CN115863137A - A high time resolution photomultiplier tube and its realization method - Google Patents
A high time resolution photomultiplier tube and its realization method Download PDFInfo
- Publication number
- CN115863137A CN115863137A CN202211486084.5A CN202211486084A CN115863137A CN 115863137 A CN115863137 A CN 115863137A CN 202211486084 A CN202211486084 A CN 202211486084A CN 115863137 A CN115863137 A CN 115863137A
- Authority
- CN
- China
- Prior art keywords
- gating
- cathode
- electron multiplier
- time
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种光电倍增管及实现方法,具体涉及一种高时间分辨率光电倍增管及高时间分辨率光电倍增实现方法。The invention relates to a photomultiplier tube and a realization method thereof, in particular to a photomultiplier tube with high time resolution and a method for realizing photomultiplier with high time resolution.
背景技术Background technique
激光雷达是一种新兴的探测设备,因为其具备分辨率高、抗干扰性强、体积小、质量轻等特点,广泛应用于国家安全防护、科学研究、环境监测等领域。激光雷达的主要工作原理是向探测目标发射探测光信号,然后将从目标反射回来的光信号利用光电成像器件或者光电探测器件进行收集探测,再作适当处理后就可获得被探测目标的距离、形态、方位、速度等有关信息;作为激光雷达核心部件的光电探测器,其性能直接影响到激光雷达系统的参数,例如:光电探测器件的光电探测效率直接影响到激光雷达的有效探测距离、光电探测器件的时间分辨率则直接影响到激光雷达的探测精度;因此在激光雷达系统中使用的光电探测器需要具备较高的光子探测效率以及高时间分辨率特性,从而具备较高增益以及高时间分辨率。Lidar is an emerging detection device, because of its high resolution, strong anti-interference, small size, and light weight, it is widely used in national security protection, scientific research, environmental monitoring and other fields. The main working principle of lidar is to transmit detection light signals to the detection target, and then use the photoelectric imaging device or photodetection device to collect and detect the light signal reflected from the target, and then obtain the distance of the detected target after proper processing. Relevant information such as shape, orientation, speed, etc.; as the core component of lidar, the performance of the photodetector directly affects the parameters of the lidar system, for example: the photoelectric detection efficiency of the photodetector device directly affects the effective detection distance of the lidar The time resolution of the detection device directly affects the detection accuracy of the lidar; therefore, the photodetector used in the lidar system needs to have high photon detection efficiency and high time resolution characteristics, so as to have high gain and high time resolution.
现有激光雷达系统中的光电探测器通常选用光电倍增管,其中真空型光电倍增管由于具备探测面积大、电子增益高、暗噪声小、时间分辨率高等特性,非常适用于远距离、微弱光信号、大视场激光雷达系统。The photodetectors in existing lidar systems usually use photomultiplier tubes. Among them, vacuum photomultiplier tubes are very suitable for long-distance and weak light due to their characteristics of large detection area, high electronic gain, small dark noise, and high time resolution. Signal, large field of view lidar system.
虽然真空型光电倍增管在激光雷达系统中得到广泛应用,但是由于自身工作方式的限制使得真空型光电倍增管存在极限时间分辨率低的缺点;真空型光电倍增管的电子倍增器件主要有打拿电极以及微通道板电子倍增器件,两种电子倍增器件均是通过电子不断与器件有效电子倍增区域碰撞实现电子倍增;但是真空型光电倍增管中阴极出射电子以及碰撞反射电子的初始能量以及初始运动方向均存在差异,再加之在电子倍增区域内空间电荷效应的影响,使得光电倍增管中电子束向阳极运动过程中存到达时间也具备差异性,从而产生了光电倍增管的渡越时间弥散。Although vacuum-type photomultiplier tubes are widely used in lidar systems, due to the limitation of their own working methods, vacuum-type photomultiplier tubes have the disadvantage of low limit time resolution; the electron multiplier devices of vacuum-type photomultiplier tubes mainly include Electrodes and microchannel plate electron multiplication devices, both electron multiplication devices achieve electron multiplication through continuous collision of electrons with the effective electron multiplication area of the device; but the initial energy and initial motion of the cathode exiting electrons and collision reflected electrons in the vacuum photomultiplier tube There are differences in the directions, coupled with the influence of the space charge effect in the electron multiplication region, the arrival time of the electron beam in the photomultiplier tube is also different during the movement to the anode, resulting in the dispersion of the transit time of the photomultiplier tube.
综上所述,现有光电倍增管在电子倍增过程中存在渡越时间弥散,导致脉冲宽度较小的电子脉冲经过电子倍增后产生数倍的脉宽展宽,使得探测结果较原始信号产生探测失真,或者间隔时间短的两束电子脉冲在倍增过程中,前一脉冲的后沿部分与后一脉冲的前沿部分产生重叠,最终在阳极处同一输出导致难以识别两个脉冲的时间以及强度信息,进而影响了光电倍增管的时间分辨率。To sum up, the existing photomultiplier tubes have transit time dispersion in the process of electron multiplication, resulting in electron pulses with small pulse widths being multiplied by electrons to produce pulse widths that are several times wider, making the detection results more distorted than the original signal. , or during the multiplication process of two beams of electron pulses with a short interval, the trailing part of the previous pulse overlaps with the leading part of the following pulse, and finally the same output at the anode makes it difficult to identify the time and intensity information of the two pulses, This affects the time resolution of the photomultiplier tube.
发明内容Contents of the invention
本发明的目的是解决现有光电倍增管在电子倍增过程中存在渡越时间弥散,导致脉冲宽度较小的电子脉冲经过电子倍增后产生数倍的脉宽展宽,使得探测结果较原始信号产生探测失真,或者间隔时间短的两束电子脉冲在倍增过程中,前一脉冲的后沿部分与后一脉冲的前沿部分产生重叠,最终在阳极处同一输出导致难以识别两个脉冲的时间以及强度信息,进而影响了光电倍增管时间分辨率的技术问题,而提供一种高时间分辨率光电倍增管及实现方法。The purpose of the present invention is to solve the problem that the existing photomultiplier tube has transit time dispersion in the process of electron multiplication, which causes the electronic pulse with a small pulse width to produce several times of pulse width expansion after electron multiplication, so that the detection result is higher than that of the original signal. Distortion, or during the multiplication process of two electron pulses with a short interval, the trailing edge of the previous pulse overlaps with the leading edge of the next pulse, and finally the same output at the anode makes it difficult to identify the time and intensity information of the two pulses , thereby affecting the technical problem of the time resolution of the photomultiplier tube, and providing a photomultiplier tube with high time resolution and a realization method.
为实现上述目的,本发明所采用的技术方案为:To achieve the above object, the technical solution adopted in the present invention is:
一种高时间分辨率光电倍增管,其特殊之处在于:包括N个读出电极,以及设置于真空环境中的阴极、电子倍增器、N个选通电极和N个阳极,N为大于1的整数;A photomultiplier tube with high time resolution, which is special in that it includes N readout electrodes, cathodes, electron multipliers, N gate electrodes and N anodes arranged in a vacuum environment, and N is greater than 1 an integer of
所述阴极和电子倍增器相互平行设置,两者之间设有第一间隙,第一间隙的范围为0.5mm~5mm;The cathode and the electron multiplier are arranged in parallel with each other, and there is a first gap between them, and the range of the first gap is 0.5 mm to 5 mm;
N个所述选通电极均设置于第一间隙内,用于分别施加不同时间参数的选通脉冲控制阴极发射的电子是否可以进入电子倍增器中,N个所述选通电极的总面积等于阴极的有效面积,所述选通电极的一侧与阴极之间设置有第二间隙,第二间隙的范围为0.2mm~1mm,另一侧与电子倍增器之间设置有第三间隙,第三间隙的范围为0.3mm~4mm;The N gate electrodes are all arranged in the first gap, and are used to respectively apply gate pulses with different time parameters to control whether the electrons emitted by the cathode can enter the electron multiplier, and the total area of the N gate electrodes is equal to The effective area of the cathode, a second gap is set between one side of the gate electrode and the cathode, the second gap ranges from 0.2 mm to 1 mm, and a third gap is set between the other side and the electron multiplier. The range of three gaps is 0.3mm ~ 4mm;
N个所述阳极均设置于电子倍增器远离阴极一侧,用于收集经电子倍增器倍增后的电子,N个所述阳极与N个选通电极一一对应设置,所述阳极与电子倍增器之间设置有第四间隙,第四间隙的范围为1mm至5mm;The N anodes are all arranged on the side of the electron multiplier away from the cathode for collecting the electrons multiplied by the electron multiplier, and the N anodes are arranged in one-to-one correspondence with the N gate electrodes, and the anode and the electron multiplier A fourth gap is provided between the devices, and the range of the fourth gap is 1mm to 5mm;
N个所述读出电极的一端分别与N个阳极远离电子倍增器一侧连接,另一端用于与外部设备连接输出阳极收集的电子。One end of the N readout electrodes is respectively connected to the side of the N anodes away from the electron multiplier, and the other end is used to connect with an external device to output electrons collected by the anodes.
进一步地,所述电子倍增器为二次电子倍增材质的电子倍增器。Further, the electron multiplier is an electron multiplier made of a secondary electron multiplying material.
进一步地,所述电子倍增器为微通道板电子倍增器,或打拿电极电子倍增器。Further, the electron multiplier is a microchannel plate electron multiplier, or a dynode electron multiplier.
进一步地,所述阴极为紫外阴极、红外阴极或可见光阴极;Further, the cathode is an ultraviolet cathode, an infrared cathode or a visible light cathode;
所述阴极为薄板结构,N个所述选通电极沿阴极的长度方向布设。The cathode is a thin plate structure, and N gate electrodes are arranged along the length direction of the cathode.
进一步地,所述阳极为薄片形或锥形;Further, the anode is in the shape of a sheet or a cone;
所述选通电极的内部为正六边形网状结构,所述选通电极的形状与阳极的形状相同。The interior of the gate electrode is a regular hexagonal network structure, and the shape of the gate electrode is the same as that of the anode.
进一步地,所述读出电极为具有固定阻抗的电缆。Further, the readout electrode is a cable with fixed impedance.
进一步地,所述读出电极为金属导线,或同轴线缆。Further, the readout electrodes are metal wires or coaxial cables.
同时,本发明还提供了一种高时间分辨率光电倍增实现方法,,基于一种高时间分辨率光电倍增管,其特殊之处在于,包括以下步骤:At the same time, the present invention also provides a method for realizing photomultiplication with high time resolution, based on a photomultiplier tube with high time resolution, which is special in that it includes the following steps:
步骤1、对阴极、选通电极、电子倍增器和阳极分别施加不同大小的固定电位;
在选通电极与阴极之间形成固定电压差Vclo,使阴极发射电子不能通过选通电极;在选通电极与电子倍增器之间形成固定电子加速电压差Vac,使经过选通电极的电子可以进入电子倍增器中;在电子倍增器与阳极之间形成固定电子加速电压差Va,使经电子倍增器倍增后的电子可以进入阳极中;A fixed voltage difference V clo is formed between the gate electrode and the cathode, so that electrons emitted by the cathode cannot pass through the gate electrode; a fixed electron acceleration voltage difference V ac is formed between the gate electrode and the electron multiplier, so that electrons passing through the gate electrode Electrons can enter the electron multiplier; a fixed electron acceleration voltage difference V a is formed between the electron multiplier and the anode, so that the electrons multiplied by the electron multiplier can enter the anode;
步骤2、进行光信号探测时,给N个选通电极分别施加不同时间参数的选通脉冲,所述不同时间参数的选通脉冲为:N个选通脉冲的脉冲宽度的Td相同,Td的取值范围为1ps~1μs,N个选通脉冲的上升沿起始时间在时间轴上依次延后,相邻两个选通脉冲上升沿的起始时间差均为Δt;或,N个选通脉冲上升沿的起始时间相同,N个选通脉冲的脉冲宽度依次增大,相邻两个选通脉冲的脉冲宽度差值均为Δt;Δt的取值范围为1ps~500ns;Step 2, when performing optical signal detection, apply gate pulses with different time parameters to the N gate electrodes respectively, the gate pulses with different time parameters are: T d of the pulse width of the N gate pulses is the same, and T The value range of d is from 1 ps to 1 μs, the starting time of the rising edge of N strobe pulses is sequentially delayed on the time axis, and the starting time difference between the rising edges of two adjacent strobe pulses is Δt; or, N The starting time of the rising edge of the strobe pulse is the same, the pulse width of the N strobe pulses increases sequentially, and the pulse width difference between two adjacent strobe pulses is Δt; the value range of Δt is 1ps to 500ns;
相邻两个选通电极所施加的选通脉冲具有重叠时间段,N个选通电极所施加的选通脉冲叠加总时间大于待探测光信号的存续时间,且在上升沿起始时间最早、或脉冲宽度最小的选通脉冲持续时间段内待探测光信号未处于存续状态;The strobe pulses applied by two adjacent strobe electrodes have an overlapping time period, and the total time of the strobe pulse superposition applied by N strobe electrodes is greater than the duration of the optical signal to be detected, and the starting time of the rising edge is the earliest, Or the optical signal to be detected is not in a continuous state within the duration of the strobe pulse with the smallest pulse width;
该选通脉冲的幅值为Vg,Vg≥Vclo,使N个选通电极在相应选通脉冲的正脉冲时间段内处于选通状态;The amplitude of the strobe pulse is V g , V g ≥ V clo , so that the N strobe electrodes are in the strobe state during the positive pulse period of the corresponding strobe pulse;
步骤3、阳极在相应选通电极处于选通状态的时间段内、且待探测光信号处于存续状态时输出探测波形信号;
按照N个选通电极相应选通脉冲的上升沿在时间轴上的前后顺序,或脉冲宽度由短至长的顺序对探测波形信号进行排序;Sorting the detection waveform signals according to the order of the rising edges of the corresponding gate pulses of the N gate electrodes on the time axis, or the order of the pulse width from short to long;
步骤4、定义首先选通的选通电极或选通时间最短的选通电极对应的阳极为基础阳极,定义相邻两个阳极输出的探测波形信号非重叠时间段内输出的特征电荷量为Q3,计算除基础阳极外其余阳极非重叠时间段内输出的特征电荷量Q3;
对相邻两个阳极中后一阳极输出的探测波形信号进行积分处理得到该阳极输出的总电荷量Q1,对前一阳极输出的探测波形信号进行积分处理得到该阳极输出的总电荷量Q2,Q3=Q1-Q2;Integrate the detection waveform signal output by the latter anode among two adjacent anodes to obtain the total charge Q 1 output by the anode, and integrate the detection waveform signal output by the previous anode to obtain the total charge Q output by the anode 2 , Q 3 =Q 1 -Q 2 ;
步骤5、对得到的所有特征电荷量Q3分别进行反积分处理得到对应阳极的特征波形信号,按照不同时间参数选通脉冲的时序信息对得到的所有特征波形信号进行拟合重建,得到高时间分辨率的探测波形。
进一步地,步骤1中,Vclo<-5V,Vac>10V,Va>10V。Further, in
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
本发明通过设置的N个选通电极将光电倍增管划分为N个区域,每个区域不仅可以独立工作,可单独实现选通探测功能;同时也可以通过N个选通电极共同工作,实现光电倍增管中N个选通电极级联工作进行选通探测,拓展了单个器件的功能;通过对N个选通电极施加不同时间参数的选通脉冲,实现不同选通电极所处位置的探测时刻不同,从而通过阳极输出较短时间间隔内光信号的强度变化信息,进而反演出高时间精度的光信号强度变化波形,降低了探测结果较原始信号的探测失真程度,提高了光电倍增管的时间分辨率,使得光电倍增管的极限时间分辨率达到皮秒量级。The present invention divides the photomultiplier tube into N regions by setting N gating electrodes, and each region can not only work independently, but also realize the gating detection function independently; at the same time, N gating electrodes can also work together to realize photoelectric N gating electrodes in the multiplier tube are cascaded to perform gating detection, which expands the function of a single device; by applying gating pulses with different time parameters to the N gating electrodes, the detection time of different gating electrodes is realized. Different, so that the intensity change information of the optical signal in a short time interval is output through the anode, and then the optical signal intensity change waveform with high time accuracy is inverted, which reduces the detection distortion of the detection result compared with the original signal, and improves the time of the photomultiplier tube. The resolution makes the limit time resolution of the photomultiplier tube reach the picosecond level.
附图说明Description of drawings
图1是本发明一种高时间分辨率光电倍增管的结构示意图;Fig. 1 is the structural representation of a kind of high time resolution photomultiplier tube of the present invention;
图2是本发明一种高时间分辨率光电倍增实现方法的原理图;Fig. 2 is a schematic diagram of a method for realizing photomultiplication with high time resolution in the present invention;
图3是本发明实施例1中光电倍增管的结构示意图;Fig. 3 is the structural representation of photomultiplier tube in the
图4是本发明实施例1中选通脉冲的波形图;Fig. 4 is a waveform diagram of a gate pulse in
图5是本发明实施例1的高时间分辨率光电倍增实现过程示意图;Fig. 5 is a schematic diagram of the implementation process of photomultiplication with high time resolution in
图6是本发明实施例2中选通脉冲的波形图;Fig. 6 is a waveform diagram of a strobe pulse in Embodiment 2 of the present invention;
图7是本发明实施例2的高时间分辨率光电倍增实现过程示意图。Fig. 7 is a schematic diagram of the implementation process of photomultiplication with high time resolution in Embodiment 2 of the present invention.
图中,1-阴极,2-电子倍增器,3-选通电极,4-阳极,5-读出电极。In the figure, 1-cathode, 2-electron multiplier, 3-gate electrode, 4-anode, 5-readout electrode.
具体实施方式Detailed ways
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明提出的一种高时间分辨率光电倍增管及实现方法作进一步详细说明。根据下面具体实施方式,本发明的优点和特征将更清楚。需要说明的是:附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的;其次,附图所展示的结构往往是实际结构的一部分。In order to make the purpose, advantages and features of the present invention clearer, a high-time-resolution photomultiplier tube proposed by the present invention and its implementation method will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. The advantages and features of the present invention will be more clear from the following specific embodiments. It should be noted that: the drawings are all in a very simplified form and use inaccurate proportions, which are only used to facilitate and clearly illustrate the purpose of the embodiments of the present invention; secondly, the structures shown in the drawings are often actual structures part.
如图1所示,本发明一种高时间分辨率光电倍增管,包括N个读出电极5,以及设置于真空环境中的阴极1、电子倍增器2、N个选通电极3和N个阳极4,N为大于1的整数。As shown in Figure 1, a high time resolution photomultiplier tube of the present invention includes
阴极1和电子倍增器2相互平行设置,两者之间设有第一间隙,第一间隙的范围为0.5mm~5mm;其中阴极1为紫外阴极、红外阴极或可见光阴极,且为薄板结构;电子倍增器2为通过二次电子倍增材料实现电子倍增的结构,具体的,电子倍增器2为微通道板电子倍增器,或打拿电极电子倍增器;The
N个选通电极3均设置于第一间隙内,用于分别施加不同时间参数的选通脉冲控制阴极1发射的电子是否可以进入电子倍增器2中,N个选通电极3沿阴极1的长度方向布设,N个选通电极3的总面积等于阴极1的有效面积,选通电极3的一侧与阴极1之间设置有第二间隙,第二间隙的范围为0.2mm~1mm,另一侧与电子倍增器2之间设置有第三间隙,第三间隙的范围为0.3mm~4mm;选通电极3内部为正六边形网状结构的金属部件%,并且选通电极3的形状与下面将要详细描述的阳极4形状相同;The
N个阳极4均设置于电子倍增器2远离阴极1一侧,用于收集经电子倍增器2倍增后的电子,N个阳极4与N个选通电极3一一对应设置,阳极4的形状为薄片形或锥形,阳极4与电子倍增器2之间设置有第四间隙,第四间隙的范围为1mm至5mm;The N anodes 4 are all arranged on the side of the electron multiplier 2 away from the
N个读出电极5的一端分别与N个阳极4远离电子倍增器2一侧连接,另一端用于与外部电器连接输出阳极4收集的电子,读出电极5为金属导线、同轴线缆或具有固定阻抗的电缆。One end of the
如图2所示,本发明一种高时间分辨率光电倍增的实现方法,基于一种高时间分辨率光电倍增管,包括以下步骤:As shown in Fig. 2, a kind of realization method of high time resolution photomultiplier of the present invention, based on a kind of high time resolution photomultiplier tube, comprises the following steps:
步骤1、对阴极1、选通电极3、电子倍增器2和阳极4分别施加不同大小的固定电位;
在选通电极3与阴极1之间形成固定电压差Vclo,Vclo<-5V,使阴极1发射电子不能通过选通电极3;在选通电极3与电子倍增器2之间形成固定电子加速电压差Vac,Vac>10V,使经过选通电极3的电子可以进入电子倍增器2中;在电子倍增器2与阳极4之间形成固定电子加速电压差Va,Va>10V,使经电子倍增器2倍增后的电子可以进入阳极4中;A fixed voltage difference V clo is formed between the
步骤2、进行光信号探测时,给N个选通电极3分别施加不同时间参数的选通脉冲,具体的,不同时间参数的选通脉冲为:N个选通脉冲的脉冲宽度的Td相同,Td的取值范围为1ps~1μs,N个选通脉冲的上升沿起始时间在时间轴上依次延后,相邻两个选通脉冲上升沿的起始时间差均为Δt;或,N个选通脉冲上升沿的起始时间相同,N个选通脉冲的脉冲宽度依次增大,相邻两个选通脉冲的脉冲宽度差值均为Δt;Δt的取值范围为1ps~500ns;Step 2. When performing optical signal detection, respectively apply gate pulses with different time parameters to the
相邻两个选通电极3所施加的选通脉冲具有重叠时间段,N个选通电极3所施加的选通脉冲叠加总时间大于待探测光信号的存续时间,且在上升沿起始时间最早、或脉冲宽度最小的选通脉冲持续时间段内待探测光信号未处于存续状态;The strobe pulses applied by two
选通脉冲的幅值为Vg,Vg≥Vclo,使N个选通电极3在相应选通脉冲的正脉冲时间段内处于选通状态;The amplitude of the gate pulse is V g , V g ≥ V clo , so that the
步骤3、阳极4在相应选通电极3处于选通状态的时间段内、且待探测光信号处于存续状态时输出探测波形信号;
按照N个选通电极3相应选通脉冲的上升沿在时间轴上的前后顺序,或脉冲宽度由短至长的顺序对探测波形信号进行排序;Sorting the detection waveform signals according to the order of the rising edges of the corresponding gate pulses of the
步骤4、定义首先选通的选通电极3或选通时间最短的选通电极3对应的阳极4为基础阳极4,定义相邻两个阳极4输出的探测波形信号非重叠时间段内输出的特征电荷量为Q3,计算除基础阳极4外其余阳极4非重叠时间段内输出的特征电荷量Q3,具体为:
对相邻两个阳极4中后一阳极4输出的探测波形信号进行积分处理得到该阳极4输出的总电荷量Q1,对前一阳极4输出的探测波形信号进行积分处理得到该阳极4输出的总电荷量Q2,Q3=Q1-Q2;Integrate the detection waveform signal output by the
步骤5、对得到的所有特征电荷量Q3分别进行反积分处理得到对应阳极4的特征波形信号,按照不同时间参数选通脉冲的时序信息对得到的所有特征波形信号进行拟合重建,得到高时间分辨率的探测波形。
实施例1Example 1
如图3所示,在本实施例中电子倍增器2选用微通道板电子倍增器2,由两块长方形MCP板(微通道板)构成,选通电极3和阳极4的数量均为四个,阴极1与选通电极3之间的距离为0.4mm,选通电极3与电子倍增器2输入面之间的距离为1mm,电子倍增器2与阳极4之间的距离为1mm。As shown in Figure 3, electron multiplier 2 selects microchannel plate electron multiplier 2 for use in the present embodiment, is made of two rectangular MCP boards (microchannel plate), and the quantity of
在本实施例中电子倍增管采用负电压工作方式,选通电极3初始电压为-2000V,阴极1电压为-1995V,电子倍增器2输入电极电压为-1800V,电子倍增器2输出电极电压为-200V,此时光电倍增管中阴极1的发射电子不能通过选通电极3,光电倍增管处于截至状态,但是电子倍增器2处于正常的工作状态,若有电子输入时就可实现电子倍增功能。In this embodiment, the electron multiplier tube adopts a negative voltage working mode, the initial voltage of the
图4所示,在进行光信号探测时,向选通电极3施加不同时间参数的电子脉冲,定义电子脉冲分别为第一路电子脉冲、第二路电子脉冲、…、第N路电子脉冲,相应的,选通电极3分别为第一路选通电极、第二路选通电极、…、第N路选通电极,其中第一路脉冲信号施加于第一个选通电极、第二路脉冲信号施加于第二个选通电极,以此类推,第N路选通脉冲施加于第N个选通电极上;在本实施例中,选通脉冲的幅值为10V,所有选通脉冲的起始时间均相同,但是脉冲宽度逐次递增500ps。As shown in FIG. 4, when performing optical signal detection, electronic pulses with different time parameters are applied to the
如图5所示,对本发明光电倍增管对光信号进行探测时,尽管第一路选通电极施加了第一个选通脉冲,但是由于在选通脉冲持续的时间段内没有光信号照射于阴极1处,因此此时施加选通脉冲的第一个选通电极所对应阳极4并没有探测信号波形输出;随着选通脉冲时间的推移,当第二路选通脉冲施加于第二个选通电极时,第二路选通脉冲覆盖的时间段内出现首个光信号脉冲,此时第二个选通电极对应阳极4输出相应的探测信号波形并记录相应波形信息,计算此波形信息对应的时间信息、强度信息等,并对探测波形进行积分处理得到总输出电荷量,即为500ps内(中点处标记为t2)探测电荷量;接下来第三个选通电极施加第3路选通脉冲,选通脉冲覆盖的时间段内除首个光信号脉冲还未出现第二个光信号脉冲,此时对应阳极4输出波形以及电荷总量与第二阳极4输出电荷总量一致,此时用第三阳极4输出电荷总量减去第二阳输出电荷总量,既可得第二个500ps内(中点处标记为t3)探测电荷量;接下来第四个选通电极施加第四路选通脉冲,选通脉冲覆盖的时间段内除首个光信号脉冲还出现第二个光信号脉冲,此时第四个选通电极对应阳极4输出电荷总量也包含了两个光脉冲信号对应的电荷量,此时用第四个选通电极对应的阳极4输出电荷总量减去第三个选通电极对应阳极4输出电荷总量,既可得第三个500ps内(中点处标记为t4)探测电荷量;依此探测方法可计算出各个阳极4相邻500ps内的探测电荷量,并将这些电荷量信息进行反积分处理得到相对应的特征波形信号,并按照时间的前后顺序征对波形信号进行拟合重建就可还原出各个被探测光脉冲的高精度时间和强度信息,实现光电倍增管高时间分辨率探测功能。As shown in Figure 5, when the photomultiplier tube of the present invention detects the optical signal, although the first gate pulse is applied to the first gate electrode, since there is no light signal irradiated on the gate pulse during the duration of the
由于相邻两个选通脉冲之间的时间差为500ps,因此对应相邻两个阳极4输出信号的时间差也为500ps,对相邻阳极4输出信号进出计算可得到光信号在500ps时间间隔时的强度变化趋势,从而时间此光电倍增管的时间分辨率达到500ps。如果选取Δt的数值更小,达到皮秒量级时,因此本发明高时间分辨率光电倍增管的极限时间分辨率可以达到皮秒量级。Since the time difference between two adjacent strobe pulses is 500ps, the time difference corresponding to the output signals of two
实施例2Example 2
本实施案例中光电倍增管的结构、工作电压施加的方式以及数值均与实施案例1结构相同。In this implementation case, the structure of the photomultiplier tube, the way of applying the working voltage and the numerical value are all the same as those of the
如图6所示,其中第一路脉冲信号施加于第一个选通电极、第二路脉冲信号施加于第二选通电极,以此类推,第N路选通脉冲施加于第N个选通电极上。在本实施例中,选通脉冲的幅值为10V,所有选通脉冲的宽度Td均为10ns,相邻两路脉冲之间的起始时间差均为Δt,Δt的值为500ps。As shown in Figure 6, the first pulse signal is applied to the first gate electrode, the second pulse signal is applied to the second gate electrode, and so on, the Nth gate pulse is applied to the Nth gate electrode. on the electrode. In this embodiment, the amplitude of the gate pulse is 10V, the width Td of all gate pulses is 10 ns, and the start time difference between two adjacent pulses is Δt, and the value of Δt is 500 ps.
如图7所示,本实施例的具体探测过程与实施案例1相同,但是在进行各个阳极4之间的波形处理时,用第三个选通电极对应阳极输出的探测电荷总量与第二个选通电极对应阳极输出的探测电荷总量在相重叠时间段内积分所得电荷量做减法处理,就可以得到第三个选通电极对应的阳极输出信号在最后500ps内的探测电荷量,同理可以取得其他阳极4最后500ps内的探测电荷量。将这些探测电荷量信息进行反积分处理得到特征波形信号,特征波形信号按照时间的前后顺序进行拟合重建就可还原出各个被探测光脉冲的高精度时间和强度信息,实现光电倍增管高时间分辨率探测功能。同理如果选取Δt的数值更小,达到皮秒量级时,本发明高时间分辨率光电倍增管的极限时间分辨率也可达到皮秒量级。As shown in Figure 7, the specific detection process of this embodiment is the same as that of
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211486084.5A CN115863137B (en) | 2022-11-24 | 2022-11-24 | High-time-resolution photomultiplier and implementation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211486084.5A CN115863137B (en) | 2022-11-24 | 2022-11-24 | High-time-resolution photomultiplier and implementation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115863137A true CN115863137A (en) | 2023-03-28 |
CN115863137B CN115863137B (en) | 2024-12-24 |
Family
ID=85666140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211486084.5A Active CN115863137B (en) | 2022-11-24 | 2022-11-24 | High-time-resolution photomultiplier and implementation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115863137B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115046631A (en) * | 2022-04-28 | 2022-09-13 | 中国科学院西安光学精密机械研究所 | Gating type large-dynamic-detection-range photoelectric detector and control method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030127582A1 (en) * | 2002-01-10 | 2003-07-10 | Gareth Jones | Method for enhancing photomultiplier tube speed |
CN101116168A (en) * | 2005-02-09 | 2008-01-30 | 福通尼斯公司 | Photomultiplier tube with least transit time variations |
US20080265768A1 (en) * | 2007-04-26 | 2008-10-30 | Dept Of Navy | Gating large area hybrid photomultiplier tube |
CN108257844A (en) * | 2018-02-02 | 2018-07-06 | 中国科学院西安光学精密机械研究所 | Gating focusing type photomultiplier |
CN110379702A (en) * | 2019-06-18 | 2019-10-25 | 中国科学院西安光学精密机械研究所 | A kind of adaptive Larger Dynamic range photomultiplier tube |
CN110828276A (en) * | 2019-11-19 | 2020-02-21 | 金陵科技学院 | Large-area photomultiplier with hybrid electron multiplication system |
CN211014002U (en) * | 2019-11-19 | 2020-07-14 | 西安中科英威特光电技术有限公司 | Spectrometer based on electric vacuum device |
-
2022
- 2022-11-24 CN CN202211486084.5A patent/CN115863137B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030127582A1 (en) * | 2002-01-10 | 2003-07-10 | Gareth Jones | Method for enhancing photomultiplier tube speed |
CN101116168A (en) * | 2005-02-09 | 2008-01-30 | 福通尼斯公司 | Photomultiplier tube with least transit time variations |
US20080265768A1 (en) * | 2007-04-26 | 2008-10-30 | Dept Of Navy | Gating large area hybrid photomultiplier tube |
CN108257844A (en) * | 2018-02-02 | 2018-07-06 | 中国科学院西安光学精密机械研究所 | Gating focusing type photomultiplier |
CN110379702A (en) * | 2019-06-18 | 2019-10-25 | 中国科学院西安光学精密机械研究所 | A kind of adaptive Larger Dynamic range photomultiplier tube |
CN110828276A (en) * | 2019-11-19 | 2020-02-21 | 金陵科技学院 | Large-area photomultiplier with hybrid electron multiplication system |
CN211014002U (en) * | 2019-11-19 | 2020-07-14 | 西安中科英威特光电技术有限公司 | Spectrometer based on electric vacuum device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115046631A (en) * | 2022-04-28 | 2022-09-13 | 中国科学院西安光学精密机械研究所 | Gating type large-dynamic-detection-range photoelectric detector and control method thereof |
CN115046631B (en) * | 2022-04-28 | 2024-12-24 | 中国科学院西安光学精密机械研究所 | A gated photoelectric detector with large dynamic detection range and a control method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115863137B (en) | 2024-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2199830B1 (en) | A position resolved measurement apparatus and a method for acquiring space coordinates of a quantum beam incident thereon | |
Adams et al. | Timing characteristics of large area picosecond photodetectors | |
CN108257844B (en) | Gating focusing type photomultiplier | |
WO2010070111A1 (en) | A time resolved measurement apparatus and a time sensitive detector with improved time measurement | |
CN115863137B (en) | High-time-resolution photomultiplier and implementation method | |
US7112773B2 (en) | Bleeder powered gating amplifier | |
KR101058672B1 (en) | Time resolution measuring device | |
Pietri | Contribution of the channel electron multiplier to the race of vacuum tubes towards picosecond resolution time | |
JPH02234049A (en) | Streak camera apparatus | |
Downie et al. | High-resolution position-sensing resistive anode microchannel plate detector systems suitable for megahertz count-rates | |
Boutot et al. | Ultrahigh-speed microchannel photomultiplier | |
Hocker et al. | Characterization of microchannel plate photomultipliers for plasma diagnostics | |
CN207896063U (en) | Gating focusing type photomultiplier | |
JPH056124B2 (en) | ||
Kinoshita et al. | Streak tube with microchannel plate | |
Anton et al. | A hybrid photodetector using the Timepix semiconductor assembly for photoelectron detection | |
US3941997A (en) | Method and a device for localizing a light impact on the photocathode of a photomultiplier | |
US7242008B2 (en) | Bipolar ion detector | |
RU2190196C1 (en) | Procedure registering weak light signals and device for its implementation | |
CN217426380U (en) | Time broadening framing camera performance measurement system | |
CN115046631A (en) | Gating type large-dynamic-detection-range photoelectric detector and control method thereof | |
Martindale et al. | Photon counting with small pore microchannel plates | |
JP2556337B2 (en) | Elementary particle time correlation measuring device | |
CN118583284A (en) | High-frequency sampling detection method of gated photomultiplier tube | |
JPS603229A (en) | Pulse signal processing circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |