CN115879126B - Medical information sharing method based on secure cloud storage, electronic equipment and storage medium - Google Patents
Medical information sharing method based on secure cloud storage, electronic equipment and storage medium Download PDFInfo
- Publication number
- CN115879126B CN115879126B CN202211593668.2A CN202211593668A CN115879126B CN 115879126 B CN115879126 B CN 115879126B CN 202211593668 A CN202211593668 A CN 202211593668A CN 115879126 B CN115879126 B CN 115879126B
- Authority
- CN
- China
- Prior art keywords
- information
- patient
- medical
- column
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Medical Treatment And Welfare Office Work (AREA)
Abstract
本发明公开了一种基于安全云存储的医疗信息共享方法、电子设备及存储介质,该方法步骤包括:1、医院生成患者的医疗信息;2、对患者隐私信息加密;3、将患者医疗信息嵌入医学图像;4、上传加密信息到云存储系统;5、医院从云存储系统检索相关医疗信息;6、医疗信息提取与数据恢复;7、患者身份识别与信息解密。本发明能实现对患者个人信息进行加密,并对医疗记录进行信息隐藏,使用深度学习进行医疗信息检索和图像匹配,在不泄露患者隐私信息的情况下共享医疗信息。
The present invention discloses a medical information sharing method, electronic device and storage medium based on secure cloud storage, the method steps include: 1. The hospital generates the patient's medical information; 2. Encrypts the patient's privacy information; 3. Embeds the patient's medical information into a medical image; 4. Uploads the encrypted information to the cloud storage system; 5. The hospital retrieves relevant medical information from the cloud storage system; 6. Medical information extraction and data recovery; 7. Patient identification and information decryption. The present invention can encrypt the patient's personal information, hide the medical records, use deep learning to retrieve medical information and match images, and share medical information without leaking the patient's privacy information.
Description
技术领域Technical Field
本发明涉及医疗信息云共享与信息隐藏技术领域,具体来说是一种基于安全云存储的医疗信息共享方法、电子设备及存储介质。The present invention relates to the technical field of medical information cloud sharing and information hiding, and specifically to a medical information sharing method, electronic device and storage medium based on secure cloud storage.
背景技术Background technique
随着云计算技术的发展,数据的云存储与共享服务受到广泛关注。在医学领域,传统的医疗图像为胶片形式,这种传统的胶片存在一些问题:1、成像效果受胶片质量影响;2、需要存放在合适的环境中,且占用空间较大;3、不方便共享等。现代化医疗采用数字化影像与云存储技术必将成为一种趋势,将电子医疗影像存储于数据库系统,极大地方便了管理,同时解决了海量图像信息的存储问题。将医疗图像信息存储于云存储系统,实现了医疗图像的数字化,且方便了信息的共享。With the development of cloud computing technology, cloud storage and sharing services for data have received widespread attention. In the medical field, traditional medical images are in the form of film, which has some problems: 1. The imaging effect is affected by the quality of the film; 2. It needs to be stored in a suitable environment and occupies a large space; 3. It is not convenient to share, etc. It is bound to become a trend for modern medical care to adopt digital imaging and cloud storage technology. Storing electronic medical images in a database system greatly facilitates management and solves the problem of storing massive image information. Storing medical image information in a cloud storage system realizes the digitization of medical images and facilitates information sharing.
然而,云存储与信息共享可能存在隐私泄露的问题。医疗影像通常包含患者的身份等敏感信息,如果将患者的医疗图像和信息直接上传到云存储系统,则存在隐私安全问题。如果存在不可信的第三方服务器因为商业利益而泄露患者的隐私信息,或者共享信息获取方利用患者的隐私信息获取利益,将会给患者带来困扰。而传统的云存储安全手段为密码学加密,对图像进行加密生成密文,仅秘钥拥有者能够解密,解密后才能查看图像信息,这不利于信息的共享。加密的方法虽然提供了有力的安全保证,但是繁琐的加密与解密以及数据传输费用使得成本增大。However, cloud storage and information sharing may have privacy leakage issues. Medical images usually contain sensitive information such as the patient's identity. If the patient's medical images and information are directly uploaded to the cloud storage system, there will be privacy security issues. If there is an untrusted third-party server that leaks the patient's privacy information for commercial interests, or the party that obtains the shared information uses the patient's privacy information to gain benefits, it will cause trouble to the patient. The traditional cloud storage security method is cryptographic encryption, which encrypts the image to generate ciphertext. Only the key owner can decrypt it and view the image information after decryption, which is not conducive to information sharing. Although the encryption method provides a strong security guarantee, the cumbersome encryption and decryption as well as the data transmission fee increase the cost.
发明内容Summary of the invention
本发明是为了解决上述现有技术存在的不足之处,提出一种基于安全云存储的医疗信息共享机制方法、电子设备及存储介质,以期能通过信息隐藏技术为医疗领域的云存储数据提供隐私保护,从而能够在共享医疗信息的同时保证云存储系统中数据的安全。The present invention aims to address the deficiencies of the above-mentioned prior art and proposes a medical information sharing mechanism method, electronic device and storage medium based on secure cloud storage, in order to provide privacy protection for cloud storage data in the medical field through information hiding technology, thereby ensuring the security of data in the cloud storage system while sharing medical information.
