CN115867505B - Elevator with a motor - Google Patents
Elevator with a motor Download PDFInfo
- Publication number
- CN115867505B CN115867505B CN202080103129.9A CN202080103129A CN115867505B CN 115867505 B CN115867505 B CN 115867505B CN 202080103129 A CN202080103129 A CN 202080103129A CN 115867505 B CN115867505 B CN 115867505B
- Authority
- CN
- China
- Prior art keywords
- slip
- speed
- car
- brake
- sheave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/0006—Monitoring devices or performance analysers
- B66B5/0037—Performance analysers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/24—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
- B66B1/28—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
- B66B1/32—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on braking devices, e.g. acting on electrically controlled brakes
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Elevator Control (AREA)
- Maintenance And Inspection Apparatuses For Elevators (AREA)
Abstract
Description
技术领域Technical Field
本公开涉及电梯。The present disclosure relates to elevators.
背景技术Background Art
专利文献1公开了电梯的例子。在电梯中,检测主绳索所吊挂的轿厢的速度以及缠绕主绳索的绳轮的速度。控制单元对提供给绳轮的制动力进行控制。在电梯紧急停止时,在绳轮的速度以及轿厢的速度之差为阈值以下的场合,控制单元提供全制动力。另一方面,在因主绳索滑动而绳轮的速度以及轿厢的速度之差超过阈值的场合,控制单元提供比全制动力弱的制动力。Patent document 1 discloses an example of an elevator. In the elevator, the speed of the car suspended by the main rope and the speed of the sheave around which the main rope is wound are detected. The control unit controls the braking force applied to the sheave. When the elevator stops in an emergency, if the difference between the speed of the sheave and the speed of the car is below a threshold, the control unit applies the full braking force. On the other hand, if the difference between the speed of the sheave and the speed of the car exceeds the threshold due to slippage of the main rope, the control unit applies a braking force weaker than the full braking force.
在先技术文献Prior Art Literature
专利文献Patent Literature
专利文献1:日本特开2004-231355号公报Patent Document 1: Japanese Patent Application Publication No. 2004-231355
发明内容Summary of the invention
发明所要解决的课题Problems to be solved by the invention
然而,若根据发生主绳索的滑动时的轿厢的速度等的状况,减弱制动力以抑制主绳索的滑动,则有时轿厢的制动距离会变长。However, if the braking force is reduced to suppress the slipping of the main ropes depending on the situation such as the speed of the car when the slipping of the main ropes occurs, the braking distance of the car may become longer.
本公开涉及上述那样的课题的解决。本公开提供可抑制紧急停止时的轿厢的制动距离的电梯。The present disclosure relates to solving the above-mentioned problems. The present disclosure provides an elevator capable of suppressing the braking distance of a car during an emergency stop.
用于解决课题的方案Solutions to Solve Problems
本公开所涉及的电梯具备:制动器,该制动器对使轿厢在升降路升降的卷扬机中的缠绕着主绳索的绳轮进行制动,该主绳索将轿厢吊挂于升降路;滑动探测部,该滑动探测部探测主绳索相对于绳轮有无滑动;绳轮速度检测部,该绳轮速度检测部检测绳轮的速度;以及制动器控制部,该制动器控制部在紧急停止时滑动探测部探测滑动的发生时,将自紧急停止开始起至开始滑动为止的期间的预先设定的任意的参照时点处的绳轮速度检测部所检测的绳轮的速度与预先设定的速度阈值进行比较,在该参照时点的速度超过速度阈值的场合,根据使绳轮以及主绳索之间的滑动消除的滑动消除控制方式来控制制动器,在该参照时点的速度未超过速度阈值的场合,根据控制制动器的制动力以便绳轮按设定减速度减速的制动力控制方式来控制制动器。The elevator of the present disclosure includes: a brake for braking a sheave around which a main rope is wound in a hoisting machine for raising and lowering a car in a hoisting path, the main rope suspending the car in the hoisting path; a slip detector for detecting whether the main rope has slipped relative to the sheave; a sheave speed detector for detecting the speed of the sheave; and a brake control unit for comparing the speed of the sheave detected by the sheave speed detector at a predetermined arbitrary reference time point during a period from the start of the emergency stop to the start of the slip with a predetermined speed threshold value when the slip detector detects the occurrence of the slip during an emergency stop, and controlling the brake according to a slip elimination control method for eliminating the slip between the sheave and the main rope when the speed at the reference time point exceeds the speed threshold, and controlling the brake according to a braking force control method for controlling the braking force of the brake so that the sheave decelerates at a set deceleration when the speed at the reference time point does not exceed the speed threshold.
本公开所涉及的电梯具备:制动器,该制动器在使轿厢在升降路升降的卷扬机中,对缠绕着将轿厢吊挂于升降路的主绳索的绳轮进行制动;滑动探测部,该滑动探测部探测主绳索相对于绳轮有无滑动;轿厢速度检测部,该轿厢速度检测部检测轿厢的速度;绳轮速度检测部,该绳轮速度检测部检测绳轮的速度;以及制动器控制部,该制动器控制部在紧急停止时滑动探测部探测滑动的发生时,将自紧急停止开始起至开始滑动为止的期间的预先设定的任意的参照时点处的轿厢速度检测部所检测的轿厢的速度与预先设定的速度阈值进行比较,在该参照时点的速度超过速度阈值的场合,根据使绳轮以及主绳索之间的滑动消除的滑动消除控制方式来控制制动器,在该参照时点的速度未超过速度阈值的场合,根据控制制动器的制动力以便绳轮按设定减速度减速的制动力控制方式来控制制动器。The elevator of the present disclosure includes: a brake for braking a sheave around which a main rope for suspending the car on the hoisting path is wound in a hoisting machine for raising and lowering the car on the hoisting path; a slip detector for detecting whether the main rope has slipped relative to the sheave; a car speed detector for detecting the speed of the car; a sheave speed detector for detecting the speed of the sheave; and a brake control unit for comparing the speed of the car detected by the car speed detector at a predetermined arbitrary reference time point during the period from the start of the emergency stop to the start of the slip with a predetermined speed threshold value when the slip detector detects the occurrence of the slip during an emergency stop, and controlling the brake according to a slip elimination control method for eliminating the slip between the sheave and the main rope when the speed at the reference time point exceeds the speed threshold, and controlling the brake according to a braking force control method for controlling the braking force of the brake so that the sheave decelerates at a set deceleration when the speed at the reference time point does not exceed the speed threshold.
发明的效果Effects of the Invention
根据本公开所涉及的电梯,可抑制紧急停止时的轿厢的制动距离。According to the elevator according to the present disclosure, the braking distance of the car during an emergency stop can be suppressed.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是实施方式1所涉及的电梯的构成图。FIG. 1 is a block diagram of an elevator according to Embodiment 1. FIG.
图2是示出实施方式1所涉及的轿厢的紧急停止时的速度波形的例子的图。FIG. 2 is a diagram showing an example of a speed waveform at the time of an emergency stop of the car according to the first embodiment.
图3是示出实施方式1所涉及的轿厢的紧急停止时的速度波形的例子的图。FIG. 3 is a diagram showing an example of a speed waveform at the time of an emergency stop of the car according to the first embodiment.
图4是示出实施方式1所涉及的轿厢的紧急停止时的速度波形的例子的图。FIG. 4 is a diagram showing an example of a speed waveform at the time of an emergency stop of the car according to the first embodiment.
图5是示出实施方式1所涉及的轿厢的紧急停止时的速度波形的例子的图。FIG. 5 is a diagram showing an example of a speed waveform at the time of an emergency stop of the car according to the first embodiment.
图6是示出实施方式1所涉及的电梯的动作的例子的流程图。FIG. 6 is a flowchart showing an example of the operation of the elevator according to the first embodiment.
图7是实施方式1所涉及的电梯的主要部分的硬件构成图。FIG. 7 is a hardware configuration diagram of a main part of the elevator according to the first embodiment.
图8是实施方式2所涉及的电梯的构成图。FIG8 is a block diagram of an elevator according to the second embodiment.
具体实施方式DETAILED DESCRIPTION
参照附图对用于实施本公开的方式来进行说明。在各图中,对相同或者相当的部分标注相同的附图标记,将重复的说明适当简化或者省略。The embodiment of the present disclosure will be described with reference to the accompanying drawings. In each of the drawings, the same or corresponding parts are denoted by the same reference numerals, and repeated descriptions are appropriately simplified or omitted.
实施方式1.Implementation method 1.
图1是实施方式1所涉及的电梯1的构成图。FIG. 1 is a configuration diagram of an elevator 1 according to the first embodiment.
电梯1例如设在具有多个楼层的建筑中。在建筑中,设有电梯1的升降路2。升降路2是经过多个楼层的空间。The elevator 1 is installed in a building having a plurality of floors, for example. In the building, there is provided an elevator path 2 for the elevator 1. The elevator path 2 is a space passing through a plurality of floors.
电梯1具备轿厢3、卷扬机4、主绳索5、配重块6、调速机7、制动器8、绳轮速度检测部9、轿厢速度检测部10、安全开关11以及控制装置12。The elevator 1 includes a car 3 , a hoisting machine 4 , a main rope 5 , a counterweight 6 , a speed governor 7 , a brake 8 , a sheave speed detector 9 , a car speed detector 10 , a safety switch 11 , and a control device 12 .
轿厢3配置于升降路2。轿厢3是在多个楼层之间输送使用者等的装置。卷扬机4是使配置于升降路2的轿厢3升降的装置。卷扬机4具备产生驱动力的未图示的电动机和被该电动机驱动旋转的绳轮13。主绳索5缠绕于绳轮13。主绳索5在绳轮13的一方侧将轿厢3吊挂在升降路2中。主绳索5在绳轮13的另一方侧将配重块6吊挂在升降路2中。配重块6是在与轿厢3之间获取经主绳索5施加在绳轮13的两侧的载荷的平衡的装置。The car 3 is arranged in the hoistway 2. The car 3 is a device for transporting users and the like between multiple floors. The hoist 4 is a device for raising and lowering the car 3 arranged in the hoistway 2. The hoist 4 includes a motor (not shown) that generates a driving force and a sheave 13 that is driven and rotated by the motor. The main rope 5 is wound around the sheave 13. The main rope 5 suspends the car 3 in the hoistway 2 on one side of the sheave 13. The main rope 5 suspends the counterweight 6 in the hoistway 2 on the other side of the sheave 13. The counterweight 6 is a device that balances the load applied to both sides of the sheave 13 through the main rope 5 between the car 3 and the hoist 4.
调速机7是限制轿厢3的速度的装置。调速机7具备调速机绳索14和调速机滑轮15。调速机绳索14是安装于轿厢3的绳索。调速机滑轮15是缠绕调速机绳索14的滑轮。调速机滑轮15通过与轿厢3的行驶联动地移动的调速机绳索14而旋转。调速机7对应于调速机滑轮15的旋转速度来限制轿厢3的速度。The speed governor 7 is a device for limiting the speed of the car 3. The speed governor 7 includes a speed governor rope 14 and a speed governor pulley 15. The speed governor rope 14 is a rope installed on the car 3. The speed governor pulley 15 is a pulley around which the speed governor rope 14 is wound. The speed governor pulley 15 is rotated by the speed governor rope 14 that moves in conjunction with the travel of the car 3. The speed governor 7 limits the speed of the car 3 according to the rotation speed of the speed governor pulley 15.
制动器8是对绳轮13进行制动的装置。制动器8例如是盘式制动器、鼓式制动器或者其他的具有可动部的制动器等。在通常时,当处于制动状态时,制动器8将能以静止状态保持轿厢3以及配重块6的制动力施加给绳轮13。制动力例如是抑制绳轮13的旋转的摩擦力、或者产生该摩擦力的推压力等。另一方面,制动器8在处于释放状态时不阻碍绳轮13的旋转。The brake 8 is a device for braking the sheave 13. The brake 8 is, for example, a disc brake, a drum brake, or other brakes with a movable portion. Normally, when in a braking state, the brake 8 applies a braking force to the sheave 13 that can keep the car 3 and the counterweight 6 in a stationary state. The braking force is, for example, a friction force that suppresses the rotation of the sheave 13, or a thrust force that generates the friction force. On the other hand, the brake 8 does not hinder the rotation of the sheave 13 when in a released state.
绳轮速度检测部9是检测绳轮13的速度的部分。绳轮速度检测部9所检测的绳轮13的速度例如是绳轮13的外周的速度。绳轮速度检测部9例如具有检测绳轮13的旋转量的编码器等。绳轮速度检测部9也可以搭载有将绳轮13的旋转量换算成绳轮13的旋转速度或者绳轮13的外周的速度等的功能。The sheave speed detection unit 9 is a part that detects the speed of the sheave 13. The speed of the sheave 13 detected by the sheave speed detection unit 9 is, for example, the speed of the outer periphery of the sheave 13. The sheave speed detection unit 9 has, for example, an encoder that detects the rotation amount of the sheave 13. The sheave speed detection unit 9 may also be equipped with a function of converting the rotation amount of the sheave 13 into the rotation speed of the sheave 13 or the speed of the outer periphery of the sheave 13.
