[go: up one dir, main page]

CN115880101B - A water conservancy data management system based on big data - Google Patents

A water conservancy data management system based on big data Download PDF

Info

Publication number
CN115880101B
CN115880101B CN202310186440.XA CN202310186440A CN115880101B CN 115880101 B CN115880101 B CN 115880101B CN 202310186440 A CN202310186440 A CN 202310186440A CN 115880101 B CN115880101 B CN 115880101B
Authority
CN
China
Prior art keywords
water level
data
historical
actual
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310186440.XA
Other languages
Chinese (zh)
Other versions
CN115880101A (en
Inventor
吴桂兴
池德亮
胡红燕
池启煜
王勇
谢小乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Guixing Technology Group Co.,Ltd.
Original Assignee
Jiangxi Guixing Information Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Guixing Information Technology Co ltd filed Critical Jiangxi Guixing Information Technology Co ltd
Priority to CN202310186440.XA priority Critical patent/CN115880101B/en
Publication of CN115880101A publication Critical patent/CN115880101A/en
Application granted granted Critical
Publication of CN115880101B publication Critical patent/CN115880101B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping

Landscapes

  • Image Processing (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及水文监测领域,尤其涉及一种基于大数据的水利数据管理系统,通过数据获取模块获取预测数据和实际数据,由数据获取模块提供的数据得到危险水位,由数据提取模块根据大数据储存模块提供的数据建立第一图像和第二图像,参数拟合模块根据散点图进行线性拟合得到第一参数和第二参数,由修正参数设置模块提供修正参数,再由计算模块根据第一参数、第二参数和修正参数对数据进行计算得到第二水位,再经过比较模块判断危险程度从而实现水位危险预警,最后由数据处理模块经过筛选整理完善大数据储存模块。本发明解决了延误水利数据的时效性导致工作的不彻底从而降低工作效率的问题。

Figure 202310186440

The present invention relates to the field of hydrological monitoring, in particular to a water conservancy data management system based on big data, which obtains predicted data and actual data through a data acquisition module, and obtains dangerous water levels from the data provided by the data acquisition module, and stores them according to the big data The data provided by the module establishes the first image and the second image, the parameter fitting module performs linear fitting according to the scatter diagram to obtain the first parameter and the second parameter, the correction parameter setting module provides the correction parameters, and then the calculation module calculates the The parameters, the second parameter and the correction parameter calculate the data to obtain the second water level, and then the comparison module judges the degree of danger to realize the water level danger warning, and finally the data processing module completes the big data storage module through screening and sorting. The invention solves the problem that delaying the timeliness of water conservancy data leads to incomplete work and reduces work efficiency.

Figure 202310186440

Description

一种基于大数据的水利数据管理系统A water conservancy data management system based on big data

技术领域technical field

本发明涉及水文监测领域,尤其涉及一种基于大数据的水利数据管理系统。The invention relates to the field of hydrological monitoring, in particular to a water conservancy data management system based on big data.

背景技术Background technique

随着信息化技术的迅猛发展,越来越多的水利信息化基础设施及应用系统,被应用到水利工程建设与管理、水行政业务处置,水文系统的数据监测等领域中,水利物联设备上传的数据越来越大,与此同时,随着整个互联网上的信息量呈爆炸性增长态势,大数据技术应运而生,将大数据技术引入水利行业,将其作为水利信息化与智慧化建设的基础技术,成为一种必然的趋势。With the rapid development of information technology, more and more water conservancy information infrastructure and application systems have been applied to the construction and management of water conservancy projects, water administrative business disposal, data monitoring of hydrological systems and other fields. Water conservancy IoT equipment The uploaded data is getting bigger and bigger. At the same time, with the explosive growth of the amount of information on the entire Internet, big data technology has emerged as the times require. Big data technology has been introduced into the water conservancy industry, and it is used as an important tool for water conservancy informatization and intelligent construction. The basic technology has become an inevitable trend.

公开号CN112969051A的专利文献公开了一种基于大数据水利工程管理系统,该系统能够根据监控系数来调整摄像头的角度,同时根据处配值合理选择对应的管理人员进行处理。The patent document with the publication number CN112969051A discloses a water conservancy engineering management system based on big data, which can adjust the angle of the camera according to the monitoring coefficient, and at the same time, reasonably select the corresponding management personnel for processing according to the allocation value.

但是摄像头的采集到的是实时信息,水利数据发生异常时对应的管理人员不能做到及时处理,延误水利数据的时效性会导致工作的不彻底,从而降低工作效率。However, the camera collects real-time information. When the water conservancy data is abnormal, the corresponding management personnel cannot handle it in time. Delaying the timeliness of the water conservancy data will lead to incomplete work and reduce work efficiency.

发明内容Contents of the invention

为此,本发明提供一种基于大数据的水利数据管理系统,可以解决延误水利数据的时效性会导致工作的不彻底从而降低工作效率的问题。Therefore, the present invention provides a water conservancy data management system based on big data, which can solve the problem that delaying the timeliness of water conservancy data will lead to incomplete work and reduce work efficiency.

为实现上述目的,本发明提供一种基于大数据的水利数据管理系统,包括:In order to achieve the above object, the present invention provides a water conservancy data management system based on big data, including:

数据获取模块,用以获取目标河段的第一预测平均气温T3、第一预测降水量P3、第二实际平均气温T2、第二实际降水量P2和第二实际最大水位Z2;The data acquisition module is used to acquire the first predicted average temperature T3, the first predicted precipitation P3, the second actual average temperature T2, the second actual precipitation P2 and the second actual maximum water level Z2 of the target river section;

大数据存储模块,用以存储目标河段在历史时段内每一历史日期以及每一历史日期对应当天的历史实际平均气温T1i、历史实际降水量P1i、历史实际最大水位Z1i、历史预测最大水位Z3i和历史水位修正参数n1i,其中目标河段每一历史日期中包括目标河段发生事故日期,其中1≤i≤N,N为正整数,N为在历史时段内当日之前的天数总数,将n1N设为第一水位修正参数;The big data storage module is used to store the historical actual average temperature T1 i , the historical actual precipitation P1 i , the historical actual maximum water level Z1 i , and the historical forecast for each historical date of the target river section in the historical period and corresponding to that day. The maximum water level Z3 i and the historical water level correction parameter n1 i , where each historical date of the target river section includes the date of the accident in the target river section, where 1≤i≤N, N is a positive integer, and N is the date before the current day in the historical period The total number of days, n1 N is set as the first water level correction parameter;

危险水位设置模块,与所述大数据存储模块连接,用以根据从所有目标河段发生事故日期对应的所述历史实际最大水位Z1i中提取最小值并将其设为危险水位Z0;The dangerous water level setting module is connected with the big data storage module, and is used to extract the minimum value from the historical actual maximum water level Z1 i corresponding to the accident date of all target river sections and set it as the dangerous water level Z0;

数据提取模块,分别与所述数据获取模块和所述大数据存储模块连接,将所述第一预测平均气温T3和所述历史实际平均气温T1i相等时各日期设为第一日期组,将所述第一预测降水量P3和所述历史实际降水量P1i相等时各日期设为第二日期组,用以提取第一日期组中的所述历史实际降水量P1i和所述历史实际最大水位Z1i的数据,以及,用以提取第二日期组中的所述历史实际平均气温T1i和所述历史实际最大水位Z1i的数据;The data extraction module is connected with the data acquisition module and the big data storage module respectively, and each date is set as the first date group when the first predicted average temperature T3 and the historical actual average temperature T1 i are equal, and the When the first predicted precipitation P3 and the historical actual precipitation P1 i are equal, each date is set as the second date group to extract the historical actual precipitation P1 i and the historical actual precipitation in the first date group. The data of the maximum water level Z1 i , and the data used to extract the historical actual average temperature T1 i and the historical actual maximum water level Z1 i in the second date group;

图像建立模块,与所述数据提取模块连接,用以根据所述第一日期组中的所述历史实际降水量P1i和所述历史实际最大水位Z1i的数据关系建立第一图像,以及,用以根据所述第二日期组中的所述历史实际平均气温T1i和所述历史实际最大水位Z1i的数据关系建立第二图像;An image creation module, connected to the data extraction module, to establish a first image according to the data relationship between the historical actual precipitation P1 i and the historical actual maximum water level Z1 i in the first date group, and, It is used to establish a second image according to the data relationship between the historical actual average temperature T1 i and the historical actual maximum water level Z1 i in the second date group;

参数拟合模块,与所述图像建立模块连接,用以根据所述第一图像做线性拟合得到第一参数k1,以及,用以根据所述第二图像做线性拟合得到第二参数k2;A parameter fitting module, connected to the image creation module, for performing linear fitting according to the first image to obtain the first parameter k1, and for performing linear fitting according to the second image to obtain the second parameter k2 ;

计算模块,分别与所述数据获取模块、所述大数据存储模块和所述参数拟合模块连接,用以根据所述第一预测平均气温T3、所述第一预测降水量P3、所述第一水位修正参数n1N、所述第一参数k1和所述第二参数k2计算得到第一预测最大水位Z3;The calculation module is connected with the data acquisition module, the big data storage module and the parameter fitting module respectively, and is used to calculate the temperature according to the first predicted average temperature T3, the first predicted precipitation P3, the first predicted precipitation A water level correction parameter n1 N , the first parameter k1 and the second parameter k2 are calculated to obtain the first predicted maximum water level Z3;

比较模块,分别与所述危险水位设置模块和所述计算模块连接,用以比较所述第一预测最大水位Z3与所述危险水位Z0的大小关系,并根据大小关系判断第一预测最大水位Z3的危险程度;A comparison module, connected to the dangerous water level setting module and the calculation module respectively, for comparing the size relationship between the first predicted maximum water level Z3 and the dangerous water level Z0, and judging the first predicted maximum water level Z3 according to the size relationship degree of danger;

修正参数设置模块,与所述大数据存储模块连接,用以根据所述历史实际最大水位Z1i、所述历史预测最大水位Z3i、所述第二实际最大水位Z2计算得到第二水位修正参数n1N+1A correction parameter setting module, connected to the big data storage module, used to calculate the second water level correction parameter according to the historical actual maximum water level Z1 i , the historical predicted maximum water level Z3 i , and the second actual maximum water level Z2 n1 N+1 ;

数据处理模块,分别与所述比较模块、所述数据获取模块、所述计算模块、所述修正参数设置模块和所述大数据存储模块连接,用以根据第一预测最大水位Z3的危险程度将所述第一预测平均气温T3、所述第一预测降水量P3、所述第一预测最大水位Z3、第二水位修正参数n1N+1、所述第二实际平均气温T2、所述第二实际降水量P2和所述第二实际最大水位Z2进行存储或删除。The data processing module is respectively connected with the comparison module, the data acquisition module, the calculation module, the correction parameter setting module and the big data storage module, so as to reduce the risk according to the first predicted maximum water level Z3 The first predicted average temperature T3, the first predicted precipitation P3, the first predicted maximum water level Z3, the second water level correction parameter n1 N+1 , the second actual average temperature T2, the second The actual precipitation P2 and the second actual maximum water level Z2 are stored or deleted.