本发明为达到上述发明目的,采用如下技术方案:In order to achieve the above-mentioned object of the invention, the present invention adopts the following technical scheme:
本发明一种基于安全云存储的医疗信息共享方法的特点是应用于由n家医院H={h1,h2,...,hi,...,hn}、m名患者P={p1,p2,...,pj,...,pm}和云存储系统所组成的医疗环境中,其中,hi表示第i家医院,1≤i≤n;pj表示第j名患者,1≤j≤m;所述医疗信息共享方法是按如下步骤进行:The medical information sharing method based on secure cloud storage of the present invention is characterized in that it is applied to a medical environment consisting of n hospitals H = {h 1 ,h 2 ,..., hi ,..., hn }, m patients P = {p 1 ,p 2 ,...,p j ,...,p m } and a cloud storage system, wherein hi represents the i-th hospital, 1≤i≤n; p j represents the j-th patient, 1≤j≤m; the medical information sharing method is performed in the following steps:
步骤1、医院生成患者的医疗信息,包括病历信息和医疗记录:Step 1: The hospital generates the patient's medical information, including medical history information and medical records:
步骤1.1、生成患者的病历信息:Step 1.1: Generate the patient's medical record information:
假设第j名患者pj到第i家医院hi就诊,第i家医院hi获取第j名患者pj的个人身份信息IDj以及医疗图像Ij,并生成电子病历rj,从而构建第j名患者pj的病历信息Rj=(IDj,rj);Assume that the jth patient p j visits the ith hospital hi for treatment. The ith hospital hi obtains the personal identity information ID j and medical image I j of the jth patient p j and generates an electronic medical record r j , thereby constructing the medical record information R j = (ID j , r j ) of the jth patient p j ;
步骤1.2、生成患者的医疗记录:Step 1.2: Generate the patient's medical records:
步骤1.2.1、第i家医院hi治疗第j名患者pj后生成第j名患者pj的医疗记录,所述医疗记录包含治疗方案和治疗记录;Step 1.2.1, after the i-th hospital h i treats the j-th patient p j, a medical record of the j-th patient p j is generated, wherein the medical record includes a treatment plan and a treatment record;
步骤1.2.2、对第j名患者pj的医疗记录进行解析,生成医疗记录的文本信息MRj;Step 1.2.2, parsing the medical record of the jth patient p j to generate text information MR j of the medical record;
步骤2、对患者病历信息加密:Step 2: Encrypt patient medical records:
步骤2.1、生成第j名患者pj的加密秘钥keyj和身份识别令牌tokenj,并写入第j名患者pj的就诊卡;Step 2.1, generate the encryption key key j and identity token token j of the jth patient p j , and write them into the medical card of the jth patient p j ;
步骤2.2、采用AES加密算法对第j名患者pj的病历信息Rj进行加密,得到加密后的病历信息密文Rsj;Step 2.2: Use the AES encryption algorithm to encrypt the medical record information Rj of the jth patient pj to obtain the encrypted medical record information ciphertext Rsj ;
步骤3、将加密后的病历信息密文Rsj作为秘密信息嵌入医疗图像Ij中,得到含有秘密信息的隐写图像 Step 3: Embed the encrypted medical record information ciphertext Rsj as secret information into the medical image Ij to obtain a stego-image containing secret information.
步骤3.1、将医疗图像Ij的位平面分解为HSB位平面和LSB位平面令表示HSB位平面中第u行第v列的像素值,表示LSB位平面中第u行第v列的像素值;Step 3.1: Decompose the bit plane of medical image Ij into HSB bit planes and LSB bit plane make Indicates the HSB bit plane The pixel value of the uth row and vth column in , Indicates the LSB bit plane The pixel value at the uth row and vth column in ;
步骤3.2、对HSB位平面可能溢出的像素进行标记,从而建立位置图LMj:Step 3.2: HSB bit plane The pixels that may overflow are marked to establish the position map LM j :
设定最大阈值Tmax与最小阈值Tmin;Set the maximum threshold T max and the minimum threshold T min ;
若或则表示HSB位平面中第u行第v列的像素值溢出,并将HSB位平面中第u行第v列的位置标记为“1”;like or It represents the HSB bit plane The pixel value in the uth row and vth column overflows, and the HSB bit plane The position at row u and column v in is marked as "1";
若或则表示HSB位平面中第u行第v列的像素值溢出,并将HSB位平面中第u行第v列的位置标记为“2”;like or It represents the HSB bit plane The pixel value in the uth row and vth column overflows, and the HSB bit plane The position at row u and column v in is marked as "2";
否则,表示HSB位平面中第u行第v列的像素值未溢出,并将HSB位平面中第u行第v列的位置标记为“0”;从而得到HSB位平面对应的位置图LMj;Otherwise, it indicates the HSB bit plane. The pixel value in the uth row and vth column in the image does not overflow, and the HSB bit plane The position of the uth row and the vth column in is marked as "0", thus obtaining the HSB bit plane The corresponding position map LM j ;
步骤3.3、修改HSB位平面可能溢出的像素值,从而得到处理后的HSB位平面 Step 3.3, modify the HSB bit plane The pixel value that may overflow, thus obtaining the processed HSB bit plane
若则将HSB位平面中第u行第v列的像素值减“2”;like The HSB bit plane The pixel value at row u and column v in Subtract "2";
若则将HSB位平面中第u行第v列的像素值加“2”;like The HSB bit plane The pixel value at row u and column v in Add "2";
若则将HSB位平面中第u行第v列的像素值减“1”;like The HSB bit plane The pixel value at row u and column v in Subtract "1";
若则将HSB位平面中第u行第v列的像素值加“1”;like The HSB bit plane The pixel value at row u and column v in plus 1";
步骤3.4、使用算术编码对位置图LMj进行无损压缩得到压缩后的位置图 Step 3.4: Use arithmetic coding to perform lossless compression on the position map LM j to obtain the compressed position map
将处理后的HSB位平面中除第一行像素点、第一列像素点以及最后一行、最后一列以外的其余像素点均划分为棋盘格;The processed HSB bit plane Except for the first row of pixels, the first column of pixels, and the last row and the last column, the remaining pixels are divided into checkerboards;
步骤3.5、将棋盘格中第u′行第v′列的像素值相邻的8个像素值进行升序排列,并计算排序后的像素值中前六个像素值的均值再取整后记为第u′行第v′列的预测值q1(u′,v′);计算排序后的像素值中后六个像素值的均值再取整后记为第u′行第v′列的预测值q2(u′,v′);Step 3.5: Replace the pixel value of the u′th row and v′th column in the chessboard The adjacent 8 pixel values are arranged in ascending order, and the average of the first six pixel values among the sorted pixel values is calculated and then rounded up to be recorded as the predicted value q 1 (u′, v′) of the u′th row and v′th column; the average of the last six pixel values among the sorted pixel values is calculated and then rounded up to be recorded as the predicted value q 2 (u′, v′) of the u′th row and v′th column;
步骤3.6、使用预测误差扩展法对棋盘格中的每个像素点进行两次嵌入,从而得到新的HSB位平面 Step 3.6: Use the prediction error expansion method to embed each pixel in the chessboard twice to obtain a new HSB bit plane.
步骤3.6.1、将压缩后的位置图添加到加密后的病历信息密文Rsj的尾端,从而得到新秘密数据Rs′j,定义秘密信息记为b和b′;Step 3.6.1: Compress the location map Add to the end of the encrypted medical record information ciphertext Rs j to obtain the new secret data Rs′ j , and define the secret information as b and b′;
步骤3.6.2、计算第一次嵌入的预测误差 Step 3.6.2. Calculate the prediction error of the first embedding
步骤3.6.3、当e1=1时,对棋盘格中第u′行第v′列的像素值加上部分秘密信息b;Step 3.6.3: When e 1 = 1, the pixel value of the u′th row and v′th column in the chessboard plus part of the secret information b;
当e1=0时,对棋盘格中第u′行第v′列的像素值减去部分秘密信息b;When e 1 = 0, the pixel value of the u′th row and v′th column in the chessboard Subtract part of the secret information b;
当e1>1时,对棋盘格中第u′行第v′列的像素值自增1;When e 1 > 1, the pixel value of the u′th row and v′th column in the chessboard Increment by 1;
当e1<0时,对棋盘格中第u′行第v′列的像素值自减1;When e 1 <0, the pixel value of the u′th row and v′th column in the chessboard Decrement by 1;
从而得到第一次嵌入后的第u′行第v′列的像素值 Thus, the pixel value of the u′th row and v′th column after the first embedding is obtained.