轿厢速度检测部10是检测轿厢3的速度的部分。轿厢速度检测部10所检测的轿厢3的速度例如是轿厢3的铅垂方向的行驶速度。轿厢速度检测部10例如具有检测调速机滑轮15的旋转量的编码器等。轿厢速度检测部10也可以搭载有将调速机滑轮15的旋转量换算成轿厢3的行驶速度等的功能。另外,轿厢速度检测部10例如也可以基于设于轿厢3的位置传感器、速度传感器或者加速度传感器等的检测结果来检测轿厢3的速度。另外,轿厢速度检测部10也可以通过检测与轿厢3联动地动作的主绳索5或者配重块6等的速度来检测轿厢3的速度。The car speed detection unit 10 is a part that detects the speed of the car 3. The speed of the car 3 detected by the car speed detection unit 10 is, for example, the travel speed of the car 3 in the vertical direction. The car speed detection unit 10 has, for example, an encoder that detects the amount of rotation of the governor pulley 15. The car speed detection unit 10 may also be equipped with a function of converting the amount of rotation of the governor pulley 15 into the travel speed of the car 3. In addition, the car speed detection unit 10 may also detect the speed of the car 3 based on the detection results of a position sensor, a speed sensor, or an acceleration sensor provided in the car 3. In addition, the car speed detection unit 10 may also detect the speed of the car 3 by detecting the speed of the main rope 5 or the counterweight 6 that moves in conjunction with the car 3.
安全开关11设于升降路2。安全开关11配置在升降路2的上端部以及下端部等。安全开关11例如是对轿厢3走过了最上楼层或者最下楼层的层站位置地继续行驶的情况进行探测的开关。在安全开关11工作时,例如有时会在接受保养人员等的检修之前电梯1都不行驶而保持待机。在该场合,存在着发生搭乘于轿厢3的使用者被困住的可能性。The safety switch 11 is provided in the lifting path 2. The safety switch 11 is arranged at the upper end and the lower end of the lifting path 2. The safety switch 11 is a switch for detecting, for example, that the car 3 continues to travel after passing the landing position of the uppermost floor or the lowermost floor. When the safety switch 11 is operated, for example, the elevator 1 may not travel but remain on standby until it is inspected by a maintenance person or the like. In this case, there is a possibility that a user riding in the car 3 may be trapped.
控制装置12是控制电梯1的动作的装置。电梯1的动作例如包括轿厢3的行驶以及制动器8的动作等。制动器8的动作包括紧急停止。紧急停止是因紧急停止信号的输入、紧急停止事态发生的检测或者停电的发生等而使得行驶的轿厢3停止的动作。紧急停止例如通过在轿厢3的行驶中探测出某些异常而开始。使紧急停止开始的异常通过设于电梯1的未图示的异常探测器等来探测。异常探测器例如是设于电梯1的安全装置等。控制装置12具备滑动探测部16和制动器控制部17。The control device 12 is a device for controlling the operation of the elevator 1. The operation of the elevator 1 includes, for example, the travel of the car 3 and the operation of the brake 8. The operation of the brake 8 includes an emergency stop. The emergency stop is an operation that stops the traveling car 3 due to the input of an emergency stop signal, the detection of the occurrence of an emergency stop event, or the occurrence of a power outage. The emergency stop is initiated, for example, by detecting some abnormality during the travel of the car 3. The abnormality that initiates the emergency stop is detected by an abnormality detector (not shown) provided in the elevator 1. The abnormality detector is, for example, a safety device provided in the elevator 1. The control device 12 includes a slip detector 16 and a brake control unit 17.
滑动探测部16是探测主绳索5与绳轮13之间有无滑动的部分。在此,在紧急停止时,制动器8对与主绳索5一起旋转的绳轮13施加制动力。此时,根据与主绳索5联动的轿厢3的升降路内的位置、行驶方向、行驶加速度以及质量、因搭乘人数以及轿厢3所搭载的设备而有所变动的轿厢3内的载荷、绳轮13的绳索槽的形状、主绳索5与绳轮13的摩擦系数、以及制动器8的制动力等,有时会发生主绳索5相对于绳轮13的滑动。滑动探测部16探测这样紧急停止等时的主绳索5有无滑动。滑动探测部16例如通过探测主绳索5相对于绳轮13的外周部在周向的相对运动来探测主绳索5有无滑动。滑动探测部16例如像以下那样探测有无滑动。The slip detector 16 is a part that detects whether there is a slip between the main rope 5 and the sheave 13. Here, at the time of emergency stop, the brake 8 applies a braking force to the sheave 13 that rotates together with the main rope 5. At this time, the main rope 5 may slip relative to the sheave 13 depending on the position in the hoistway of the car 3 linked to the main rope 5, the travel direction, the travel acceleration and the mass, the load in the car 3 that varies due to the number of passengers and the equipment carried by the car 3, the shape of the rope groove of the sheave 13, the friction coefficient between the main rope 5 and the sheave 13, and the braking force of the brake 8. The slip detector 16 detects whether the main rope 5 slips during such an emergency stop. The slip detector 16 detects whether the main rope 5 slips, for example, by detecting the relative movement of the main rope 5 relative to the outer peripheral portion of the sheave 13 in the circumferential direction. The slip detector 16 detects the presence of slip, for example, as follows.
滑动探测部16计算轿厢速度检测部10以及绳轮速度检测部9所分别检测的轿厢3的速度以及绳轮13的速度之差来作为主绳索5相对于绳轮13的相对速度。滑动探测部16在计算出的相对速度超过预先设定的阈值时,探测主绳索5的滑动的发生。另一方面,滑动探测部16在计算出的相对速度低于预先设定的阈值时,探测主绳索5的滑动的消除。The slip detector 16 calculates the difference between the speed of the car 3 and the speed of the sheave 13 detected by the car speed detector 10 and the sheave speed detector 9, respectively, as the relative speed of the main rope 5 with respect to the sheave 13. When the calculated relative speed exceeds a preset threshold value, the slip detector 16 detects the occurrence of slip of the main rope 5. On the other hand, when the calculated relative speed is lower than a preset threshold value, the slip detector 16 detects the elimination of slip of the main rope 5.
另外,在从轿厢3至轿厢速度检测部10存在着共振系统的场合等,滑动探测部16也可以将从轿厢3至轿厢速度检测部10的机械特性的逆模型过滤器用于轿厢速度检测部10的输出,进行将该机械特性的影响除去的处理。滑动探测部16例如也可以在进行完该处理之后计算相对于绳轮速度检测部9的输出的相对速度。另外,滑动探测部16也可以使用通过将应用了从卷扬机4至轿厢3的位置以及从轿厢3至轿厢速度检测部10的各个机械特性过滤器的轿厢速度检测部10的输出和轿厢3的速度,计算主绳索5相对于绳轮13的相对速度。由此,由于除去了因除主绳索5的滑动以外的主绳索5的伸缩等造成的影响,所以,可高精度地计算主绳索5相对于绳轮13的相对速度。因而,由于能减小相对于有无滑动的探测的阈值,所以,可提高主绳索5的滑动探测的精度。In addition, when there is a resonance system from the car 3 to the car speed detector 10, the slip detector 16 may apply an inverse model filter of the mechanical characteristics from the car 3 to the car speed detector 10 to the output of the car speed detector 10 to remove the influence of the mechanical characteristics. The slip detector 16 may calculate the relative speed with respect to the output of the sheave speed detector 9 after performing the processing. In addition, the slip detector 16 may calculate the relative speed of the main rope 5 with respect to the sheave 13 by using the output of the car speed detector 10 to which the mechanical characteristics filters from the position from the hoist 4 to the car 3 and from the car 3 to the car speed detector 10 are applied and the speed of the car 3. Thus, since the influence caused by the expansion and contraction of the main rope 5 other than the slip of the main rope 5 is removed, the relative speed of the main rope 5 with respect to the sheave 13 can be calculated with high accuracy. Therefore, since the threshold value for detecting the presence or absence of slip can be reduced, the accuracy of detecting the slip of the main rope 5 can be improved.
制动器控制部17是控制制动器8的动作的部分。制动器控制部17切换多个控制方式来控制制动器8的动作。多个控制方式包括制动力控制方式以及滑动消除控制方式。The brake control unit 17 is a part that controls the operation of the brake 8. The brake control unit 17 switches between a plurality of control modes to control the operation of the brake 8. The plurality of control modes include a braking force control mode and a slip elimination control mode.
制动力控制方式是控制制动器8的制动力以便绳轮13按设定减速度减速的控制方式。设定减速度是在第1减速度a1以及第2减速度a2之间预先设定的恒定的减速度。在此,减速度是使速度的绝对值减少的加速度。在该例子中,第1减速度a1的绝对值比第2减速度a2的绝对值大。另外,制动力控制方式下的制动器8的控制也可以基于绳轮速度检测部9所检测的绳轮13的速度来进行。另外,由于在未发生滑动的状况下轿厢3的速度与绳轮13的速度大体一致,所以,制动力控制方式下的制动器8的控制也可以基于根据轿厢速度检测部10所检测的轿厢3的速度推定出的绳轮13的减速度来进行。The braking force control method is a control method for controlling the braking force of the brake 8 so that the sheave 13 decelerates at a set deceleration. The set deceleration is a constant deceleration pre-set between the first deceleration a1 and the second deceleration a2 . Here, the deceleration is an acceleration that reduces the absolute value of the speed. In this example, the absolute value of the first deceleration a1 is greater than the absolute value of the second deceleration a2 . In addition, the control of the brake 8 under the braking force control method can also be performed based on the speed of the sheave 13 detected by the sheave speed detection unit 9. In addition, since the speed of the car 3 is roughly the same as the speed of the sheave 13 when no slip occurs, the control of the brake 8 under the braking force control method can also be performed based on the deceleration of the sheave 13 estimated from the speed of the car 3 detected by the car speed detection unit 10.
第1减速度a1是可预料在以绝对值比第1减速度a1小的减速度紧急停止场合下不发生主绳索5与绳轮13之间的滑动的减速度。第1减速度a1根据卷扬机4的牵引能力的预测值被预先计算。牵引能力的预测值例如是基于卷扬机4的绳轮13以及主绳索5的形状及材质等规格或者设计值等而计算出的、主绳索5相对于绳轮13的滑动困难程度等。在牵引能力的预测值中,未考虑绳轮13以及主绳索5之间的摩耗等局部的摩擦条件的降低等。另外,在第1减速度a1的计算中,考虑了容易发生主绳索5的滑动的轿厢3的行驶方向以及载荷的条件等。容易发生滑动的条件例如包括无载荷下的上升时或者最大载荷下的下降时等的条件。第1减速度a1例如是被预先计算成在未考虑局部的摩擦条件的降低等的场合下不发生滑动的上限的减速度。The first deceleration a1 is a deceleration at which it is expected that no slip will occur between the main rope 5 and the sheave 13 in the case of an emergency stop at a deceleration smaller in absolute value than the first deceleration a1 . The first deceleration a1 is calculated in advance based on the predicted value of the traction capacity of the hoist 4. The predicted value of the traction capacity is, for example, the difficulty of the main rope 5 sliding relative to the sheave 13 calculated based on the specifications or design values such as the shape and material of the sheave 13 and the main rope 5 of the hoist 4. In the predicted value of the traction capacity, the reduction of local friction conditions such as wear between the sheave 13 and the main rope 5 is not considered. In addition, in the calculation of the first deceleration a1 , the running direction of the car 3 and the load conditions where the main rope 5 is likely to slip are considered. The conditions where slip is likely to occur include, for example, the conditions when ascending under no load or descending under the maximum load. The first deceleration a1 is, for example, a deceleration calculated in advance as the upper limit of no slip when the reduction of local friction conditions is not considered.
第2减速度a2是可预料在以绝对值比第2减速度a2大的减速度紧急停止的场合下轿厢3不行驶至配置安全开关11的位置的减速度。第2减速度a2基于轿厢3、配重块6、主绳索5及绳轮13的重量、以及轿厢3的额定速度等规格或者设计值等被预先计算。在第2减速度a2的计算中,考虑轿厢3的走过量变大的轿厢3的行驶方向以及载荷的条件等。在此,走过量是从最上楼层或者最下楼层等终端楼层的层站位置起至轿厢3走过该层站位置而停止下来的位置为止的距离。轿厢3的走过量变大的条件例如包括无载荷下的上升时或者最大载荷下的下降时等的条件。第2减速度a2例如是被预先计算成在未考虑制动器8的控制的超调等的场合下安全开关11不工作的下限的减速度。在此,制动器8的控制的超调表示制动力相对于指令过大的情况。The second deceleration a2 is a deceleration at which it is expected that the car 3 will not travel to the position where the safety switch 11 is arranged when the car 3 is stopped urgently at a deceleration whose absolute value is greater than the second deceleration a2 . The second deceleration a2 is calculated in advance based on the weight of the car 3, the counterweight 6, the main rope 5 and the sheave 13, and the specifications or design values of the rated speed of the car 3. In the calculation of the second deceleration a2 , the travel direction of the car 3 and the load conditions where the travel amount of the car 3 increases are considered. Here, the travel amount is the distance from the landing position of the terminal floor such as the uppermost floor or the lowermost floor to the position where the car 3 passes the landing position and stops. The conditions where the travel amount of the car 3 increases include, for example, the conditions when the car 3 ascends without load or descends under the maximum load. The second deceleration a2 is, for example, a lower limit deceleration calculated in advance so that the safety switch 11 does not operate when the overshoot of the control of the brake 8 is not considered. Here, the overshoot of the control of the brake 8 means that the braking force is too large relative to the command.
通过将第1减速度a1以及第2减速度a2之间的减速度作为设定减速度并按照制动力控制方式由制动器控制部17控制制动器8的动作,即便在进行紧急停止的场合下也可抑制主绳索5的滑动的发生以及使用者被困住的发生。但是,由于局部的摩擦条件的降低或者制动器8的控制的超调等,有时会发生主绳索5的滑动。因而,制动器控制部17对应于发生了滑动的场合下的轿厢3的速度等条件来进行向滑动消除控制方式的切换,以便防止轿厢3的制动距离变长。By controlling the operation of the brake 8 by the brake control unit 17 according to the braking force control mode with the deceleration between the first deceleration a1 and the second deceleration a2 as the set deceleration, the occurrence of slippage of the main rope 5 and the occurrence of user entrapment can be suppressed even in the case of an emergency stop. However, slippage of the main rope 5 may occur due to a decrease in local friction conditions or overshoot of the control of the brake 8. Therefore, the brake control unit 17 switches to the slip elimination control mode according to the conditions such as the speed of the car 3 when slippage occurs, so as to prevent the braking distance of the car 3 from becoming longer.
滑动消除控制方式是使绳轮13以及主绳索5之间的滑动消除的控制方式。绳轮13以及主绳索5之间的滑动被消除的状态是主绳索5以及绳轮13的相对速度变为0而一体地运动的状态。在滑动消除控制方式下,制动器控制部17例如以使绳轮13的速度追随于轿厢3的速度的方式控制制动器8的制动力。制动器控制部17例如以轿厢速度检测部10所检测的轿厢3的速度与绳轮速度检测部9所检测的绳轮13的速度的差异变小的方式,调整对绳轮13施加的制动力的大小来控制绳轮13的减速度。由此,进行主绳索5的滑动的消除、即牵引恢复。优选的是,制动器控制部17以在滑动消除控制方式下使制动器8的状态保持住制动状态而状态不转变成释放状态的方式一边调整制动力一边控制制动器8。或者,制动器控制部17也可以在滑动探测部16检测滑动的消除之前都将制动器8释放。此外,若能设成滑动被消除的状态,则滑动消除控制方式下的制动器8的控制的方法可任意。The slip elimination control mode is a control mode for eliminating the slip between the sheave 13 and the main rope 5. The state in which the slip between the sheave 13 and the main rope 5 is eliminated is a state in which the relative speed of the main rope 5 and the sheave 13 becomes 0 and they move as one. In the slip elimination control mode, the brake control unit 17 controls the braking force of the brake 8, for example, in such a manner that the speed of the sheave 13 follows the speed of the car 3. The brake control unit 17 controls the deceleration of the sheave 13 by adjusting the magnitude of the braking force applied to the sheave 13, for example, in such a manner that the difference between the speed of the car 3 detected by the car speed detection unit 10 and the speed of the sheave 13 detected by the sheave speed detection unit 9 becomes smaller. Thus, the slip of the main rope 5 is eliminated, that is, the traction is restored. Preferably, the brake control unit 17 controls the brake 8 while adjusting the braking force in such a manner that the brake 8 is kept in the braking state and the state does not change to the released state in the slip elimination control mode. Alternatively, the brake control unit 17 may release the brake 8 until the slip detector 16 detects the elimination of the slip. In addition, any method of controlling the brake 8 in the slip elimination control mode may be used as long as the slip elimination state can be established.
接下来,利用图2以及图3来说明紧急停止时的轿厢3的制动距离的例子。Next, an example of the braking distance of the car 3 during an emergency stop will be described using FIG. 2 and FIG. 3 .
图2以及图3是示出实施方式1所涉及的轿厢3的紧急停止时的速度波形的例子的图。FIG. 2 and FIG. 3 are diagrams showing examples of speed waveforms during an emergency stop of the car 3 according to the first embodiment.
图2以及图3的横轴表示时间。图2以及图3的纵轴表示轿厢3以及绳轮13的速度。在图2以及图3中,实线表示轿厢3的速度波形。在图2以及图3中,虚线表示绳轮13的速度波形。另外,出于说明目的,在图2以及图3中,示出制动器转矩以呈阶跃状抬升的方式简化的场合下的速度波形的例子。The horizontal axis of Fig. 2 and Fig. 3 represents time. The vertical axis of Fig. 2 and Fig. 3 represents the speed of the car 3 and the sheave 13. In Fig. 2 and Fig. 3, the solid line represents the speed waveform of the car 3. In Fig. 2 and Fig. 3, the dotted line represents the speed waveform of the sheave 13. In addition, for the purpose of explanation, in Fig. 2 and Fig. 3, an example of the speed waveform in the case where the brake torque is simplified in a step-like manner is shown.
在图2中,示出了制动器控制部17未切换控制方式的场合下的例子。FIG. 2 shows an example in which the brake control unit 17 does not switch the control method.
在电梯1的异常探测器探测异常的场合,对控制装置12输入探测信号。此时,控制装置12进行轿厢3的紧急停止。控制装置12将动力停止指令输出给卷扬机4。卷扬机4基于所输入的指令,将绳轮13的旋转驱动停止。另外,例如在对控制装置12输入探测信号时,制动器控制部17开始轿厢3的紧急停止。图2的点A与制动器控制部17开始轿厢3的紧急停止的时刻相对应。When the abnormality detector of the elevator 1 detects an abnormality, a detection signal is input to the control device 12. At this time, the control device 12 performs an emergency stop of the car 3. The control device 12 outputs a power stop command to the hoist 4. The hoist 4 stops the rotation drive of the sheave 13 based on the input command. In addition, for example, when the detection signal is input to the control device 12, the brake control unit 17 starts the emergency stop of the car 3. Point A in Figure 2 corresponds to the moment when the brake control unit 17 starts the emergency stop of the car 3.
在开始紧急停止时,制动器控制部17根据制动力控制方式来控制制动器8。制动器控制部17将制动器控制指令输出给制动器8。制动器8在被输入了制动器控制指令之后开始绳轮13的制动。在此,在从对制动器8输入指令起至产生制动力为止的期间,由于制动器8的可动部的动作等而存在着延迟时间。图2的点B与从输入指令起经过延迟时间后由制动器8产生制动力的时刻相对应。When the emergency stop is started, the brake control unit 17 controls the brake 8 according to the braking force control method. The brake control unit 17 outputs the brake control command to the brake 8. The brake 8 starts braking the sheave 13 after the brake control command is input. Here, there is a delay time due to the operation of the movable part of the brake 8 and the like from the input of the command to the brake 8 to the generation of the braking force. Point B in FIG. 2 corresponds to the moment when the brake 8 generates the braking force after the delay time from the input of the command.
在从点A至点B的制动器8产生制动力的延迟时间的期间,轿厢3以及绳轮13因轿厢3以及配重块6的不平衡转矩而加速或者减速。在该例子中,作为轿厢3的制动距离变长的状况示出轿厢3加速的场合。因不平衡转矩而轿厢3加速的状况例如是无载荷下的上升时或者最大载荷下的下降时等。轿厢3在从点A至点B的延迟时间的期间,以恒定的加速度增速。另外,实际上也有时会因绳索不平衡等导致不是恒定的加速度,但是,在本实施方式中以假设加速度恒定而简化了的模型来进行说明。During the delay time when the brake 8 generates the braking force from point A to point B, the car 3 and the sheave 13 are accelerated or decelerated due to the unbalanced torque of the car 3 and the counterweight 6. In this example, the situation where the car 3 is accelerated is shown as a situation where the braking distance of the car 3 becomes longer. The situation where the car 3 is accelerated due to the unbalanced torque is, for example, when rising under no load or descending under maximum load. The car 3 increases at a constant acceleration during the delay time from point A to point B. In addition, in fact, sometimes the acceleration is not constant due to the imbalance of the rope, etc., but in this embodiment, a simplified model assuming that the acceleration is constant is used for explanation.
在延迟时间之后通过制动器8的制动力在绳轮13产生减速度的场合,绳轮13以及轿厢3开始减速。在此,将刚开始减速之前的绳轮13以及轿厢3的速度称为最大速度。在绳轮13以及主绳索5通过制动器8的制动力而减速时,会发生主绳索5相对于绳轮13的滑动。在图2中,示出在制动器8刚产生制动力之后发生滑动的场合下的例子。即,图2的点B与主绳索5的开始滑动时相对应。When the sheave 13 is decelerated by the braking force of the brake 8 after the delay time, the sheave 13 and the car 3 start to decelerate. Here, the speed of the sheave 13 and the car 3 just before the deceleration is called the maximum speed. When the sheave 13 and the main rope 5 are decelerated by the braking force of the brake 8, the main rope 5 slips relative to the sheave 13. FIG2 shows an example of the case where slip occurs just after the brake 8 generates the braking force. That is, point B in FIG2 corresponds to the start of slip of the main rope 5.
在发生主绳索5的滑动时,滑动探测部16探测主绳索5的滑动。滑动探测部16将探测信号输出给制动器控制部17。制动器控制部17在从滑动探测部16被输入探测信号时,由轿厢速度检测部10或者绳轮速度检测部9检测参照时点处的轿厢3或者绳轮13的速度。参照时点是从紧急停止开始起至开始滑动为止的任意的预先设定的任意时点。由于在参照时点处主绳索5尚未滑动,所以,与主绳索5联动的轿厢3的速度以及绳轮13的速度相等。因而,制动器控制部17能将轿厢速度检测部10所检测的轿厢3的速度和绳轮速度检测部9所检测的绳轮13的速度中的至少一方的值用作参照时点的速度。制动器控制部17在被输入了探测信号时,判定参照时点处的速度是否超过速度阈值Vlim。速度阈值Vlim是预先设定成抑制紧急停止时的轿厢3的制动距离的轿厢3的速度的值。When the main rope 5 slips, the slip detector 16 detects the slip of the main rope 5. The slip detector 16 outputs a detection signal to the brake control unit 17. When the detection signal is input from the slip detector 16, the brake control unit 17 detects the speed of the car 3 or the sheave 13 at the reference time point by the car speed detector 10 or the sheave speed detector 9. The reference time point is any preset arbitrary time point from the start of the emergency stop to the start of the slip. Since the main rope 5 has not slipped at the reference time point, the speed of the car 3 and the speed of the sheave 13 linked to the main rope 5 are equal. Therefore, the brake control unit 17 can use at least one of the speed of the car 3 detected by the car speed detector 10 and the speed of the sheave 13 detected by the sheave speed detector 9 as the speed at the reference time point. When the detection signal is input, the brake control unit 17 determines whether the speed at the reference time point exceeds the speed threshold value V lim . The speed threshold value V lim is a value of the speed of the car 3 which is set in advance so as to suppress the braking distance of the car 3 during an emergency stop.
该例子的制动器控制部17在从滑动探测部16被输入探测信号时,将开始滑动的点B作为参照时点,判定点B处的速度VB是否超过速度阈值Vlim。制动器控制部17例如也可以将被输入探测信号时的轿厢速度检测部10或者绳轮速度检测部9的检测值作为点B处的速度VB。或者,制动器控制部17也可以基于轿厢速度检测部10或者绳轮速度检测部9的检测值的时序数据,通过内插或者外插等来计算开始滑动时的点B处的速度VB。在图2的例子中,未应用本实施方式的内容,示出在紧急停止动作中主绳索5持续滑动的场合下的速度波形。另外,相对于应用本实施方式的内容而VB未超过速度阈值Vlim的场合、即主绳索5持续滑动的场合下的速度波形,对于图2的速度波形,概形相同,点A以及点B处的速度小,BC间的时间变短。When the detection signal is input from the slip detector 16, the brake control unit 17 of this example uses the point B where the slip starts as a reference time point to determine whether the speed VB at the point B exceeds the speed threshold value Vlim . For example, the brake control unit 17 may use the detection value of the car speed detector 10 or the sheave speed detector 9 when the detection signal is input as the speed VB at the point B. Alternatively, the brake control unit 17 may calculate the speed VB at the point B when the slip starts by interpolation or extrapolation based on the time series data of the detection value of the car speed detector 10 or the sheave speed detector 9. In the example of FIG2, the content of the present embodiment is not applied, and the speed waveform is shown when the main rope 5 continues to slip during the emergency stop operation. In addition, compared with the speed waveform when the content of the present embodiment is applied and VB does not exceed the speed threshold value Vlim , that is, when the main rope 5 continues to slip, the speed waveform of FIG2 has the same outline, the speeds at points A and B are small, and the time between BC becomes short.
在发生了主绳索5的滑动之后,绳轮13以及轿厢3以相互不同的减速度进行减速。在该例子中,由于制动器控制部17维持制动力控制方式,所以,在绳轮13以恒定的减速度进行了减速之后,在点C1处停止。另外,轿厢3在因相对于绳轮13滑动的主绳索5的摩擦等而以恒定的减速度进行了减速之后,在点F1处停止。After the main rope 5 slips, the sheave 13 and the car 3 decelerate at different decelerations. In this example, since the brake control unit 17 maintains the braking force control mode, the sheave 13 stops at point C1 after decelerating at a constant deceleration. In addition, the car 3 stops at point F1 after decelerating at a constant deceleration due to the friction of the main rope 5 sliding relative to the sheave 13.
在轿厢3停止时,制动器控制部17进行轿厢3的停止判定。轿厢3的停止判定例如基于轿厢速度检测部10所检测的轿厢3的速度来进行。制动器控制部17例如在轿厢3的速度的绝对值低于预先设定的阈值时,判定为轿厢3停止。或者,制动器控制部17也可以在轿厢3的速度的绝对值低于预先设定的速度的阈值且该速度的时间变化率低于预先设定的变化率的阈值时,判定为轿厢3停止。另外,例如在主绳索5相对于绳轮13未滑动的场合等,制动器控制部17也可以基于绳轮速度检测部9所检测的绳轮13的速度来进行轿厢3的停止判定。在主绳索5未滑动的场合,由于轿厢3的速度以及绳轮13的速度相同,所以,制动器控制部17能通过与使用轿厢3的速度的停止判定同样的方法来进行使用绳轮13的速度的轿厢3的停止判定。另外,制动器控制部17也可以根据其他的方法来进行轿厢3的停止判定。在判定为轿厢3停止之后,制动器控制部17将能以与通常时同样地静止的状态保持轿厢3以及配重块6的制动力施加给绳轮13。另一方面,在判定为轿厢3未停止时,制动器控制部17继续进行紧急停止时的制动器8的控制。When the car 3 stops, the brake control unit 17 makes a stop determination of the car 3. The stop determination of the car 3 is made, for example, based on the speed of the car 3 detected by the car speed detection unit 10. The brake control unit 17 makes a stop determination of the car 3, for example, when the absolute value of the speed of the car 3 is lower than a preset threshold value. Alternatively, the brake control unit 17 may make a stop determination of the car 3 when the absolute value of the speed of the car 3 is lower than a preset threshold value of the speed and the time rate of change of the speed is lower than a preset threshold value of the rate of change. In addition, for example, when the main rope 5 does not slip relative to the sheave 13, the brake control unit 17 may make a stop determination of the car 3 based on the speed of the sheave 13 detected by the sheave speed detection unit 9. When the main rope 5 does not slip, the speed of the car 3 and the speed of the sheave 13 are the same, so the brake control unit 17 can make a stop determination of the car 3 using the speed of the sheave 13 in the same way as the stop determination using the speed of the car 3. In addition, the brake control unit 17 can also perform the stop judgment of the car 3 according to other methods. After determining that the car 3 has stopped, the brake control unit 17 applies a braking force to the sheave 13 that can keep the car 3 and the counterweight 6 in a static state as usual. On the other hand, when it is determined that the car 3 has not stopped, the brake control unit 17 continues to control the brake 8 during emergency stop.
图2的场合下的轿厢3的制动距离S1与实线所示的速度波形以及横轴之间的部分的面积相对应。因而,制动距离S1的推定值由以下的式(1)表示。The braking distance S1 of the car 3 in the case of Fig. 2 corresponds to the area of the portion between the speed waveform shown by the solid line and the horizontal axis. Therefore, the estimated value of the braking distance S1 is expressed by the following formula (1).
在此,SAB表示在从点A至点B之间轿厢3行驶的距离。arope是在主绳索5一边相对于绳轮13滑动一边减速的场合下的轿厢3的减速度的预测值。加速度arope与图2中将点B以及点F1连结的线段的倾斜度相对应。加速度arope由于是使轿厢3的速度的绝对值减少的加速度,所以,在轿厢3的行驶方向为正朝向的场合取负值。Here, S AB represents the distance traveled by the car 3 from point A to point B. a rope is a predicted value of the deceleration of the car 3 when the main rope 5 decelerates while sliding relative to the sheave 13. The acceleration a rope corresponds to the inclination of the line segment connecting point B and point F1 in FIG. 2 . Since the acceleration a rope is an acceleration that reduces the absolute value of the speed of the car 3, it takes a negative value when the travel direction of the car 3 is a positive direction.
另外,距离SAB例如也可以由以下的式(2)来计算。In addition, the distance S AB can also be calculated by, for example, the following formula (2).
在此,ak表示因不平衡转矩而得的轿厢3的空转加速度的预测值。加速度ak与图2中将点A以及点B连结的线段的倾斜度相对应。加速度ak由于是使轿厢3的速度的绝对值增加的加速度,所以,在轿厢3的行驶方向为正朝向的场合取正值。T1表示点A至点B之间的直至制动器8产生制动力为止的时间的预测值。预测值T1包含从释放状态向制动状态的制动器8的状态转变所需的预测时间。Here, ak represents the predicted value of the idling acceleration of the car 3 due to the unbalanced torque. The acceleration ak corresponds to the inclination of the line segment connecting point A and point B in FIG. 2 . Since the acceleration ak increases the absolute value of the speed of the car 3, it takes a positive value when the traveling direction of the car 3 is a positive direction. T1 represents the predicted value of the time between point A and point B until the brake 8 generates a braking force. The predicted value T1 includes the predicted time required for the state transition of the brake 8 from the released state to the braked state.
另外,制动器控制部17也可以将紧急停止开始时的A点作为参照时点,基于A点处的速度VA进行制动器8的控制。此时,在式(1)以及式(2)中,也可以使用利用以下的式(3)从点A处的速度VA计算出的速度VB的值。In addition, the brake control unit 17 may use point A when the emergency stop starts as a reference time point and control the brake 8 based on the speed VA at point A. In this case, in equations (1) and (2), the value of the speed VB calculated from the speed VA at point A using the following equation (3) may be used.
VB=VA+akT1…(3) VB = VA + akT1 …(3)
另外,可与速度VB的场合同样,制动器控制部17能将轿厢速度检测部10所检测的轿厢3的速度和绳轮速度检测部9所检测的绳轮13的速度中的至少一方的值用作速度VA。另外,制动器控制部17也可以将从紧急停止开始时的A点起至主绳索5的开始滑动时的B点为止的期间的任意时点作为参照时点,基于参照时点处的速度进行制动器8的控制。此时,也可以使用与式(3)同样地根据参照时点处的速度计算出的速度VB等的值。In addition, similarly to the case of the speed VB , the brake control unit 17 can use at least one of the speed of the car 3 detected by the car speed detection unit 10 and the speed of the sheave 13 detected by the sheave speed detection unit 9 as the speed VA . In addition, the brake control unit 17 can also control the brake 8 based on the speed at the reference time point by using any time point from point A when the emergency stop starts to point B when the main rope 5 starts to slip as a reference time point. In this case, the value of the speed VB calculated from the speed at the reference time point in the same way as in formula (3) can also be used.
另一方面,在图3中,示出了制动器控制部17切换控制方式的场合下的例子。On the other hand, FIG. 3 shows an example in which the brake control unit 17 switches the control method.
在图3中,与图2同样地示出了在制动器8刚产生制动力之后发生滑动的场合下的例子。FIG. 3 shows an example in which slip occurs immediately after the brake 8 generates braking force, similarly to FIG. 2 .
该例子的制动器控制部17在从滑动探测部16输入探测信号时,判定作为参照时点的点B处的速度VB是否超过速度阈值Vlim。在该例子中,速度VB超过速度阈值Vlim。此时,制动器控制部17将控制方式从制动力控制方式切换成滑动消除控制方式。The brake control unit 17 of this example determines whether the speed VB at the reference point B exceeds the speed threshold Vlim when receiving the detection signal from the slip detector 16. In this example, the speed VB exceeds the speed threshold Vlim . At this time, the brake control unit 17 switches the control mode from the braking force control mode to the slip elimination control mode.
在此,在从发生滑动起至滑动探测部16输出探测信号为止的期间存在着延迟时间。在该延迟时间的期间,绳轮13以及轿厢3以相互不同的减速度进行减速。由于在延迟时间的期间,制动器控制部17仍未从制动力控制方式切换控制方式,所以,绳轮13以恒定的减速度进行减速。另外,轿厢3因相对于绳轮13滑动的主绳索5的摩擦等以恒定的减速度进行减速。Here, there is a delay time from when the slip occurs to when the slip detector 16 outputs the detection signal. During the delay time, the sheave 13 and the car 3 decelerate at different decelerations. Since the brake control unit 17 has not switched the control mode from the braking force control mode during the delay time, the sheave 13 decelerates at a constant deceleration. In addition, the car 3 decelerates at a constant deceleration due to the friction of the main rope 5 sliding relative to the sheave 13.
然后,在因滑动探测的探测延迟等产生的延迟时间之后,制动器8根据滑动消除控制方式开始绳轮13的制动。图3的点C2与在发生滑动起经过延迟时间之后通过向滑动消除控制方式的切换而使制动器8的制动力从制动力控制方式变化的时刻相对应。在此,点B以及点C之间的延迟时间包含滑动的检测延迟以及制动器8的控制响应延迟。根据滑动消除控制方式,制动器8被控制成将主绳索5的滑动消除。例如,制动器控制部17将由制动器8提供给绳轮13的制动力控制成使得绳轮13的速度追随于轿厢3的速度。图3的点D与根据滑动消除控制方式消除了主绳索5的滑动的时刻相对应。在此,在从滑动消除起至被滑动探测部16探测为止的期间,也与滑动的发生的探测同样地存在着延迟时间。在该延迟时间的期间,制动器8将基于滑动消除控制方式的制动力提供给绳轮13。图3的点E与在从滑动消除起经过延迟时间后由制动器8产生了基于制动力控制方式的制动力的时刻相对应。Then, after a delay time caused by a detection delay of the slip detection, the brake 8 starts braking the sheave 13 according to the slip elimination control method. Point C2 in FIG. 3 corresponds to the moment when the braking force of the brake 8 is changed from the braking force control method by switching to the slip elimination control method after a delay time has passed since the occurrence of the slip. Here, the delay time between point B and point C includes the detection delay of the slip and the control response delay of the brake 8. According to the slip elimination control method, the brake 8 is controlled to eliminate the slip of the main rope 5. For example, the brake control unit 17 controls the braking force provided by the brake 8 to the sheave 13 so that the speed of the sheave 13 follows the speed of the car 3. Point D in FIG. 3 corresponds to the moment when the slip of the main rope 5 is eliminated according to the slip elimination control method. Here, there is a delay time in the period from the elimination of the slip to the detection by the slip detector 16, similar to the detection of the occurrence of the slip. During this delay time, the brake 8 provides the braking force based on the slip elimination control method to the sheave 13. Point E in FIG. 3 corresponds to the timing at which the brake 8 generates the braking force based on the braking force control method after a delay time has passed since the slip is eliminated.
在图3的例子中,基于滑动消除控制方式的制动力比基于制动力控制方式的制动力小,以便可将在制动力控制方式下发生的主绳索5的滑动消除。因而,在从点D至点E为止的制动器8产生制动力的延迟时间的期间,轿厢3根据轿厢3以及配重块6的不平衡转矩而进行加速或者减速。在该例子中,示出作为轿厢3的制动距离变长的状况的轿厢3加速的场合。轿厢3在从点D至点E为止的延迟时间的期间以恒定的加速度进行增速。In the example of FIG. 3 , the braking force based on the slip elimination control method is smaller than the braking force based on the braking force control method so that the slip of the main rope 5 generated in the braking force control method can be eliminated. Therefore, during the delay time from point D to point E when the brake 8 generates the braking force, the car 3 is accelerated or decelerated according to the unbalanced torque of the car 3 and the counterweight 6. In this example, the case where the car 3 is accelerated as a condition where the braking distance of the car 3 becomes longer is shown. The car 3 increases in speed at a constant acceleration during the delay time from point D to point E.
在延迟时间之后,在点E处,绳轮13以及轿厢3开始减速。此时,由于主绳索5的滑动被消除,所以,主绳索5以及绳轮13成为一体地运动。因而,轿厢3以及绳轮13在以互相相等的恒定的减速度进行了减速之后在点F2处停止。After the delay time, the sheave 13 and the car 3 start to decelerate at point E. At this time, since the slip of the main rope 5 is eliminated, the main rope 5 and the sheave 13 move as one. Therefore, the car 3 and the sheave 13 stop at point F2 after being decelerated at a constant deceleration equal to each other.
图3的场合下的轿厢3的制动距离S2与由实线所示的速度波形以及横轴之间的部分的面积相对应。因而,制动距离S2的推定值由以下的式(4)表示。The braking distance S2 of the car 3 in the case of Fig. 3 corresponds to the area of the portion between the speed waveform shown by the solid line and the horizontal axis. Therefore, the estimated value of the braking distance S2 is expressed by the following formula (4).
在此,ac是牵引恢复之后、即主绳索5的滑动消除之后的减速度的指令值。加速度ac与图3中将点E以及点F2连结的线段的倾斜度相对应。加速度ac由于是使轿厢3的速度的绝对值减少的加速度,所以,在将轿厢3的行驶方向设为正朝向的场合取负的值。atr是牵引恢复之后的延迟时间的期间的轿厢3的加速度的预测值。加速度atr与图3中将点D以及点E连结的线段的倾斜度相对应。加速度atr由于是使轿厢3的速度的绝对值增加的加速度,所以,在将轿厢3的行驶方向设为正朝向的场合下取正的值。另外,在通过制动器8的释放来消除滑动状态的场合,加速度atr与空转加速度ak相等。T2是点B至点D之间的直至牵引恢复为止的时间的预测值。预测值T2包含滑动探测部16的滑动的发生的探测的延迟时间。另外,在从制动力控制方式向滑动消除控制方式的切换中制动器8的状态从制动状态向释放状态转变的场合,预测值T2包含该状态转变所需的预测时间。T3是点D至点E之间的直至制动器8产生基于制动力控制方式的制动力为止的时间的预测值。预测值T3包含滑动探测部16的滑动的消除的探测的延迟时间。另外,在从滑动消除控制方式向制动力控制方式的切换中制动器8的状态从释放状态向制动状态转变的场合,预测值T3包含该状态转变所需的预测时间。Here, a c is the command value of the deceleration after the traction is restored, that is, after the slip of the main rope 5 is eliminated. The acceleration a c corresponds to the inclination of the line segment connecting the point E and the point F2 in FIG. 3. Since the acceleration a c is the acceleration that reduces the absolute value of the speed of the car 3, it takes a negative value when the travel direction of the car 3 is set to the positive direction. a tr is the predicted value of the acceleration of the car 3 during the delay time after the traction is restored. The acceleration a tr corresponds to the inclination of the line segment connecting the point D and the point E in FIG. 3. Since the acceleration a tr is the acceleration that increases the absolute value of the speed of the car 3, it takes a positive value when the travel direction of the car 3 is set to the positive direction. In addition, when the slip state is eliminated by releasing the brake 8, the acceleration a tr is equal to the idling acceleration ak . T 2 is the predicted value of the time between the point B and the point D until the traction is restored. The prediction value T2 includes the delay time of the detection of the occurrence of slip by the slip detector 16. In addition, when the state of the brake 8 changes from the braking state to the released state in the switching from the braking force control mode to the slip elimination control mode, the prediction value T2 includes the prediction time required for the state transition. T3 is a prediction value of the time between point D and point E until the brake 8 generates the braking force based on the braking force control mode. The prediction value T3 includes the delay time of the detection of the elimination of slip by the slip detector 16. In addition, when the state of the brake 8 changes from the released state to the braking state in the switching from the slip elimination control mode to the braking force control mode, the prediction value T3 includes the prediction time required for the state transition.
另外,主绳索5的滑动例如是摩擦系数的减少等局部原因或者制动器控制的超调等临时性的原因等,因而,牵引恢复后的减速度的指令值ac被设定成不发生滑动的通常的范围的减速度。另外,指令值ac的绝对值例如被设定成比发生了滑动的场合下的减速度的预测值arope的绝对值大的值。指令值ac的值例如是设定减速度的值等。通过使指令值ac的绝对值比预测值arope的绝对值充分大,即便在为了恢复牵引而使轿厢3增速了的场合下也能消除增速对制动距离的影响。In addition, the slip of the main rope 5 is caused by a local reason such as a decrease in the friction coefficient or a temporary reason such as an overshoot of the brake control, and therefore, the command value ac of the deceleration after the traction is restored is set to a deceleration within a normal range where slip does not occur. In addition, the absolute value of the command value ac is set to a value greater than the absolute value of the predicted value arope of the deceleration when slip occurs. The value of the command value ac is, for example, the value of the set deceleration. By making the absolute value of the command value ac sufficiently greater than the absolute value of the predicted value arope , even when the car 3 is accelerated to restore the traction, the influence of the acceleration on the braking distance can be eliminated.
在该例子中,式(1)至式(4)中所使用的预测值ak、arope、atr、T1、T2以及T3例如是基于电梯1的规格或者设计值等预先设定或者计算出的值。另外,指令值ac是预先设定的值。In this example, the predicted values ak , a rope , a tr , T 1 , T 2 and T 3 used in equations (1) to (4) are values preset or calculated based on, for example, the specifications or design values of the elevator 1. The command value a c is a preset value.
接下来,利用图4以及图5来说明速度阈值Vlim的例子。Next, an example of the speed threshold value V lim will be described using FIG. 4 and FIG. 5 .
图4以及图5是示出实施方式1所涉及的轿厢3的紧急停止时的速度波形的例子的图。FIG. 4 and FIG. 5 are diagrams showing examples of speed waveforms during an emergency stop of the car 3 according to the first embodiment.
图4以及图5的横轴表示时间。图4以及图5的纵轴表示轿厢3的速度。在图4以及图5中,实线表示制动器控制部17切换了控制方式的场合下的速度波形。在图4以及图5中,虚线表示制动器控制部17未切换控制方式的场合下的速度波形。另外,与图2以及图3同样,在图4以及图5中示出制动器转矩以呈阶跃状抬升的方式简化的场合下的速度波形的例子。The horizontal axis of Fig. 4 and Fig. 5 represents time. The vertical axis of Fig. 4 and Fig. 5 represents the speed of the car 3. In Fig. 4 and Fig. 5, the solid line represents the speed waveform when the brake control unit 17 switches the control method. In Fig. 4 and Fig. 5, the dotted line represents the speed waveform when the brake control unit 17 does not switch the control method. In addition, as in Fig. 2 and Fig. 3, Fig. 4 and Fig. 5 show an example of a simplified speed waveform when the brake torque is increased in a step-like manner.
在图4中,示出了制动器控制部17未切换控制方式的场合下的制动距离S1与切换了控制方式的场合下的制动距离S2相等时的例子。FIG. 4 shows an example in which a braking distance S1 when the brake control unit 17 does not switch the control method is equal to a braking distance S2 when the control method is switched.
速度阈值Vlim被设定作为制动距离S1以及制动距离S2相等时的参照时点处的速度。在该例子中,由于将点B设作参照时点,所以,速度阈值Vlim被设定作为制动距离S1以及制动距离S2相等时的点B处的速度。通过在式(1)至式(4)中设为S1=S2而得的速度阈值Vlim由预测值ak、arope、atr、T1、T2及T3、以及指令值ac等表示。在该例子中,制动距离S1以及制动距离S2或者速度阈值Vlim基于预先设定的评价用的运转条件来计算。评价用的运转条件包含轿厢3的内部的载荷的大小以及轿厢3的行驶方向等条件。评价用的运转条件也可以包含对应于轿厢3的位置确定的轿厢3的加速度的条件等。The speed threshold value V lim is set as the speed at the reference time point when the braking distance S 1 and the braking distance S 2 are equal. In this example, since point B is set as the reference time point, the speed threshold value V lim is set as the speed at point B when the braking distance S 1 and the braking distance S 2 are equal. The speed threshold value V lim obtained by setting S 1 = S 2 in equations (1) to (4) is represented by predicted values ak , a rope , a tr , T 1 , T 2 and T 3 , and command value ac and the like. In this example, the braking distance S 1 and the braking distance S 2 or the speed threshold value V lim is calculated based on the pre-set operating conditions for evaluation. The operating conditions for evaluation include conditions such as the size of the load inside the car 3 and the travel direction of the car 3. The operating conditions for evaluation may also include conditions such as the acceleration of the car 3 determined according to the position of the car 3.
由于轿厢3的制动距离与速度波形以及横轴之间的部分的面积相对应,所以,制动距离S1以及制动距离S2的差异与面积α1以及面积α2的差异相对应。在此,面积α1是虚线的速度波形比实线的速度波形大的部分的面积。面积α2是实线的速度波形比虚线的速度波形大的部分的面积。在图4中,由于制动距离S1以及制动距离S2相等,所以,面积α1以及面积α2相等。Since the braking distance of the car 3 corresponds to the area of the portion between the speed waveform and the horizontal axis, the difference between the braking distance S1 and the braking distance S2 corresponds to the difference between the area α1 and the area α2 . Here, the area α1 is the area of the portion where the speed waveform of the dashed line is larger than the speed waveform of the solid line. The area α2 is the area of the portion where the speed waveform of the solid line is larger than the speed waveform of the dashed line. In FIG. 4 , since the braking distance S1 and the braking distance S2 are equal, the area α1 and the area α2 are equal.
在图5中,示出参照时点B处的速度VB超过速度阈值Vlim的场合下的例子。在该例子中,速度VB的值比速度阈值Vlim的值大出了速度差ΔV。Fig. 5 shows an example in which the speed VB at the reference time point B exceeds the speed threshold value Vlim . In this example, the value of the speed VB is greater than the value of the speed threshold value Vlim by the speed difference ΔV.
速度阈值Vlim是制动距离S1以及制动距离S2相等时的参照时点B的速度。因而,在图5的比单点划线靠上侧的区域中,实线的速度波形比虚线的速度波形大的部分的面积与虚线的速度波形比实线的速度波形大的部分的面积相等。因而,面积α1比面积α2大出了比单点划线靠下侧的区域的量。因此,制动距离S1比制动距离S2大。The speed threshold value V lim is the speed at the reference time point B when the braking distance S 1 and the braking distance S 2 are equal. Therefore, in the area above the single-dot chain line in FIG. 5 , the area of the portion where the speed waveform of the solid line is larger than the speed waveform of the dashed line is equal to the area of the portion where the speed waveform of the dashed line is larger than the speed waveform of the solid line. Therefore, the area α 1 is larger than the area α 2 by the amount of the area below the single-dot chain line. Therefore, the braking distance S 1 is larger than the braking distance S 2 .
同样,在参照时点B处的速度VB低于速度阈值Vlim的场合(未图示),面积α1比面积α2小。因此,制动距离S1比制动距离S2小。Similarly, when the speed V B at the reference time point B is lower than the speed threshold V lim (not shown), the area α 1 is smaller than the area α 2. Therefore, the braking distance S 1 is smaller than the braking distance S 2 .
制动器控制部17通过基于参照时点B处的速度VB与速度阈值Vlim的比较来切换控制方式,能进行制动器8的控制以便轿厢3以制动距离S1以及制动距离S2之中的较短的制动距离停止。另外,制动器控制部17也可以将从紧急停止开始时的A点起至主绳索5的开始滑动时的B点为止的任意时点作为参照时点。在该场合,制动器控制部17也能通过基于相对于该参照时点同样设定的速度阈值与该参照时点处的速度的比较结果来切换控制方式,由此进行制动器8的控制以便轿厢3以短的制动距离停止。The brake control unit 17 can control the brake 8 so that the car 3 stops at the shorter braking distance between the braking distance S1 and the braking distance S2 by switching the control mode based on the comparison between the speed VB at the reference time point B and the speed threshold value Vlim. In addition, the brake control unit 17 may use any time point from the point A when the emergency stop starts to the point B when the main rope 5 starts to slip as the reference time point. In this case, the brake control unit 17 can also control the brake 8 so that the car 3 stops at the short braking distance by switching the control mode based on the comparison result of the speed threshold value set similarly to the reference time point and the speed at the reference time point.
接下来,利用图6来说明电梯1的动作的例子。Next, an example of the operation of the elevator 1 will be described using FIG. 6 .
图6是示出实施方式1所涉及的电梯1的动作的例子的流程图。FIG. 6 is a flowchart showing an example of the operation of the elevator 1 according to the first embodiment.
在图6中,示出有关紧急停止的制动器控制部17的动作的例子。FIG. 6 shows an example of the operation of the brake control unit 17 related to the emergency stop.
在步骤S1中,在开始紧急停止时,制动器控制部17根据制动力控制方式来控制制动器8的制动。然后,电梯1的动作进入步骤S2。In step S1, when the emergency stop is started, the brake control unit 17 controls the braking of the brake 8 according to the braking force control method. Then, the operation of the elevator 1 proceeds to step S2.
在步骤S2中,制动器控制部17基于探测信号的有无等来判定滑动探测部16是否探测到滑动。在判定结果为是的场合,电梯1的动作进入步骤S3。在判定结果为否的场合,电梯1的动作进入步骤S6。In step S2, the brake control unit 17 determines whether the slip detector 16 detects slip based on the presence or absence of the detection signal, etc. If the determination result is yes, the operation of the elevator 1 proceeds to step S3. If the determination result is no, the operation of the elevator 1 proceeds to step S6.
在步骤S3中,制动器控制部17将开始滑动时作为参照时点,检测参照时点B处的速度VB。然后,电梯1的动作进入步骤S4。In step S3, the brake control unit 17 detects the speed V B at the reference time point B, using the time when the slip starts as a reference time point. Then, the operation of the elevator 1 proceeds to step S4.
在步骤S4中,制动器控制部17判定速度VB是否超过速度阈值Vlim。在判定结果为是的场合,电梯1的动作进入步骤S5。在判定结果为否的场合,电梯1的动作进入步骤S6。In step S4, the brake control unit 17 determines whether the speed VB exceeds the speed threshold value Vlim . If the determination result is YES, the operation of the elevator 1 proceeds to step S5. If the determination result is NO, the operation of the elevator 1 proceeds to step S6.
在步骤S5中,制动器控制部17根据滑动消除控制方式来控制制动器8的制动。然后,电梯1的动作进入步骤S2。In step S5, the brake control unit 17 controls the braking of the brake 8 according to the slip elimination control method. Then, the operation of the elevator 1 proceeds to step S2.
在步骤S6中,制动器控制部17根据制动力控制方式来控制制动器8的制动。然后,电梯1的动作进入步骤S7。In step S6, the brake control unit 17 controls the braking of the brake 8 according to the braking force control method. Then, the operation of the elevator 1 proceeds to step S7.
步骤S7中,制动器控制部17判定轿厢3是否停止。在判定结果为否的场合,电梯1的动作进入步骤S2。在判定结果为是的场合,关于紧急停止的电梯1的动作结束。In step S7, the brake control unit 17 determines whether the car 3 is stopped. If the determination result is no, the operation of the elevator 1 proceeds to step S2. If the determination result is yes, the operation of the elevator 1 regarding the emergency stop is completed.
另外,滑动探测部16也可以像以下那样根据绳轮13的表观的惯性质量的变化来探测主绳索5有无滑动。在没有主绳索5的滑动的场合,绳轮13的表观的惯性质量成为将绳轮13自身的惯性质量加上轿厢3以及配重块6的惯性质量而得的惯性质量。另一方面,在存在着主绳索5的滑动的场合,绳轮13的表观的惯性质量仅仅是绳轮13自身的惯性质量。因而,即便在施加于绳轮13的转矩以及制动器8提供给绳轮13的制动力等相同的场合,绳轮13的减速度也会根据滑动的有无而有所变化。若有主绳索5的滑动,则绳轮13的减速度变大,因而,滑动探测部16也可以在绳轮13的减速度超过预先设定的阈值时探测滑动的发生。在此,滑动探测部16也可以根据例如绳轮速度检测部9所检测的绳轮13的速度等计算绳轮13的减速度。另外,滑动探测部16也可以进行使用了以下信息的滑动探测:基于绳轮速度检测部9以及轿厢速度检测部10所检测的速度的至少一方的速度信息的绳轮13或者轿厢3的减速或增速的加速度;以及制动力控制方式的减速度指令值。滑动探测部16也可以进行基于以下信息的滑动消除探测:基于绳轮速度检测部9以及轿厢速度检测部10所检测的速度的至少一方的速度信息的绳轮13或者轿厢3的减速或增速的加速度;以及制动器8的控制状态。另外,滑动探测部16也可以组合探测主绳索5有无滑动的多种手段。In addition, the slip detector 16 may detect whether the main rope 5 has slipped based on the change in the apparent inertial mass of the sheave 13 as follows. When there is no slip of the main rope 5, the apparent inertial mass of the sheave 13 is the inertial mass obtained by adding the inertial mass of the car 3 and the counterweight 6 to the inertial mass of the sheave 13 itself. On the other hand, when there is slip of the main rope 5, the apparent inertial mass of the sheave 13 is only the inertial mass of the sheave 13 itself. Therefore, even when the torque applied to the sheave 13 and the braking force applied to the sheave 13 by the brake 8 are the same, the deceleration of the sheave 13 will change depending on the presence or absence of slip. If there is slip of the main rope 5, the deceleration of the sheave 13 becomes larger, and therefore, the slip detector 16 may detect the occurrence of slip when the deceleration of the sheave 13 exceeds a preset threshold value. Here, the slip detector 16 may also calculate the deceleration of the sheave 13 based on, for example, the speed of the sheave 13 detected by the sheave speed detector 9. The slip detector 16 may also perform slip detection using the following information: the acceleration of the deceleration or acceleration of the sheave 13 or the car 3 based on the speed information of at least one of the speeds detected by the sheave speed detector 9 and the car speed detector 10; and the deceleration command value of the braking force control method. The slip detector 16 may also perform slip elimination detection based on the following information: the acceleration of the deceleration or acceleration of the sheave 13 or the car 3 based on the speed information of at least one of the speeds detected by the sheave speed detector 9 and the car speed detector 10; and the control state of the brake 8. The slip detector 16 may also combine a plurality of means for detecting whether the main rope 5 is slipped.
在本公开中,以因轿厢3以及配重块6的不平衡转矩使轿厢3相对于行进方向增速的场合为例进行了说明,但即便在减速的场合下也能应用本公开的内容。另外,在减速的场合,虽然刚开始减速之前的绳轮13以及轿厢3的速度并不是最大速度,但在本公开中为了方便起见而将之称为最大速度。In the present disclosure, the case where the car 3 is accelerated relative to the traveling direction due to the unbalanced torque of the car 3 and the counterweight 6 is used as an example for explanation, but the contents of the present disclosure can also be applied to the case of deceleration. In addition, in the case of deceleration, although the speed of the sheave 13 and the car 3 just before the deceleration is started is not the maximum speed, it is referred to as the maximum speed in the present disclosure for the sake of convenience.
如以上说明的那样,实施方式1所涉及的电梯1具备制动器8、滑动探测部16、轿厢速度检测部10和制动器控制部17。将轿厢3吊挂于升降路2的主绳索5被缠绕在卷扬机4的绳轮13上。卷扬机4使轿厢3在升降路2中升降。制动器8在卷扬机4中对绳轮13进行制动。滑动探测部16探测主绳索5相对于绳轮13有无滑动。轿厢速度检测部10检测轿厢3的速度。在紧急停止时滑动探测部16探测滑动的发生时,制动器控制部17将参照时点处的轿厢速度检测部10所检测出的轿厢3的速度与预先设定的速度阈值进行比较。参照时点是从紧急停止开始起至开始滑动为止的期间的预先设定的任意时点。As described above, the elevator 1 according to Embodiment 1 includes the brake 8, the slip detector 16, the car speed detector 10, and the brake control unit 17. The main rope 5 for suspending the car 3 on the hoistway 2 is wound around the sheave 13 of the hoist 4. The hoist 4 causes the car 3 to rise and fall in the hoistway 2. The brake 8 brakes the sheave 13 in the hoist 4. The slip detector 16 detects whether the main rope 5 has slipped relative to the sheave 13. The car speed detector 10 detects the speed of the car 3. When the slip detector 16 detects the occurrence of slip during an emergency stop, the brake control unit 17 compares the speed of the car 3 detected by the car speed detector 10 at a reference time point with a preset speed threshold value. The reference time point is any preset time point in the period from the start of the emergency stop to the start of slip.
另外,实施方式1所涉及的电梯1可以同时具备轿厢速度检测部10和绳轮速度检测部9,或者替代轿厢速度检测部10地具备绳轮速度检测部9。绳轮速度检测部9检测绳轮13的速度。此时,在紧急停止时滑动探测部16探测滑动的发生的场合,制动器控制部17将参照时点处的轿厢速度检测部10所检测的轿厢3的速度或者绳轮速度检测部9所检测的绳轮13的速度与预先设定的速度阈值进行比较。In addition, the elevator 1 involved in Embodiment 1 may include both the car speed detection unit 10 and the sheave speed detection unit 9, or may include the sheave speed detection unit 9 instead of the car speed detection unit 10. The sheave speed detection unit 9 detects the speed of the sheave 13. At this time, when the slip detector 16 detects the occurrence of slip at the time of emergency stop, the brake control unit 17 compares the speed of the car 3 detected by the car speed detection unit 10 or the speed of the sheave 13 detected by the sheave speed detection unit 9 at the reference time point with a preset speed threshold value.
在进行过比较的参照时点的速度超过速度阈值的场合,制动器控制部17根据滑动消除控制方式控制制动器8。滑动消除控制方式是使绳轮13以及主绳索5之间的滑动消除的控制方式。另一方面,在进行过比较的参照时点的速度未超过速度阈值的场合,制动器控制部17根据制动力控制方式控制制动器8。制动力控制方式是控制制动力以便使绳轮13按设定减速度减速的控制方式。When the speed at the reference time point for comparison exceeds the speed threshold, the brake control unit 17 controls the brake 8 according to the slip elimination control method. The slip elimination control method is a control method for eliminating the slip between the sheave 13 and the main rope 5. On the other hand, when the speed at the reference time point for comparison does not exceed the speed threshold, the brake control unit 17 controls the brake 8 according to the braking force control method. The braking force control method is a control method for controlling the braking force so that the sheave 13 decelerates at a set deceleration.
根据该构成,对应于从紧急停止开始起至开始滑动为止的期间的参照时点处的轿厢3或者绳轮13的速度等的状况,将主绳索5开始滑动之后的制动器8的控制方式选择成轿厢3的制动距离变短。因而,在因制动器8的工作的延迟时间以及滑动探测的延迟时间等会使轿厢3增速的场合等,也可抑制紧急停止时的轿厢3的制动距离。另外,由于基于开始滑动时之前的参照时点处的速度来选择控制方式,所以,制动器控制部17能在探测到滑动的发生之后,根据所选择的控制方式快速地进行制动器8的控制。According to this configuration, the control method of the brake 8 after the main rope 5 starts to slip is selected so that the braking distance of the car 3 becomes shorter, corresponding to the speed of the car 3 or the sheave 13 at the reference time point during the period from the start of the emergency stop to the start of the slip. Therefore, in the case where the car 3 is accelerated due to the delay time of the operation of the brake 8 and the delay time of the slip detection, the braking distance of the car 3 during the emergency stop can be suppressed. In addition, since the control method is selected based on the speed at the reference time point before the start of the slip, the brake control unit 17 can quickly control the brake 8 according to the selected control method after the occurrence of the slip is detected.
在此,若主绳索5以及绳轮13的相对速度变大,则主绳索5滑动时的主绳索5以及绳轮13之间的摩擦力降低。因而,在探测到滑动的发生之后也继续保持制动力控制方式的场合,在直至轿厢3停止为止的期间,轿厢3的减速度有所变动。在从开始滑动时起至绳轮13停止为止的期间,轿厢3的减速度的绝对值从开始滑动时的减速度逐渐变小。然后,在绳轮13停止之后,由于相对速度变小,所以,轿厢3的减速度逐渐变大。然后,最晚直至轿厢3停止时为止,轿厢3的减速度的绝对值变小到开始滑动时的减速度。因而,考虑了轿厢3的减速度的变动的速度波形成为比图2等中的保持开始滑动时的减速度地恒定减速的速度波形靠上侧的波形。因此,通过式(1)计算出的制动距离S1成为在未进行依靠滑动消除控制方式的制动器8的控制的场合按最小的条件计算出的制动距离。制动器控制部17由于在制动距离S2低于制动距离S1的场合进行依靠滑动消除控制方式的制动器8的控制,所以,不会因控制方式的切换使轿厢3的制动距离变长。Here, if the relative speed of the main rope 5 and the sheave 13 increases, the friction between the main rope 5 and the sheave 13 when the main rope 5 slips decreases. Therefore, when the braking force control method is maintained even after the occurrence of slip is detected, the deceleration of the car 3 varies until the car 3 stops. During the period from the start of slip to the stop of the sheave 13, the absolute value of the deceleration of the car 3 gradually decreases from the deceleration at the start of slip. Then, after the sheave 13 stops, the deceleration of the car 3 gradually increases because the relative speed decreases. Then, at the latest until the car 3 stops, the absolute value of the deceleration of the car 3 decreases to the deceleration at the start of slip. Therefore, the speed waveform that takes into account the change in the deceleration of the car 3 becomes a waveform on the upper side of the speed waveform that is decelerated constantly while maintaining the deceleration at the start of slip in FIG. 2 and the like. Therefore, the braking distance S1 calculated by the formula (1) becomes the braking distance calculated under the minimum condition when the control of the brake 8 by the slip elimination control method is not performed. Since the brake control unit 17 controls the brake 8 by the slip elimination control method when the braking distance S2 is shorter than the braking distance S1 , the braking distance of the car 3 does not increase due to the switching of the control method.
另外,制动器控制部17将主绳索5的开始滑动的时点作为参照时点。由此,由于在制动距离S1以及制动距离S2的评价中消除了比开始滑动的时点靠前的制动距离的影响,所以,速度阈值Vlim不受主绳索5实际开始滑动之前的轿厢3的运动的影响。因而,在制动器8刚开始对绳轮13施加制动力之后主绳索5未开始滑动的场合,也容易进行速度阈值Vlim的计算以及与速度阈值Vlim的比较等。In addition, the brake control unit 17 uses the time point when the main rope 5 starts to slip as a reference time point. As a result, since the influence of the braking distance before the time point when the sliding starts is eliminated in the evaluation of the braking distance S1 and the braking distance S2 , the speed threshold value Vlim is not affected by the movement of the car 3 before the main rope 5 actually starts to slip. Therefore, even when the main rope 5 does not start to slip after the brake 8 just starts to apply the braking force to the sheave 13, it is easy to calculate the speed threshold value Vlim and compare it with the speed threshold value Vlim .
另外,制动器控制部17将紧急停止开始的时点作为参照时点。由此,由于在主绳索5开始滑动之前能比较参照时点以及速度阈值,所以,制动器控制部17在探测到滑动的发生之后,能根据所选择的控制方式更快地进行制动器8的控制。In addition, the brake control unit 17 uses the time point when the emergency stop starts as the reference time point. Thus, since the reference time point and the speed threshold can be compared before the main rope 5 starts to slip, the brake control unit 17 can control the brake 8 more quickly according to the selected control method after detecting the occurrence of slip.
另外,制动器控制部17在紧急停止时滑动探测部16探测滑动的发生之前,根据制动力控制方式控制制动器8。另外,制动器控制部17在滑动探测部16探测滑动的消除时,根据制动力控制方式控制制动器8。由此,在未发生主绳索5的滑动时,能根据设定减速度等的大的减速度使轿厢3减速。因而,轿厢3的制动距离变得更短。In addition, the brake control unit 17 controls the brake 8 according to the braking force control mode before the slip detector 16 detects the occurrence of slip during emergency stop. In addition, the brake control unit 17 controls the brake 8 according to the braking force control mode when the slip detector 16 detects the elimination of slip. Thus, when the main rope 5 does not slip, the car 3 can be decelerated according to a large deceleration such as a set deceleration. Therefore, the braking distance of the car 3 becomes shorter.
另外,制动器控制部17将制动距离的推定值S1以及制动距离的推定值S2相等那样的参照时点的轿厢3或者绳轮13的速度作为速度阈值Vlim,切换滑动消除控制方式以及制动力控制方式。制动距离S1是在滑动探测部16探测到滑动的发生时根据制动力控制方式控制制动器8的场合下的轿厢3的制动距离的推定值。制动距离S2是在滑动探测部16探测到滑动的发生时根据滑动消除控制方式控制制动器8的场合下的轿厢3的制动距离的推定值。这样,由于速度阈值Vlim基于制动距离的推定值S1以及制动距离的推定值S2被设定,所以,能更可靠地抑制紧急停止时的轿厢3的制动距离。In addition, the brake control unit 17 uses the speed of the car 3 or the sheave 13 at the reference time point when the estimated value S1 of the braking distance and the estimated value S2 of the braking distance are equal as the speed threshold value Vlim , and switches the slip elimination control mode and the braking force control mode. The braking distance S1 is an estimated value of the braking distance of the car 3 when the brake 8 is controlled according to the braking force control mode when the slip detector 16 detects the occurrence of slip. The braking distance S2 is an estimated value of the braking distance of the car 3 when the brake 8 is controlled according to the slip elimination control mode when the slip detector 16 detects the occurrence of slip. In this way, since the speed threshold value Vlim is set based on the estimated value S1 of the braking distance and the estimated value S2 of the braking distance, the braking distance of the car 3 during emergency stop can be more reliably suppressed.
另外,速度阈值Vlim基于包含减速度的预测值arope、加速度的预测值atr、设定减速度、滑动探测部16有无滑动的探测的延迟时间的预测值和制动器8的状态转变的延迟时间的预测值在内的信息来计算。预测值arope是在滑动探测部16探测到滑动的发生时根据制动力控制方式控制制动器8的场合下的轿厢3的减速度的预测值。预测值atr是在消除了主绳索5相对于绳轮13的滑动时根据滑动消除控制方式控制制动器8的场合下的轿厢3的加速度的预测值。探测的延迟时间的预测值以及状态转变的延迟时间的预测值包含在延迟时间的预测值T1、T2以及T3等中。由此,速度阈值Vlim能基于已知的信息等在滑动探测之前进行计算。因而,制动器控制部17在探测到滑动的发生之后,能根据所选择的控制方式更快地进行制动器8的控制。The speed threshold value Vlim is calculated based on information including a predicted value a rope of deceleration, a predicted value a tr of acceleration, a set deceleration, a predicted value of a delay time of detecting the presence or absence of slip by the slip detector 16, and a predicted value of a delay time of the state transition of the brake 8. The predicted value a rope is a predicted value of the deceleration of the car 3 when the brake 8 is controlled according to the braking force control method when the slip detector 16 detects the occurrence of slip. The predicted value a tr is a predicted value of the acceleration of the car 3 when the brake 8 is controlled according to the slip elimination control method when the slip of the main rope 5 relative to the sheave 13 is eliminated. The predicted value of the delay time of detection and the predicted value of the delay time of the state transition are included in the predicted values T 1 , T 2 , and T 3 of the delay time. Thus, the speed threshold value Vlim can be calculated based on known information before the slip is detected. Therefore, after the occurrence of slip is detected, the brake control unit 17 can control the brake 8 more quickly according to the selected control method.
另外,制动器控制部17也可以控制制动器8的制动力以便在滑动消除控制方式下不发生制动器8从制动状态向释放状态的状态转变。由此,由于没有了制动器8的状态转变的时间,所以,制动器8的制动延迟时间变短。因而,可抑制刚恢复牵引后的轿厢3增速的时间。In addition, the brake control unit 17 may control the braking force of the brake 8 so that the brake 8 does not change from the braking state to the released state in the slip elimination control mode. Thus, since there is no time for the state change of the brake 8, the braking delay time of the brake 8 is shortened. Therefore, the time for the car 3 to accelerate immediately after the traction is restored can be suppressed.
另外,制动器控制部17将绝对值比第1减速度a1小且绝对值比第2减速度a2大的减速度作为设定减速度来控制制动器8。第1减速度a1作为不发生主绳索5相对于绳轮13的滑动的上限的减速度根据卷扬机4的牵引能力的预测值被预先计算出的轿厢3的减速度。第2减速度a2是作为不使设于升降路2的安全开关11工作的下限的减速度被预先计算出的轿厢3的减速度。由此,可抑制主绳索5的滑动的发生以及因安全开关11的工作导致的被困住的发生。In addition, the brake control unit 17 controls the brake 8 by using a deceleration whose absolute value is smaller than the first deceleration a1 and whose absolute value is larger than the second deceleration a2 as a set deceleration. The first deceleration a1 is a deceleration of the car 3 calculated in advance based on the predicted value of the traction capacity of the hoist 4 as the upper limit deceleration at which the main rope 5 does not slip relative to the sheave 13. The second deceleration a2 is a deceleration of the car 3 calculated in advance as the lower limit deceleration at which the safety switch 11 provided in the hoistway 2 does not operate. Thereby, the occurrence of slip of the main rope 5 and the occurrence of being trapped due to the operation of the safety switch 11 can be suppressed.
另外,滑动探测部16以及制动器控制部17等的一部分或者全部也可以搭载在控制装置12的外部的装置上。In addition, part or all of the slip detector 16 and the brake control unit 17 may be mounted on a device external to the control device 12 .
接下来,利用图7对电梯1的硬件构成的例子进行说明。Next, an example of the hardware configuration of the elevator 1 will be described using FIG. 7 .
图7是实施方式1所涉及的电梯1的主要部分的硬件构成图。FIG. 7 is a hardware configuration diagram of a main part of the elevator 1 according to the first embodiment.
电梯1的各功能可通过处理电路实现。处理电路具备至少1个处理器100a和至少1个存储器100b。处理电路可以同时具备处理器100a以及存储器100b和至少1个专用硬件200,或者作为处理器100a以及存储器100b的代用构成而具备至少1个专用硬件200。Each function of the elevator 1 can be realized by a processing circuit. The processing circuit has at least one processor 100a and at least one memory 100b. The processing circuit can have both the processor 100a and the memory 100b and at least one dedicated hardware 200, or can have at least one dedicated hardware 200 as a substitute for the processor 100a and the memory 100b.
在处理电路具备处理器100a和存储器100b的场合,电梯1的各功能通过软件、固件或者软件与固件的组合来实现。软件以及固件中的至少一方作为程序来记述。该程序容纳在存储器100b中。处理器100a通过读取并执行存储器100b所存储的程序来实现电梯1的各功能。When the processing circuit includes a processor 100a and a memory 100b, each function of the elevator 1 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is described as a program. The program is stored in the memory 100b. The processor 100a realizes each function of the elevator 1 by reading and executing the program stored in the memory 100b.
处理器100a也称为CPU(Central Processing Unit)、处理装置、演算装置、微处理器、微型计算机、DSP。存储器100b例如由RAM、ROM、闪存、EPROM、EEPROM等非易失性或者易失性的半导体存储器等构成。The processor 100a is also called a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcomputer, or a DSP. The memory 100b is composed of a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
在处理电路具备专用硬件200的场合,处理电路例如通过单一电路、复合电路、编程的处理器、并行化编程的处理器、ASIC、FPGA或者它们的组合来实现。When the processing circuit has dedicated hardware 200, the processing circuit is implemented by, for example, a single circuit, a complex circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
电梯1的各功能能分别通过处理电路实现。或者,电梯1的各功能也能集中地通过处理电路实现。关于电梯1的各功能,也可以通过专用硬件200来实现一部分,通过软件或者固件来实现其他部分。这样,处理电路通过专用硬件200、软件、固件或者它们的组合来实现电梯1的各功能。Each function of the elevator 1 can be implemented separately by the processing circuit. Alternatively, each function of the elevator 1 can also be implemented collectively by the processing circuit. Regarding each function of the elevator 1, a part can be implemented by the dedicated hardware 200, and the other part can be implemented by software or firmware. In this way, the processing circuit implements each function of the elevator 1 through the dedicated hardware 200, software, firmware, or a combination thereof.
实施方式2.Implementation method 2.
在实施方式2中,关于与实施方式1中公开的例子不同的方面进行详细说明。关于未在实施方式2中说明的特征,可以采用实施方式1中公开的例子的任意特征。In Embodiment 2, points different from the example disclosed in Embodiment 1 are described in detail. With respect to features not described in Embodiment 2, any features of the example disclosed in Embodiment 1 can be adopted.
图8是实施方式2所涉及的电梯1的构成图。FIG8 is a diagram showing the configuration of the elevator 1 according to the second embodiment.
电梯1具备载荷检测部18。载荷检测部18是检测轿厢3的内部的载荷的部分。载荷检测部18例如设在轿厢3的下部或者设在安装于轿厢3的主绳索5的端部等。在通常时,载荷检测部18例如被用于因轿厢3的载荷而变动的不平衡转矩的补偿以及轿厢3的超载的探测等。The elevator 1 includes a load detection unit 18. The load detection unit 18 is a part that detects the load inside the car 3. The load detection unit 18 is provided, for example, at the lower part of the car 3 or at the end of the main rope 5 installed on the car 3. Normally, the load detection unit 18 is used, for example, to compensate for the unbalanced torque that changes due to the load of the car 3 and to detect overload of the car 3.
控制装置12具备方向检测部19。方向检测部19是检测上升或者下降的轿厢3的行驶方向的部分。方向检测部19例如基于绳轮速度检测部9或者轿厢速度检测部10所检测的速度的符号来判定上升或者下降。在该例子中,制动器控制部17将开始滑动时作为参照时点来进行制动器8的控制。The control device 12 includes a direction detection unit 19. The direction detection unit 19 is a part that detects the travel direction of the ascending or descending car 3. The direction detection unit 19 determines ascending or descending based on the sign of the speed detected by the sheave speed detection unit 9 or the car speed detection unit 10. In this example, the brake control unit 17 controls the brake 8 using the start of slip as a reference time point.
轿厢3的载荷对经主绳索5施加于绳轮13的转矩有影响。另外,制动器转矩施加的方向根据轿厢3的行驶方向而有所变化。因而,主绳索5不滑动的条件根据轿厢3的载荷以及行驶方向而有所变化。由此,主绳索5的开始滑动的最大减速度根据轿厢3的载荷以及行驶方向而有所变化。主绳索5不滑动的条件由以下的式(5)表示。The load of the car 3 affects the torque applied to the sheave 13 via the main rope 5. In addition, the direction in which the brake torque is applied varies depending on the travel direction of the car 3. Therefore, the condition that the main rope 5 does not slip varies depending on the load and travel direction of the car 3. Therefore, the maximum deceleration at which the main rope 5 starts to slip varies depending on the load and travel direction of the car 3. The condition that the main rope 5 does not slip is expressed by the following formula (5).
在此,Γ表示牵引系数。exp表示指数函数。k表示绳轮13的槽系数。槽系数是根据绳轮13的绳索槽的形状等而确定的系数。μ是主绳索5以及绳轮13之间的摩擦系数。槽系数k以及摩擦系数μ的积kμ表示主绳索5以及绳轮13之间的表观的摩擦系数。θ表示主绳索5向绳轮13的缠绕角。Ten1表示从绳轮13观看的轿厢3侧的张力。Ten2表示从绳轮13观看的配重块6侧的张力。主绳索5的滑动发生在式(5)的右边的张力比超过牵引系数Γ的场合。Here, Γ represents the traction coefficient. exp represents an exponential function. k represents the groove coefficient of the sheave 13. The groove coefficient is a coefficient determined according to the shape of the rope groove of the sheave 13, etc. μ is the friction coefficient between the main rope 5 and the sheave 13. The product kμ of the groove coefficient k and the friction coefficient μ represents the apparent friction coefficient between the main rope 5 and the sheave 13. θ represents the winding angle of the main rope 5 about the sheave 13. Ten1 represents the tension on the car 3 side viewed from the sheave 13. Ten2 represents the tension on the counterweight 6 side viewed from the sheave 13. Slippage of the main rope 5 occurs when the tension ratio on the right side of the formula (5) exceeds the traction coefficient Γ.
另外,未发生主绳索5的滑动时的围绕绳轮13的旋转轴的运动方程式由以下的式(6)表示。In addition, the equation of motion about the rotation axis of the sheave 13 when the main rope 5 does not slip is expressed by the following equation (6).
在此,Mtm表示与绳轮13的惯性相当的等价质量。atm表示绳轮13的减速度。FBK表示将制动器转矩换算成绳轮13的旋转方向的力而得的力。力FBK的符号设定成在轿厢3上升时为负,在轿厢3下降时为正。Here, M tm represents an equivalent mass corresponding to the inertia of the sheave 13. a tm represents the deceleration of the sheave 13. F BK represents a force obtained by converting the brake torque into a force in the rotation direction of the sheave 13. The sign of the force F BK is set to be negative when the car 3 is ascending and positive when the car 3 is descending.
由于主绳索5正好开始滑动的条件是在式(5)中张力比与牵引系数相等,所以,能通过将满足该条件的张力应用到式(6)中来计算开始滑动时的减速度atm。在此,张力Ten1以及张力Ten2的值例如可使用卷扬机4、配重块6及绳索类的质量、以及滑轮类的惯性质量及质量等,对应于拉运来进行计算。在此,绳索类例如包括主绳索5、补偿绳索、控制线缆以及调速机绳索14等。滑轮类例如包括偏导滑轮、折返滑轮以及补偿滑轮等。Since the condition for the main rope 5 to just start sliding is that the tension ratio is equal to the traction coefficient in formula (5), the deceleration a tm when starting to slide can be calculated by applying the tension that satisfies this condition to formula (6). Here, the values of the tension Ten1 and the tension Ten2 can be calculated corresponding to the pulling using, for example, the mass of the winch 4, the counterweight 6, and the ropes, and the inertial mass and mass of the pulleys. Here, the ropes include, for example, the main rope 5, the compensating rope, the control cable, and the governor rope 14. The pulleys include, for example, the deflector pulley, the return pulley, and the compensating pulley.
制动器控制部17计算与轿厢3的载荷以及轿厢3的行驶方向相对应的开始滑动时的减速度。制动器控制部17使用该减速度例如通过与实施方式1同样的计算方法来计算速度阈值Vlim。制动器控制部17基于计算出的速度阈值Vlim来进行紧急停止时的制动器控制。由此,由于选择与载荷的条件相对应的控制方式,所以,可进一步缩短制动距离。The brake control unit 17 calculates the deceleration at the start of sliding corresponding to the load of the car 3 and the travel direction of the car 3. The brake control unit 17 uses the deceleration to calculate the speed threshold V lim by, for example, the same calculation method as in Embodiment 1. The brake control unit 17 performs brake control at the time of emergency stop based on the calculated speed threshold V lim . Thus, since a control method corresponding to the load condition is selected, the braking distance can be further shortened.
另外,制动器控制部17也可以每当轿厢3的载荷以及行驶方向变化时都进行计算,更新速度阈值Vlim。或者,制动器控制部17也可以通过参照按照轿厢3的每个载荷以及每个行驶方向预先计算出的速度阈值Vlim的表格,更新速度阈值Vlim。The brake control unit 17 may calculate and update the speed threshold V lim every time the load and travel direction of the car 3 change. Alternatively, the brake control unit 17 may update the speed threshold V lim by referring to a table of speed thresholds V lim calculated in advance for each load and travel direction of the car 3 .
如以上说明的那样,实施方式2所涉及的电梯1具备方向检测部19和载荷检测部18。方向检测部19检测轿厢3的行驶方向。载荷检测部18检测轿厢3的内部的载荷。速度阈值Vlim基于包含方向检测部19所检测的轿厢3的行驶方向和载荷检测部18所检测的轿厢3的载荷在内的信息来计算。As described above, the elevator 1 according to the second embodiment includes the direction detection unit 19 and the load detection unit 18. The direction detection unit 19 detects the travel direction of the car 3. The load detection unit 18 detects the load inside the car 3. The speed threshold value Vlim is calculated based on information including the travel direction of the car 3 detected by the direction detection unit 19 and the load of the car 3 detected by the load detection unit 18.
根据该构成,对应于轿厢3的载荷以及行驶方向等运转条件来设定速度阈值Vlim。由此,对应于运转条件来选择轿厢3的制动距离变得更短的制动器8的控制方式。According to this configuration, the speed threshold value V lim is set according to the operating conditions such as the load and the travel direction of the car 3. Thus, a control method of the brake 8 that shortens the braking distance of the car 3 is selected according to the operating conditions.
另外,速度阈值Vlim也可以基于仅包含方向检测部19所检测的轿厢3的行驶方向以及载荷检测部18所检测的轿厢3的载荷中的任意一方的信息来计算。在轿厢3的行驶方向的检测值没有包含在计算速度阈值Vlim的信息中时,速度阈值Vlim也可以基于预先设定的评价用的轿厢3的行驶方向来计算。另外,在轿厢3的载荷的检测值没有包含在计算速度阈值Vlim的信息中时,速度阈值Vlim也可以基于预先设定的评价用的轿厢3的载荷来计算。In addition, the speed threshold value V lim may be calculated based on information including only one of the travel direction of the car 3 detected by the direction detection unit 19 and the load of the car 3 detected by the load detection unit 18. When the detection value of the travel direction of the car 3 is not included in the information for calculating the speed threshold value V lim , the speed threshold value V lim may be calculated based on the travel direction of the car 3 set in advance for evaluation. In addition, when the detection value of the load of the car 3 is not included in the information for calculating the speed threshold value V lim , the speed threshold value V lim may be calculated based on the load of the car 3 set in advance for evaluation.
工业实用性Industrial Applicability
本公开所涉及的电梯能应用于具有多个楼层的建筑。The elevator involved in the present disclosure can be applied to a building with multiple floors.
附图标记的说明Description of Reference Numerals
1电梯,2升降路,3轿厢,4卷扬机,5主绳索,6配重块,7调速机,8制动器,9绳轮速度检测部,10轿厢速度检测部,11安全开关,12控制装置,13绳轮,14调速机绳索,15调速机滑轮,16滑动探测部,17制动器控制部,18载荷检测部,19方向检测部,100a处理器,100b存储器,200专用硬件。1 elevator, 2 lifting path, 3 car, 4 winch, 5 main rope, 6 counterweight, 7 speed governor, 8 brake, 9 pulley speed detection unit, 10 car speed detection unit, 11 safety switch, 12 control device, 13 pulley, 14 speed governor rope, 15 speed governor pulley, 16 sliding detection unit, 17 brake control unit, 18 load detection unit, 19 direction detection unit, 100a processor, 100b memory, 200 dedicated hardware.
Claims (13)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/033269 WO2022049673A1 (en) | 2020-09-02 | 2020-09-02 | Elevator |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115867505A CN115867505A (en) | 2023-03-28 |
CN115867505B true CN115867505B (en) | 2024-10-29 |
Family
ID=80491838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080103129.9A Active CN115867505B (en) | 2020-09-02 | 2020-09-02 | Elevator with a motor |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7323078B2 (en) |
CN (1) | CN115867505B (en) |
DE (1) | DE112020007566T5 (en) |
WO (1) | WO2022049673A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1519187A (en) * | 2003-01-30 | 2004-08-11 | 三菱电机株式会社 | Brake controller of elevator |
CN102196983A (en) * | 2008-10-31 | 2011-09-21 | 株式会社日立制作所 | elevator |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59190769U (en) * | 1983-06-06 | 1984-12-18 | 三菱電機株式会社 | Elevator emergency stop device |
JPH09278298A (en) * | 1996-04-09 | 1997-10-28 | Hitachi Building Syst Co Ltd | Elevator braking force adjustment device |
JP5037139B2 (en) | 2006-02-01 | 2012-09-26 | 三菱電機株式会社 | Elevator equipment |
KR100852571B1 (en) * | 2006-05-12 | 2008-08-18 | 미쓰비시덴키 가부시키가이샤 | Elevator rope slip detector and elevator system |
FI20105033L (en) | 2010-01-18 | 2011-07-19 | Kone Corp | Method for monitoring the movement of an elevator car and an elevator system |
JP5616286B2 (en) * | 2011-05-11 | 2014-10-29 | 株式会社日立製作所 | Elevator equipment |
JP5977652B2 (en) | 2012-11-21 | 2016-08-24 | 株式会社日立製作所 | Elevator control device |
JP6271956B2 (en) * | 2013-11-12 | 2018-01-31 | 株式会社日立製作所 | elevator |
-
2020
- 2020-09-02 DE DE112020007566.4T patent/DE112020007566T5/en active Pending
- 2020-09-02 WO PCT/JP2020/033269 patent/WO2022049673A1/en active Application Filing
- 2020-09-02 CN CN202080103129.9A patent/CN115867505B/en active Active
- 2020-09-02 JP JP2022546779A patent/JP7323078B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1519187A (en) * | 2003-01-30 | 2004-08-11 | 三菱电机株式会社 | Brake controller of elevator |
CN102196983A (en) * | 2008-10-31 | 2011-09-21 | 株式会社日立制作所 | elevator |
Also Published As
Publication number | Publication date |
---|---|
CN115867505A (en) | 2023-03-28 |
JPWO2022049673A1 (en) | 2022-03-10 |
WO2022049673A1 (en) | 2022-03-10 |
JP7323078B2 (en) | 2023-08-08 |
DE112020007566T5 (en) | 2023-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5214239B2 (en) | Elevator equipment | |
US7669697B2 (en) | Elevator apparatus | |
KR101152565B1 (en) | Elevator | |
JP5381716B2 (en) | Elevator equipment | |
US10196234B2 (en) | Method for controlling unintended vertical speed and acceleration of an elevator | |
JP5333234B2 (en) | Elevator equipment | |
JPWO2008117423A1 (en) | Elevator brake equipment | |
JP6256620B2 (en) | Elevator equipment | |
JP6218706B2 (en) | Elevator control device and elevator control method | |
WO2007034587A1 (en) | Elevator device | |
JP5326474B2 (en) | Elevator rope slip detection device and elevator device using the same | |
JP5079351B2 (en) | Elevator equipment | |
CN104671022B (en) | Elevator control device and elevator control method | |
JP2013001474A (en) | Safety operation system and safety operation method of elevator | |
CN115867505B (en) | Elevator with a motor | |
CN112912328B (en) | elevator control system | |
CN104891296B (en) | Elevator equipment and its control device | |
JP4397720B2 (en) | Elevator equipment | |
JP5573300B2 (en) | Elevator control device | |
CN103832906B (en) | The control setup of elevator | |
JP5791490B2 (en) | Elevator emergency stop device and elevator emergency stop method | |
WO2022097231A1 (en) | Multi-car elevator | |
JP5310551B2 (en) | Elevator equipment | |
JPH09156854A (en) | Elevator rope slip determination device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |