CN115857136A - Digital auto-collimation theodolite optical system with automatic focusing function - Google Patents
Digital auto-collimation theodolite optical system with automatic focusing function Download PDFInfo
- Publication number
- CN115857136A CN115857136A CN202211354591.3A CN202211354591A CN115857136A CN 115857136 A CN115857136 A CN 115857136A CN 202211354591 A CN202211354591 A CN 202211354591A CN 115857136 A CN115857136 A CN 115857136A
- Authority
- CN
- China
- Prior art keywords
- focusing
- objective lens
- focusing lens
- autocollimation
- prism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 103
- 238000005259 measurement Methods 0.000 claims description 32
- 239000005338 frosted glass Substances 0.000 claims description 20
- 238000012546 transfer Methods 0.000 claims description 14
- 230000000007 visual effect Effects 0.000 claims description 13
- 238000004458 analytical method Methods 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 8
- 238000004026 adhesive bonding Methods 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 6
- 238000009434 installation Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 208000003464 asthenopia Diseases 0.000 claims description 4
- 238000007405 data analysis Methods 0.000 claims description 4
- 125000006850 spacer group Chemical group 0.000 claims description 4
- 238000001514 detection method Methods 0.000 abstract description 5
- 230000006870 function Effects 0.000 description 15
- 230000004075 alteration Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 5
- 238000005286 illumination Methods 0.000 description 4
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Telescopes (AREA)
Abstract
本申请公开了一种具有自动调焦功能的数字自准直经纬仪光学系统。包括:自动调焦装置,自动调焦装置包括:物镜组件,物镜组件包括:主筒;主筒具有第一段和第二段,第一段设有物镜组;第二段靠近第一段的外壁设有驱动件;调焦组件,调焦组件包括:调焦镜筒;调焦镜筒套设在第二段上;调焦镜筒内部设有调焦镜组;调焦镜筒的外壁设有螺纹座;驱动件的驱动轴通过螺纹轴与螺纹座螺纹连接;驱动件动作时,带动螺纹轴转动,调节螺纹轴与螺纹座之间的相对位置,使主筒与调焦镜筒之间的相对位置发生改变,以调整物镜组与调焦镜组之间的焦距。相较于传统人工操作,本系统精准调节物镜组与调焦镜组之间焦距,提升检测效率与精度的同时还能提高自动化水平。
The application discloses a digital autocollimation theodolite optical system with automatic focusing function. Including: automatic focusing device, the automatic focusing device includes: objective lens assembly, the objective lens assembly includes: main tube; the main tube has a first section and a second section, the first section is provided with an objective lens group; the second section is close to the first section The outer wall is provided with a driving part; the focusing assembly includes: a focusing lens barrel; the focusing lens barrel is sleeved on the second section; a focusing lens group is arranged inside the focusing lens barrel; There is a threaded seat; the driving shaft of the driving part is threadedly connected with the threaded seat through the threaded shaft; when the driving part moves, the threaded shaft is driven to rotate, and the relative position between the threaded shaft and the threaded seat is adjusted to make the distance between the main tube and the focusing lens tube The relative position between them is changed to adjust the focal length between the objective lens group and the focusing lens group. Compared with the traditional manual operation, this system precisely adjusts the focal length between the objective lens group and the focusing lens group, which not only improves the detection efficiency and accuracy, but also improves the automation level.
Description
技术领域Technical Field
本公开一般涉及系统装配精密测量技术领域,具体涉及一种具有自动调焦功能的数字自准直经纬仪光学系统。The present disclosure generally relates to the technical field of system assembly precision measurement, and in particular to a digital autocollimation theodolite optical system with an automatic focusing function.
背景技术Background Art
随着我国航天事业的大力发展,航天载荷系统装调检测任务通常依赖准直测量系统,但是航天载荷系统装调检测任务繁重和复杂,要求测量设备应具有更高精度、更加便携、更加集成的功能。采用的传统的电子经纬仪、自准直仪等仪器已经不能满足高效高质完成角度、姿态参数测量和坐标测量等复杂检测任务的要求。With the vigorous development of my country's aerospace industry, the installation and adjustment of aerospace payload systems usually rely on collimation measurement systems. However, the installation and adjustment of aerospace payload systems is arduous and complex, requiring the measurement equipment to have higher precision, more portable, and more integrated functions. The traditional electronic theodolites, autocollimators and other instruments used can no longer meet the requirements of completing complex inspection tasks such as angle, attitude parameter measurement and coordinate measurement with high efficiency and quality.
然而,目前大多所使用的光电自准直经纬仪及目标瞄准过程中必须依赖人工操作,容易引起误差,出现检测效率低下,精度低的问题。因此我们提出一种具有自动调焦功能的数字自准直经纬仪光学系统,用以解决上述问题。However, most of the photoelectric autocollimation theodolites and target aiming processes currently used must rely on manual operation, which is prone to errors, resulting in low detection efficiency and low accuracy. Therefore, we propose a digital autocollimation theodolite optical system with automatic focusing function to solve the above problems.
发明内容Summary of the invention
鉴于现有技术中的上述缺陷或不足,期望提供一种提高自动化水平,提升检测效率与精度的具有自动调焦功能的数字自准直经纬仪光学系统。In view of the above-mentioned defects or deficiencies in the prior art, it is desired to provide a digital autocollimation theodolite optical system with an automatic focusing function, which improves the automation level and enhances the detection efficiency and accuracy.
本申请提供一种具有自动调焦功能的数字自准直经纬仪光学系统,The present application provides a digital autocollimation theodolite optical system with an automatic focusing function.
所述光学系统可通过自动调焦实现具有精度更高的光电自准直功能,并且能实现失准角的自动测量和数据分析,同时还可以自动调焦为测点模式,根据不同距离值实现自动调焦对准;The optical system can realize a photoelectric self-collimation function with higher precision through automatic focusing, and can realize automatic measurement and data analysis of misalignment angles. At the same time, it can also automatically focus to a measuring point mode and realize automatic focusing alignment according to different distance values;
所述光学系统通过在镜筒总长度不变情况下,实现自准直光路焦距的大幅度增长,实现高精度的自准直角度测量,同时使用CCD图像自动采集有效避免了光学自准直过程中由于人眼疲劳和不同人眼视差产生的测量误差,配备测量和数据分析软件,能够快速给出分析结果;The optical system achieves a substantial increase in the focal length of the autocollimation optical path while keeping the total length of the lens barrel unchanged, thereby achieving high-precision autocollimation angle measurement. At the same time, the automatic acquisition of CCD images effectively avoids measurement errors caused by eye fatigue and different parallaxes of the human eye during the optical autocollimation process. The system is equipped with measurement and data analysis software, which can quickly provide analysis results.