步骤3.6.4、计算第二次嵌入的预测误差 Step 3.6.4. Calculate the prediction error of the second embedding
当e2=1时,对第u′行第v′列的像素值加上部分秘密信息b′;When e 2 = 1, the pixel value of the u′th row and v′th column Add part of the secret information b′;
当e2=0时,对第u′行第v′列的像素值减去部分秘密信息b′;When e 2 = 0, the pixel value of the u′th row and v′th column Subtract part of the secret information b′;
当e2>1时,对第u′行第v′列的像素值自增1;When e 2 > 1, the pixel value of the u′th row and v′th column Increment by 1;
当e2<0时,对第u′行第v′列的像素值自减1;When e 2 <0, the pixel value of the u′th row and v′th column Decrement by 1;
从而得第二次嵌入后的第u′行第v′列的像素值 Thus, the pixel value of the u′th row and v′th column after the second embedding is obtained
步骤3.7、将新的HSB位平面和LSB位平面组合得到含有新秘密数据Rs′j的隐写图像 Step 3.7: Set the new HSB bit plane and LSB bit plane The combination obtains the stego-image containing the new secret data Rs′ j
步骤4、合并医疗信息并上传到云存储系统:Step 4: Merge medical information and upload to cloud storage system:
步骤4.1、合并第j名患者pj的医疗记录的文本信息MRj、身份识别令牌tokenj和隐写图像形成第j名患者pj完整的加密医疗信息 Step 4.1: Merge the text information MR j , the identification token token j and the steganagraph image of the medical record of the jth patient p j Form the complete encrypted medical information of the jth patient p j
步骤4.2、将完整的加密医疗信息Mj上传到所述云存储系统;Step 4.2, uploading the complete encrypted medical information M j to the cloud storage system;
步骤5、从所述云存储系统中检索相似病例的医疗信息:Step 5: Retrieve medical information of similar cases from the cloud storage system:
步骤5.1、使用深度学习模型进行文本匹配与信息检索:Step 5.1: Use deep learning models for text matching and information retrieval:
步骤5.1.1、根据第j名患者pj的患病情况,输入查询的病情症状信息;Step 5.1.1, according to the condition of the jth patient pj , input the symptom information of the condition to be queried;
步骤5.1.2、利用深度学习模型对病情症状信息进行解析,并提取语义特征向量;Step 5.1.2: Analyze the disease symptom information using a deep learning model and extract semantic feature vectors;
步骤5.1.3、将语义特征向量与云存储系统中的病历信息进行特征相似度计算,并生成文本相似度降序排序结果;Step 5.1.3, calculate the feature similarity between the semantic feature vector and the medical record information in the cloud storage system, and generate a text similarity descending sorting result;
步骤5.1.4、根据文本降序相似度排序结果,从而得到与第j名患者pj相似病例的文本信息集合MRj={MR1,j,MR2,j,...,MRk,j,...,MRr,j},其中,MRk,j表示与第j名患者pj相似病例的第k条文本信息,1≤k≤r;r表示相似病例总数;Step 5.1.4, sort the results according to the descending similarity of the texts, so as to obtain the text information set MR j = {MR 1,j ,MR 2,j ,...,MR k,j ,...,MR r,j } of the cases similar to the j-th patient p j, where MR k,j represents the k-th text information of the case similar to the j-th patient p j , 1≤k≤r; r represents the total number of similar cases;
步骤5.2、使用深度学习模型对医疗图像Ij进行特征提取与特征检索:Step 5.2: Use the deep learning model to perform feature extraction and feature retrieval on medical image Ij :
步骤5.2.1、将第j名患者pj的医疗图像Ij输入深度学习模型中进行特征提取,得到医疗图像Ij中病灶区域的特征并保存为病灶特征向量;Step 5.2.1, input the medical image Ij of the jth patient pj into the deep learning model for feature extraction, obtain the features of the lesion area in the medical image Ij and save it as a lesion feature vector;
步骤5.2.2、将第j名患者pj的医疗图像Ij的病灶特征向量与云存储系统中的医疗图像的病灶特征向量进行图像特征相似度计算,并生成图像相似度降序排序结果;Step 5.2.2, calculate the image feature similarity between the lesion feature vector of the medical image Ij of the jth patient pj and the lesion feature vector of the medical image in the cloud storage system, and generate a descending sorting result of the image similarity;
步骤5.2.3、根据图像相似度降序排序结果,得到与第j名患者pj相似病例的医疗图像集合Ij={I1,j,I2,j,...,Id,j,...,Ir,j},其中,Id,j表示与第j名患者pj相似病例的第d张医疗图像,1≤d≤r;Step 5.2.3, according to the results of descending sorting of image similarity, obtain the medical image set I j = {I 1,j ,I 2,j ,...,I d,j ,...,I r,j } of the case similar to the j-th patient p j, where I d,j represents the d-th medical image of the case similar to the j-th patient p j , 1≤d≤r;
步骤5.3、根据第j名患者pj的个人身份信息IDj,从所述云存储系统中获取第j名患者pj的以往医疗信息:Step 5.3: According to the personal identity information ID j of the jth patient p j , obtain the previous medical information of the jth patient p j from the cloud storage system:
使用第j名患者pj的就诊卡在第i家医院hi的终端进行身份验证,并根据就诊卡中身份识别令牌tokenj从所述云存储系统获取第j名患者pj的加密医疗信息Mj;Use the medical card of the j-th patient p j to authenticate at the terminal of the i-th hospital h i , and obtain the encrypted medical information M j of the j-th patient p j from the cloud storage system according to the identity token token j in the medical card;
步骤5.4、根据第j名患者pj的加密医疗信息Mj,得到其他相似病例的加密医疗信息集合Mj={M1,j,M2,j,...,Mk,j,...,Mr,j},其中,Mk,j表示与第j名患者pj相似病例的第k名患者的加密医疗信息,1≤k≤r;Step 5.4: Based on the encrypted medical information M j of the j-th patient p j , obtain the encrypted medical information set M j = {M 1,j ,M 2,j ,...,M k,j ,...,M r,j } of other similar cases, where M k,j represents the encrypted medical information of the k-th patient of a case similar to the j-th patient p j , 1≤k≤r;
令加密医疗信息Mk,j中医疗记录的文本信息为MRk,j,隐写图像为 Let the text information of the medical record in the encrypted medical information M k,j be MR k,j and the steganographic image be
步骤6、对隐写图像进行提取和图像恢复:Step 6: Steganographic Image Perform extraction and image recovery:
步骤6.1、将隐写图像分解为HSB位平面和LSB位平面 Step 6.1: Put the stego image Decompose into HSB bit planes and LSB bit plane
步骤6.2、对HSB位平面中的每个像素点进行两次提取,从而得到二次提取后的HSB位平面值以及由所有提取出的秘密信息组成新的秘密数据Rsk′;Step 6.2: HSB bit plane Each pixel in is extracted twice to obtain the HSB bit plane value after the second extraction And new secret data Rs k ′ is composed of all the extracted secret information;
步骤6.2.1、对中第u行第v列的像素值相邻的8个像素升序排列,并计算排序后的像素值中前六个像素值的均值再取整后记为第u行第v列的预测值q1′(u,v);计算排序后的像素值中后六个像素值的均值再取整后记为第u行第v列的预测值q2′(u,v);Step 6.2.1. The pixel value at row u and column v in Arrange the adjacent 8 pixels in ascending order, calculate the average of the first six pixel values in the sorted pixel values, round it up, and record it as the predicted value q 1 ′(u,v) of the uth row and vth column; calculate the average of the last six pixel values in the sorted pixel values, round it up, and record it as the predicted value q 2 ′(u,v) of the uth row and vth column;
步骤6.2.2、计算第一次提取的预测误差当e2′=1、2、0或-1时,从中提取出秘密信息并得一次提取后的HSB位平面值 Step 6.2.2: Calculate the prediction error of the first extraction When e 2 ′=1, 2, 0 or -1, Extract secret information from And get the HSB bit plane value after one extraction
步骤6.2.3、计算第二次提取的预测误差当e1′=1,2,0或-1时,从中提取出秘密信息并得到二次提取后的HSB位平面值 Step 6.2.3. Calculate the prediction error of the second extraction When e 1 ′=1, 2, 0 or -1, Extract secret information from And get the HSB bit plane value after secondary extraction
步骤6.3、从新的秘密数据Rsk′中分离出压缩后的位置图和病历信息密文Rsk;Step 6.3: Separate the compressed location map from the new secret data Rs k ′ and the medical record information ciphertext Rs k ;
步骤6.4、对所述压缩后的位置图进行解压,得到对应的位置图LMk,通过位置图LMk对进行还原,再与结合后,得到与第j名患者pj相似病例的第k名患者的医疗图像Ik,j;Step 6.4: Compress the compressed position map Decompress it and get the corresponding position map LM k . Restore and then After the combination, the medical image I k,j of the kth patient with a case similar to the jth patient p j is obtained;
步骤7、患者身份识别与信息解密:Step 7: Patient identification and information decryption:
步骤7.1、根据第j名患者pj持有的身份识别令牌tokenj从所述云存储系统中搜索身份识别令牌相同的加密医疗信息;Step 7.1, searching the cloud storage system for encrypted medical information with the same identity token as the identity token held by the jth patient p j ;
步骤7.2、利用第j名患者pj的秘钥keyj,采用AES算法对第j名患者pj的病历信息密文Rsj进行解密,得到病历信息Rj,再对第j名患者pj的病历信息Rj进行分解后得到第j名患者pj的个人身份信息IDj和电子病历rj。Step 7.2: Use the secret key key j of the jth patient p j and the AES algorithm to decrypt the ciphertext Rs j of the medical record information of the jth patient p j to obtain the medical record information R j . Then decompose the medical record information R j of the jth patient p j to obtain the personal identity information ID j and electronic medical record r j of the jth patient p j .
本发明一种电子设备,包括存储器以及处理器的特点在于,所述存储器用于存储支持处理器执行所述医疗信息共享方法的程序,所述处理器被配置为用于执行所述存储器中存储的程序。An electronic device of the present invention includes a memory and a processor, wherein the memory is used to store a program that supports the processor to execute the medical information sharing method, and the processor is configured to execute the program stored in the memory.
本发明一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序的特点在于,所述计算机程序被处理器运行时执行所述医疗信息共享方法的步骤。The present invention provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program, which is characterized in that when the computer program is run by a processor, the steps of the medical information sharing method are executed.
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明将加密技术与隐写技术相结合,对患者个人身份信息进行加密处理生成密文,将密文和医疗信息隐写入医疗图像。通过对信息加密与隐写,为隐私信息提供了双重保护。避免了因云存储系统存在安全隐患而导致隐私泄露的问题。1. The present invention combines encryption technology with steganography technology to encrypt the patient's personal identity information to generate ciphertext, and then write the ciphertext and medical information into the medical image. By encrypting and steganographic information, double protection is provided for private information, thus avoiding the problem of privacy leakage caused by security risks in the cloud storage system.
2、本发明对患者身份进行了双重认证。只有身份令牌相匹配才能获取到自身的医疗信息,获取到医疗信息后需要使用加密时生成的秘钥才能对医疗信息中的病例信息进行解密。通过双重认证,增大了隐私保护力度,避免了未授权的各方恶意获取隐私信息的问题。2. The present invention performs dual authentication on the patient's identity. Only when the identity token matches can the patient's medical information be obtained. After obtaining the medical information, the secret key generated during encryption is required to decrypt the case information in the medical information. Through dual authentication, the privacy protection is strengthened and the problem of unauthorized parties maliciously obtaining private information is avoided.
3、本发明使用深度学习来进行治疗记录信息检索与医疗图像特征检索。训练良好的深度学习模型,可以提取出医疗信息的文本语义特征和医疗图像的病灶特征。通过检索文本与图像,即可获得云存储系统中相似的医疗信息和图像,从而有利于提高医生的工作效率。3. The present invention uses deep learning to retrieve treatment record information and medical image feature retrieval. A well-trained deep learning model can extract the text semantic features of medical information and the lesion features of medical images. By retrieving text and images, similar medical information and images in the cloud storage system can be obtained, which is conducive to improving the work efficiency of doctors.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明方法的整体流程图。FIG. 1 is an overall flow chart of the method of the present invention.
具体实施方式Detailed ways
本实施例中,一种基于安全云存储的医疗信息共享方法,是应用于由n家医院H={h1,h2,...,hi,...,hn}、m名患者P={p1,p2,...,pj,...,pm}和云存储系统所组成的医疗环境中,其中,hi表示第i家医院,1≤i≤n;pj表示第j名患者,1≤j≤m;In this embodiment, a medical information sharing method based on secure cloud storage is applied to a medical environment consisting of n hospitals H = {h 1 ,h 2 ,..., hi ,..., hn }, m patients P = {p 1 ,p 2 ,...,p j ,...,p m } and a cloud storage system, wherein hi represents the i-th hospital, 1≤i≤n; p j represents the j-th patient, 1≤j≤m;
基于安全云存储的医疗信息共享方法为医疗领域的医疗信息云共享的数据安全提供保障,首先对患者的身份和病历中的隐私信息进行加密,并生成患者身份令牌用于患者的身份识别。然后将加密的信息作为秘密数据嵌入医疗图像,并将治疗记录与隐写图像上传至云存储系统。最后医生从云存储系统检索相似病例的医疗信息,提取秘密数据与恢复医疗图像,识别就诊患者的身份令牌并根据患者的秘钥解密隐私信息,具体的说,如图1所示,该医疗信息共享方法是按如下步骤进行:The medical information sharing method based on secure cloud storage provides data security for medical information cloud sharing in the medical field. First, the patient's identity and private information in the medical record are encrypted, and a patient identity token is generated for patient identification. The encrypted information is then embedded in the medical image as secret data, and the treatment record and the steganographic image are uploaded to the cloud storage system. Finally, the doctor retrieves the medical information of similar cases from the cloud storage system, extracts the secret data and restores the medical image, identifies the patient's identity token, and decrypts the private information according to the patient's secret key. Specifically, as shown in Figure 1, the medical information sharing method is performed in the following steps:
步骤1、医院生成患者的医疗信息,包括病历信息和医疗记录:Step 1: The hospital generates the patient's medical information, including medical history information and medical records:
步骤1.1、生成患者的病历信息:Step 1.1: Generate the patient's medical record information:
假设第j名患者pj到第i家医院hi就诊,第i家医院hi获取第j名患者pj的个人身份信息IDj以及医疗图像Ij,并生成电子病历rj,从而构建第j名患者pj的病历信息Rj=(IDj,rj);Assume that the jth patient p j visits the ith hospital hi for treatment. The ith hospital hi obtains the personal identity information ID j and medical image I j of the jth patient p j and generates an electronic medical record r j , thereby constructing the medical record information R j = (ID j , r j ) of the jth patient p j ;
步骤1.2、生成患者的医疗记录:Step 1.2: Generate the patient's medical records:
步骤1.2.1、第i家医院hi治疗第j名患者pj后生成第j名患者pj的医疗记录,医疗记录包含治疗方案和治疗记录;Step 1.2.1, after the i-th hospital h i treats the j-th patient p j, it generates the medical record of the j-th patient p j , and the medical record includes the treatment plan and treatment record;
步骤1.2.2、对第j名患者pj的医疗记录进行解析,生成医疗记录的文本信息MRj;Step 1.2.2, parsing the medical record of the jth patient p j to generate text information MR j of the medical record;
步骤2、对患者病历信息加密:Step 2: Encrypt patient medical records:
步骤2.1、生成第j名患者pj的加密秘钥keyj和身份识别令牌tokenj,并写入第j名患者pj的就诊卡;Step 2.1, generate the encryption key key j and identity token token j of the jth patient p j , and write them into the medical card of the jth patient p j ;
步骤2.2、采用AES加密算法对第j名患者pj的病历信息Rj进行加密,得到加密后的病历信息密文Rsj;Step 2.2: Use the AES encryption algorithm to encrypt the medical record information Rj of the jth patient pj to obtain the encrypted medical record information ciphertext Rsj ;
步骤3、将加密后的病历信息密文Rsj作为秘密信息嵌入医疗图像Ij中,得到含有秘密信息的隐写图像 Step 3: Embed the encrypted medical record information ciphertext Rsj as secret information into the medical image Ij to obtain a steganographic image containing secret information.
步骤3.1、将医疗图像Ij的位平面分解为HSB位平面和LSB位平面令表示HSB位平面中第u行第v列的像素值,表示LSB位平面中第u行第v列的像素值;Step 3.1: Decompose the bit plane of medical image Ij into HSB bit planes and LSB bit plane make Indicates the HSB bit plane The pixel value of the uth row and vth column in , Indicates the LSB bit plane The pixel value at the uth row and vth column in ;
步骤3.2、对HSB位平面可能溢出的像素进行标记,从而建立位置图LMj::Step 3.2: HSB bit plane The pixels that may overflow are marked to build the position map LM j :
设定最大阈值Tmax与最小阈值Tmin;Set the maximum threshold T max and the minimum threshold T min ;
若或则表示HSB位平面中第u行第v列的像素值溢出,并将HSB位平面中第u行第v列的位置标记为“1”;like or It means HSB bit plane The pixel value in the uth row and vth column overflows, and the HSB bit plane The position at row u and column v in is marked as "1";
若或则表示HSB位平面中第u行第v列的像素值溢出,并将HSB位平面中第u行第v列的位置标记为“2”;like or It represents the HSB bit plane The pixel value in the uth row and vth column overflows, and the HSB bit plane The position at row u and column v in is marked as "2";
否则,表示HSB位平面中第u行第v列的像素值未溢出,并将HSB位平面中第u行第v列的位置标记为“0”;从而得到HSB位平面对应的位置图LMj;Otherwise, it indicates the HSB bit plane. The pixel value in the uth row and vth column in the image does not overflow, and the HSB bit plane The position of the uth row and the vth column in is marked as "0", thus obtaining the HSB bit plane The corresponding position map LM j ;
因为HSB位平面中第u行第v列的像素值溢出和不溢出的情况共有三种,标记位需要设置0,1,2,若采用二进制压缩的方法则标记需要使用两位表示,导致辅助信息过大,所以使用三进制表示,可以有效减少压缩位置图的长度;Because the HSB bit plane There are three cases of overflow and non-overflow of the pixel value in the uth row and vth column. The mark bit needs to be set to 0, 1, or 2. If binary compression is used, the mark needs to be represented by two bits, which results in too much auxiliary information. Therefore, using ternary representation can effectively reduce the length of the compressed position map.
步骤3.3、修改HSB位平面可能溢出的像素值,从而得到处理后的HSB位平面 Step 3.3, modify the HSB bit plane The pixel value that may overflow, thus obtaining the processed HSB bit plane
若则将HSB位平面中第u行第v列的像素值减“2”;like The HSB bit plane The pixel value at row u and column v in Subtract "2";
若则将HSB位平面中第u行第v列的像素值加“2”;like The HSB bit plane The pixel value at row u and column v in Add "2";
若则将HSB位平面中第u行第v列的像素值减“1”;like The HSB bit plane The pixel value at row u and column v in Subtract "1";
若则将HSB位平面中第u行第v列的像素值加“1”;like The HSB bit plane The pixel value at row u and column v in plus 1";
其余情况保持HSB位平面中第u行第v列的像素值不变;In other cases, keep the HSB bit plane The pixel value at row u and column v in constant;
步骤3.4、使用算术编码对位置图LMj进行无损压缩得到压缩后的位置图 Step 3.4: Use arithmetic coding to perform lossless compression on the position map LM j to obtain the compressed position map
将处理后的HSB位平面中除第一行像素点、第一列像素点以及最后一行、最后一列以外的其余像素点均划分为棋盘格;The processed HSB bit plane Except for the first row of pixels, the first column of pixels, and the last row and the last column, the remaining pixels are divided into checkerboards;
步骤3.5、将棋盘格中第u′行第v′列的像素值相邻的8个像素值进行升序排列,并计算排序后的像素值中前六个像素值的均值再取整后记为第u′行第v′列的预测值q1(u′,v′);计算排序后的像素值中后六个像素值的均值再取整后记为第u′行第v′列的预测值q2(u′,v′);Step 3.5: Replace the pixel value of the u′th row and v′th column in the chessboard The adjacent 8 pixel values are arranged in ascending order, and the average of the first six pixel values among the sorted pixel values is calculated and then rounded up to be recorded as the predicted value q 1 (u′, v′) of the u′th row and v′th column; the average of the last six pixel values among the sorted pixel values is calculated and then rounded up to be recorded as the predicted value q 2 (u′, v′) of the u′th row and v′th column;
步骤3.6、使用预测误差扩展法对棋盘格中的每个像素点进行两次嵌入,从而得到新的HSB位平面 Step 3.6: Use the prediction error expansion method to embed each pixel in the chessboard twice to obtain a new HSB bit plane.
步骤3.6.1、将压缩后的位置图添加到加密后的病历信息密文Rsj的尾端,从而得到新秘密数据Rs′j,定义秘密信息记为b和b′;Step 3.6.1: Compress the location map Add to the end of the encrypted medical record information ciphertext Rs j to obtain the new secret data Rs′ j , and define the secret information as b and b′;
步骤3.6.2、计算第一次嵌入的预测误差 Step 3.6.2. Calculate the prediction error of the first embedding
步骤3.6.3、当e1=1时,对棋盘格中第u′行第v′列的像素值加上部分秘密信息b;Step 3.6.3: When e 1 = 1, the pixel value of the u′th row and v′th column in the chessboard plus part of the secret information b;
当e1=0时,对棋盘格中第u′行第v′列的像素值减去部分秘密信息b;When e 1 = 0, the pixel value of the u′th row and v′th column in the chessboard Subtract part of the secret information b;
当e1>1时,对棋盘格中第u′行第v′列的像素值自增1;When e 1 > 1, the pixel value of the u′th row and v′th column in the chessboard Increment by 1;
当e1<0时,对棋盘格中第u′行第v′列的像素值自减1;When e 1 <0, the pixel value of the u′th row and v′th column in the chessboard Decrement by 1;
从而得到第一次嵌入后的第u′行第v′列的像素值 Thus, the pixel value of the u′th row and v′th column after the first embedding is obtained.
步骤3.6.4、计算第二次嵌入的预测误差 Step 3.6.4. Calculate the prediction error of the second embedding
当e2=1时,对第u′行第v′列的像素值加上部分秘密信息b′;When e 2 = 1, the pixel value of the u′th row and v′th column Add part of the secret information b′;
当e2=0时,对第u′行第v′列的像素值减去部分秘密信息b′;When e 2 = 0, the pixel value of the u′th row and v′th column Subtract part of the secret information b′;
当e2>1时,对第u′行第v′列的像素值自增1;When e 2 > 1, the pixel value of the u′th row and v′th column Increment by 1;
当e2<0时,对第u′行第v′列的像素值自减1;When e 2 <0, the pixel value of the u′th row and v′th column Decrement by 1;
从而得第二次嵌入后的第u′行第v′列的像素值 Thus, the pixel value of the u′th row and v′th column after the second embedding is obtained
步骤3.7、将新的HSB位平面和LSB位平面组合得到含有新秘密数据Rs′j的隐写图像 Step 3.7: Set the new HSB bit plane and LSB bit plane The combination obtains the stego-image containing the new secret data Rs′ j
步骤4、合并医疗信息并上传到云存储系统:Step 4: Merge medical information and upload to cloud storage system:
步骤4.1、合并第j名患者pj的医疗记录的文本信息MRj、身份识别令牌tokenj和隐写图像形成第j名患者pj完整的加密医疗信息 Step 4.1: Merge the text information MR j , the identification token token j and the steganagraph image of the medical record of the jth patient p j Form the complete encrypted medical information of the jth patient p j
步骤4.2、将完整的加密医疗信息Mj上传到云存储系统;Step 4.2, upload the complete encrypted medical information Mj to the cloud storage system;
加密医疗信息Mj存储于云存储系统,其包含的三个元素:医疗记录的文本信息MRj、身份识别令牌tokenj和隐写图像并不会直接暴露患者隐私数据。患者的隐私数据只存在于隐写图像中,只能通过识别患者身份令牌后使用患者持有的秘钥进行解密。所以这三个元素为明文存储,医生可以对这三个元素进行检索;The encrypted medical information Mj is stored in the cloud storage system, which contains three elements: the text information of the medical record MRj , the identity token tokenj and the stego-image The patient's private data will not be directly exposed. The patient's private data only exists in the stego image. In the data, the patient's identity token can only be used to decrypt the data using the patient's secret key. Therefore, these three elements are stored in plain text, and doctors can retrieve them.
步骤5、从云存储系统中检索相似病例的医疗信息:Step 5: Retrieve medical information of similar cases from the cloud storage system:
步骤5.1、使用深度学习模型进行文本匹配与信息检索:Step 5.1: Use deep learning models for text matching and information retrieval:
步骤5.1.1、根据第j名患者pj的患病情况,输入查询的病情症状信息;Step 5.1.1, according to the condition of the jth patient pj , input the symptom information of the condition to be queried;
步骤5.1.2、利用深度学习模型对病情症状信息进行解析,并提取语义特征向量;Step 5.1.2: Analyze the disease symptom information using a deep learning model and extract semantic feature vectors;
使用已有的医疗信息数据对基于深度学习的文本匹配与信息检索模型预先进行训练,使得模型能够正确的提取语义特征向量;Use existing medical information data to pre-train the deep learning-based text matching and information retrieval model so that the model can correctly extract semantic feature vectors;
步骤5.1.3、将语义特征向量与云存储系统中的病历信息进行特征相似度计算,并生成文本相似度降序排序结果:Step 5.1.3: Calculate the feature similarity between the semantic feature vector and the medical record information in the cloud storage system, and generate the text similarity descending sorting results:
为了提高检索效率,使用预先训练好的深度学习模型对云存储系统中已存在的医疗信息数据进行语义特征提取,并在云存储系统中创建每条医疗数据的标签索引文件。在进行检索时,根据检索文本的语义特征向量从索引文件选择候选集;In order to improve the retrieval efficiency, a pre-trained deep learning model is used to extract semantic features from the medical information data already in the cloud storage system, and a label index file for each piece of medical data is created in the cloud storage system. When performing a search, a candidate set is selected from the index file based on the semantic feature vector of the search text;
步骤5.1.4、根据文本降序相似度排序结果,从而得到与第j名患者pj相似病例的文本信息集合MRj={MR1,j,MR2,j,...,MRk,j,...,MRr,j},其中,MRk,j表示与第j名患者pj相似病例的第k条文本信息,1≤k≤r;r表示相似病例总数;Step 5.1.4, sort the results according to the descending similarity of the texts, so as to obtain the text information set MR j = {MR 1,j ,MR 2,j ,...,MR k,j ,...,MR r,j } of the cases similar to the j-th patient p j, where MR k,j represents the k-th text information of the case similar to the j-th patient p j , 1≤k≤r; r represents the total number of similar cases;
步骤5.2、使用深度学习模型对医疗图像Ij进行特征提取与特征检索:Step 5.2: Use the deep learning model to perform feature extraction and feature retrieval on medical image Ij :
步骤5.2.1、将第j名患者pj的医疗图像Ij输入深度学习模型中进行特征提取,得到医疗图像Ij中病灶区域的特征并保存为病灶特征向量;Step 5.2.1, input the medical image Ij of the jth patient pj into the deep learning model for feature extraction, obtain the features of the lesion area in the medical image Ij and save it as a lesion feature vector;
步骤5.2.2、将第j名患者pj的医疗图像Ij的病灶特征向量与云存储系统中的医疗图像的病灶特征向量进行图像特征相似度计算,并生成图像相似度降序排序结果;Step 5.2.2, calculate the image feature similarity between the lesion feature vector of the medical image Ij of the jth patient pj and the lesion feature vector of the medical image in the cloud storage system, and generate a descending sorting result of the image similarity;
步骤5.2.3、根据图像相似度降序排序结果,得到与第j名患者pj相似病例的医疗图像集合Ij={I1,j,I2,j,...,Id,j,...,Ir,j},其中,Id,j表示与第j名患者pj相似病例的第d张医疗图像,1≤d≤r;Step 5.2.3, according to the results of descending sorting of image similarity, obtain the medical image set I j = {I 1,j ,I 2,j ,...,I d,j ,...,I r,j } of the case similar to the j-th patient p j, where I d,j represents the d-th medical image of the case similar to the j-th patient p j , 1≤d≤r;
步骤5.3、根据第j名患者pj的个人身份信息IDj,从云存储系统中获取第j名患者pj的以往医疗信息:Step 5.3: According to the personal identity information ID j of the jth patient p j , obtain the previous medical information of the jth patient p j from the cloud storage system:
使用第j名患者pj的就诊卡在第i家医院hi的终端进行身份验证,并根据就诊卡中身份识别令牌tokenj从云存储系统获取第j名患者pj的加密医疗信息Mj;Use the medical card of the jth patient p j to authenticate at the terminal of the i-th hospital h i , and obtain the encrypted medical information M j of the j-th patient p j from the cloud storage system based on the identity token token j in the medical card;
步骤5.4、根据第j名患者pj的加密医疗信息Mj,得到其他相似病例的加密医疗信息集合Mj={M1,j,M2,j,...,Mk,j,...,Mr,j},其中,Mk,j表示与第j名患者pj相似病例的第k名患者的加密医疗信息,1≤k≤r;Step 5.4: Based on the encrypted medical information M j of the j-th patient p j , obtain the encrypted medical information set M j = {M 1,j ,M 2,j ,...,M k,j ,...,M r,j } of other similar cases, where M k,j represents the encrypted medical information of the k-th patient of a case similar to the j-th patient p j , 1≤k≤r;
令加密医疗信息Mk,j中医疗记录的文本信息为MRk,j,隐写图像为 Let the text information of the medical record in the encrypted medical information M k,j be MR k,j and the steganographic image be
步骤6、对隐写图像进行提取和图像恢复:Step 6: Steganographic Image Perform extraction and image recovery:
步骤6.1、将隐写图像分解为HSB位平面和LSB位平面 Step 6.1: Put the stego image Decompose into HSB bit planes and LSB bit plane
步骤6.2、对HSB位平面中的每个像素点进行两次提取,从而得到二次提取后的HSB位平面值以及由所有提取出的秘密信息组成新的秘密数据Rs′k;Step 6.2: HSB bit plane Each pixel in is extracted twice to obtain the HSB bit plane value after the second extraction And the new secret data Rs′ k is composed of all the extracted secret information;
由于在嵌入过程中使用预测误差扩展法对棋盘格中的每个像素点进行两次嵌入,并对像素值进行了更改,所以在提取过程中需要按照相反的顺序才能提取出正确的预测值,并还原棋盘格中的每个像素点;Since the prediction error expansion method is used to embed each pixel in the chessboard twice during the embedding process and the pixel value is changed, the reverse order must be followed during the extraction process to extract the correct prediction value and restore each pixel in the chessboard;
步骤6.2.1、对中第u行第v列的像素值相邻的8个像素升序排列,并计算排序后的像素值中前六个像素值的均值再取整后记为第u行第v列的预测值q1′(u,v);计算排序后的像素值中后六个像素值的均值再取整后记为第u行第v列的预测值q2′(u,v);Step 6.2.1. The pixel value at row u and column v in Arrange the adjacent 8 pixels in ascending order, calculate the average of the first six pixel values in the sorted pixel values, round it up, and record it as the predicted value q 1 ′(u,v) of the uth row and vth column; calculate the average of the last six pixel values in the sorted pixel values, round it up, and record it as the predicted value q 2 ′(u,v) of the uth row and vth column;
步骤6.2.2、计算第一次提取的预测误差当e2′=1、2、0或-1时,从中提取出秘密信息并得一次提取后的HSB位平面值 Step 6.2.2: Calculate the prediction error of the first extraction When e 2 ′=1, 2, 0 or -1, Extract secret information from And get the HSB bit plane value after one extraction
步骤6.2.3、计算第二次提取的预测误差当e1′=1,2,0或-1时,从中提取出秘密信息并得到二次提取后的HSB位平面值 Step 6.2.3. Calculate the prediction error of the second extraction When e 1 ′=1, 2, 0 or -1, Extract secret information from And get the HSB bit plane value after secondary extraction
步骤6.3、从新的秘密数据Rs′k中分离出压缩后的位置图和病历信息密文Rsk;Step 6.3: Separate the compressed position map from the new secret data Rs′ k and the medical record information ciphertext Rs k ;
步骤6.4、对压缩后的位置图进行解压,得到对应的位置图LMk,通过位置图LMk对进行还原,再与结合后,得到与第j名患者pj相似病例的第k名患者的医疗图像Ik,j;Step 6.4: Compress the position map Decompress it and get the corresponding position map LM k . Restore and then After the combination, the medical image I k,j of the kth patient with a case similar to the jth patient p j is obtained;
步骤7、患者身份识别与信息解密:Step 7: Patient identification and information decryption:
步骤7.1、根据第j名患者pj持有的身份识别令牌tokenj从云存储系统中搜索身份识别令牌相同的加密医疗信息;Step 7.1, according to the identity token token j held by the jth patient p j, search the encrypted medical information with the same identity token from the cloud storage system;
步骤7.2、利用第j名患者pj的秘钥keyj,采用AES算法对第j名患者pj的病历信息密文Rsj进行解密,得到病历信息Rj,再对第j名患者pj的病历信息Rj进行分解后得到第j名患者pj的个人身份信息IDj和电子病历rj。Step 7.2: Use the secret key key j of the jth patient p j and the AES algorithm to decrypt the ciphertext Rs j of the medical record information of the jth patient p j to obtain the medical record information R j . Then, decompose the medical record information R j of the jth patient p j to obtain the personal identity information ID j and electronic medical record r j of the jth patient p j .
本实施例中,一种电子设备,包括存储器以及处理器,该存储器用于存储支持处理器执行上述医疗信息共享方法的程序,该处理器被配置为用于执行该存储器中存储的程序。In this embodiment, an electronic device includes a memory and a processor, wherein the memory is used to store a program that supports the processor to execute the above-mentioned medical information sharing method, and the processor is configured to execute the program stored in the memory.
本实施例中,一种计算机可读存储介质,是在计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述医疗信息共享方法的步骤。In this embodiment, a computer-readable storage medium stores a computer program on the computer-readable storage medium, and the computer program executes the steps of the above-mentioned medical information sharing method when executed by a processor.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211593668.2A CN115879126B (en) | 2022-12-13 | 2022-12-13 | Medical information sharing method based on secure cloud storage, electronic equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211593668.2A CN115879126B (en) | 2022-12-13 | 2022-12-13 | Medical information sharing method based on secure cloud storage, electronic equipment and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115879126A CN115879126A (en) | 2023-03-31 |
CN115879126B true CN115879126B (en) | 2024-07-19 |
Family
ID=85767173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211593668.2A Active CN115879126B (en) | 2022-12-13 | 2022-12-13 | Medical information sharing method based on secure cloud storage, electronic equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115879126B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117334285B (en) * | 2023-10-16 | 2024-05-10 | 威海万伟达信息科技有限公司 | Medical self-help information interaction system and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107682353A (en) * | 2017-10-25 | 2018-02-09 | 西安邮电大学 | A kind of health account access control system and method in electron medical treatment cloud |
CN115296810A (en) * | 2022-08-02 | 2022-11-04 | 安徽大学 | Medical shared cloud storage file auditing method supporting accurate examination |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140325205A1 (en) * | 2012-07-12 | 2014-10-30 | Xsette Technology, Inc. | Secure transmission between a source component and a node device |
CN109462714B (en) * | 2018-10-30 | 2020-05-12 | 成都优图有真像信息技术有限公司 | Encrypted image multi-bit plane reversible data hiding method with low cloud storage overhead |
CN110517182B (en) * | 2019-08-29 | 2021-06-25 | 海南大学 | A zero-watermark embedding method for medical images based on NSCT combined transform |
GB201918729D0 (en) * | 2019-12-18 | 2020-01-29 | Jaj Tech Pte Ltd | Computer-implemented system and method |
CN111311474B (en) * | 2020-02-04 | 2023-06-16 | 太原科技大学 | High-capacity image encryption domain information hiding method |
CN113114871A (en) * | 2021-04-15 | 2021-07-13 | 福建技术师范学院 | Digital image steganography method and system |
CN114285636A (en) * | 2021-12-23 | 2022-04-05 | 辽宁工业大学 | Alliance chain-based shared medical data proxy re-encryption system and method |
CN114553589B (en) * | 2022-03-14 | 2024-02-06 | 杭州电子科技大学 | Cloud file secure transmission method based on multi-stage encryption |
-
2022
- 2022-12-13 CN CN202211593668.2A patent/CN115879126B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107682353A (en) * | 2017-10-25 | 2018-02-09 | 西安邮电大学 | A kind of health account access control system and method in electron medical treatment cloud |
CN115296810A (en) * | 2022-08-02 | 2022-11-04 | 安徽大学 | Medical shared cloud storage file auditing method supporting accurate examination |
Also Published As
Publication number | Publication date |
---|---|
CN115879126A (en) | 2023-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sajjad et al. | Mobile-cloud assisted framework for selective encryption of medical images with steganography for resource-constrained devices | |
Priyanka et al. | Region-based hybrid medical image watermarking for secure telemedicine applications | |
Wu et al. | Secure reversible data hiding in encrypted images based on adaptive prediction-error labeling | |
CN110610144B (en) | Expression recognition method and system for privacy protection | |
CN112085016A (en) | Robust watermarking method based on ROI and IWT medical image tampering authentication and recovery | |
Gong et al. | [Retracted] Robust and Secure Zero‐Watermarking Algorithm for Medical Images Based on Harris‐SURF‐DCT and Chaotic Map | |
CN117436132B (en) | Data privacy protection method integrating blockchain technology and artificial intelligence | |
CN115879126B (en) | Medical information sharing method based on secure cloud storage, electronic equipment and storage medium | |
Yamni et al. | Copyright protection of multiple CT images using Octonion Krawtchouk moments and grey Wolf optimizer | |
Rupa et al. | IOMT Privacy Preservation: A Hash-Based DCIWT approach for detecting tampering in medical data | |
Singh et al. | Intelligent Data Security Solutions for e-Health Applications | |
Kong et al. | Reversible data hiding in encrypted medical DICOM image | |
Zhou et al. | Adversarial thumbnail-preserving transformation for facial images based on GAN | |
CN115495787A (en) | Medical data processing method, system, electronic device and medium | |
Shi et al. | Region-based reversible medical image watermarking algorithm for privacy protection and integrity authentication | |
Deepa et al. | Steganalysis on images based on the classification of image feature sets using SVM classifier | |
CN115131465A (en) | Identity relationship maintenance-based face anonymous image generation and identification method | |
CN111814160B (en) | A ciphertext domain reversible information hiding system and method for DICOM files | |
CN105872305A (en) | Full separable encryption domain image reversible data hiding method | |
CN109672804B (en) | Image encryption and decryption method and system | |
CN115914488B (en) | Medical image identity confusion sharing method, system, terminal equipment and storage medium | |
CN106954069B (en) | Reversible data embedded coding method towards digital picture secret protection and management | |
Mohammed et al. | Tamper detection and self-recovery in a visual secret sharing based security mechanism for medical records | |
Moataz | Watermarking medical scans: Saliency filter pixels | |
Balamurugan et al. | A fingerprint based reversible watermarking system for the security of medical information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |