电机组启停约束:;Constraints on starting and stopping thermal power units: ;
其中:为状态变量(0、1),表示火电机组的工作状态;火电机组出力的最小限制;火电机组提供出力的最大限制;和分别为火电机组g的上、下爬坡率;和分别指火电机组g的开机和停机时间计数器;和分别指燃气机组g的最小开机和停机时间。in: is a state variable (0, 1), indicating the working state of the thermal power unit; Minimum limit on the output of thermal power units; The maximum limit of the output provided by thermal power units; and are the up and down climbing rates of thermal power unit g respectively; and They refer to the start-up and shutdown time counters of thermal power unit g respectively; and They respectively refer to the minimum startup and shutdown time of gas generator set g .
3)由于风电机组性能与数量确定,其出力有一定的限制,从风电机组输送到配电网的出力有上下界限制,风电机组具体运行约束条件表示为:3) Since the performance and quantity of wind turbines are determined, their output is limited to a certain extent. The output transmitted from wind turbines to the distribution network has upper and lower limits. The specific operating constraints of wind turbines are expressed as:
风电机组出力约束:;Wind turbine output constraints: ;
风电机组实际出力、弃风大小、风电机组预测出力的关系:;The relationship between the actual output of wind turbines, the amount of wind abandonment, and the predicted output of wind turbines: ;
其中:为第w台风电机组在t时段的预测发电功率,为第w台风电机组在t时段的弃风量。in: is the predicted power generation of the w- th wind turbine in period t , is the wind abandonment volume of the w- th wind turbine in period t .
4)由于储能装置受到本身制造工艺和系统中变流器的限制,存在电池充放电功率最大、最小值,因此储能装置充放电功率约束;每次充放电前后满足电量的约束为;考虑充放电功率上限,引入表示任一时刻分布式储能装置只能处于充电、放电、不充不放3种状态之一,而不存在既充电又放电的物理不可行现象,得出每次充放电功率限制;且储能装置在24小时充放电后的电量与当天初始时刻的电量相等。储能装置具体约束条件表示为:4) Since the energy storage device is limited by its own manufacturing process and the converter in the system, there are maximum and minimum values of battery charging and discharging power, so the energy storage device charging and discharging power constraints; the power constraints before and after each charge and discharge are; considering the upper limit of charging and discharging power, introduce It means that at any time, the distributed energy storage device can only be in one of the three states of charging, discharging, and neither charging nor discharging. There is no physically impossible phenomenon of both charging and discharging, and the power limit of each charge and discharge is obtained; and the power of the energy storage device after 24 hours of charging and discharging is equal to the power at the beginning of the day. The specific constraints of the energy storage device are expressed as:
储能装置充放电功率约束:Energy storage device charging and discharging power constraints:
; ;
每次充放电前后电量约束:;Capacity limit before and after each charge and discharge: ;
每次充放电功率限制:;Each charge and discharge power limit: ;
24小时充放电后电量与当天初始时刻的电量相等约束:;The power after 24 hours of charging and discharging is equal to the power at the beginning of the day: ;
其中:、为储能装置充放电功率限制的最小值与最大值;是储能装置t时段的电量;是储能装置初始时刻的电量,是储能装置一天结束时刻的电量;、是储能装置的在t时段的充放电功率;是储能装置的充放电效率;为储能装置在t时段充放电的状态变量,取值为0或1;为储能装置充放电功率的最大值限制。in: , The minimum and maximum values of the charging and discharging power limits of the energy storage device; is the amount of electricity in the energy storage device during period t ; is the initial charge of the energy storage device, is the amount of electricity in the energy storage device at the end of the day; , is the charging and discharging power of the energy storage device in period t ; is the charging and discharging efficiency of the energy storage device; is the state variable of the energy storage device charging and discharging during period t , and its value is 0 or 1; It is the maximum value limit of charging and discharging power of energy storage device.
电压降与支路电流约束表示的配电网节点电流方程是线性非凸的,所以对节点平衡非线性约束进行一定程度的松弛,将其转化为二阶锥优化模型进行求解:The node current equation of the distribution network represented by the voltage drop and branch current constraints is linear and non-convex, so the node balance nonlinear constraints are relaxed to a certain extent and converted into a second-order cone optimization model for solution:
首先定义和这两个中间变量,结合支路电流与功率关系式:First define and These two intermediate variables, combined with the branch current and power relationship:
; ;
对接点电压降落方程进行松弛处理得到:Relaxing the junction voltage drop equation yields:
; ;
进一步转换得到二阶锥方程:Further transformation yields the second-order cone equation:
; ;
二阶锥松弛后的电流和电压约束为:;The current and voltage constraints after the second-order cone relaxation are: ;
步骤3中,将系统参数、目标函数与约束条件转换成Matlab软件中的语句进行编译,并在Matlab软件中调用Gurobi商业求解器对模型进行优化求解,得出风电机组、火电机组的出力计划,以及分布式储能装置在参与系统调峰填谷的作用与对系统经济效应的提高情况。In
本实施例提供了一种含分布式储能的电力系统优化运行系统,其采用上述的一种含分布式储能的电力系统优化运行方法,并包括:This embodiment provides a power system optimization operation system including distributed energy storage, which adopts the above-mentioned power system optimization operation method including distributed energy storage, and includes:
数据获取模块,用于获取一日内配电网结构参数、风电场预测出力、储能装置运行参数、向上级电网购电费用、弃风惩罚成本、火电机组运行成本、储能装置运行成本、切负荷成本;The data acquisition module is used to obtain the distribution network structure parameters, wind farm forecast output, energy storage device operating parameters, electricity purchase costs from the superior power grid, wind abandonment penalty costs, thermal power unit operating costs, energy storage device operating costs, and load shedding costs within a day;
建模模块,用于基于日前配电网各机组出力与运行状态、储能装置运行状态数据构建风电并网的分布式储能装置参与配电网优化调度模型;Modeling module, used to build a model for distributed energy storage devices connected to the wind power grid to participate in the distribution network optimization dispatching based on the output and operating status of each unit in the distribution network and the operating status data of the energy storage device;
优化计算模块,用于将调度模型构建为易于求解的混合整数规划模型,引入0-1二进制状态变量对部分变量进行约束,采用混合整数二阶锥规划法对配电网节点的非线性潮流约束进行改写处理,并通过设置实例分析求解结果;The optimization calculation module is used to construct the dispatch model into an easy-to-solve mixed integer programming model, introduce 0-1 binary state variables to constrain some variables, use mixed integer second-order cone programming to rewrite the nonlinear power flow constraints of distribution network nodes, and analyze the solution results by setting examples;
输出出力计划模块,用于输出优化计算模块的优化计算结果,并且得出系统各机组出力日前计划。The output plan module is used to output the optimization calculation results of the optimization calculation module and obtain the day-ahead output plan of each unit in the system.
本实施例提供了一种含分布式储能的电力系统优化运行设备,即计算机设备300(也是图2中计算机设备104),计算机设备300可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备,计算机设备示意框图参阅图3,但图3仅仅是计算机设备300的示例,并不构成对计算机设备300的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如终端还可以包括输入输出设备、网络接入设备、总线等。计算机设备300包括处理器301、电源302、有线或无线接口308、输入输出接口309、存储器307,以及在存储器307中并可在所述处理器301上的操作系统303、计算机程序304、数据库305、非易失性存储介质306。处理器301执行计算机程序304时实现如上述的含分布式储能的电力系统优化运行方法。This embodiment provides a device for optimizing the operation of a power system including distributed energy storage, namely, a computer device 300 (also the
1)处理器301是内置于计算机设备300超大规模集成电路,它包括运算逻辑部件、寄存器部件和控制部件等。它可以从存储器中取出指令,放入指令寄存器,并对指令译码,它把指令分解成一系列的微操作,然后发出各种控制命令,执行微操作系列,从而完成一条指令的执行。处理器301可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,在此不作限定。1) The
2)电源302是为计算机设备300中所有单元或模块正常运行提供功率的装置。2) The power supply 302 is a device that provides power for all units or modules in the
3)存储器307,以及在所述存储器中并可在所述处理器上的操作系统303、计算机程序304、数据库305可以作为一个集成的模块存储于计算机的非易失性存储介质306中。3)
操作系统303是方便用户、管理和控制计算机软硬件资源的系统软件(或程序集合),同时也是计算机系统的核心与基石,充当软件和硬件之间的媒介。它可以为用户提供交互式命令接口、批处理命令接口、程序接口等。操作系统303可以是Windows、Maxos x、Linux等,在此不作限定。The
计算机程序304是指一组指示计算机或其他具有消息处理能力装置,通常用某种程序设计语言编写,运行于某种目标体系结构上。其中,计算机程序304包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等,在本专利讨论的实例中,计算机程序304将第一方面建立的配电网数学模型将以Matlab软件中代码的形式存储,并根据优化算法进行编译。The
数据库305是指结构化信息或数据的有序集合,一般以电子形式存储在计算机系统中,通常由数据库管理系统 (DBMS) 来控制。其基本结构分为物理数据层、 概念数据层和用户数据层这三个层次。数据库305使用 SQL 编程语言来查询、操作和定义数据,进行数据访问控制。
存储器307的主要功能是存放程序和数据。程序是计算机操作的依据,数据是计算机操作的对象。不管是程序还是数据,在存储器中都是用二进制的形式来表示的,并统称信息。存储器主要分为主存储器(内存)和辅助存储器(外存)。存储器307可以是随机存取存储器(RAM)、主存储器(内存)、只读存储器(ROM)、存储器、硬盘、辅助存储器(外存)软盘、光盘等,在此不作限定。The main function of the
4)非易失性存储介质306是计算机程序304的存储介质,其特点是在关闭计算机或者突然性、意外性关闭计算机的时候数据也不会丢失。在很多的存储系统的写操作程序中,内存作为控制器和硬盘之间的重要桥梁,提供更快速的性能,但是如果发生突然间断电的情况,非易失性存储介质可以有效保护内存中的数据不丢失。非易失性存储介质306可是任何包含或存储程序的有形介质,其可以是电、磁、光、电磁、红外线、半导体的系统、装置、设备,更具体的例子包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、光纤、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件,或它们任意合适的组合。4)
5)有线或无线接口308负责处理从终端用户设备到无线介质之间的数字通信,保证电力数据采集设备101~103、计算机设备、调度中心之间通过线路进行数据交互,还可以通过网络或蓝牙等方式进行数据交互,在此不做限定。输入输出接口309是计算机设备300中处理器301与外部设备之间交换信息的连接电路,它们通过总线与处理器301相连。输入输出接口分为总线接口和通信接口两类,一般做成电路插卡的形式,输入输出接口309可以是软盘驱动器适配卡、硬盘驱动器适配卡、并行打印机适配卡等形式,在此不作限定。5) The wired or
6)上述计算机设备300各模块的设计与划分,是根据系统优化调度需求确定之后需要对计算机设备系统进行整体分析和设计的。在实际工程应用中,还需根据实际需求调用计算机设备中的不同的功能单元、模块完成目标。上述单元或模块的存在形式是可以灵活变化的,可以将所有单元或模块集成在同一个处理单元中,也可以根据计算机设备设计将任意个单元集成在一个单元中。上述单元或模块的功能实现形式可以是软件也可以是硬件形式,具体根据实际工程需求进行选择即可,在此不作限定。6) The design and division of each module of the above-mentioned
实施例2:Embodiment 2:
本实施例提供了一种分布式储能参与含风电并网的配电网调峰填谷优化运行策略方法,通过在系统中加入多个分布式储能装置优化风电的消纳情况,降低弃风情况发生概率,通过分布式储能装置调峰填谷的作用,增加系统经济效益。建立了以优化全网一日运行经济效益最高为目标函数,考虑了节点功率平衡约束、电压降与支路电流约束、火电机组出力约束、火电机组爬坡率约束、火电机组启停约束、风电出力约束、分布式储能装置容量约束、分布式储能装置充放电运行约束,再对节点平衡非线性约束进行一定程度的松弛,将其转化为混合整数二阶锥优化模型进行求解。This embodiment provides a distributed energy storage participating in the peak-shaving and valley-filling optimization operation strategy method of the distribution network including wind power grid connection, which optimizes the consumption of wind power by adding multiple distributed energy storage devices in the system, reduces the probability of wind power abandonment, and increases the economic benefits of the system through the peak-shaving and valley-filling effect of distributed energy storage devices. An objective function is established to optimize the highest economic benefits of the entire network's daily operation, taking into account node power balance constraints, voltage drop and branch current constraints, thermal power unit output constraints, thermal power unit climbing rate constraints, thermal power unit start-stop constraints, wind power output constraints, distributed energy storage device capacity constraints, and distributed energy storage device charging and discharging operation constraints. Then, the node balance nonlinear constraints are relaxed to a certain extent and converted into a mixed integer second-order cone optimization model for solution.
在风电出力建模方面,考虑风电出力为确定性出力方式,具体出力情况参照某风电场某日实际出力情况。为促进分布式储能装置对风电的消纳,将弃风惩罚成本调高,使系统在优化过程中尽量通过消纳风电减少弃风。在分布式储能装置建模方面,对储能装置的容量、充放电状态以及充放电功率进行了合理的限制。In terms of wind power output modeling, wind power output is considered to be a deterministic output mode, and the specific output situation refers to the actual output situation of a certain wind farm on a certain day. In order to promote the consumption of wind power by distributed energy storage devices, the penalty cost for wind abandonment is increased so that the system can reduce wind abandonment as much as possible by absorbing wind power during the optimization process. In terms of distributed energy storage device modeling, reasonable restrictions are placed on the capacity, charging and discharging state, and charging and discharging power of the energy storage device.
通过以下实例的技术效果说明本发明的技术思想,实例中的数据均采用标幺值形式表示。The technical idea of the present invention is explained through the technical effects of the following examples, and the data in the examples are all expressed in per-unit form.
实例以含分布式储能的配电网系统以标准IEEE33节点配电网系统为基础,节点1处为变电站节点,即配电网向上级电网购电节点,该节点没有电力负荷,其余节点皆有电力负荷,另外,在系统中接入了一台火电机组、三台风电机组和四台分布式储能装置,将风电场位置设置在节点12、节点19、节点27处,将火电机组节点设置在节点2处,将分布式储能装置位置设置在节点13、节点14、节点20、节点29处,配电网系统结构图如图4所示。The example is based on the distribution network system with distributed energy storage and the standard IEEE33-node distribution network system.
通过设置如下实例分析储能装置在系统中调峰填谷以及对增强系统对风电的消纳作用,实例1:系统接入风电机组但无储能装置;实例2:系统接入风电机组且接入储能装置;实例3:储能装置接入点变化对系统运行产生的影响;实例4:储能装置充放电功率变化对系统运行产生的影响。The following examples are set up to analyze the role of energy storage devices in peak load shifting and valley filling in the system and in enhancing the system's absorption of wind power. Example 1: The system is connected to wind turbines but has no energy storage devices; Example 2: The system is connected to wind turbines and energy storage devices; Example 3: The impact of changes in the access point of the energy storage device on the system operation; Example 4: The impact of changes in the charging and discharging power of the energy storage device on the system operation.
得出了实例1与实例2的一日运行经济效益情况,如表1。The economic benefits of one-day operation of Example 1 and Example 2 are obtained, as shown in Table 1.
表1实例1与实例2的一日运行经济效益情况Table 1 Economic benefits of one-day operation of Example 1 and Example 2
从图5(a)、图5(b)中系统各机组出力情况可以看出,在用电负荷的低谷时段,如0点-8点时间段,由于绝大多数居民都在休息,生活活动少,用电负荷很低,风电机组产生的电量存在消纳不足的问题,此时储能装置可以储存部分的过剩风电;到了用电高峰时段,如11点-14点时间段、17点-20点时间段,此时居民生活活动较多,用电负荷增加,储能装置的通过释放储存电量对系统进行供电。上述措施一定程度上减小了系统的购电成本,降低了系统的供电压力,运行经济性得到提高。From the output of each unit in the system in Figure 5 (a) and Figure 5 (b), it can be seen that during the low-power load period, such as the 0:00-8:00 period, since most residents are resting and have few daily activities, the power load is very low, and the power generated by the wind turbines is insufficiently absorbed. At this time, the energy storage device can store some of the excess wind power; during the peak power consumption period, such as the 11:00-14:00 period and the 17:00-20:00 period, when residents have more daily activities and the power load increases, the energy storage device releases the stored power to supply power to the system. The above measures have reduced the system's power purchase cost to a certain extent, reduced the system's power supply pressure, and improved the economic efficiency of operation.
从表1两个实例的一日运行经济效益情况可以看出,由于储能装置接入系统,促进了系统对风电的消纳,购电量与火电机组出力均下降,系统的经济效益提高。From the economic benefits of one day's operation of the two examples in Table 1, it can be seen that the connection of the energy storage device to the system promotes the system's consumption of wind power, the amount of electricity purchased and the output of thermal power units both decrease, and the economic benefits of the system improve.
本实施例相比现有技术有如下优点:Compared with the prior art, this embodiment has the following advantages:
实例3通过改变四个储能装置相对于风力发电机组的距离提出了三种不同的系统运行方式(方式3.1、方式3.2、方式3.3),三种运行方式的系统结构如图6所示,储能装置接入点发生变化的原则是距离所在线路的风力发电机组越来越远。以上三个方式设置的系统通过本发明的优化技术后得出的储能装置内部电量的变化情况如图4所示,此外,得出了方式3.1、方式3.2、方式3.3的一日运行经济效益情况,如表2。Example 3 proposes three different system operation modes (mode 3.1, mode 3.2, mode 3.3) by changing the distances of the four energy storage devices relative to the wind turbine generator set. The system structures of the three operation modes are shown in Figure 6. The principle of changing the access point of the energy storage device is that the distance from the wind turbine generator set on the line is getting farther and farther. The internal power of the energy storage device obtained by the optimization technology of the present invention in the above three systems is The changes in are shown in Figure 4. In addition, the daily operating economic benefits of Mode 3.1, Mode 3.2, and Mode 3.3 are obtained, as shown in Table 2.
表2方式3.1、方式3.2、方式3.3的一日运行经济效益情况Table 2 Economic benefits of one-day operation of Mode 3.1, Mode 3.2 and Mode 3.3
从表2中可以看出,随着储能装置接入点距离风力发电机组位置的增大,系统购电成本不断升高,储能装置使用成本不断降低,系统一日运行总成本不断升高,这说明,当储能装置距离风电机组的位置越近时,储能装置对于风电的消纳情况更好,储能装置的使用更充足,对于系统调峰填谷的最用更明显,可以在一定程度上提高系统运行的经济性。It can be seen from Table 2 that as the distance between the access point of the energy storage device and the location of the wind turbine increases, the system's electricity purchase cost continues to increase, the cost of using the energy storage device continues to decrease, and the total daily operating cost of the system continues to increase. This shows that when the energy storage device is closer to the wind turbine, the energy storage device can better absorb wind power, the energy storage device can be used more fully, and the peak-shaving and valley-filling function of the system can be more obvious, which can improve the economy of the system operation to a certain extent.
图7通过储能装置内部电量的变化情况,说明了当储能装置相对于风电机组位置变化时,储能装置的使用情况,从方式3.1方式3.3,储能装置一日运行中总充电量不断降,总放电量也不断降低,总体上即可说明储能装置的使用是在降低的,对于系统调峰填谷的作用也降低了。Figure 7: The internal charge of the energy storage device The changes in the energy storage device illustrate the use of the energy storage device when the position of the energy storage device changes relative to the wind turbine. From mode 3.1 to mode 3.3, the total charge amount of the energy storage device continues to decrease during one day's operation, and the total discharge amount also continues to decrease. In general, it can be explained that the use of the energy storage device is decreasing, and its role in peak-loading and valley-filling of the system is also reduced.
实例4通过改变储能装置的充、放电功率上限变化提出了三种不同的系统运行方式(方式4.1、方式4.2、方式4.3、方式4.4、方式4.5),这五种运行方式的变化规律是将的值不断提高。以上五个方式设置的系统通过本发明的优化技术后得出的各机组出力结果如图8所示,此外,得出了方式4.1、方式4.2、方式4.3、方式4.4、方式4.5的一日运行经济效益情况,如表3。Example 4: By changing the upper limit of the charging and discharging power of the energy storage device The changes proposed three different system operation modes (mode 4.1, mode 4.2, mode 4.3, mode 4.4, mode 4.5). The change rules of these five operation modes are to The output results of each unit obtained by the optimization technology of the present invention for the above five systems are shown in FIG8 . In addition, the economic benefits of one-day operation of mode 4.1, mode 4.2, mode 4.3, mode 4.4 and mode 4.5 are obtained, as shown in Table 3 .
表3方式4.1、方式4.2、方式4.3、方式4.4、方式4.5的一日运行经济效益情况Table 3 Economic benefits of one-day operation of Mode 4.1, Mode 4.2, Mode 4.3, Mode 4.4 and Mode 4.5
图8描绘了五种运行方式下储能装置电量的变化情况,从图中可以看出,从方式4.1到方式4.5,随着储能装置的充、放电功率上限不断升高,储能装置电量变化幅度更大,即储能装置使用量不断提升,方式4.4与方式4.5的储能装置电量变化曲线完全重合,这说明在后,不再是限制储能装置使用的因素。Figure 8 depicts the energy storage device capacity under five operating modes. As can be seen from the figure, from mode 4.1 to mode 4.5, as the upper limit of the charging and discharging power of the energy storage device increases, The energy storage device is constantly increasing. The change is greater, that is, the use of energy storage devices continues to increase, and the energy storage device power of method 4.4 and method 4.5 is The change curves completely overlap, which shows that back, It is no longer a factor limiting the use of energy storage devices.
表3是实例4中五种运行方式下的各出力成本与总成本比较,从表中可以看出,从方式4.1到方式4.5,储能装置的充、放电功率上限不断提高时,系统成本显著降低,火电机组成本有微小的降低,储能装置使用成本不断上升,系统一日运行总成本不断升高,这说明,的限制影响了储能装置的使用,当的值提高,储能装置可以更大程度的投入系统能量的调度。值得注意的是,方式4.4与方式4.5的各部分成本相同,说明此时已经不是限制储能装置使用的参数,在此系统下,如果不对进行限制,储能装置的充、放电功率最大在0.5-0.6之间。Table 3 is a comparison of the output costs and total costs under the five operating modes in Example 4. It can be seen from the table that from mode 4.1 to mode 4.5, the upper limit of the charging and discharging power of the energy storage device When the system cost is continuously improved, the system cost is significantly reduced, the cost of thermal power units is slightly reduced, the cost of energy storage devices is continuously increased, and the total cost of system operation per day is continuously increased. This shows that The limitation of As the value of increases, the energy storage device can be put into the system energy dispatch to a greater extent. It is worth noting that the costs of each part of method 4.4 and method 4.5 are the same, indicating that at this time It is no longer a parameter that limits the use of energy storage devices. In this system, if The maximum charging and discharging power of the energy storage device is limited to 0.5-0.6.
此外,类比实例4,可以用相似的控制变量的方法证明储能装置容量也是限制储能装置参与系统调峰填谷的一个重要参数,储能装置的容量上限不断提高时,系统成本显著降低,火电机组成本有微小的降低,储能装置使用成本不断上升,系统一日运行总成本不断升高,这说明,的限制影响了储能装置的使用,当的值提高,储能装置可以更大程度的投入系统能量的调度。In addition, by analogy with Example 4, a similar control variable method can be used to prove that the capacity of the energy storage device is also an important parameter that limits the energy storage device from participating in the peak-shaving and valley-filling system. When the system cost is continuously improved, the system cost is significantly reduced, the cost of thermal power units is slightly reduced, the cost of energy storage devices is continuously increased, and the total cost of system operation per day is continuously increased. This shows that The limitation of As the value of increases, the energy storage device can be used to dispatch system energy to a greater extent.
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。The above is a schematic description of the present invention and its implementation methods, which is not restrictive. The drawings show only one implementation method of the present invention, and the actual structure is not limited thereto. Therefore, if a person skilled in the art is inspired by it and does not deviate from the purpose of the invention, he or she can design a structure and an embodiment similar to the technical solution without creativity, which should fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310081216.4A CN115882523A (en) | 2023-02-08 | 2023-02-08 | Power system optimization operation method, system and equipment including distributed energy storage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310081216.4A CN115882523A (en) | 2023-02-08 | 2023-02-08 | Power system optimization operation method, system and equipment including distributed energy storage |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115882523A true CN115882523A (en) | 2023-03-31 |
Family
ID=85760878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310081216.4A Pending CN115882523A (en) | 2023-02-08 | 2023-02-08 | Power system optimization operation method, system and equipment including distributed energy storage |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115882523A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117195605A (en) * | 2023-11-08 | 2023-12-08 | 山东理工大学 | Electric power system bilinear model relaxation solving method based on linear interpolation |
CN117374942A (en) * | 2023-10-13 | 2024-01-09 | 国网安徽省电力有限公司芜湖供电公司 | Energy storage economy optimization scheduling method based on production plan and load prediction |
CN118100141A (en) * | 2024-01-31 | 2024-05-28 | 清华大学 | Power system scheduling method, device, computer equipment, storage medium and product |
CN118281946A (en) * | 2024-06-04 | 2024-07-02 | 国网浙江省电力有限公司营销服务中心 | New energy data processing method and platform considering demand response |
CN118971021A (en) * | 2024-07-29 | 2024-11-15 | 国网青海省电力公司海西供电公司 | A method for controlling energy storage in an active distribution network containing high penetration rate new energy |
CN119051097A (en) * | 2024-07-23 | 2024-11-29 | 内蒙古电力(集团)有限责任公司内蒙古电力经济技术研究院分公司 | Active distribution network scheduling method for optimizing distribution network loss by considering distributed energy storage |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112803479A (en) * | 2021-01-06 | 2021-05-14 | 国网辽宁省电力有限公司 | Thermal power generating unit modeling method and model considering deep peak shaving |
CN113363964A (en) * | 2021-05-26 | 2021-09-07 | 国网天津市电力公司 | Power distribution network distributed energy storage planning method and device considering important load power supply |
CN114298393A (en) * | 2021-12-23 | 2022-04-08 | 国网安徽省电力有限公司亳州供电公司 | Uncertainty-considered energy storage power station dynamic configuration method, system and equipment |
CN115276111A (en) * | 2022-07-08 | 2022-11-01 | 国网宁夏电力有限公司经济技术研究院 | Construction method of coordination optimization model and power distribution network planning method |
CN115622104A (en) * | 2022-10-26 | 2023-01-17 | 国网湖北省电力有限公司电力科学研究院 | A mobile energy storage planning and configuration method for active distribution network |
-
2023
- 2023-02-08 CN CN202310081216.4A patent/CN115882523A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112803479A (en) * | 2021-01-06 | 2021-05-14 | 国网辽宁省电力有限公司 | Thermal power generating unit modeling method and model considering deep peak shaving |
CN113363964A (en) * | 2021-05-26 | 2021-09-07 | 国网天津市电力公司 | Power distribution network distributed energy storage planning method and device considering important load power supply |
CN114298393A (en) * | 2021-12-23 | 2022-04-08 | 国网安徽省电力有限公司亳州供电公司 | Uncertainty-considered energy storage power station dynamic configuration method, system and equipment |
CN115276111A (en) * | 2022-07-08 | 2022-11-01 | 国网宁夏电力有限公司经济技术研究院 | Construction method of coordination optimization model and power distribution network planning method |
CN115622104A (en) * | 2022-10-26 | 2023-01-17 | 国网湖北省电力有限公司电力科学研究院 | A mobile energy storage planning and configuration method for active distribution network |
Non-Patent Citations (1)
Title |
---|
党建: ""含分布式储能的主动配电网经济优化调度研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117374942A (en) * | 2023-10-13 | 2024-01-09 | 国网安徽省电力有限公司芜湖供电公司 | Energy storage economy optimization scheduling method based on production plan and load prediction |
CN117195605A (en) * | 2023-11-08 | 2023-12-08 | 山东理工大学 | Electric power system bilinear model relaxation solving method based on linear interpolation |
CN117195605B (en) * | 2023-11-08 | 2024-01-26 | 山东理工大学 | Electric power system bilinear model relaxation solving method based on linear interpolation |
CN118100141A (en) * | 2024-01-31 | 2024-05-28 | 清华大学 | Power system scheduling method, device, computer equipment, storage medium and product |
CN118281946A (en) * | 2024-06-04 | 2024-07-02 | 国网浙江省电力有限公司营销服务中心 | New energy data processing method and platform considering demand response |
CN119051097A (en) * | 2024-07-23 | 2024-11-29 | 内蒙古电力(集团)有限责任公司内蒙古电力经济技术研究院分公司 | Active distribution network scheduling method for optimizing distribution network loss by considering distributed energy storage |
CN118971021A (en) * | 2024-07-29 | 2024-11-15 | 国网青海省电力公司海西供电公司 | A method for controlling energy storage in an active distribution network containing high penetration rate new energy |
CN118971021B (en) * | 2024-07-29 | 2025-06-20 | 国网青海省电力公司海西供电公司 | A method for controlling energy storage in an active distribution network containing high penetration rate new energy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115882523A (en) | Power system optimization operation method, system and equipment including distributed energy storage | |
WO2018059096A1 (en) | Combined decision method for power generation plans of multiple power sources, and storage medium | |
CN106505558B (en) | A kind of the energy conveyance control method and device of DC distribution net | |
CN110826773A (en) | A method for optimizing the monthly power generation plan of thermal power units considering new energy access | |
CN116260181A (en) | Multi-time-scale scheduling method considering large-scale renewable energy access | |
CN116707016A (en) | Scene generation and reduction-based wind-solar-hydrogen storage day-ahead random optimization scheduling method | |
CN116345565A (en) | New energy and energy storage capacity combined optimization method, system, equipment and medium | |
CN114301081A (en) | Micro-grid optimization method considering energy storage life loss and demand response of storage battery | |
CN118898352A (en) | A virtual power plant dynamic peak regulation method and system based on neural network | |
CN116111597A (en) | A method, system, memory and device for constructing a power flow section scene set in a medium- and long-term dispatch plan | |
CN112186734A (en) | Medium-and-long-term operation simulation method for power system, storage medium and computing equipment | |
CN105633950B (en) | A kind of probabilistic multiple target Random-fuzzy Dynamic Optimal Power Flow Problem method for solving of consideration wind-powered electricity generation injection | |
CN111898801A (en) | Method and system for configuring multi-energy complementary power supply system | |
CN113765105A (en) | Micro-grid group energy management method based on dynamic random model | |
CN118539484A (en) | Distributed photovoltaic energy storage management and control method, system, terminal and storage medium | |
CN117439120A (en) | New energy storage time sequence distribution method and system for power distribution network | |
CN114819508B (en) | Comprehensive energy system distributed photovoltaic maximum access capacity calculation method and system | |
CN117175709A (en) | New energy power system unit combination method and system taking into account inertia constraints | |
CN115566739A (en) | A suppression method for voltage overrun caused by distributed wind power access to distribution network | |
CN114357743A (en) | An edge-cloud collaborative optimization method and device for regional energy internet | |
Qu et al. | Research on new energy operation credible capacity evaluation and it’s influence on new energy accommodation | |
CN114358361A (en) | A multi-time-scale optimal scheduling method for microgrid considering demand response | |
Yang et al. | A Short Term Wind-Photovoltaic-Load Forecasting Model Based on Coupling Relationship and Multi-Layer Extraction Multi-Task Learning | |
Wang et al. | Low-Carbon Dispatching Strategy of Virtual Power Plant Based on CNN-LSTM Load Forecasting | |
CN119294621B (en) | Comprehensive energy system operation method based on spectrum normalization generation countermeasure network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20230331 |