所述光学系统,包括:The optical system comprises:
自动调焦装置,所述自动调焦装置包括:An automatic focusing device, the automatic focusing device comprising:
物镜组件,所述物镜组件包括:主筒;所述主筒具有第一段和第二段,所述第一段设有物镜组;所述第二段靠近第一段的外壁设有驱动件;The objective lens assembly comprises: a main barrel; the main barrel has a first section and a second section, the first section is provided with an objective lens group; the second section is provided with a driving member on an outer wall close to the first section;
调焦组件,所述调焦组件包括:调焦镜筒;所述调焦镜筒套设在所述第二段上;所述调焦镜筒内部设有调焦镜组;所述调焦镜筒的外壁设有螺纹座;A focusing assembly, the focusing assembly comprising: a focusing lens barrel; the focusing lens barrel is sleeved on the second section; a focusing lens group is arranged inside the focusing lens barrel; and a threaded seat is arranged on the outer wall of the focusing lens barrel;
所述驱动件的驱动轴通过螺纹轴与所述螺纹座螺纹连接;所述驱动件动作时,带动螺纹轴转动,调节螺纹轴与螺纹座之间的相对位置,使得主筒与调焦镜筒之间的相对位置发生改变,以调整物镜组与调焦镜组之间的焦距;The driving shaft of the driving member is threadedly connected to the threaded seat through a threaded shaft; when the driving member is in motion, the threaded shaft is driven to rotate, and the relative position between the threaded shaft and the threaded seat is adjusted, so that the relative position between the main barrel and the focusing lens barrel is changed, so as to adjust the focal length between the objective lens group and the focusing lens group;
目视光学自准直组件,所述目视光学自准直组件包括:第一LED光源、第一毛玻璃、第一分划板、第一直角棱镜、第一分光棱镜、第二分光棱镜、物镜组、自准直反射镜、调焦镜组、转像棱镜、第二分划板和目镜组;第一分划板的下方依次设置有第二毛玻璃和第二LED光源;A visual optical self-collimation component, the visual optical self-collimation component comprising: a first LED light source, a first frosted glass, a first graticule, a first right-angle prism, a first beam splitter prism, a second beam splitter prism, an objective lens group, a self-collimation reflector, a focusing lens group, an image transfer prism, a second graticule and an eyepiece group; a second frosted glass and a second LED light source are sequentially arranged below the first graticule;
控制单元,其与驱动件电连接,控制单元向驱动件发送控制指令,驱动件接收控制指令,根据控制指令进行转动,使得螺纹轴在螺纹座内伸缩,当物镜组与调焦镜组之间的焦距达到预设焦距值时驱动件停止动作,驱动件的驱动轴将螺纹轴与螺纹座的相对位置锁定;通过事先标定确定移动位置与焦距的对应关系,根据测距值通过控制单元控制驱动件的启停进行调节,以进一步提升调焦的自动化程度。A control unit is electrically connected to the driving member. The control unit sends a control instruction to the driving member. The driving member receives the control instruction and rotates according to the control instruction, so that the threaded shaft can be extended and retracted in the threaded seat. When the focal length between the objective lens group and the focusing lens group reaches a preset focal length value, the driving member stops moving, and the driving shaft of the driving member locks the relative position of the threaded shaft and the threaded seat. The corresponding relationship between the moving position and the focal length is determined by prior calibration, and the start and stop of the driving member are controlled by the control unit according to the ranging value for adjustment, so as to further improve the degree of automation of focusing.
根据本申请实施例提供的技术方案,所述驱动件为电驱动电机。According to the technical solution provided in the embodiment of the present application, the driving component is an electric drive motor.
根据本申请实施例提供的技术方案,所述物镜组包括:第一望远物镜和第二望远物镜,所述第一望远物镜相对第二望远物镜远离所述调焦镜筒设置。According to the technical solution provided in the embodiment of the present application, the objective lens group includes: a first telephoto objective lens and a second telephoto objective lens, and the first telephoto objective lens is arranged away from the focusing lens barrel relative to the second telephoto objective lens.
根据本申请实施例提供的技术方案,所述物镜组件还包括:According to the technical solution provided in the embodiment of the present application, the objective lens assembly further includes:
物镜座,设置在所述第一段靠近其自由端的位置;所述物镜座上开设有安装通道,用于安装第一望远物镜和第二望远物镜;An objective lens seat is arranged at a position of the first section close to the free end thereof; the objective lens seat is provided with a mounting channel for mounting a first telephoto objective lens and a second telephoto objective lens;
物镜框,设置在所述第一段的自由端,所述物镜框与所述第一段之间形成安装空间,用于安装物镜座;An objective lens frame is arranged at the free end of the first section, and an installation space is formed between the objective lens frame and the first section for installing an objective lens seat;
物镜隔圈,设置在所述第一望远物镜和第二望远物镜之间的间隙处;An objective lens spacer, arranged at a gap between the first telephoto objective lens and the second telephoto objective lens;
物镜罩,罩设在所述物镜框外部;An objective lens cover, which is arranged outside the objective lens frame;
光阑,设置在所述第一段内部,且所述光阑位于所述物镜组与所述调焦镜组之间。An aperture is arranged inside the first section, and the aperture is located between the objective lens group and the focusing lens group.
根据本申请实施例提供的技术方案,所述调焦镜组包括:According to the technical solution provided in the embodiment of the present application, the focusing lens group includes:
第一调焦镜和第二调焦镜,所述第一调焦镜相对第二调焦镜靠近所述第二望远物镜设置。A first focusing lens and a second focusing lens, wherein the first focusing lens is arranged relative to the second focusing lens and close to the second telephoto objective lens.
根据本申请实施例提供的技术方案,所述调焦组件还包括:According to the technical solution provided in the embodiment of the present application, the focusing component also includes:
调焦镜座,位于所述调焦镜筒内,且其与所述调焦镜筒内壁连接;所述调焦镜座靠近所述第二望远物镜的一侧形成有安装面,用于安装所述第二调焦镜;A focusing lens seat is located in the focusing lens barrel and connected to the inner wall of the focusing lens barrel; a mounting surface is formed on a side of the focusing lens seat close to the second telephoto objective lens for mounting the second focusing lens;
调焦镜管,设置在所述调焦镜座上,其靠近第二望远物镜,所述调焦镜管内部安装有所述第一调焦镜;A focusing lens tube, which is arranged on the focusing lens seat and is close to the second telephoto objective lens, and the first focusing lens is installed inside the focusing lens tube;
弹簧片,设置在所述第一调焦镜与第二调焦镜之间。The spring sheet is arranged between the first focusing lens and the second focusing lens.
根据本申请实施例提供的技术方案,还包括:The technical solution provided in the embodiment of the present application also includes:
调焦式变焦系统,所述调焦式变焦系统包括:物镜组、调焦镜组、转像棱镜和目镜组;A focus-adjustable zoom system, comprising: an objective lens group, a focusing lens group, an image transfer prism and an eyepiece group;
自准直光学系统,所述自准直光学系统包括:目视光学自准直组件和光电自准直组件;An autocollimation optical system, the autocollimation optical system comprising: a visual optical autocollimation component and a photoelectric autocollimation component;
所述目视光学自准直组件包括:第一LED光源、第一毛玻璃、第一分划板、第一直角棱镜、第一分光棱镜、第二分光棱镜、物镜组、自准直反射镜、调焦镜组、转像棱镜、第二分划板和目镜组;所述第一分划板的下方依次设置有第二毛玻璃和第二LED光源;The visual optical autocollimation assembly comprises: a first LED light source, a first frosted glass, a first graticule, a first right-angle prism, a first beam splitter, a second beam splitter, an objective lens group, an autocollimation reflector, a focusing lens group, an image transfer prism, a second graticule and an eyepiece group; a second frosted glass and a second LED light source are sequentially arranged below the first graticule;
所述光电自准直组件包括:第一LED光源、第一毛玻璃、第一分划板、第一直角棱镜、第一分光棱镜、第二分光棱镜、物镜组、自准直反射镜、第二直角棱镜、第一CCD调焦透镜、滤光片和第二CCD调焦透镜。The photoelectric autocollimation assembly includes: a first LED light source, a first frosted glass, a first graticule, a first right-angle prism, a first beam splitter prism, a second beam splitter prism, an objective lens group, an autocollimation reflector, a second right-angle prism, a first CCD focusing lens, a filter, and a second CCD focusing lens.
根据本申请实施例提供的技术方案,所述第一望远物镜相对靠近所述自准直反射镜设置。According to the technical solution provided in the embodiment of the present application, the first telescopic objective lens is arranged relatively close to the autocollimating reflector.
根据本申请实施例提供的技术方案,所述目镜组包括:顺次设置的第一目镜、第二目镜和第三目镜,所述第一目镜相对靠近转像棱镜设置;According to the technical solution provided in the embodiment of the present application, the eyepiece set includes: a first eyepiece, a second eyepiece and a third eyepiece arranged in sequence, wherein the first eyepiece is arranged relatively close to the image relay prism;
所述转像棱镜为普罗棱镜,其由三个直角棱镜胶合形成;第一分光棱镜和第二分光棱镜均由四个直角棱镜胶合形成,并且,单个棱镜的加工公差进行设计才能做到加工难度和设计标准的相互契合,避免入射光轴与出射光轴产生偏折。The image-transmitting prism is a Porro prism, which is formed by gluing three right-angle prisms together; the first beam splitter prism and the second beam splitter prism are both formed by gluing four right-angle prisms together, and the processing tolerance of a single prism is designed to achieve a mutual fit between the processing difficulty and the design standard, thereby avoiding deflection of the incident light axis and the output light axis.
根据本申请实施例提供的技术方案,所述调焦镜组包括:第一调焦镜和第二调焦镜,所述第一调焦镜相对靠近所述第二分划板设置。According to the technical solution provided in the embodiment of the present application, the focusing lens group includes: a first focusing lens and a second focusing lens, and the first focusing lens is arranged relatively close to the second graticule.
综上所述,本申请具体地公开了一种具有自动调焦功能的数字自准直经纬仪光学系统的具体结构。本申请设计自动调焦装置,其具有配合使用的物镜组件和调焦组件,物镜组件包括主筒,其具有第一段和第二段,第一段内部设有物镜组,第二段靠近第一段的外壁上设有驱动件,驱动件的驱动轴端部设有螺纹轴;调焦组件包括套设在第二段上的调焦镜筒,调焦镜筒的外壁设有螺纹座,螺纹座与螺纹轴螺纹连接;当驱动件动作时,能够带动螺纹轴转动,使得螺纹轴与螺纹座之间的相对位置改变,进而改变主筒与调焦镜筒之间的相对位置,以调整物镜组与调焦镜组之间的焦距。In summary, the present application specifically discloses a specific structure of a digital autocollimation theodolite optical system with an automatic focusing function. The present application designs an automatic focusing device, which has an objective lens assembly and a focusing assembly for use together, the objective lens assembly includes a main barrel, which has a first section and a second section, an objective lens group is arranged inside the first section, a driving member is arranged on the outer wall of the second section close to the first section, and a threaded shaft is arranged at the end of the driving shaft of the driving member; the focusing assembly includes a focusing lens barrel sleeved on the second section, a threaded seat is arranged on the outer wall of the focusing lens barrel, and the threaded seat is threadedly connected to the threaded shaft; when the driving member is activated, it can drive the threaded shaft to rotate, so that the relative position between the threaded shaft and the threaded seat changes, thereby changing the relative position between the main barrel and the focusing lens barrel, so as to adjust the focal length between the objective lens group and the focusing lens group.
相较于传统的人工操作,本数字自准直经纬仪光学系统采用驱动件驱动,螺杆传动方式,精准调节物镜组与调焦镜组之间的焦距,在提升检测效率与精度的同时还能够提高系统的自动化水平。Compared with traditional manual operation, the optical system of this digital autocollimation theodolite adopts a drive component and a screw transmission method to accurately adjust the focal length between the objective lens group and the focusing lens group, which can improve the detection efficiency and accuracy while also improving the automation level of the system.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present application will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1为自动调焦装置的结构示意图。FIG. 1 is a schematic structural diagram of an automatic focusing device.
图2为数字自准直经纬仪光学系统的示意图。FIG. 2 is a schematic diagram of the optical system of the digital autocollimation theodolite.
图3为准直测量原理示意图。FIG3 is a schematic diagram of the collimation measurement principle.
图4为数字自准直经纬仪光学系统的基本结构图。FIG4 is a basic structural diagram of the optical system of a digital autocollimation theodolite.
图中标号:1、主筒;2、物镜组;3、电动驱动件;4、调焦镜筒;5、螺纹座;6、螺纹轴;7、第一望远物镜;8、第二望远物镜;9、物镜座;10、物镜框;11、物镜隔圈;12、物镜罩;13、光阑;14、第一调焦镜;15、第二调焦镜;16、调焦镜座;17、调焦镜管;18、弹簧片;19、物镜压圈;20、百米圈;21、调焦钉;22、调焦丝圈;23、转像棱镜;24、第一LED光源;25、第一毛玻璃;26、第一分划板;27、第一直角棱镜;28、第一分光棱镜;29、第二分光棱镜;30、自准直反射镜;31、第二分划板;32、第二毛玻璃;33、第二LED光源;34、第二直角棱镜;35、第一CCD调焦透镜;36、滤光片;37、第二CCD调焦透镜;38、第一目镜;39、第二目镜;40、第三目镜;Numbers in the figure: 1, main barrel; 2, objective lens group; 3, electric drive; 4, focusing lens barrel; 5, threaded seat; 6, threaded shaft; 7, first telephoto objective lens; 8, second telephoto objective lens; 9, objective lens seat; 10, objective lens frame; 11, objective lens spacer; 12, objective lens cover; 13, aperture; 14, first focusing lens; 15, second focusing lens; 16, focusing lens seat; 17, focusing lens tube; 18, spring sheet; 19, objective lens pressure ring; 20, hundred-meter ring; 21, focusing nail; 22, focusing wire ring; 23, Image transfer prism; 24, first LED light source; 25, first frosted glass; 26, first graticule; 27, first right-angle prism; 28, first beam splitter prism; 29, second beam splitter prism; 30, autocollimating reflector; 31, second graticule; 32, second frosted glass; 33, second LED light source; 34, second right-angle prism; 35, first CCD focusing lens; 36, filter; 37, second CCD focusing lens; 38, first eyepiece; 39, second eyepiece; 40, third eyepiece;
101、待测反射镜;102、光学系统;103、接收CCD靶面;101. reflector to be measured; 102. optical system; 103. receiving CCD target surface;
201、反射镜;202、第一物镜;203、第二物镜;204、第三物镜;205、传感器。201, reflecting mirror; 202, first objective lens; 203, second objective lens; 204, third objective lens; 205, sensor.
具体实施方式DETAILED DESCRIPTION
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。The present application will be further described in detail below in conjunction with the accompanying drawings and embodiments. It is to be understood that the specific embodiments described herein are only used to explain the relevant inventions, rather than to limit the inventions. It should also be noted that, for ease of description, only the parts related to the invention are shown in the accompanying drawings.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。It should be noted that, in the absence of conflict, the embodiments and features in the embodiments of the present application can be combined with each other. The present application will be described in detail below with reference to the accompanying drawings and in combination with the embodiments.
实施例1Example 1
请参考图1所示的本申请提供的一种具有自动调焦功能的数字自准直经纬仪光学系统的第一种实施例的结构示意图,Please refer to FIG. 1 , which is a schematic structural diagram of a first embodiment of a digital autocollimation theodolite optical system with an automatic focusing function provided by the present application.
所述光学系统可通过自动调焦实现具有精度更高的光电自准直功能,并且能实现失准角的自动测量和数据分析,同时还可以自动调焦为测点模式,根据不同距离值实现自动调焦对准;The optical system can realize a photoelectric self-collimation function with higher precision through automatic focusing, and can realize automatic measurement and data analysis of misalignment angles. At the same time, it can also automatically focus to a measuring point mode and realize automatic focusing alignment according to different distance values;
所述光学系统通过特殊设计,在镜筒总长度不变情况下,实现自准直光路焦距的大幅度增长,实现高精度的自准直角度测量,同时使用CCD图像自动采集有效避免了光学自准直过程中由于人眼疲劳和不同人眼视差产生的测量误差,配备专业的测量和数据分析软件,能够快速给出分析结果;The optical system is specially designed to achieve a substantial increase in the focal length of the autocollimation optical path while keeping the total length of the lens barrel unchanged, thus achieving high-precision autocollimation angle measurement. At the same time, the automatic acquisition of CCD images effectively avoids measurement errors caused by eye fatigue and different parallaxes of the human eye during the optical autocollimation process. It is equipped with professional measurement and data analysis software, which can quickly provide analysis results.
所述光学系统,包括:The optical system comprises:
自动调焦装置,所述自动调焦装置包括:An automatic focusing device, the automatic focusing device comprising:
物镜组件,所述物镜组件包括:主筒1;所述主筒1具有第一段和第二段,所述第一段设有物镜组2;所述第二段靠近第一段的外壁设有驱动件3;The objective lens assembly comprises: a
调焦组件,所述调焦组件包括:调焦镜筒4;所述调焦镜筒4套设在所述第二段上;所述调焦镜筒4内部设有调焦镜组;所述调焦镜筒4的外壁设有螺纹座5;A focusing assembly, the focusing assembly comprising: a focusing
所述驱动件3的驱动轴通过螺纹轴6与所述螺纹座5螺纹连接;所述驱动件3动作时,带动螺纹轴6转动,调节螺纹轴6与螺纹座5之间的相对位置,使得主筒1与调焦镜筒4之间的相对位置发生改变,以调整物镜组2与调焦镜组之间的焦距;The driving shaft of the driving
目视光学自准直组件,所述目视光学自准直组件包括:第一LED光源24、第一毛玻璃25、第一分划板26、第一直角棱镜27、第一分光棱镜28、第二分光棱镜29、物镜组2、自准直反射镜30、调焦镜组、转像棱镜23、第二分划板31和目镜组;第一分划板26的下方依次设置有第二毛玻璃32和第二LED光源33;A visual optical self-collimation component, the visual optical self-collimation component comprising: a first
控制单元,其与驱动件3电连接,控制单元向驱动件3发送控制指令,驱动件3接收控制指令,根据控制指令进行转动,使得螺纹轴3在螺纹座5内伸缩,当物镜组2与调焦镜组之间的焦距达到预设焦距值时驱动件3停止动作,驱动件3的驱动轴将螺纹轴6与螺纹座5的相对位置锁定;通过事先标定确定移动位置与焦距的对应关系,根据测距值通过控制单元控制驱动件3的启停进行调节,以进一步提升调焦的自动化程度。A control unit is electrically connected to the driving
在本实施例中,如图1所示,自动调焦装置包括:In this embodiment, as shown in FIG1 , the automatic focusing device includes:
物镜组件,其包括:主筒1,作为自动调焦装置的主要承载部件,主筒1具有第一段和第二段,第一段由矩形形状与梯形形状组成,第二段呈矩形形状,第一段用于安装物镜组2和光阑13;第二段的外壁可安装驱动件3,且第二段能够与调焦镜筒4转动连接;The objective lens assembly comprises: a
驱动件3,设置在第二段靠近第一段的外壁上,驱动件3具有驱动轴,用于驱动螺纹轴6转动;A driving
其中,驱动件3的类型可为电驱动电机。The type of the
调焦组件,其包括:调焦镜筒4,其套设在第二段上,并且,调焦镜筒4的外壁设有螺纹座5,螺纹座5与螺纹轴6螺纹连接,驱动件3的驱动轴与螺纹轴6一端连接,使调焦镜筒4与主筒1之前具有间接连接关系。The focusing assembly includes: a focusing
当驱动件3动作时,能够带动螺纹轴6转动,使得螺纹轴6与螺纹座5之间的相对位置改变,进而改变主筒1与调焦镜筒4之间的相对位置,以调整物镜组2与调焦镜组之间的焦距。When the driving
与普通经纬仪相比较,光电自准直经纬仪可通过自动调焦实现具有精度更高的光电自准直功能,并且能实现失准角的自动测量和数据分析,同时还可以自动调焦为测点模式,根据不同距离值实现调焦对准。自准直精度与光学镜头的焦距成正比,即焦距越长,光学分辨率越高,测量精度也会达到更高。光电自准直仪的光学系统通过特殊设计,在镜筒总长度不变情况下,实现自准直光路焦距的大幅度增长,实现高精度的自准直角度测量。同时使用CCD图像自动采集有效避免了光学自准直过程中由于人眼疲劳和不同人眼视差产生的测量误差,配备专业的测量和数据分析软件,能够快速给出分析结果。Compared with ordinary theodolites, photoelectric autocollimation theodolites can achieve a more accurate photoelectric autocollimation function through automatic focusing, and can realize automatic measurement and data analysis of misalignment angles. At the same time, they can also automatically focus to the measuring point mode and realize focusing alignment according to different distance values. The accuracy of autocollimation is proportional to the focal length of the optical lens, that is, the longer the focal length, the higher the optical resolution, and the higher the measurement accuracy. The optical system of the photoelectric autocollimator is specially designed to achieve a significant increase in the focal length of the autocollimation optical path while keeping the total length of the lens barrel unchanged, thereby achieving high-precision autocollimation angle measurement. At the same time, the use of CCD image automatic acquisition effectively avoids the measurement errors caused by human eye fatigue and different human eye parallax during the optical autocollimation process. Equipped with professional measurement and data analysis software, it can quickly give analysis results.
与传统光电自准直仪相比较,在保证自准直仪高精度的基础上,能够使光电自准直仪的使用更加便携,应用更加方便,能够实现不同现场的使用。使用功能更加多样。同时光电自准直经纬仪可以实现多台仪器互瞄、定位完成复杂角度的组合测量。Compared with the traditional photoelectric autocollimator, on the basis of ensuring the high precision of the autocollimator, the photoelectric autocollimator can be made more portable and convenient to use, and can be used in different sites. The functions are more diverse. At the same time, the photoelectric autocollimator can realize the mutual aiming and positioning of multiple instruments to complete the combined measurement of complex angles.
相较于传统的人工操作,本数字自准直经纬仪光学系统采用驱动件驱动,螺杆传动方式,精准调节物镜组2与调焦镜组之间的焦距,在提升检测效率与精度的同时还能够提高系统的自动化水平。Compared with traditional manual operation, the optical system of the digital autocollimation theodolite adopts a drive component and a screw transmission method to accurately adjust the focal length between the
并且,本数字自准直经纬仪光学系统具备控制单元,控制单元与驱动件3电连接,控制单元向驱动件3发送控制指令,驱动件3接收控制指令,根据控制指令进行转动,使得螺纹轴6在螺纹座5内伸缩,当物镜组2与调焦镜组之间的焦距达到预设焦距值时驱动件3停止动作,驱动件3的驱动轴将螺纹轴6与螺纹座5的相对位置锁定;通过控制单元控制驱动件3的启停,以进一步提升调焦的自动化程度。In addition, the digital autocollimation theodolite optical system is provided with a control unit, which is electrically connected to the driving
还可以根据测量任务需求,编写相关数据转化接口,实现测量数据的实时快速分析和存储,做到测量数据的采集、分析、反馈、存储一体化,可以大大提高相关装调校准、精度测试工作的效率。It is also possible to write relevant data conversion interfaces according to the requirements of the measurement tasks, realize real-time and rapid analysis and storage of measurement data, and integrate the collection, analysis, feedback, and storage of measurement data, which can greatly improve the efficiency of related installation, calibration, and precision testing work.
进一步地,物镜组2包括:第一望远物镜7和第二望远物镜8,第一望远物镜7相对第二望远物镜8远离调焦镜筒4设置;并且,如图1所示,第二望远物镜8远离第一望远物镜7的一侧设有物镜压圈19,用于固紧第二望远物镜8。Furthermore, the
进一步地,物镜组件还包括:Furthermore, the objective lens assembly also includes:
物镜座9,设置在第一段靠近其自由端的位置;物镜座9上开设有安装通道,用于安装物镜压圈19、第一望远物镜7和第二望远物镜8;The
物镜框10,设置在第一段的自由端,物镜框10与第一段之间形成安装空间,用于安装物镜座9;其中,百米圈20,设置在物镜框10与物镜座9之间,具有微调减压作用,在物镜框10与主筒1紧固时防止过度挤压。此处,百米圈20的类型可为塑料垫圈。The
物镜隔圈11,设置在第一望远物镜7和第二望远物镜8之间的间隙处,用于限定第一望远物镜7与第二望远物镜8的位置,避免松动出现磨损现象;The
物镜罩12,罩设在物镜框10外部,当装置不使用时可利用物镜罩12将物镜组2罩住,起到保护作用。The
光阑13,设置在第一段内部,且光阑13位于物镜组2与调焦镜组之间,用于限制光束或者视场的大小。The
调焦镜组包括:第一调焦镜14和第二调焦镜15,第一调焦镜14相对第二调焦镜15靠近第二望远物镜8设置。The focusing lens group includes: a first focusing
调焦组件还包括:The focusing components also include:
调焦镜座16,位于调焦镜筒4内,且其与调焦镜筒4内壁连接;调焦镜座16靠近第二望远物镜8的一侧形成有安装面,用于安装第二调焦镜15;The focusing
调焦镜管17,设置在调焦镜座16上,其靠近第二望远物镜8,调焦镜管17内部安装有第一调焦镜14;A focusing
其中,调焦镜管17通过调焦钉21与调焦镜筒4连接,并且,调焦丝圈22套设在调焦钉21端部,用于在调焦过程中,避免金属件紧固时对玻璃窗产生损伤。The focusing
弹簧片18,设置在第一调焦镜14与第二调焦镜15之间,具有保护作用,能够将第一调焦镜14与第二调焦镜15隔开。The
进一步地,如图2所示,还包括:Furthermore, as shown in FIG2 , it also includes:
调焦式变焦系统,调焦式变焦系统包括:物镜组2、调焦镜组、转像棱镜23和目镜组;The focus-adjustable zoom system comprises: an
其中,调焦镜组包括:第一调焦镜14和第二调焦镜15,第一调焦镜14相对靠近第二分划板31设置;The focusing lens group includes: a first focusing
目镜组包括:顺次设置的第一目镜38、第二目镜39和第三目镜40,第一目镜38相对靠近转像棱镜23设置。The eyepiece assembly includes a first eyepiece 38 , a
自准直光学系统,自准直光学系统包括:目视光学自准直组件和光电自准直组件;The autocollimation optical system includes: a visual optical autocollimation component and a photoelectric autocollimation component;
目视光学自准直组件包括:第一LED光源24、第一毛玻璃25、第一分划板26、第一直角棱镜27、第一分光棱镜28、第二分光棱镜29、物镜组2、自准直反射镜30、调焦镜组、转像棱镜23、第二分划板31和目镜组;第一分划板26的下方依次设置有第二毛玻璃32和第二LED光源33;The visual optical autocollimation assembly includes: a first
通过调焦镜组将物镜组2物距至无穷远,第一分划板26的十字像成像在第二分划板31上,二十字重合即实现光学自准直;By adjusting the focusing lens group, the object distance of the
光电自准直组件包括:第一LED光源24、第一毛玻璃25、第一分划板26、第一直角棱镜27、第一分光棱镜28、第二分光棱镜29、物镜组2、自准直反射镜30、第二直角棱镜34、第一CCD调焦透镜35、滤光片36和第二CCD调焦透镜37。并且,第一望远物镜7相对靠近自准直反射镜30设置。The photoelectric autocollimation assembly includes: a first
其中,第一毛玻璃25、第二毛玻璃32用于匀化相应的LED光源的光,以保证成像质量;第一LED光源24与第二LED光源33均为照明光源,第一LED光源24可为红光照明光源,用于产生红色十字光;第二LED光源33可为白光照明光源,为系统观测提供照明。Among them, the first
调焦式变焦系统形成的光路依次经过的器件为第一望远物镜7、第二望远物镜8、第一调焦镜14、第二调焦镜15、转像棱镜23、第一目镜38、第二目镜39和第三目镜40;The optical path formed by the focus-adjustable zoom system sequentially passes through the first telephoto
目视光学自准直组件形成的光路依次经过的器件为第一LED光源24、第一毛玻璃25、第一分划板26、第一直角棱镜27、第一分光棱镜28、第二分光棱镜29、第二望远物镜8、第一望远物镜7、自准直反射镜30、第一望远物镜7、第二望远物镜8、第二分光棱镜29、第一分光棱镜28、第一调焦镜14、第二调焦镜15、转像棱镜23、第二分划板31、第一目镜38、第二目镜39和第三目镜40;The optical path formed by the visual optical autocollimation assembly sequentially passes through the first
光电自准直组件形成的光路依次经过的器件为第一LED光源24、第一毛玻璃25、第一分划板26、第一直角棱镜27、第一分光棱镜28、第二分光棱镜29、第二望远物镜8、第一望远物镜7、自准直反射镜30、第一望远物镜7、第二望远物镜8、第二分光棱镜29、第二直角棱镜34、第一CCD调焦透镜35、滤光片36和第二CCD调焦透镜37。The optical path formed by the photoelectric autocollimation assembly passes through the following devices in sequence: the first
由第一分划板26的十字丝像直接成像到第二CCD调焦透镜37上,如果十字丝像与第二CCD调焦透镜37基准十字线重合即实现自准直。The crosshair image of the
具体地,自准直光学系统的原理基于光学自准直原理,如图3所示,当反射镜101有θ角度的误差时,在光学系统102的反射光路就会有2θ的角度误差,并且接收靶面103上的自准直像在像面上产生x的位移,则Specifically, the principle of the autocollimation optical system is based on the principle of optical autocollimation. As shown in FIG3 , when the
x=f·tan2θ;(1)x=f·tan2θ;(1)
自准直仪的测量分辨率由相邻像素间距d(mm),成像系统焦距f’(mm)以及接受器件亚像素细分数N决定,即为:The measurement resolution of the autocollimator is determined by the adjacent pixel spacing d (mm), the focal length f' (mm) of the imaging system, and the number of sub-pixel subdivisions N of the receiving device, that is:
由于自准直综合精度要达到1″,故自准直分辨率至少要达到0.1″,相应的CCD调焦透镜接收增大分辨率,需要将自准直光路的焦距加长。由于自准直光学系统与调焦式变焦系统的共用部分光路,受自动调焦装置的筒长限制,使调焦物镜焦距不能满足自准直光路焦距要求,所以在CCD成像接受光路中添加透镜组增加光路焦距。Since the comprehensive accuracy of autocollimation must reach 1", the resolution of autocollimation must be at least 0.1". The corresponding CCD focusing lens receives an increased resolution, and the focal length of the autocollimation optical path needs to be lengthened. Since the shared optical path between the autocollimation optical system and the focusing zoom system is limited by the tube length of the automatic focusing device, the focal length of the focusing objective lens cannot meet the focal length requirements of the autocollimation optical path. Therefore, a lens group is added to the CCD imaging receiving optical path to increase the focal length of the optical path.
Φ总=Φ1+Φ2-d·Φ1Φ2;(3) Φtotal =Φ 1 +Φ 2 -d·Φ 1 Φ 2 ; (3)
其中,Φ总为调整后接受光路的总光焦度,Φ1为共用部分光路的光焦度,Φ2为后增加透镜组的光焦度,d为两镜组的主面间距。Among them, Φtotal is the total optical focal length of the received optical path after adjustment, Φ1 is the optical focal length of the shared optical path, Φ2 is the optical focal length of the lens group added later, and d is the distance between the main surfaces of the two lens groups.
根据上述准直测量原理,如图4所示,系统由反射镜201、第一物镜202、第二物镜203、第三物镜204、传感器205组成;其中反射镜201为被测对象,经过第一物镜202、第二物镜203和第三物镜204后传输到传感器205上。假设反射镜201产生θ的角度偏转,则由光学原理知,反射光线与入射光线将会产生2θ的偏转,则According to the above collimation measurement principle, as shown in FIG4 , the system is composed of a
其中,H2为反射光点经过第一物镜202后,在第一物镜202焦面处的光斑位置偏离光轴的高度,H3为为反射光点经过第三物镜204后,在第三物镜204焦面处的光斑位置偏离光轴的高度;Wherein, H2 is the height of the light spot position at the focal plane of the first
光路中,θ1=θ2,则 In the optical path, θ 1 = θ 2 , then
本系统的分辨力: The resolution of this system is:
其中,Δh为探测器分辨力,ρ为转换系数,其值为206265。Where Δh is the detector resolution and ρ is the conversion coefficient, which is 206265.
进一步地,转像棱镜23为普罗棱镜,其由三个直角棱镜胶合形成;第一分光棱镜28和第二分光棱镜29均由四个直角棱镜胶合形成,并且,单个棱镜的加工公差必须进行严谨的设计,才能做到加工难度和设计标准的相互契合,避免入射光轴与出射光轴产生偏折。Furthermore, the image transfer prism 23 is a Porro prism, which is formed by gluing three right-angle prisms; the first
一般将使光轴发生偏折的棱镜角度误差分为出射平面与入射平面关系的第一平行误差θΙ,以及由于棱差导致的第二平行误差θII。将出射光轴的偏折量分为两个正交分量进行分析。其中,由第一平行误差引起的偏折量为δΙ,由第二平行度误差引起的偏折量为δII,则Generally, the prism angle error that causes the optical axis to deflect is divided into the first parallel error θ Ι between the exit plane and the incident plane, and the second parallel error θ II caused by the prism error. The deflection of the exit optical axis is divided into two orthogonal components for analysis. Among them, the deflection caused by the first parallel error is δ Ι , and the deflection caused by the second parallel error is δ II , then
δΙ=nθΙ+ΔωΙ;(9)δ Ι =nθ Ι +Δω Ι ; (9)
δII=nθII+ΔωII;(10)δ II =nθ II +Δω II ; (10)
其中,ΔωΙ为出射面法线在光轴截面内的偏折角,ΔωII为出射面法线在光轴截面垂直面的偏折角。Wherein, Δω Ι is the deflection angle of the normal line of the exit surface in the optical axis section, and Δω II is the deflection angle of the normal line of the exit surface in the plane perpendicular to the optical axis section.
反射棱镜的设计公差就是基于以上棱镜平行度误差引起的光轴偏折量分析给出。The design tolerance of the reflecting prism is given based on the analysis of the optical axis deflection caused by the above prism parallelism error.
当系统中,棱镜位于分划板和物镜之间时,棱镜加工误差与光轴偏折关系为When the prism is located between the graticule and the objective lens in the system, the relationship between the prism processing error and the optical axis deflection is:
其中,Γ为光学系统中望远系统放大倍数;Where, Γ is the magnification of the telescope system in the optical system;
反射棱镜的加工角度误差除了与光轴偏折有关还与系统的色差有关,反射棱镜的色散表达式为The processing angle error of the reflecting prism is related not only to the deflection of the optical axis but also to the chromatic aberration of the system. The dispersion expression of the reflecting prism is:
δ′CF=(nF-nC)·θ;(12)δ′ CF =(n F -n C )·θ; (12)
棱镜加工误差引起的色差为The chromatic aberration caused by prism processing error is
其中,nF,nC为不同波长光在棱镜中的折射率,其中nF为波长相对短的光对应的折射率,nc为波长相对长的光在棱镜中的折射率;Among them, n F and n C are the refractive indices of light of different wavelengths in the prism, among which n F is the refractive index corresponding to light of relatively short wavelength, and n C is the refractive index of light of relatively long wavelength in the prism;
设系统允许的总的光轴偏移量为δ′总,令δ′Ι总=δ′II总,则Assume that the total optical axis offset allowed by the system is δ′total , and let δ′Ιtotal = δ′IItotal , then
根据以上棱镜加工误差与光轴偏折和色差关系的分析可以定量计算棱镜设计所需的公差范围。Based on the above analysis of the relationship between prism processing error, optical axis deflection and chromatic aberration, the tolerance range required for prism design can be quantitatively calculated.
根据图3所示光路,能够产生色差的光学元件有调焦物镜、正像棱镜、分光棱镜和目镜,则K=4,设定色散角度小于0.5′,则各部分的色差允许值为According to the optical path shown in Figure 3, the optical elements that can produce chromatic aberration include the focusing objective lens, the erecting prism, the beam splitter prism and the eyepiece, then K = 4, and the dispersion angle is set to be less than 0.5', then the chromatic aberration allowable value of each part is
正像棱镜和分光棱镜位于物镜与分划板之间,则根据式(2),其中物镜焦距8.09,正像棱镜到分光镜间距L1=10mm,分光镜到分划板距离为L2=20mm,nF-nC=806×10-5带入式(2)得The erecting prism and the beam splitter are located between the objective lens and the graticule. According to formula (2), the focal length of the objective lens is 8.09, the distance between the erecting prism and the beam splitter is L 1 = 10 mm, the distance between the beam splitter and the graticule is L 2 = 20 mm, and n F -n C = 806 × 10 -5 is substituted into formula (2) to obtain
使正像棱镜和分光棱镜中第一平行度和第二平行度分别相等,则得Make the first parallelism and the second parallelism of the erecting prism and the beam splitter prism equal, then we get
由于正像镜是由3个直角棱镜组合而成,分光棱镜由4个直角棱镜组合而成,则Since the erector is composed of three right-angle prisms and the beam splitter is composed of four right-angle prisms,
综上计算分析,正像棱镜和分光棱镜单个小直角棱镜给定的公差为Based on the above calculation and analysis, the tolerance given for the erecting prism and the single small right-angle prism of the beam splitter is
通过上述可知,本发明中的光学准直测量原理是基于光束反射后角度变化。非成像的光电准直仪的测量方法,未经过软件处理的系统分辨力比以往光学系统的分辨力大幅提高。自准直系统的出射系统与接收系统共光路,减少一路成像光路,大大简化了整个系统的光学结构,减小了仪器外形尺寸。同时经纬仪光学成像自准直光路和自准直仪的自准直光路可以独立调校,也可以互相验证,大大简化了以往系统的调校难度。既实现了望远功能,也可进行高精度的准直角度测量,通过电动调镜组,同时也实现了望远电动调焦,可进行目标瞄准功能。From the above, it can be seen that the optical collimation measurement principle in the present invention is based on the angle change after the light beam is reflected. The measurement method of the non-imaging photoelectric collimator, the system resolution without software processing is greatly improved compared with the resolution of the previous optical system. The output system and the receiving system of the autocollimation system share the same optical path, which reduces one imaging optical path, greatly simplifies the optical structure of the entire system, and reduces the external dimensions of the instrument. At the same time, the optical imaging autocollimation optical path of the theodolite and the autocollimation optical path of the autocollimator can be adjusted independently and can also be verified with each other, which greatly simplifies the adjustment difficulty of the previous system. It not only realizes the telephoto function, but also can perform high-precision collimation angle measurement. Through the electric adjustment mirror group, the telephoto electric focusing is also realized, and the target aiming function can be performed.
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the present application and an explanation of the technical principles used. Those skilled in the art should understand that the scope of the invention involved in the present application is not limited to the technical solution formed by a specific combination of the above technical features, but should also cover other technical solutions formed by any combination of the above technical features or their equivalent features without departing from the inventive concept. For example, the above features are replaced with the technical features with similar functions disclosed in this application (but not limited to) by each other.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211354591.3A CN115857136A (en) | 2022-11-01 | 2022-11-01 | Digital auto-collimation theodolite optical system with automatic focusing function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211354591.3A CN115857136A (en) | 2022-11-01 | 2022-11-01 | Digital auto-collimation theodolite optical system with automatic focusing function |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115857136A true CN115857136A (en) | 2023-03-28 |
Family
ID=85662203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211354591.3A Pending CN115857136A (en) | 2022-11-01 | 2022-11-01 | Digital auto-collimation theodolite optical system with automatic focusing function |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115857136A (en) |
-
2022
- 2022-11-01 CN CN202211354591.3A patent/CN115857136A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4474150B2 (en) | Eccentricity measurement method | |
JP5112077B2 (en) | Telescope and panfocal telescope including plano-convex lens or plano-concave lens and deflecting means joined thereto | |
JP5011451B2 (en) | Stereoscopic objective optical system and endoscope | |
CA2779358C (en) | Sighting device, in particular telescopic sight, for a geodetic measuring apparatus and optical objective unit assembly for such a sighting device | |
US11668567B2 (en) | Surveying instrument | |
CN106323199A (en) | Combination zeroing laser large working distance auto-collimation device and method | |
CN106370625A (en) | V-prism refractometer based on autocollimation and CCD (Charge Coupled Device) visual technology | |
JP2008064933A (en) | Optical unit | |
RU2535584C1 (en) | Device for control of sight line position of aiming sights on small arms | |
CN105589191B (en) | The focus cameras and its focus adjustment method confocal for adjusting astronomical telescope system | |
CN205427305U (en) | Be used for adjusting confocal focusing camera of astronomical telescope system and focusing device thereof | |
CN101354308B (en) | Digital parallax measuring instrument and measuring method | |
CN206146834U (en) | V-prism refractometer based on autocollimation and CCD vision technology | |
CN106017364B (en) | A kind of big working distance autocollimation of high-precision laser and method | |
CN115857136A (en) | Digital auto-collimation theodolite optical system with automatic focusing function | |
RU2535583C1 (en) | Device for control of sight line position of aiming sight on small arms | |
CN106247992A (en) | A kind of high accuracy, wide scope and big working distance autocollimation and method | |
CN106225730A (en) | Portable combined zeroing high-precision laser big working distance autocollimation and method | |
RU2461797C1 (en) | Device to measure bend of artillery barrel | |
RU2536570C1 (en) | Device for controlling position of sighting line of sighting devices on small arms | |
RU135108U1 (en) | DEVICE FOR MONITORING THE POSITION OF THE VISING LINE OF SIGHTS ON THE RUNNING WEAPON | |
WO2021049000A1 (en) | Endoscopic objective optical system, imaging device, and endoscope | |
CN106323197A (en) | Portable array zeroing high precision laser large working distance auto-collimation device and method | |
CN106017441A (en) | Portable high-precision laser long-working distance auto-collimation apparatus and method thereof | |
RU135107U1 (en) | DEVICE FOR MONITORING THE POSITION OF THE VISING LINE OF SIGHTS ON THE RUNNING WEAPON |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |