CN115863533A - Lithium metal cathode protection process for sulfide-based all-solid-state battery by using LBO self-supporting film - Google Patents
Lithium metal cathode protection process for sulfide-based all-solid-state battery by using LBO self-supporting film Download PDFInfo
- Publication number
- CN115863533A CN115863533A CN202310063525.9A CN202310063525A CN115863533A CN 115863533 A CN115863533 A CN 115863533A CN 202310063525 A CN202310063525 A CN 202310063525A CN 115863533 A CN115863533 A CN 115863533A
- Authority
- CN
- China
- Prior art keywords
- lbo
- solid
- lithium metal
- sulfide
- state battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 17
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims abstract description 14
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims abstract description 12
- 150000001875 compounds Chemical class 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 239000002002 slurry Substances 0.000 claims abstract description 8
- 238000000576 coating method Methods 0.000 claims abstract description 7
- 238000001035 drying Methods 0.000 claims abstract description 6
- 238000002360 preparation method Methods 0.000 claims abstract description 6
- 239000002904 solvent Substances 0.000 claims abstract description 6
- 239000011248 coating agent Substances 0.000 claims abstract description 5
- 238000003756 stirring Methods 0.000 claims abstract description 3
- 239000010408 film Substances 0.000 claims description 11
- 239000003792 electrolyte Substances 0.000 claims description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 claims description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical group O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 claims description 2
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 claims description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 2
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 claims description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 claims description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 claims description 2
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 claims description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 2
- 238000004528 spin coating Methods 0.000 claims description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims 2
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 claims 1
- 239000007787 solid Substances 0.000 abstract 1
- 239000007784 solid electrolyte Substances 0.000 description 13
- 239000002203 sulfidic glass Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VKEQBMCRQDSRET-UHFFFAOYSA-N Methylone Chemical compound CNC(C)C(=O)C1=CC=C2OCOC2=C1 VKEQBMCRQDSRET-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001453 impedance spectrum Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920006112 polar polymer Polymers 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及固态电池技术领域,尤其涉及一种LBO自支撑薄膜用于硫化物基全固态电池的锂金属负极保护工艺。The invention relates to the technical field of solid-state batteries, in particular to an LBO self-supporting thin film used for the lithium metal negative electrode protection process of a sulfide-based all-solid-state battery.
背景技术Background technique
全固态电池是用不可燃的固体电解质代替传统的有机易燃电解液,从根本上避免了安全问题。目前,固态电解质主要包括氧化物、硫化物、聚合物固态电解质,其中,氧化物固态电解质不惧水氧,具有较稳定的物理化学性质,但电导率较低。聚合物固态电解质由极性高分子和金属盐络合形成,具有良好的成膜性、可弯曲和高安全性能,但其具有电导率较低、锂离子的迁移数较小、机械性能较差等缺点。硫化物固态电解质具有媲美于液态电解质溶液的离子电导率,电化学窗口宽,可适配高压正极材料,但由于硫化物固态电解质与锂金属有严重的副反应,与锂负极不兼容,严重限制了其在全固态电池中的应用。The all-solid-state battery replaces the traditional organic flammable electrolyte with a non-flammable solid electrolyte, which fundamentally avoids safety problems. At present, solid electrolytes mainly include oxides, sulfides, and polymer solid electrolytes. Among them, oxide solid electrolytes are not afraid of water and oxygen, and have relatively stable physical and chemical properties, but low conductivity. Polymer solid electrolyte is formed by the complexation of polar polymers and metal salts. It has good film-forming properties, flexibility and high safety performance, but it has low electrical conductivity, small migration number of lithium ions, and poor mechanical properties. and other shortcomings. The sulfide solid electrolyte has an ionic conductivity comparable to that of a liquid electrolyte solution, and has a wide electrochemical window, which can be adapted to high-voltage cathode materials. However, due to the serious side reactions between the sulfide solid electrolyte and lithium metal, it is incompatible with lithium anodes, which is severely limited. its application in all-solid-state batteries.
因此,本发明提出一种LBO自支撑薄膜用于硫化物基全固态电池的锂金属负极保护工艺用于解决上述问题。Therefore, the present invention proposes a LBO self-supporting thin film used in the lithium metal negative electrode protection process of sulfide-based all-solid-state batteries to solve the above problems.