进一步地,所述数据获取模块包括预测单元和检测单元,预测单元和检测单元之间相互独立;Further, the data acquisition module includes a prediction unit and a detection unit, and the prediction unit and the detection unit are independent of each other;

所述预测单元用以获取目标河段的所述第一预测平均气温T3、所述第一预测降水量P3;The prediction unit is used to obtain the first predicted average temperature T3 and the first predicted precipitation P3 of the target river section;

所述检测单元用以获取所述第二实际平均气温T2、所述第二实际降水量P2和所述第二实际最大水位Z2。The detection unit is used to acquire the second actual average temperature T2, the second actual precipitation P2 and the second actual maximum water level Z2.

进一步地,所述大数据存储模块包括第一存储单元和第二存储单元,第一存储单元和第二存储单元之间相互独立,用以将历史时段内每一历史日期对应当天的所述历史实际平均气温T1i、所述历史实际降水量P1i、所述历史实际最大水位Z1i、所述历史预测最大水位Z3i和所述历史水位修正参数n1i设为若干分别独立的数据组,以日期为索引与各数据组一一对应;Further, the big data storage module includes a first storage unit and a second storage unit, the first storage unit and the second storage unit are independent of each other, and are used to map each historical date in the historical period to the historical data of the current day The actual average temperature T1 i , the historical actual precipitation P1 i , the historical actual maximum water level Z1 i , the historical predicted maximum water level Z3 i and the historical water level correction parameter n1 i are set as several independent data groups, One-to-one correspondence with each data group with the date as the index;

所述第一存储单元用以存储历史时段内目标河段不发生事故的每一历史日期和对应的各所述数据组;The first storage unit is used to store each historical date and the corresponding data sets when no accident occurred in the target river section within the historical period;

所述第二存储单元用以存储历史时段内目标河段发生事故的每一历史日期和对应的各所述数据组。The second storage unit is used to store each historical date of an accident in the target river section within the historical period and the corresponding data groups.

进一步地,所述数据提取模块包括第一数据提取单元和第二数据提取单元,第一数据提取单元和第二数据提取单元之间相互独立,第一数据提取单元分别与所述预测单元、所述第一存储单元和所述第二存储单元连接,第二数据提取单元分别与所述预测单元、所述第一存储单元和所述第二存储单元连接;Further, the data extraction module includes a first data extraction unit and a second data extraction unit, the first data extraction unit and the second data extraction unit are independent of each other, the first data extraction unit is connected with the prediction unit, the The first storage unit is connected to the second storage unit, and the second data extraction unit is respectively connected to the prediction unit, the first storage unit and the second storage unit;

所述第一数据提取单元,用以根据所述第一预测平均气温T3的数值大小从所述第一存储单元和所述第二存储单元中提取所述第一日期组的所有所述数据组,并将提取出的所述第一日期组的所有所述数据组设为第一数据库,以及,从第一数据库中提取所述历史实际降水量P1i和所述历史实际最大水位Z1i的数据,并将提取出的所述历史实际降水量P1i和所述历史实际最大水位Z1i的数据设为第一待作图数据组;The first data extraction unit is used to extract all the data groups of the first date group from the first storage unit and the second storage unit according to the value of the first predicted average temperature T3 , and set all the data groups of the extracted first date group as the first database, and extract the historical actual precipitation P1 i and the historical actual maximum water level Z1 i from the first database data, and the data of the extracted historical actual precipitation P1 i and the historical actual maximum water level Z1 i are set as the first data group to be mapped;

所述第二数据提取单元,用以根据所述第一预测降水量P3的数值大小从所述第一存储单元和所述第二存储单元中提取所述第二日期组的所有所述数据组,并将提取出的所述第二日期组的所有所述数据组设为第二数据库,以及,从第二数据库中提取所述历史实际平均气温T1i和所述历史实际最大水位Z1i的数据,并将提取出的所述历史实际平均气温T1i和所述历史实际最大水位Z1i的数据设为第二待作图数据组。The second data extraction unit is used to extract all the data groups of the second date group from the first storage unit and the second storage unit according to the value of the first predicted precipitation P3 , and set all the data groups of the extracted second date group as the second database, and extract the historical actual average temperature T1 i and the historical actual maximum water level Z1 i from the second database data, and the extracted data of the historical actual average temperature T1 i and the historical actual maximum water level Z1 i are set as the second data group to be mapped.

进一步地,所述图像建立模块包括第一图像建立单元和第二图像建立单元,第一图像建立单元和第二图像建立单元之间相互独立,第一图像建立单元与所述第一数据提取单元连接,第二图像建立单元与所述第二数据提取单元连接;Further, the image creation module includes a first image creation unit and a second image creation unit, the first image creation unit and the second image creation unit are independent of each other, the first image creation unit and the first data extraction unit connected, the second image creation unit is connected to the second data extraction unit;

所述第一图像建立单元,用以根据所述第一待作图数据组将历史实际降水量P1i由低到高排列,建立降水量-水位散点图设为第一图像;The first image creation unit is used to arrange the historical actual precipitation P1 i from low to high according to the first data set to be mapped, and establish a precipitation-water level scatter diagram as the first image;

所述第二图像建立单元,用以根据所述第二待作图数据组将历史实际平均气温T1i由低到高排列,建立平均气温-水位散点图设为第二图像。The second image creation unit is used to arrange the historical actual average temperature T1 i from low to high according to the second data set to be mapped, and create a scatter diagram of average temperature-water level as the second image.

进一步地,所述参数拟合模块包括第一参数拟合单元和第二参数拟合单元第一参数拟合单元和第二参数拟合单元之间相互独立,第一参数拟合单元与所述第一图像建立单元连接,第二参数拟合单元与所述第二图像建立单元连接;Further, the parameter fitting module includes a first parameter fitting unit and a second parameter fitting unit, the first parameter fitting unit and the second parameter fitting unit are independent of each other, and the first parameter fitting unit and the The first image creation unit is connected, and the second parameter fitting unit is connected to the second image creation unit;

所述第一参数拟合单元,用以根据所述第一图像做线性拟合,获取与所述第一图像拟合后线性图像的斜率为第一斜率,将第一斜率的数值设为第一参数k1;The first parameter fitting unit is used to perform linear fitting according to the first image, obtain the slope of the linear image after fitting with the first image as the first slope, and set the value of the first slope as the first slope. a parameter k1;

所述第二参数拟合单元,用以根据所述第二图像做线性拟合,获取与所述第二图像拟合后线性图像的斜率为第二斜率,将第二斜率的数值设为第二参数k2。The second parameter fitting unit is used to perform linear fitting according to the second image, obtain the slope of the linear image after fitting with the second image as the second slope, and set the value of the second slope as the first Two parameters k2.

进一步地,所述计算模块,分别与所述预测单元、所述第一参数拟合单元、所述第二参数拟合单元、所述第一存储单元和所述第二存储单元连接,用以将所述第一预测平均气温T3、所述第一预测降水量P3、所述第一参数k1、所述第二参数k2和所述第一水位修正参数n1N根据公式(P3×k1)+(T3×k2)+n1N=Z3计算得到第一预测最大水位Z3。Further, the calculation module is respectively connected with the prediction unit, the first parameter fitting unit, the second parameter fitting unit, the first storage unit and the second storage unit, for The first predicted average temperature T3, the first predicted precipitation P3, the first parameter k1, the second parameter k2 and the first water level correction parameter n1 N are calculated according to the formula (P3×k1)+ (T3×k2)+n1 N =Z3 is calculated to obtain the first predicted maximum water level Z3.

进一步地,所述比较模块,分别与所述危险水位设置模块和所述计算模块连接,用以比较所述危险水位Z0与所述第一预测最大水位Z3的大小关系,并根据大小关系判断第一水位的危险程度;Further, the comparison module is respectively connected with the dangerous water level setting module and the calculation module to compare the magnitude relationship between the dangerous water level Z0 and the first predicted maximum water level Z3, and judge the first predicted maximum water level Z3 according to the magnitude relationship. the degree of danger of a water level;

所述比较模块确定Z3≥Z0时,第一水位具有导致事故发生的危险,所述比较模块发出危险预警;When the comparison module determines that Z3≥Z0, the first water level has the risk of causing an accident, and the comparison module issues a danger warning;

所述比较模块确定Z3<Z0时,第一水位不具有导致事故发生的危险。When the comparison module determines that Z3<Z0, the first water level does not have the risk of causing an accident.

进一步地,所述修正参数设置模块,与所述第一存储单元和所述第二存储单元连接,用以将历史时段内所述历史实际最大水位Z1i、所述历史预测最大水位Z3i、所述第二实际最大水位Z2、第二预测最大水位Z3N+1根据公式Further, the correction parameter setting module is connected with the first storage unit and the second storage unit, and is used to set the historical actual maximum water level Z1 i , the historical predicted maximum water level Z3 i , The second actual maximum water level Z2 and the second predicted maximum water level Z3 N+1 are according to the formula

计算得到所述第二水位修正参数n1N+1,其中1≤i≤N,N为正整数,N为在历史时段内当日之前的天数总数。The second water level correction parameter n1 N+1 is calculated to obtain, wherein 1≤i≤N, N is a positive integer, and N is the total number of days before the current day in the historical period.

进一步地,所述数据处理模块,分别与所述预测单元、所述检测单元、所述第一存储单元、所述第二存储单元、所述计算模块和所述修正参数设置模块连接;Further, the data processing module is respectively connected with the prediction unit, the detection unit, the first storage unit, the second storage unit, the calculation module and the correction parameter setting module;

删除所述第一预测平均气温T3和所述第一预测降水量P3;Delete the first predicted average temperature T3 and the first predicted precipitation P3;

当Z3≥Z0时,将所述第一预测最大水位Z3设为历史预测最大水位Z3N+1,将所述第二实际平均气温T2设为历史实际平均气温T1N+1,将所述第二实际降水量P2设为历史实际降水量P1N+1,将所述第二实际最大水位Z2设为历史实际最大水位Z1N+1,并将历史预测最大水位Z3N+1、历史实际平均气温T1N+1、历史实际降水量P1N+1、历史实际最大水位Z1N+1和所述第一水位修正参数n1N存储在所述第一存储单元中;When Z3≥Z0, set the first predicted maximum water level Z3 as the historical predicted maximum water level Z3 N+1 , set the second actual average temperature T2 as the historical actual average temperature T1 N+1 , and set the second actual average temperature T1 N+1 2. The actual precipitation P2 is set as the historical actual precipitation P1 N+1 , the second actual maximum water level Z2 is set as the historical actual maximum water level Z1 N+1 , and the historical predicted maximum water level Z3 N+1 , historical actual average Air temperature T1 N+1 , historical actual precipitation P1 N+1 , historical actual maximum water level Z1 N+1 and the first water level correction parameter n1 N are stored in the first storage unit;

当Z3<Z0时,将所述第一预测最大水位Z3设为历史预测最大水位Z3N+1,将所述第二实际平均气温T2设为历史实际平均气温T1N+1,将所述第二实际降水量P2设为历史实际降水量P1N+1,将所述第二实际最大水位Z2设为历史实际最大水位Z1N+1,并将历史预测最大水位Z3N+1、历史实际平均气温T1N+1、历史实际降水量P1N+1、历史实际最大水位Z1N+1和所述第二水位修正参数n1N+1存储在所述第二存储单元中。When Z3<Z0, set the first predicted maximum water level Z3 as the historical predicted maximum water level Z3 N+1 , set the second actual average temperature T2 as the historical actual average temperature T1 N+1 , set the second actual average temperature T1 N+1 2. The actual precipitation P2 is set as the historical actual precipitation P1 N+1 , the second actual maximum water level Z2 is set as the historical actual maximum water level Z1 N+1 , and the historical predicted maximum water level Z3 N+1 , historical actual average Air temperature T1 N+1 , historical actual precipitation P1 N+1 , historical actual maximum water level Z1 N+1 and the second water level correction parameter n1 N+1 are stored in the second storage unit.

与现有技术相比,本发明的有益效果在于,本发明所管理的数据信息在时间上分为预测的数据与实际的数据,其中预测的数据包括所述第一预测平均气温T3、所述第一预测降水量P3、所述第一预测最大水位Z3和所述历史预测最大水位Z3i,实际的数据包括所述第二实际平均气温T2、所述第二实际降水量P2、第二实际最大水位Z2、历史实际平均气温T1i、历史实际降水量P1i、历史实际最大水位Z1i和历史水位修正参数n1i,其中预测的数据大多用以根据参数与公式推测所述第一预测最大水位Z3用以提前获取危险预警并加以应对,而实际的数据大多经过所述数据处理模块归类存储以被提取利用,随着大数据存储模块中的数据基数的增加,根据这些数值计算得到的结果也会随时间的递增越来越精确,整个系统数据形成存储到计算到反馈调节到再存储的工作过程形成闭环,随着数据的积累,精确度与可靠性会随之增加,可以解决延误水利数据的时效性导致工作的不彻底从而降低工作效率的问题。Compared with the prior art, the beneficial effect of the present invention is that the data information managed by the present invention is divided into predicted data and actual data in time, wherein the predicted data includes the first predicted average temperature T3, the The first predicted precipitation P3, the first predicted maximum water level Z3 and the historical predicted maximum water level Z3 i , the actual data include the second actual average temperature T2, the second actual precipitation P2, the second actual The maximum water level Z2, the historical actual average temperature T1 i , the historical actual precipitation P1 i , the historical actual maximum water level Z1 i and the historical water level correction parameter n1 i , where the predicted data are mostly used to speculate the first predicted maximum The water level Z3 is used to obtain early warning of danger and deal with it, and most of the actual data is classified and stored by the data processing module for extraction and utilization. With the increase of the data base in the big data storage module, the calculated value based on these The results will also become more and more accurate with time. The whole system forms a closed loop from data storage to calculation to feedback adjustment to re-storage. With the accumulation of data, the accuracy and reliability will increase, which can solve the delay. The timeliness of water conservancy data leads to incomplete work, which reduces work efficiency.

尤其,将同一天所产生的所述历史实际平均气温T1i、所述历史实际降水量P1i、所述历史实际最大水位Z1i、所述历史预测最大水位Z3i和所述历史水位修正参数n1i统一加以整合,并由日期进行索引便于信息的筛选与查找,进一步增加了工作效率,将所述大数据存储模块划分为所述第一存储单元和所述第二存储单元两个相互独立的单元,是为了将重要的数据独立出来,加快了提取速度。In particular, the historical actual average temperature T1 i , the historical actual precipitation P1 i , the historical actual maximum water level Z1 i , the historical predicted maximum water level Z3 i and the historical water level correction parameters generated on the same day n1 i are unified and integrated, and indexed by date to facilitate information screening and search, further increasing work efficiency, dividing the big data storage module into two independent storage units, the first storage unit and the second storage unit The unit is to isolate important data and speed up the extraction.

尤其,对有关量进行多次观测或实验得到了一些零散数据组,不仅不便于处理,而且通常不能确切和充分地体现出其固有的规律,为了得到数据之间的固有规律或者用当前数据来预测期望得到的数据,一般会采用线性拟合,线性拟合是曲线拟合的一种形式,设x和y都是被观测的量,且y是x的函数,即y=f(x; b),曲线拟合就是通过x,y的观测值来寻求参数b的最佳估计值,即寻求最佳的理论曲线y=f(x; b),当函数y=f(x; b)为关于参数b的线性函数时,称这种曲线拟合为线性拟合,由线性拟合得到的一次函数图像,其图像中的斜率,数值上等于影响因素之间的变化率,本发明采用大数据的方式,由所述第一存储单元和所述第二存储单元提供的海量数据组生成的散点图中进行线性拟合,拟合度会随着数据量的增加而增加,随之得到的所述第一参数k1和所述第二参数k2也会随着数据量的增加而越发精准,提高了后续计算结果的精确度。In particular, some scattered data sets obtained through multiple observations or experiments on relevant quantities are not only inconvenient to handle, but also usually cannot accurately and fully reflect their inherent laws. In order to obtain the inherent laws between the data or use the current data to To predict the expected data, linear fitting is generally used. Linear fitting is a form of curve fitting. Let x and y be observed quantities, and y is a function of x, that is, y=f(x; b), curve fitting is to seek the best estimated value of parameter b through the observed values of x and y, that is, to seek the best theoretical curve y=f(x; b), when the function y=f(x; b) When it is a linear function about the parameter b, this curve fitting is called linear fitting, the linear function image obtained by linear fitting, the slope in the image is numerically equal to the rate of change between the influencing factors, the present invention adopts In the way of big data, linear fitting is performed in the scatter diagram generated by the massive data sets provided by the first storage unit and the second storage unit, and the degree of fitting will increase with the increase of the amount of data, and then The obtained first parameter k1 and the second parameter k2 will also become more accurate as the amount of data increases, which improves the accuracy of subsequent calculation results.

附图说明Description of drawings

图1为本发明实施例提供的基于大数据的水利数据管理系统的结构示意图;Fig. 1 is a schematic structural diagram of a water conservancy data management system based on big data provided by an embodiment of the present invention;

图2为本发明实施例提供的基于大数据的水利数据管理系统的大数据存储模块结构示意图;Fig. 2 is a schematic structural diagram of a big data storage module of a water conservancy data management system based on big data provided by an embodiment of the present invention;

图3为本发明实施例提供的基于大数据的水利数据管理系统的数据提取模块结构示意图;Fig. 3 is a schematic structural diagram of a data extraction module of a water conservancy data management system based on big data provided by an embodiment of the present invention;

图4为本发明实施例提供的基于大数据的水利数据管理系统的图像建立模块结构示意图;4 is a schematic structural diagram of an image building module of a water conservancy data management system based on big data provided by an embodiment of the present invention;

图5为本发明实施例提供的基于大数据的水利数据管理系统的参数拟合模块结构示意图。Fig. 5 is a schematic structural diagram of a parameter fitting module of a water conservancy data management system based on big data provided by an embodiment of the present invention.

具体实施方式Detailed ways

为了使本发明的目的和优点更加清楚明白,下面结合实施例对本发明作进一步描述;应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。In order to make the objects and advantages of the present invention clearer, the present invention will be further described below in conjunction with the examples; it should be understood that the specific examples described here are only for explaining the present invention, and are not intended to limit the present invention.

下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非在限制本发明的保护范围。Preferred embodiments of the present invention are described below with reference to the accompanying drawings. Those skilled in the art should understand that these embodiments are only used to explain the technical principle of the present invention, and are not intended to limit the protection scope of the present invention.

需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。It should be noted that, in the description of the present invention, terms such as "upper", "lower", "left", "right", "inner", "outer" and other indicated directions or positional relationships are based on the terms shown in the accompanying drawings. The direction or positional relationship shown is only for convenience of description, and does not indicate or imply that the device or element must have a specific orientation, be constructed and operated in a specific orientation, and thus should not be construed as limiting the present invention.

此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。In addition, it should be noted that, in the description of the present invention, unless otherwise clearly stipulated and limited, the terms "installation", "connection" and "connection" should be understood in a broad sense, for example, it can be a fixed connection or a It is a detachable connection or an integral connection; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary, and it may be the internal communication of two components. Those skilled in the art can understand the specific meanings of the above terms in the present invention according to specific situations.

请参阅图1所示,本发明实施例提供的基于大数据的水利数据管理系统包括:Referring to Fig. 1, the water conservancy data management system based on big data provided by the embodiment of the present invention includes:

数据获取模块101,用以获取目标河段的第一预测平均气温T3、第一预测降水量P3、第二实际平均气温T2、第二实际降水量P2和第二实际最大水位Z2;The data acquisition module 101 is used to acquire the first predicted average temperature T3, the first predicted precipitation P3, the second actual average temperature T2, the second actual precipitation P2 and the second actual maximum water level Z2 of the target river section;

大数据存储模块102,用以存储目标河段在历史时段内每一历史日期以及每一历史日期对应当天的历史实际平均气温T1i、历史实际降水量P1i、历史实际最大水位Z1i、历史预测最大水位Z3i和历史水位修正参数n1i,其中目标河段每一历史日期中包括目标河段发生事故日期,其中1≤i≤N,N为正整数,N为在历史时段内第二之前的天数总数,将n1N设为第一水位修正参数;The big data storage module 102 is used to store the historical actual average temperature T1 i , historical actual precipitation P1 i , historical actual maximum water level Z1 i , and historical Predict the maximum water level Z3 i and historical water level correction parameters n1 i , where each historical date of the target river section includes the accident date of the target river section, where 1≤i≤N, N is a positive integer, and N is the second in the historical period For the total number of days before, n1 N is set as the first water level correction parameter;

危险水位设置模块103,与所述大数据存储模块连接,用以根据从所有目标河段发生事故日期对应的所述历史实际最大水位Z1i中提取最小值并将其设为危险水位Z0;The dangerous water level setting module 103 is connected with the big data storage module, and is used to extract the minimum value from the historical actual maximum water level Z1 i corresponding to the accident date of all target river sections and set it as the dangerous water level Z0;

数据提取模块104,分别与所述数据获取模块和所述大数据存储模块连接,将所述第一预测平均气温T3和所述历史实际平均气温T1i相等时各日期设为第一日期组,将所述第一预测降水量P3和所述历史实际降水量P1i相等时各日期设为第二日期组,用以提取第一日期组中的所述历史实际降水量P1i和所述历史实际最大水位Z1i的数据,以及,用以提取第二日期组中的所述历史实际平均气温T1i和所述历史实际最大水位Z1i的数据;The data extraction module 104 is connected with the data acquisition module and the big data storage module respectively, and when the first predicted average temperature T3 and the historical actual average temperature T1 i are equal, each date is set as the first date group, When the first predicted precipitation P3 and the historical actual precipitation P1 i are equal, each date is set as a second date group to extract the historical actual precipitation P1 i and the historical actual precipitation P1 i in the first date group. The data of the actual maximum water level Z1 i , and the data used to extract the historical actual average temperature T1 i and the historical actual maximum water level Z1 i in the second date group;

图像建立模块105,与所述数据提取模块连接,用以根据所述第一日期组中的所述历史实际降水量P1i和所述历史实际最大水位Z1i的数据关系建立第一图像,以及,用以根据所述第二日期组中的所述历史实际平均气温T1i和所述历史实际最大水位Z1i的数据关系建立第二图像;An image creation module 105, connected to the data extraction module, for establishing a first image according to the data relationship between the historical actual precipitation P1 i and the historical actual maximum water level Z1 i in the first date group, and , for establishing a second image according to the data relationship between the historical actual average temperature T1 i and the historical actual maximum water level Z1 i in the second date group;

参数拟合模块106,与所述图像建立模块连接,用以根据所述第一图像做线性拟合得到第一参数k1,以及,用以根据所述第二图像做线性拟合得到第二参数k2;A parameter fitting module 106, connected to the image creation module, for performing linear fitting according to the first image to obtain the first parameter k1, and for performing linear fitting according to the second image to obtain the second parameter k2;

计算模块107,分别与所述数据获取模块、所述大数据存储模块和所述参数拟合模块连接,用以根据所述第一预测平均气温T3、所述第一预测降水量P3、所述第一水位修正参数n1N、所述第一参数k1和所述第二参数k2计算得到第一预测最大水位Z3;The computing module 107 is connected to the data acquisition module, the big data storage module and the parameter fitting module respectively, and is used to calculate the temperature according to the first predicted average temperature T3, the first predicted precipitation P3, the The first water level correction parameter n1 N , the first parameter k1 and the second parameter k2 are calculated to obtain the first predicted maximum water level Z3;

比较模块108,分别与所述危险水位设置模块和所述计算模块连接,用以比较所述第一预测最大水位Z3与所述危险水位Z0的大小关系,并根据大小关系判断第一预测最大水位Z3的危险程度;The comparison module 108 is connected with the dangerous water level setting module and the calculation module respectively, to compare the size relationship between the first predicted maximum water level Z3 and the dangerous water level Z0, and judge the first predicted maximum water level according to the size relationship The degree of danger of Z3;

修正参数设置模块109,与所述大数据存储模块连接,用以根据所述历史实际最大水位Z1i、所述历史预测最大水位Z3i、所述第二实际最大水位Z2计算得到第二水位修正参数n1N+1The correction parameter setting module 109 is connected with the big data storage module, and is used to calculate and obtain the second water level correction according to the historical actual maximum water level Z1 i , the historical predicted maximum water level Z3 i , and the second actual maximum water level Z2 parameter n1 N+1 ;

数据处理模块110,分别与所述比较模块、所述数据获取模块、所述计算模块、所述修正参数设置模块和所述大数据存储模块连接,用以根据第一预测最大水位Z3的危险程度将所述第一预测平均气温T3、所述第一预测降水量P3、所述第一预测最大水位Z3、第二水位修正参数n1N+1、所述第二实际平均气温T2、所述第二实际降水量P2和所述第二实际最大水位Z2进行存储或删除。The data processing module 110 is respectively connected with the comparison module, the data acquisition module, the calculation module, the correction parameter setting module and the big data storage module, and is used to predict the degree of danger of the maximum water level Z3 according to the first The first predicted average temperature T3, the first predicted precipitation P3, the first predicted maximum water level Z3, the second water level correction parameter n1 N+1 , the second actual average temperature T2, the first predicted The second actual precipitation P2 and the second actual maximum water level Z2 are stored or deleted.

具体而言,所述第一预测平均气温T3、所述第一预测降水量P3和所述第一预测最大水位Z3表示预测的明日平均气温、降水量和最大水位数据,所述第二实际平均气温T2、所述第二实际降水量P2和所述第二实际最大水位Z2表示实际测量的明日平均气温、降水量和最大水位数据。Specifically, the first predicted average temperature T3, the first predicted precipitation P3 and the first predicted maximum water level Z3 represent the predicted average temperature, precipitation and maximum water level data for tomorrow, and the second actual average The air temperature T2, the second actual precipitation P2 and the second actual maximum water level Z2 represent actually measured tomorrow's average temperature, precipitation and maximum water level data.

具体而言,本发明所管理的数据信息在时间上分为预测的数据与实际的数据,其中预测的数据包括所述第一预测平均气温T3、所述第一预测降水量P3、所述第一预测最大水位Z3和所述历史预测最大水位Z3i,实际的数据包括所述第二实际平均气温T2、所述第二实际降水量P2、第二实际最大水位Z2、历史实际平均气温T1i、历史实际降水量P1i、历史实际最大水位Z1i和历史水位修正参数n1i,其中预测的数据大多用以根据参数与公式推测所述第一预测最大水位Z3用以提前获取危险预警并加以应对,而实际的数据大多经过所述数据处理模块归类存储以被提取利用,随着大数据存储模块中的数据基数的增加,根据这些数值计算得到的结果也会随时间的递增越来越精确,整个系统数据形成存储到计算到反馈调节到再存储的工作过程形成闭环,随着数据的积累,精确度与可靠性会随之增加,可以解决延误水利数据的时效性导致工作的不彻底从而降低工作效率的问题。Specifically, the data information managed by the present invention is divided into predicted data and actual data in time, wherein the predicted data includes the first predicted average temperature T3, the first predicted precipitation P3, the first predicted precipitation A predicted maximum water level Z3 and the historical predicted maximum water level Z3 i , the actual data includes the second actual average temperature T2, the second actual precipitation P2, the second actual maximum water level Z2, and the historical actual average temperature T1 i , historical actual precipitation P1 i , historical actual maximum water level Z1 i , and historical water level correction parameters n1 i , where the predicted data are mostly used to speculate the first predicted maximum water level Z3 based on parameters and formulas to obtain early warning of danger and In response, most of the actual data is categorized and stored by the data processing module to be extracted and utilized. With the increase of the data base in the big data storage module, the results calculated based on these values will also increase with time. Accurate, the entire system data forms a closed loop from storage to calculation to feedback adjustment to re-storage. With the accumulation of data, the accuracy and reliability will increase, which can solve the problem of incomplete work caused by delays in the timeliness of water conservancy data thereby reducing work efficiency.

具体而言,所述数据获取模块包括预测单元和检测单元,预测单元和检测单元之间相互独立;Specifically, the data acquisition module includes a prediction unit and a detection unit, and the prediction unit and the detection unit are independent of each other;

所述预测单元用以获取目标河段的所述第一预测平均气温T3、所述第一预测降水量P3;The prediction unit is used to obtain the first predicted average temperature T3 and the first predicted precipitation P3 of the target river section;

所述检测单元用以获取所述第二实际平均气温T2、所述第二实际降水量P2和所述第二实际最大水位Z2。The detection unit is used to acquire the second actual average temperature T2, the second actual precipitation P2 and the second actual maximum water level Z2.

具体而言,所述预测单元获取的所述第一预测平均气温T3和所述第一预测降水量P3用于计算所述预测水位Z,所述检测单元获取的所述第二实际平均气温T2、所述第二实际降水量P2和所述第二实际最大水位Z2用以丰富所述大数据存储模块的存储内容。Specifically, the first predicted average temperature T3 and the first predicted precipitation P3 obtained by the prediction unit are used to calculate the predicted water level Z, and the second actual average temperature T2 obtained by the detection unit , the second actual precipitation P2 and the second actual maximum water level Z2 are used to enrich the storage content of the big data storage module.

具体而言,所述预测单元获取与所述检测单元获取的数据分别实现不同功能,分开获取可以提高数据整理的效率。Specifically, the data acquired by the predicting unit and the data acquired by the detecting unit respectively implement different functions, and acquiring separately can improve the efficiency of data sorting.

具体而言,请参阅图2所示,所述大数据存储模块包括第一存储单元和第二存储单元,第一存储单元和第二存储单元之间相互独立,用以将历史时段内每一历史日期对应当天的所述历史实际平均气温T1i、所述历史实际降水量P1i、所述历史实际最大水位Z1i、所述历史预测最大水位Z3i和所述历史水位修正参数n1i设为若干分别独立的数据组,以日期为索引与各数据组一一对应;Specifically, as shown in FIG. 2, the big data storage module includes a first storage unit and a second storage unit, and the first storage unit and the second storage unit are independent of each other, so as to store each The historical date corresponds to the historical actual average temperature T1 i , the historical actual precipitation P1 i , the historical actual maximum water level Z1 i , the historical predicted maximum water level Z3 i and the historical water level correction parameter n1 i set It is a number of independent data groups, and the date is used as the index to correspond to each data group one by one;

所述第一存储单元用以存储历史时段内目标河段不发生事故的每一历史日期和对应的各所述数据组;The first storage unit is used to store each historical date and the corresponding data sets when no accident occurred in the target river section within the historical period;

所述第二存储单元用以存储历史时段内目标河段发生事故的每一历史日期和对应的各所述数据组。The second storage unit is used to store each historical date of an accident in the target river section within the historical period and the corresponding data groups.

具体而言,其中i的取值范围为i大于等于1且小于等于N,N为当日之前的所有天数,将同一天所产生的所述历史实际平均气温T1i、所述历史实际降水量P1i、所述历史实际最大水位Z1i、所述历史预测最大水位Z3i和所述历史水位修正参数n1i统一加以整合,并由日期进行索引便于信息的筛选与查找,进一步增加了工作效率。Specifically, the value range of i is that i is greater than or equal to 1 and less than or equal to N, and N is the number of days before the current day. The historical actual average temperature T1 i and the historical actual precipitation P1 generated on the same day i . The historical actual maximum water level Z1 i , the historical predicted maximum water level Z3 i and the historical water level correction parameter n1 i are unified and integrated, and are indexed by date to facilitate information screening and searching, further increasing work efficiency.

具体而言,将所述大数据存储模块划分为所述第一存储单元和所述第二存储单元两个相互独立的单元,是为了将重要的数据独立出来,加快了提取速度。Specifically, the purpose of dividing the big data storage module into two mutually independent units, the first storage unit and the second storage unit, is to separate important data and speed up extraction.

具体而言,请参阅图3所示,所述数据提取模块包括第一数据提取单元和第二数据提取单元,第一数据提取单元和第二数据提取单元之间相互独立,第一数据提取单元分别与所述预测单元、所述第一存储单元和所述第二存储单元连接,第二数据提取单元分别与所述预测单元、所述第一存储单元和所述第二存储单元连接;Specifically, referring to Fig. 3, the data extraction module includes a first data extraction unit and a second data extraction unit, the first data extraction unit and the second data extraction unit are independent of each other, and the first data extraction unit respectively connected to the prediction unit, the first storage unit and the second storage unit, and the second data extraction unit is respectively connected to the prediction unit, the first storage unit and the second storage unit;

所述第一数据提取单元,用以根据所述第一预测平均气温T3的数值大小从所述第一存储单元和所述第二存储单元中提取所述第一日期组的所有所述数据组,并将提取出的所述第一日期组的所有所述数据组设为第一数据库,以及,从第一数据库中提取所述历史实际降水量P1i和所述历史实际最大水位Z1i的数据,并将提取出的所述历史实际降水量P1i和所述历史实际最大水位Z1i的数据设为第一待作图数据组;The first data extraction unit is used to extract all the data groups of the first date group from the first storage unit and the second storage unit according to the value of the first predicted average temperature T3 , and set all the data groups of the extracted first date group as the first database, and extract the historical actual precipitation P1 i and the historical actual maximum water level Z1 i from the first database data, and the data of the extracted historical actual precipitation P1 i and the historical actual maximum water level Z1 i are set as the first data group to be mapped;

所述第二数据提取单元,用以根据所述第一预测降水量P3的数值大小从所述第一存储单元和所述第二存储单元中提取所述第二日期组的所有所述数据组,并将提取出的所述第二日期组的所有所述数据组设为第二数据库,以及,从第二数据库中提取所述历史实际平均气温T1i和所述历史实际最大水位Z1i的数据,并将提取出的所述历史实际平均气温T1i和所述历史实际最大水位Z1i的数据设为第二待作图数据组。The second data extraction unit is used to extract all the data groups of the second date group from the first storage unit and the second storage unit according to the value of the first predicted precipitation P3 , and set all the data groups of the extracted second date group as the second database, and extract the historical actual average temperature T1 i and the historical actual maximum water level Z1 i from the second database data, and the extracted data of the historical actual average temperature T1 i and the historical actual maximum water level Z1 i are set as the second data group to be mapped.

具体而言,所述第一数据提取单元和所述第二数据提取单元采用了控制变量法的思路,基于大数据中庞大的数据信息,将某一参数控制为定值,便可排除该参数对于整体数据的影响效果,可以使数据组之间的影响关系反映的更为准确,提高了系统的精度。Specifically, the first data extraction unit and the second data extraction unit adopt the idea of the control variable method. Based on the huge data information in big data, a certain parameter can be controlled to a fixed value, so that the parameter can be excluded. For the influence effect of the overall data, the influence relationship between the data groups can be reflected more accurately, and the accuracy of the system is improved.

具体而言,请参阅图4所示,所述图像建立模块包括第一图像建立单元和第二图像建立单元,第一图像建立单元和第二图像建立单元之间相互独立,第一图像建立单元与所述第一数据提取单元连接,第二图像建立单元与所述第二数据提取单元连接;Specifically, referring to Fig. 4, the image building module includes a first image building unit and a second image building unit, the first image building unit and the second image building unit are independent of each other, and the first image building unit connected to the first data extraction unit, and the second image creation unit is connected to the second data extraction unit;

所述第一图像建立单元,用以根据所述第一待作图数据组将历史实际降水量P1i由低到高排列,建立降水量-水位散点图设为第一图像;The first image creation unit is used to arrange the historical actual precipitation P1 i from low to high according to the first data set to be mapped, and establish a precipitation-water level scatter diagram as the first image;

所述第二图像建立单元,用以根据所述第二待作图数据组将历史实际平均气温T1i由低到高排列,建立平均气温-水位散点图设为第二图像。The second image creation unit is used to arrange the historical actual average temperature T1 i from low to high according to the second data set to be mapped, and create a scatter diagram of average temperature-water level as the second image.

具体而言,分别根据所述历史降水量和所述历史气温由低到高排列建立散点图而不是根据时间顺序排列是为了使图中散点分布趋势呈线性分布,便于接下来的参数拟合操作。Specifically, the purpose of establishing a scatter diagram according to the historical precipitation and the historical temperature from low to high, rather than according to time order, is to make the trend of the scatter distribution in the graph linear, which is convenient for the next parameter simulation. combined operation.

具体而言,由所述第一存储单元和所述第二存储单元提供的海量数据组生成的散点图,会随着基数的增加而进一步体现其线性特征,有利于减小误差,增加数据精度。Specifically, the scatter diagram generated by the massive data sets provided by the first storage unit and the second storage unit will further reflect its linear characteristics as the cardinality increases, which is conducive to reducing errors and increasing data precision.

具体而言,请参阅图5所示,所述参数拟合模块包括第一参数拟合单元和第二参数拟合单元第一参数拟合单元和第二参数拟合单元之间相互独立,第一参数拟合单元与所述第一图像建立单元连接,第二参数拟合单元与所述第二图像建立单元连接;Specifically, as shown in FIG. 5, the parameter fitting module includes a first parameter fitting unit and a second parameter fitting unit. The first parameter fitting unit and the second parameter fitting unit are independent of each other. A parameter fitting unit is connected to the first image creation unit, and a second parameter fitting unit is connected to the second image creation unit;

所述第一参数拟合单元,用以根据所述第一图像做线性拟合,获取与所述第一图像拟合后线性图像的斜率为第一斜率,将第一斜率的数值设为第一参数k1;The first parameter fitting unit is used to perform linear fitting according to the first image, obtain the slope of the linear image after fitting with the first image as the first slope, and set the value of the first slope as the first slope. a parameter k1;

所述第二参数拟合单元,用以根据所述第二图像做线性拟合,获取与所述第二图像拟合后线性图像的斜率为第二斜率,将第二斜率的数值设为第二参数k2。The second parameter fitting unit is used to perform linear fitting according to the second image, obtain the slope of the linear image after fitting with the second image as the second slope, and set the value of the second slope as the first Two parameters k2.

具体而言,对有关量进行多次观测或实验得到了一些零散数据组,不仅不便于处理,而且通常不能确切和充分地体现出其固有的规律,为了得到数据之间的固有规律或者用当前数据来预测期望得到的数据,一般会采用线性拟合,线性拟合是曲线拟合的一种形式,设x和y都是被观测的量,且y是x的函数,即y=f(x; b),曲线拟合就是通过x,y的观测值来寻求参数b的最佳估计值,即寻求最佳的理论曲线y=f(x; b),当函数y=f(x; b)为关于参数b的线性函数时,称这种曲线拟合为线性拟合。Specifically, some scattered data sets obtained through multiple observations or experiments on related quantities are not only inconvenient to deal with, but also cannot accurately and fully reflect their inherent laws. In order to obtain the inherent laws between the data or use the current Data is used to predict the expected data. Generally, linear fitting is used. Linear fitting is a form of curve fitting. Let x and y be observed quantities, and y is a function of x, that is, y=f( x; b), curve fitting is to seek the best estimated value of parameter b through the observed values of x and y, that is, to seek the best theoretical curve y=f(x; b), when the function y=f(x; When b) is a linear function about parameter b, this kind of curve fitting is called linear fitting.

具体而言,由线性拟合得到的一次函数图像,其图像中的斜率,数值上等于影响因素之间的变化率,本发明采用大数据的方式,由所述第一存储单元和所述第二存储单元提供的海量数据组生成的散点图中进行线性拟合,拟合度会随着数据量的增加而增加,随之得到的所述第一参数k1和所述第二参数k2也会随着数据量的增加而越发精准,提高了后续计算结果的精确度。Specifically, for the linear function image obtained by linear fitting, the slope in the image is numerically equal to the rate of change between the influencing factors. Linear fitting is performed in the scatter diagram generated by the massive data set provided by the second storage unit, and the fitting degree will increase with the increase of the data volume, and the first parameter k1 and the second parameter k2 obtained thereupon are also It will become more accurate as the amount of data increases, improving the accuracy of subsequent calculation results.

具体而言,所述计算模块,分别与所述预测单元、所述第一参数拟合单元、所述第二参数拟合单元、所述第一存储单元和所述第二存储单元连接,用以将所述第一预测平均气温T3、所述第一预测降水量P3、所述第一参数k1、所述第二参数k2和所述第一水位修正参数n1N根据公式(P3×k1)+(T3×k2)+n1N=Z3计算得到第一预测最大水位Z3。Specifically, the calculation module is respectively connected to the prediction unit, the first parameter fitting unit, the second parameter fitting unit, the first storage unit, and the second storage unit, and is used to The first predicted average temperature T3, the first predicted precipitation P3, the first parameter k1, the second parameter k2 and the first water level correction parameter n1 N are calculated according to the formula (P3×k1) +(T3×k2)+n1 N =Z3 is calculated to obtain the first predicted maximum water level Z3.

具体而言,修正参数的获取是通过所述历史实际最大水位Z1i和所述历史预测最大水位Z3i计算得到,用以在所述第一参数k1和所述第二参数k2对所述第一预测最大水位Z3影响的基础上,进一步精确所述第一预测最大水位Z3的数值,增加了系统的可靠性。Specifically, the acquisition of the correction parameters is obtained by calculating the historical actual maximum water level Z1 i and the historical predicted maximum water level Z3 i , so as to adjust the first parameter k1 and the second parameter k2 to the first On the basis of the influence of the predicted maximum water level Z3, the value of the first predicted maximum water level Z3 is further refined to increase the reliability of the system.

具体而言,所述比较模块,分别与所述危险水位设置模块和所述计算模块连接,用以比较所述危险水位Z0与所述第一预测最大水位Z3的大小关系,并根据大小关系判断第一水位的危险程度;Specifically, the comparison module is respectively connected with the dangerous water level setting module and the calculation module, and is used to compare the size relationship between the dangerous water level Z0 and the first predicted maximum water level Z3, and judge according to the size relationship the degree of danger of the first water level;

所述比较模块确定Z3≥Z0时,第一水位具有导致事故发生的危险,所述比较模块发出危险预警;When the comparison module determines that Z3≥Z0, the first water level has the risk of causing an accident, and the comparison module issues a danger warning;

所述比较模块确定Z3<Z0时,第一水位不具有导致事故发生的危险。When the comparison module determines that Z3<Z0, the first water level does not have the risk of causing an accident.

具体而言,所述危险水位Z0处于实时更新的状态而不是一个定值,根据从所有目标河段发生事故日期对应的所述历史实际最大水位Z1i中提取最小值并将其设为危险水位Z0的目的是将目标河段发生事故的可能性降至最低,增加了系统实时的可靠性。Specifically, the dangerous water level Z0 is in a state of real-time update rather than a fixed value, and the minimum value is extracted from the historical actual maximum water level Z1 i corresponding to the accident date of all target river sections and set as the dangerous water level The purpose of Z0 is to minimize the possibility of accidents in the target river section and increase the real-time reliability of the system.

具体而言,根据所述比较模块的比较结果即可判断第一水位的危险程度,省去了计算步骤,简单又快捷,优化了系统的实施方式。Specifically, the degree of danger of the first water level can be judged according to the comparison result of the comparison module, which saves calculation steps, is simple and fast, and optimizes the implementation of the system.

具体而言,所述修正参数设置模块,与所述第一存储单元和所述第二存储单元连接,用以将历史时段内所述历史实际最大水位Z1i、所述历史预测最大水位Z3i、所述第二实际最大水位Z2、第二预测最大水位Z3N+1根据公式Specifically, the correction parameter setting module is connected with the first storage unit and the second storage unit to set the historical actual maximum water level Z1 i , the historical predicted maximum water level Z3 i , the second actual maximum water level Z2, the second predicted maximum water level Z3 N+1 according to the formula

计算得到所述第二水位修正参数n1N+1,其中1≤i≤N,N为正整数,N为在历史时段内当日之前的天数总数。The second water level correction parameter n1 N+1 is calculated to obtain, wherein 1≤i≤N, N is a positive integer, and N is the total number of days before the current day in the historical period.

具体而言,所述最新产生的第一水位修正参数n1N是由N天前所有所述历史实际最大水位Z1i之和减去所述N天前所有所述历史预测最大水位Z3i之和求得N天前所述历史实际最大水位Z1i与所述历史预测最大水位Z3i的总差值,将总差值设为第一差值,第一差值中包括了N天的计算数据,由所述第二实际最大水位Z2减去所述历史预测最大水位Z3i中的第二预测最大水位Z3N+1得到的差值设为第二差值,第二差值中只包括一天的计算数据,将第一差值与第二差值的和除以总天数N+1天,得到的结果为所述最新产生的第一水位修正参数n1NSpecifically, the newly generated first water level correction parameter n1 N is the sum of all historical actual maximum water levels Z1 i minus the sum of all historical predicted maximum water levels Z3 i N days ago Find the total difference between the historical actual maximum water level Z1 i and the historical predicted maximum water level Z3 i before N days, set the total difference as the first difference, and the first difference includes the calculation data of N days , the difference obtained by subtracting the second predicted maximum water level Z3 N+1 in the historical predicted maximum water level Z3 i from the second actual maximum water level Z2 is set as the second difference, and only one day is included in the second difference The calculation data of the first difference and the second difference are divided by the total number of days N+1 days, and the obtained result is the newly generated first water level correction parameter n1 N .

具体而言,所述第一水位修正参数n1N,会随着所述第一存储单元和所述第二存储单元中数据的不断扩充而变化,可以使所述第一水位修正参数n1N随着数据基数的增加而精确,提高修正精度。Specifically, the first water level correction parameter n1 N will change with the continuous expansion of data in the first storage unit and the second storage unit, so that the first water level correction parameter n1 N can be changed with Accurate with the increase of the data base, improve the correction accuracy.

具体而言,所述数据处理模块,分别与所述预测单元、所述检测单元、所述第一存储单元、所述第二存储单元、所述计算模块和所述修正参数设置模块连接;Specifically, the data processing module is respectively connected to the prediction unit, the detection unit, the first storage unit, the second storage unit, the calculation module and the correction parameter setting module;

删除所述第一预测平均气温T3和所述第一预测降水量P3;Delete the first predicted average temperature T3 and the first predicted precipitation P3;

当Z3≥Z0时,将所述第一预测最大水位Z3设为历史预测最大水位Z3N+1,将所述第二实际平均气温T2设为历史实际平均气温T1N+1,将所述第二实际降水量P2设为历史实际降水量P1N+1,将所述第二实际最大水位Z2设为历史实际最大水位Z1N+1,并将历史预测最大水位Z3N+1、历史实际平均气温T1N+1、历史实际降水量P1N+1、历史实际最大水位Z1N+1和所述第一水位修正参数n1N存储在所述第一存储单元中;When Z3≥Z0, set the first predicted maximum water level Z3 as the historical predicted maximum water level Z3 N+1 , set the second actual average temperature T2 as the historical actual average temperature T1 N+1 , and set the second actual average temperature T1 N+1 2. The actual precipitation P2 is set as the historical actual precipitation P1 N+1 , the second actual maximum water level Z2 is set as the historical actual maximum water level Z1 N+1 , and the historical predicted maximum water level Z3 N+1 , historical actual average Air temperature T1 N+1 , historical actual precipitation P1 N+1 , historical actual maximum water level Z1 N+1 and the first water level correction parameter n1 N are stored in the first storage unit;

当Z3<Z0时,将所述第一预测最大水位Z3设为历史预测最大水位Z3N+1,将所述第二实际平均气温T2设为历史实际平均气温T1N+1,将所述第二实际降水量P2设为历史实际降水量P1N+1,将所述第二实际最大水位Z2设为历史实际最大水位Z1N+1,并将历史预测最大水位Z3N+1、历史实际平均气温T1N+1、历史实际降水量P1N+1、历史实际最大水位Z1N+1和所述第二水位修正参数n1N+1存储在所述第二存储单元中。When Z3<Z0, set the first predicted maximum water level Z3 as the historical predicted maximum water level Z3 N+1 , set the second actual average temperature T2 as the historical actual average temperature T1 N+1 , set the second actual average temperature T1 N+1 2. The actual precipitation P2 is set as the historical actual precipitation P1 N+1 , the second actual maximum water level Z2 is set as the historical actual maximum water level Z1 N+1 , and the historical predicted maximum water level Z3 N+1 , historical actual average Air temperature T1 N+1 , historical actual precipitation P1 N+1 , historical actual maximum water level Z1 N+1 and the second water level correction parameter n1 N+1 are stored in the second storage unit.

具体而言,删除所述第一预测平均气温T3和所述第一预测降水量P3是为了精简数据管理空间,将没有应用价值的数据及时清理,节省空间,加快系统的运行速度,根据所述危险水位Z0与所述第一预测最大水位Z3的大小关系将数据进行分类便于更快的提取目标数据,提高数据管理的精度。Specifically, the purpose of deleting the first predicted average temperature T3 and the first predicted precipitation P3 is to simplify the data management space, clean up the data that has no application value in time, save space, and speed up the operation of the system. According to the The size relationship between the dangerous water level Z0 and the first predicted maximum water level Z3 classifies data to facilitate faster extraction of target data and improve the accuracy of data management.

至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征做出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。So far, the technical solutions of the present invention have been described in conjunction with the preferred embodiments shown in the accompanying drawings, but those skilled in the art will easily understand that the protection scope of the present invention is obviously not limited to these specific embodiments. Without departing from the principles of the present invention, those skilled in the art can make equivalent changes or substitutions to related technical features, and the technical solutions after these changes or substitutions will all fall within the protection scope of the present invention.

以上所述仅为本发明的优选实施例,并不用于限制本发明;对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention; for those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (10)

1. A big data based water conservancy data management system, comprising:
the data acquisition module is used for acquiring a first predicted average air temperature T3, a first predicted precipitation amount P3, a second actual average air temperature T2, a second actual precipitation amount P2 and a second actual maximum water level Z2 of the target river reach;
the big data storage module is used for storing each historical date of the target river reach in the historical period and the actual average temperature T1 of the current day corresponding to each historical date i Historical actual precipitation P1 i Historical actual maximum water level Z1 i Historical predicted maximum water level Z3 i And a historical water level correction parameter n1 i Wherein each historical date of the target river reach comprises the accident date of the target river reach, i is more than or equal to 1 and less than or equal to N, N is a positive integer, N is the total number of days before the current day in the historical period, and N1 is calculated N Setting the first water level correction parameter;
the dangerous water level setting module is connected with the big data storage module and is used for setting the historical actual maximum water level Z1 corresponding to the accident date of all the target river reach i The minimum value is extracted and set as a dangerous water level Z0;
the data extraction module is respectively connected with the data acquisition module and the big data storage module and used for obtaining the first predicted average air temperature T3 and the historical actual average air temperature T1 i Setting each date as a first date group when the first predicted precipitation amount P3 and the historical actual precipitation amount P1 are equal to each other i Each date is set as a second date group when the actual precipitation amount P1 is equal to the first date group i And the historic actual maximum water level Z1 i And to extract said historical actual average air temperature T1 in the second date group i And the historic actual maximum water level Z1 i Data of (2);
the image establishing module is connected with the data extracting module and is used for carrying out the data extraction according to the history in the first date groupActual precipitation P1 i And the historic actual maximum water level Z1 i A first image is established according to the data relation of the historical actual average temperature T1 in the second date group i And the historic actual maximum water level Z1 i Establishing a second image;
the parameter fitting module is connected with the image building module and used for performing linear fitting according to the first image to obtain a first parameter k1 and performing linear fitting according to the second image to obtain a second parameter k2;
the calculation module is respectively connected with the data acquisition module, the big data storage module and the parameter fitting module and is used for correcting the parameter n1 according to the first predicted average air temperature T3, the first predicted precipitation P3 and the first water level N Calculating the first parameter k1 and the second parameter k2 to obtain a first predicted maximum water level Z3;
the comparison module is respectively connected with the dangerous water level setting module and the calculation module, and is used for comparing the magnitude relation between the first predicted maximum water level Z3 and the dangerous water level Z0 and judging the dangerous degree of the first predicted maximum water level Z3 according to the magnitude relation;
the correction parameter setting module is connected with the big data storage module and is used for setting the historical actual maximum water level Z1 according to the historical actual maximum water level i Said historic predicted maximum water level Z3 i Calculating the second actual maximum water level Z2 to obtain a second water level correction parameter n1 N+1
The data processing module is respectively connected with the comparison module, the data acquisition module, the calculation module, the correction parameter setting module and the big data storage module and is used for correcting the first predicted average air temperature T3, the first predicted precipitation P3, the first predicted maximum water level Z3 and the second water level correction parameter n1 according to the risk degree of the first predicted maximum water level Z3 N+1 And the second actual average air temperature T2, the second actual precipitation amount P2 and the second actual maximum water level Z2 are stored or deleted.
2. The big data-based water conservancy data management system according to claim 1, wherein the data acquisition module comprises a prediction unit and a detection unit, and the prediction unit and the detection unit are mutually independent;
the prediction unit is used for obtaining the first predicted average air temperature T3 and the first predicted precipitation P3 of the target river reach;
the detection unit is used for acquiring the second actual average air temperature T2, the second actual precipitation amount P2 and the second actual maximum water level Z2.
3. The big data based water conservancy data management system as set forth in claim 2, wherein the big data storage module comprises a first storage unit and a second storage unit, the first storage unit and the second storage unit being independent of each other, for mapping each historical date in a historical period to the historical actual average temperature T1 of the current day i Said historical actual precipitation P1 i Said historic actual maximum water level Z1 i Said historic predicted maximum water level Z3 i And the historical water level correction parameter n1 i The method comprises the steps of setting a plurality of data sets which are independent respectively, and taking a date as an index to correspond to each data set one by one;
the first storage unit is used for storing each historical date and corresponding data sets of accidents not occurring in the target river reach in the historical period;
The second storage unit is used for storing each historical date of the accident of the target river reach in the historical period and corresponding data sets.
4. The big data based hydraulic data management system according to claim 3, wherein the data extraction module comprises a first data extraction unit and a second data extraction unit, the first data extraction unit and the second data extraction unit are independent from each other, the first data extraction unit is respectively connected with the prediction unit, the first storage unit and the second storage unit, and the second data extraction unit is respectively connected with the prediction unit, the first storage unit and the second storage unit;
the first data extraction unit is configured to extract all the data sets of the first date group from the first storage unit and the second storage unit according to the magnitude of the first predicted average air temperature T3, set all the data sets of the first date group extracted as a first database, and extract the historical actual precipitation amount P1 from the first database i And the historic actual maximum water level Z1 i And to extract said historical actual precipitation P1 i And the historic actual maximum water level Z1 i Setting the data of the first data set to be plotted;
the second data extraction unit is configured to extract all the data sets of the second date group from the first storage unit and the second storage unit according to the magnitude of the first predicted precipitation amount P3, set all the data sets of the second date group extracted as a second database, and extract the historical actual average air temperature T1 from the second database i And the historic actual maximum water level Z1 i And the extracted historical actual average air temperature T1 i And the historic actual maximum water level Z1 i Is set as the second data set to be plotted.
5. The big data based hydraulic data management system of claim 4, wherein,
the image establishing module comprises a first image establishing unit and a second image establishing unit, the first image establishing unit and the second image establishing unit are mutually independent, the first image establishing unit is connected with the first data extracting unit, and the second image establishing unit is connected with the second data extracting unit;
the first image creating unit is used for creating the historical actual precipitation amount P1 according to the first to-be-mapped data set i Setting a precipitation amount-water level scatter diagram as a first image by arranging from low to high;
the second image is builtA standing unit for setting the historical actual average air temperature T1 according to the second to-be-mapped data set i And arranging from low to high, and establishing an average air temperature-water level scatter diagram as a second image.
6. The big data based hydraulic data management system of claim 5, wherein the parameter fitting module comprises a first parameter fitting unit and a second parameter fitting unit, the first parameter fitting unit and the second parameter fitting unit are independent from each other, the first parameter fitting unit is connected with the first image building unit, and the second parameter fitting unit is connected with the second image building unit;
the first parameter fitting unit is configured to perform linear fitting according to the first image, obtain a slope of the linear image after fitting with the first image as a first slope, and set a value of the first slope as a first parameter k1;
the second parameter fitting unit is configured to perform linear fitting according to the second image, obtain a slope of the linear image after fitting with the second image as a second slope, and set a value of the second slope as a second parameter k2.
7. The big data based hydraulic data management system of claim 6, wherein the calculation module is connected to the prediction unit, the first parameter fitting unit, the second parameter fitting unit, the first storage unit, and the second storage unit, respectively, for calculating the first predicted average air temperature T3, the first predicted precipitation amount P3, the first parameter k1, the second parameter k2, and the first water level correction parameter n1 N According to the formula (P3.times.k1) + (T3.times.k2) +n1 N The first predicted maximum water level Z3 is calculated by =z3.
8. The big data-based hydraulic data management system according to claim 7, wherein the comparison module is connected to the dangerous water level setting module and the calculation module, respectively, and is configured to compare the magnitude relation between the dangerous water level Z0 and the first predicted maximum water level Z3, and determine the dangerous degree of the first water level according to the magnitude relation;
when the comparison module determines that Z3 is more than or equal to Z0, the first water level has the danger of causing accidents, and the comparison module sends out danger early warning;
when the comparison module determines that Z3 is less than Z0, the first water level does not have the danger of causing accidents.
9. The big data based water conservancy data management system according to claim 8, wherein the correction parameter setting module is connected with the first storage unit and the second storage unit for setting the historical actual maximum water level Z1 in a historical period i Said historic predicted maximum water level Z3 i The second actual maximum water level Z2 and the second predicted maximum water level Z3 N+1 According to the formula
Figure QLYQS_1
Calculating the second water level correction parameter n1 N+1 Wherein i is 1.ltoreq.N, N is a positive integer, N is the total number of days before the day in the history period.
10. The big data based hydraulic data management system according to claim 9, wherein the data processing module is connected to the prediction unit, the detection unit, the first storage unit, the second storage unit, the calculation module, and the correction parameter setting module, respectively;
deleting the first predicted average air temperature T3 and the first predicted precipitation amount P3;
when Z3 is more than or equal to Z0, setting the first predicted maximum water level Z3 as the historical predicted maximum water level Z3 N+1 The second actual average air temperature T2 is set as the historical actual average air temperature T1 N+1 Setting the second actual precipitation amount P2 as the historical actual precipitation amount P1 N+1 Setting the second actual maximum water level Z2 as a history actualMaximum water level Z1 N+1 And predicts the history to the maximum water level Z3 N+1 Historical actual average temperature T1 N+1 Historical actual precipitation P1 N+1 Historical actual maximum water level Z1 N+1 And the first water level correction parameter n1 N Stored in the first storage unit;
when Z3 < Z0, setting the first predicted maximum water level Z3 as a historical predicted maximum water level Z3 N+1 The second actual average air temperature T2 is set as the historical actual average air temperature T1 N+1 Setting the second actual precipitation amount P2 as the historical actual precipitation amount P1 N+1 Setting the second actual maximum water level Z2 as a historical actual maximum water level Z1 N+1 And predicts the history to the maximum water level Z3 N+1 Historical actual average temperature T1 N+1 Historical actual precipitation P1 N+1 Historical actual maximum water level Z1 N+1 And the second water level correction parameter n1 N+1 Stored in the second storage unit.
CN202310186440.XA 2023-03-02 2023-03-02 A water conservancy data management system based on big data Active CN115880101B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310186440.XA CN115880101B (en) 2023-03-02 2023-03-02 A water conservancy data management system based on big data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310186440.XA CN115880101B (en) 2023-03-02 2023-03-02 A water conservancy data management system based on big data

Publications (2)

Publication Number Publication Date
CN115880101A CN115880101A (en) 2023-03-31
CN115880101B true CN115880101B (en) 2023-05-16

Family

ID=85761733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310186440.XA Active CN115880101B (en) 2023-03-02 2023-03-02 A water conservancy data management system based on big data

Country Status (1)

Country Link
CN (1) CN115880101B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118013161B (en) * 2024-04-09 2024-07-23 山东同其万疆科技创新有限公司 Water conservancy data acquisition supervision method based on big data analysis
CN119125744A (en) * 2024-11-15 2024-12-13 江西贵兴智能电气有限公司 A method and system for intelligent monitoring of electric power equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046918A (en) * 2005-08-05 2007-02-22 Toshiba Corp River information management system
JP4323565B1 (en) * 2009-03-30 2009-09-02 学校法人 君が淵学園 崇城大学 Terminal and program for deriving river flood forecast information due to rainfall
CN107330804A (en) * 2017-07-06 2017-11-07 贵州省水利科学研究院 A kind of wisdom water conservancy management and control cloud platform and method
CN109376913A (en) * 2018-09-30 2019-02-22 北京市天元网络技术股份有限公司 The prediction technique and device of precipitation
CN112782788A (en) * 2019-11-06 2021-05-11 中国科学院国家空间科学中心 Regional atmosphere hydrologic coupling early warning decision system and method
CN113298756A (en) * 2021-04-25 2021-08-24 中国水利水电科学研究院 Water amount detection method and device, cloud server and storage medium
CN114757464A (en) * 2021-12-31 2022-07-15 水利部南京水利水文自动化研究所 Water level flow fitting method under influence of irrigation demand
CN115330088A (en) * 2022-10-11 2022-11-11 广东广宇科技发展有限公司 Flood control fine prediction method for small reservoir

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046918A (en) * 2005-08-05 2007-02-22 Toshiba Corp River information management system
JP4323565B1 (en) * 2009-03-30 2009-09-02 学校法人 君が淵学園 崇城大学 Terminal and program for deriving river flood forecast information due to rainfall
CN107330804A (en) * 2017-07-06 2017-11-07 贵州省水利科学研究院 A kind of wisdom water conservancy management and control cloud platform and method
CN109376913A (en) * 2018-09-30 2019-02-22 北京市天元网络技术股份有限公司 The prediction technique and device of precipitation
CN112782788A (en) * 2019-11-06 2021-05-11 中国科学院国家空间科学中心 Regional atmosphere hydrologic coupling early warning decision system and method
CN113298756A (en) * 2021-04-25 2021-08-24 中国水利水电科学研究院 Water amount detection method and device, cloud server and storage medium
CN114757464A (en) * 2021-12-31 2022-07-15 水利部南京水利水文自动化研究所 Water level flow fitting method under influence of irrigation demand
CN115330088A (en) * 2022-10-11 2022-11-11 广东广宇科技发展有限公司 Flood control fine prediction method for small reservoir

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
内蒙古境内河流凌汛期水位高度远程监控预警;刘彩凤;;科技通报(04);全文 *
基于GA-Elman的河流水位预测方法研究;要震;许继平;孔建磊;刘松波;;长江科学院院报(09);全文 *
水文序列ARIMA模型应用中存在的问题与改进方式;王红瑞;康健;林欣;钱龙霞;;系统工程理论与实践(10);全文 *
河流水位智能预报系统设计与实现;要震;许继平;刘松波;;人民长江(08);全文 *

Also Published As

Publication number Publication date
CN115880101A (en) 2023-03-31

Similar Documents

Publication Publication Date Title
CN115880101B (en) A water conservancy data management system based on big data
CN109325633B (en) A method and system for selecting weather forecast set members
CN116303480B (en) Electric energy meter error checking method based on cloud computing
CN102509173A (en) Markov chain based method for accurately forecasting power system loads
CN110020475B (en) Markov particle filtering method for traffic flow prediction
CN114648170A (en) Reservoir water level prediction and early warning method and system based on hybrid deep learning model
CN116307215A (en) Load prediction method, device, equipment and storage medium of power system
CN104537429A (en) Short-term load forecasting method and device based on data warehouse and data mining technology
CN110298765B (en) Power distribution network power consumption abnormality detection method based on objective correlation factors
CN109523077B (en) Wind power prediction method
CN112836911A (en) Method and device for determining cell energy-saving parameter, electronic equipment and storage medium
CN115115107A (en) Photovoltaic power prediction method and device and computer equipment
CN117933316A (en) Groundwater level probability forecasting method based on interpretable Bayesian convolution network
CN106845728A (en) The Forecasting Methodology and device of a kind of power transformer defect
CN118884413A (en) A Transformer-based automatic calibration method and system for three-dimensional laser wind radar
CN108123436B (en) Prediction Model of Voltage Over-Limit Based on Principal Component Analysis and Multiple Regression Algorithm
CN115293461B (en) Building heating carbon emission prediction method and system
CN116862079A (en) Enterprise pollutant emission prediction method and prediction system
CN114842921A (en) Municipal sewage dephosphorization agent adding method based on linear regression and decision tree model
CN108090617A (en) A kind of optimization placement method of urban waterlogging monitoring point
CN112747413B (en) Air conditioning system load prediction method and device
CN118889499B (en) Load tracking method, device, electronic equipment and medium based on energy storage EMS system
CN117666638B (en) Intelligent control method, system, equipment and medium for oil field dilution quantity
CN118627913B (en) Safety control method, equipment and medium for storage tank system
TWI870186B (en) A prediction data preprocessing system, method and non-volatile computer-readable storage medium thereof for solar power generation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A water conservancy data management system based on big data

Granted publication date: 20230516

Pledgee: Jiujiang Bank Co.,Ltd. Nanchang Branch

Pledgor: Jiangxi Guixing Information Technology Co.,Ltd.

Registration number: Y2024980000864

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Granted publication date: 20230516

Pledgee: Jiujiang Bank Co.,Ltd. Nanchang Branch

Pledgor: Jiangxi Guixing Information Technology Co.,Ltd.

Registration number: Y2024980000864

PC01 Cancellation of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A Water Conservancy Data Management System Based on Big Data

Granted publication date: 20230516

Pledgee: Jiujiang Bank Co.,Ltd. Nanchang Branch

Pledgor: Jiangxi Guixing Information Technology Co.,Ltd.

Registration number: Y2025980001399

PE01 Entry into force of the registration of the contract for pledge of patent right
CP03 Change of name, title or address

Address after: Room 601, Commercial Office Building 2 #, JLH603-D03 Plot, Greenland International Expo City, 1388 Jiulong Avenue, Honggutan District, Nanchang City, Jiangxi Province, China 330000

Patentee after: Jiangxi Guixing Technology Group Co.,Ltd.

Country or region after: China

Address before: Room 601, Commercial Office Building 2 #, JLH603-D03 Plot, Greenland International Expo City, 1388 Jiulong Avenue, Honggutan District, Nanchang City, Jiangxi Province, China 330000

Patentee before: Jiangxi Guixing Information Technology Co.,Ltd.

Country or region before: China