发明内容Contents of the invention
本发明的目的是为了解决现有技术中存在的缺点,而提出的一种LBO自支撑薄膜用于硫化物基全固态电池的锂金属负极保护工艺。The purpose of the present invention is to solve the shortcomings in the prior art, and propose a kind of LBO self-supporting film for the lithium metal negative electrode protection process of sulfide-based all-solid-state batteries.
本发明提供一种LBO自支撑薄膜用于硫化物基全固态电池的锂金属负极保护工艺,包含LBO化合物,所述LBO化合物的湿法制备流程包括以下步骤:The present invention provides a kind of LBO self-supporting film used in the lithium metal negative electrode protection process of sulfide-based all-solid-state battery, including LBO compound, and the wet preparation process of the LBO compound includes the following steps:
S1、将H3BO3与LiOH按比例溶于溶剂中,得到浓度为0.02-0.05mo l/L的混合物A;S1. Dissolving H 3 BO 3 and LiOH in a solvent in proportion to obtain a mixture A with a concentration of 0.02-0.05 mol/L;
S2、将步骤S1得到的混合物A超声分散0.5-1h,再接着搅拌,得到浆料B;S2. Ultrasonic disperse the mixture A obtained in step S1 for 0.5-1 h, and then stir to obtain slurry B;
S3、将浆料B涂覆在锂金属上,在稀有气体氛围下烘干1-3h,烘干温度为70-120℃,得到LBO@Li;S3, coating the slurry B on the lithium metal, drying in a rare gas atmosphere for 1-3 hours at a drying temperature of 70-120°C to obtain LBO@Li;
S4、将LBO@Li取出,其LBO@Li负极与电解质、正极用于组成的全固态电池。S4. Take out the LBO@Li, and use the LBO@Li negative electrode, electrolyte, and positive electrode to form an all-solid-state battery.
优选的,所述LBO化合物分子式为LixByOz,其中x+y+z=1。Preferably, the molecular formula of the LBO compound is Li x By O z , where x+y+z=1.
优选的,所述LBO化合物还具有干法制备流程。Preferably, the LBO compound also has a dry preparation process.
优选的,所述S1中,H3BO3与LiOH的摩尔比为1:(1-3)。Preferably, in the S1, the molar ratio of H 3 BO 3 to LiOH is 1:(1-3).
优选的,所述S1中,溶剂为碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯、甲酸甲酯、乙酸甲酯、丁酸甲酯、丙酸乙酯、2-甲基四氢呋喃、1,3-二氧环戊烷、4-甲基-1,3-二氧环戊烷中的一种或多种。Preferably, in the S1, the solvent is ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, methyl formate, methyl acetate, methyl butyrate , ethyl propionate, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane or one or more.
优选的,所述S3中,稀有气体为氩气。Preferably, in said S3, the rare gas is argon.
优选的,所述S3中,涂覆的方法为旋涂或者刮涂。Preferably, in S3, the coating method is spin coating or blade coating.
与现有技术相比,本发明的有益效果是:利用LBO化合物材料具有电化学稳定性和锂离子快速传导的特性,在其保护下,LBO化合物材料不仅可以作为高效的固体电解质中间层,诱导Li的超密集沉积,还可以将Li金属与电解质隔离开来,为稳定的Li电镀/剥离提供良好的环境,有效抑制循环过程中锂损失和电解质的分解,稳定性高,本发明工艺简单高效,成本低廉,适用于商业化大批量制作。Compared with the prior art, the beneficial effect of the present invention is: the use of the LBO compound material has the characteristics of electrochemical stability and lithium ion fast conduction, under its protection, the LBO compound material can not only be used as a high-efficiency solid electrolyte intermediate layer, induce The ultra-dense deposition of Li can also isolate Li metal from the electrolyte, provide a good environment for stable Li plating/stripping, effectively inhibit lithium loss and electrolyte decomposition during cycling, and have high stability. The process of the present invention is simple and efficient , low cost and suitable for commercial mass production.
附图说明Description of drawings
图1为本发明实施例1制备的加入LBO自支撑薄膜界面的全固态电池长循环图。Figure 1 is a long-term cycle diagram of an all-solid-state battery prepared in Example 1 of the present invention with an interface of an LBO self-supporting film.
图2为本发明对比例1未加入LBO自支撑薄膜装配的全固态电池长循环图。Fig. 2 is a long-term cycle diagram of an all-solid-state battery assembled without adding LBO self-supporting film in Comparative Example 1 of the present invention.
图3为实施例1与对比例1的全固态电池阻抗图谱。3 is the impedance spectrum of the all-solid-state battery of Example 1 and Comparative Example 1.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步解说。The present invention will be further explained below in conjunction with specific embodiments.
本发明的全固态电池包括正极部分、电解质部分和LBO@Li负极部分,其中正极部分由正极活性物质和硫化物固态电解质以及导电碳混合构建,正极活性物质为尖晶石型过渡金属氧化物、层状结构的锂过渡金属氧化物、橄榄石中的一种或几种的混合物。The all-solid-state battery of the present invention includes a positive electrode part, an electrolyte part, and an LBO@Li negative electrode part, wherein the positive electrode part is constructed by mixing positive electrode active materials, sulfide solid electrolytes, and conductive carbon, and the positive electrode active materials are spinel-type transition metal oxides, One or a mixture of layered lithium transition metal oxides and olivine.
本发明提供的全固态电池制备方法首先制备正极,将正极材料、导电炭黑以及硫化物固态电解质按照一定的比例混合,并将其研磨混合均匀。电池组装步骤是将固态电解质粉末放置在压片模具中,压制成固态电解质片,之后将正极片放在固态电解质的一侧,并加压力压制,最后在固态电解质的另一侧附上LBO@Li箔,压制成三明治结构的全固态电池。The preparation method of the all-solid-state battery provided by the present invention first prepares the positive electrode, mixes the positive electrode material, conductive carbon black and sulfide solid electrolyte according to a certain ratio, and grinds and mixes them evenly. The battery assembly step is to place the solid electrolyte powder in the tablet mold and press it into a solid electrolyte sheet, then place the positive electrode sheet on one side of the solid electrolyte, press it with pressure, and finally attach LBO@ on the other side of the solid electrolyte Li foil, pressed into a sandwich-structured all-solid-state battery.
实施例1Example 1
如图1,在手套箱按照摩尔比1:3称取H3BO3和LiOH,然后将这些反应物原料加入10ml小烧杯中,再加入碳酸乙烯酯溶剂,其浓度为0.025mo l/L,让这些原料充分搅拌接触得到LBO前驱体浆料;取前驱体浆料旋涂在Li箔上,在手套箱中90℃烘干2h,裁片,就得到了LBO@Li材料。As shown in Figure 1, weigh H3BO3 and LiOH in the glove box according to the molar ratio of 1:3, then add these reactant raw materials into a 10ml small beaker, and then add ethylene carbonate solvent, the concentration is 0.025mol/L, Let these raw materials be fully stirred and contacted to obtain the LBO precursor slurry; the precursor slurry was spin-coated on Li foil, dried in a glove box at 90 °C for 2 hours, and cut into pieces to obtain the LBO@Li material.
将硫化物固态电解质材料、正极材料的复合材料。和导电炭黑以及粘结剂以20:75:1:4的比例混合,将其研磨均匀后得到正极粉末。将正极粉末溶解于DME中,磁力搅拌均匀后涂覆在铝箔上。将硫化物固态电解质材料的粉末放置在压片模具中,压制成固态电解质片,之后将正极片放在固态电解质的一侧,并加压力压制,最后在固态电解质的另一侧附上LBO@Li,压制成全固态电池。The composite material of sulfide solid electrolyte material and cathode material. Mix it with conductive carbon black and binder at a ratio of 20:75:1:4, and grind it evenly to obtain positive electrode powder. The positive electrode powder was dissolved in DME, stirred evenly by magnetic force and coated on aluminum foil. Place the powder of the sulfide solid electrolyte material in a tablet mold and press it into a solid electrolyte sheet, then place the positive electrode sheet on one side of the solid electrolyte and press it with pressure, and finally attach LBO@ on the other side of the solid electrolyte Li, pressed into an all-solid-state battery.
对比案例1
如图2,锂金属负极与硫化物固态电解质之间界面不做任何处理,其他同实施案例1,得到的全固态电池阻抗图谱如图3,通过在锂金属负极与硫化物固态电解质之间加入一层LBO自支撑薄膜,与锂金属负极兼容性得到了很大的改善,用于全固态电池,其循环性能更加良好。As shown in Figure 2, no treatment is done on the interface between the lithium metal negative electrode and the sulfide solid electrolyte. A layer of LBO self-supporting film, the compatibility with lithium metal anode has been greatly improved, and it is used in all-solid-state batteries, and its cycle performance is better.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto, any person familiar with the technical field within the technical scope disclosed in the present invention, according to the technical solution of the present invention Any equivalent replacement or change of the inventive concepts thereof shall fall within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310063525.9A CN115863533A (en) | 2023-01-11 | 2023-01-11 | Lithium metal cathode protection process for sulfide-based all-solid-state battery by using LBO self-supporting film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310063525.9A CN115863533A (en) | 2023-01-11 | 2023-01-11 | Lithium metal cathode protection process for sulfide-based all-solid-state battery by using LBO self-supporting film |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115863533A true CN115863533A (en) | 2023-03-28 |
Family
ID=85657630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310063525.9A Pending CN115863533A (en) | 2023-01-11 | 2023-01-11 | Lithium metal cathode protection process for sulfide-based all-solid-state battery by using LBO self-supporting film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115863533A (en) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4288505A (en) * | 1980-10-24 | 1981-09-08 | Ray-O-Vac Corporation | High energy density solid state cell |
CN1297588A (en) * | 1998-02-18 | 2001-05-30 | 波利普拉斯电池有限公司 | Plating metal negative electrodes under protective coatings |
CN1415124A (en) * | 1999-11-01 | 2003-04-30 | 波利普拉斯电池有限公司 | Layered arrangements of lithium cells |
CN1415122A (en) * | 1999-11-23 | 2003-04-30 | 分子技术股份有限公司 | Lithium anodes for electrochemical cells |
US20090068563A1 (en) * | 2007-09-11 | 2009-03-12 | Sumitomo Electric Industries, Ltd. | Lithium battery |
CN103855358A (en) * | 2012-12-07 | 2014-06-11 | 华为技术有限公司 | Lithium battery negative electrode as well as preparation method thereof, lithium battery and application |
CN105190969A (en) * | 2013-03-15 | 2015-12-23 | 赛昂能源有限公司 | Protective structures for electrodes |
US20160118693A1 (en) * | 2012-03-15 | 2016-04-28 | Erik K. Koep | Intercalated lithium batteries |
CN106159200A (en) * | 2016-07-29 | 2016-11-23 | 中国科学院青岛生物能源与过程研究所 | A kind of lithium anode with protective coating and preparation thereof and application |
CN110495021A (en) * | 2017-06-21 | 2019-11-22 | 株式会社Lg化学 | Lithium secondary battery |
JP2021082561A (en) * | 2019-11-22 | 2021-05-27 | 東邦チタニウム株式会社 | Solid electrolyte, all-solid battery, and method for manufacturing solid electrolyte |
CN113991058A (en) * | 2021-10-26 | 2022-01-28 | 蜂巢能源科技有限公司 | Negative pole piece, solid-state battery and preparation method thereof |
CN114141980A (en) * | 2021-11-24 | 2022-03-04 | 蜂巢能源科技(无锡)有限公司 | Solid-state lithium-sulfur battery anode and all-solid-state lithium-sulfur battery |
KR20220060989A (en) * | 2020-11-05 | 2022-05-12 | 한양대학교 산학협력단 | Negative electrode for lithium secondary battery and all-solid-state-lithium secondary battery comprising the same |
-
2023
- 2023-01-11 CN CN202310063525.9A patent/CN115863533A/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4288505A (en) * | 1980-10-24 | 1981-09-08 | Ray-O-Vac Corporation | High energy density solid state cell |
CN1297588A (en) * | 1998-02-18 | 2001-05-30 | 波利普拉斯电池有限公司 | Plating metal negative electrodes under protective coatings |
CN1415124A (en) * | 1999-11-01 | 2003-04-30 | 波利普拉斯电池有限公司 | Layered arrangements of lithium cells |
CN1415122A (en) * | 1999-11-23 | 2003-04-30 | 分子技术股份有限公司 | Lithium anodes for electrochemical cells |
US20090068563A1 (en) * | 2007-09-11 | 2009-03-12 | Sumitomo Electric Industries, Ltd. | Lithium battery |
US20160118693A1 (en) * | 2012-03-15 | 2016-04-28 | Erik K. Koep | Intercalated lithium batteries |
CN103855358A (en) * | 2012-12-07 | 2014-06-11 | 华为技术有限公司 | Lithium battery negative electrode as well as preparation method thereof, lithium battery and application |
CN105190969A (en) * | 2013-03-15 | 2015-12-23 | 赛昂能源有限公司 | Protective structures for electrodes |
CN106159200A (en) * | 2016-07-29 | 2016-11-23 | 中国科学院青岛生物能源与过程研究所 | A kind of lithium anode with protective coating and preparation thereof and application |
CN110495021A (en) * | 2017-06-21 | 2019-11-22 | 株式会社Lg化学 | Lithium secondary battery |
JP2021082561A (en) * | 2019-11-22 | 2021-05-27 | 東邦チタニウム株式会社 | Solid electrolyte, all-solid battery, and method for manufacturing solid electrolyte |
KR20220060989A (en) * | 2020-11-05 | 2022-05-12 | 한양대학교 산학협력단 | Negative electrode for lithium secondary battery and all-solid-state-lithium secondary battery comprising the same |
CN113991058A (en) * | 2021-10-26 | 2022-01-28 | 蜂巢能源科技有限公司 | Negative pole piece, solid-state battery and preparation method thereof |
CN114141980A (en) * | 2021-11-24 | 2022-03-04 | 蜂巢能源科技(无锡)有限公司 | Solid-state lithium-sulfur battery anode and all-solid-state lithium-sulfur battery |
Non-Patent Citations (1)
Title |
---|
魏浩,孔令伟,杨志: "《全固态锂电池》", 31 August 2021, 上海交通大学出版社有限公司, pages: 260 - 261 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108417777B (en) | Porous ternary composite positive plate and preparation method and application thereof | |
CN108140820A (en) | Cathode active material for lithium secondary battery and preparation method thereof | |
CN103413930A (en) | Modified LiNi1/2Mn3/2O4 cathode material prepared by coating with lithium ion conductor Li2MO3 (M=Ti, Si or Zr) and preparation method thereof | |
CN110233285A (en) | A method of improving solid state battery interface stability using polymer dielectric | |
CN110233244A (en) | A kind of nickelic tertiary cathode material particle surface stabilization treatment method | |
CN103066265A (en) | Sodium ion battery negative pole active substance and preparation method and application thereof | |
CN102938457B (en) | The preparation method of the coated lithium-rich manganese-based layered cathode material of a kind of NAF | |
CN106207130A (en) | A kind of lithium battery nickelic positive electrode of surface modification and preparation method thereof | |
CN103000874A (en) | Preparation method of carbon-coated ternary positive electrode material | |
CN103390748A (en) | Preparation method for cladding lithium cobaltoxide cathode material with alumina | |
CN108878827A (en) | A kind of nickelic tertiary cathode material and preparation method thereof of dioxygen compound cladding | |
CN114824247A (en) | Inorganic solid electrolyte coated high-voltage positive electrode material and preparation method and application thereof | |
CN115132986A (en) | Sodium ion battery and preparation method thereof | |
CN106058322B (en) | A kind of production method of high multiplying power electrokinetic cell | |
CN113264560A (en) | Double-coated NCM811 cathode material and preparation method thereof | |
CN101488568A (en) | Surface modification process used for lithium secondary battery positive pole active material | |
CN112194182A (en) | A kind of preparation method of positive electrode material of chromium oxide lithium ion battery containing lithiated polyacrylonitrile | |
CN108448072A (en) | Preparation method and application of a two-dimensional antimony trioxide nanosheet/reduced graphene oxide airgel composite electrode material | |
CN110176626B (en) | Ionic-electronic co-conductive material and preparation method and application thereof | |
CN118412528A (en) | Lithium ion battery solid electrolyte with anode-cathode interface modification and preparation method thereof | |
CN115566189B (en) | Perovskite film for all-solid-state battery interface protection and preparation method thereof | |
CN103296251B (en) | The preparation method of the anode material for lithium-ion batteries of the coated sulphur compound of lithium titanate | |
CN108649262B (en) | Organic silicon-based buffer layer for solid-state battery and preparation method and application thereof | |
CN117756192A (en) | Lithium ion battery anode material and preparation method thereof | |
CN115863533A (en) | Lithium metal cathode protection process for sulfide-based all-solid-state battery by using LBO self-supporting film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |