[go: up one dir, main page]

CN115838757A - Method and application of gene editing technology to create dwarfing materials of Brassica napus - Google Patents

Method and application of gene editing technology to create dwarfing materials of Brassica napus Download PDF

Info

Publication number
CN115838757A
CN115838757A CN202211104290.5A CN202211104290A CN115838757A CN 115838757 A CN115838757 A CN 115838757A CN 202211104290 A CN202211104290 A CN 202211104290A CN 115838757 A CN115838757 A CN 115838757A
Authority
CN
China
Prior art keywords
brassica napus
gene
crispr
cas9
dwarfing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211104290.5A
Other languages
Chinese (zh)
Inventor
支添添
周舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yichun University
Original Assignee
Yichun University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yichun University filed Critical Yichun University
Priority to CN202211104290.5A priority Critical patent/CN115838757A/en
Publication of CN115838757A publication Critical patent/CN115838757A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention belongs to the field of plant genetic engineering and biotechnology, and particularly relates to a method for creating a brassica napus dwarfing material by using a CRISPR/Cas9 gene editing technology and application thereof. The method comprises the steps of editing a cabbage type rape BnaA06G0083400WE gene by using a CRISPR/Cas9 gene editing technology to obtain a cabbage type rape dwarfing material; the nucleotide sequence of the coding gene mutant of the cabbage type rape dwarfing material is SEQ ID NO.1. The invention carries out gene editing on the Brassica napus BnaA06G0083400WE gene by a CRISPR/Cas9 gene editing technology to obtain dwarf Brassica napus, thereby providing precious gene resources and germplasm resources for Brassica napus breeding; the method has strong characteristics, is easy to obtain, is an effective way for realizing target character improvement and cultivating new materials, and can be applied to camellia oleifera breeding.

Description

利用基因编辑技术创制甘蓝型油菜矮化材料的方法和应用Method and application of using gene editing technology to create dwarf materials of Brassica napus

技术领域technical field

本发明属于植物基因工程和生物技术领域,涉及甘蓝型油菜BnaA06G0083400WE基因定点突变的方法和应用,特别涉及一种利用CRISPR/Cas9基因编辑技术创制甘蓝型油菜矮化材料的方法和应用。The invention belongs to the field of plant genetic engineering and biotechnology, and relates to a method and application of site-directed mutation of Brassica napus BnaA06G0083400WE gene, and in particular to a method and application of using CRISPR/Cas9 gene editing technology to create dwarfing materials of Brassica napus.

背景技术Background technique

株高直接影响作物的抗倒性能和丰产潜力,成为现代作物育种和理想株型育种的重要指标之一。矮化育种是绿色革命的重要组成部分,其最早开始于Norman Borlaug于1950发起的小麦育种革命,而水稻半矮秆基因sd1和小麦Rht8的发现以及应用则是这场革命的里程碑此后,水稻、玉米和黄瓜等作物的矮化育种工作相继开展了起来。Plant height directly affects the lodging resistance and high-yield potential of crops, and has become one of the important indicators for modern crop breeding and ideal plant type breeding. Dwarf breeding is an important part of the Green Revolution. It first started with the wheat breeding revolution initiated by Norman Borlaug in 1950, and the discovery and application of the rice semi-dwarf gene sd1 and wheat Rht8 were milestones in this revolution. Since then, rice, The dwarf breeding of crops such as corn and cucumber has been carried out one after another.

目前我国油菜主产区90%以上油菜品种都是甘蓝型油菜,株高高于180cm的占36%以上,低于160cm的仅11%。株高过高易引起倒伏、不耐肥、不适宜机械化操作等生产问题,是制约油菜机械化生产的重要因素之一。在油菜倒伏后,油菜每角果粒数下降17.5%,种子产量降低16.2%,同时油菜机械化收获的难度和机损率增加,进而导致收获性减产。目前,多位研究者通过诱变、自发突变等途径获得一些油菜矮秆中间型材料,但由于植株过矮、冬前长势弱、矮秆植株自交不亲和以及病害严重等因素,至今仍未获得农艺性状优良的矮秆油菜在生产上应用。因此,培育矮秆或半矮秆油菜品种并对其遗传分析研究,对于提高油菜机械化收获具有重要意义。At present, more than 90% of the rapeseed varieties in the main producing areas of my country are Brassica napus, 36% of which have a plant height higher than 180cm, and only 11% of which are lower than 160cm. Excessive plant height can easily cause production problems such as lodging, intolerance to fertilizers, and unsuitability for mechanized operations, which is one of the important factors restricting mechanized production of rapeseed. After rape lodging, the number of seeds per silique decreased by 17.5%, and the seed yield decreased by 16.2%. At the same time, the difficulty and machine damage rate of rapeseed mechanized harvesting increased, which in turn led to harvest reduction. At present, many researchers have obtained some rapeseed dwarf intermediate materials through mutagenesis, spontaneous mutation, etc. Dwarf rapeseed with excellent agronomic traits has not been used in production. Therefore, the cultivation of dwarf or semi-dwarf rapeseed varieties and their genetic analysis are of great significance for improving the mechanized harvesting of rapeseed.

发明内容Contents of the invention

本发明针对现有技术的不足,提供一种利用基因编辑技术创制甘蓝型油菜矮化材料的方法和应用,可为油菜育种,特别是甘蓝型油菜育种提供宝贵的基因资源和种质资源。Aiming at the deficiencies of the prior art, the present invention provides a method and application of using gene editing technology to create dwarfing materials of Brassica napus, which can provide valuable genetic resources and germplasm resources for rape breeding, especially Brassica napus breeding.

在进行本发明试验之前,发明人就进行了大量的研究和总结。Before carrying out the test of the present invention, the inventor has just carried out a large amount of research and summary.

模拟病斑突变体是一类在没有明显的逆境、损伤或病原物侵害时,在叶片上能自发地形成类似病原物侵染后的程序性细胞死亡的突变体,这类突变体在植物中广泛存在,如:拟南芥、水稻、玉米、高粱、小麦、大麦和花生中等均有报道。这些突变体在发生程序性细胞死亡的同时表现出对许多病原物表现出局部和系统抗性。据报道,许多模拟病斑突变体典型的表型是矮化。如模拟病斑突变体ssi4表现为矮化和细胞自发死亡;chs3-2D的突变触发免疫激活,模拟病斑突变体chs3-2D导致极端矮化症和防御反应的激活;模拟病斑突变体bir1-1表现出极端矮化表型、自发细胞死亡和防御反应;钙调素结合转录激活子(CAMTA)3的T-DNA插入突变体在低温生长时表现出增强的抗病性和矮化症;另外,模拟病斑突变体bon1和snc4-1D、snc2-1D、mkk1 mkk2、bir1-1、ssi4、cpr22和slh1都表现不同程度的矮化表型。The simulated lesion mutant is a kind of mutant that can spontaneously form programmed cell death similar to pathogen infection on the leaves when there is no obvious stress, injury or pathogen attack. Exist widely, such as: Arabidopsis, rice, corn, sorghum, wheat, barley and peanut have been reported. These mutants exhibit local and systemic resistance to many pathogens while undergoing programmed cell death. A typical phenotype of many mimic lesion mutants has been reported to be dwarfing. For example, the simulated lesion mutant ssi4 showed dwarfing and spontaneous cell death; the mutation of chs3-2D triggered immune activation, and the simulated lesion mutant chs3-2D caused extreme dwarfism and activation of defense responses; the simulated lesion mutant bir1 -1 exhibits an extreme dwarf phenotype, spontaneous cell death, and defense responses; a T-DNA insertion mutant of calmodulin-binding transcriptional activator (CAMTA) 3 exhibits enhanced disease resistance and dwarfism when grown at low temperature ; In addition, the simulated lesion mutants bon1 and snc4-1D, snc2-1D, mkk1 mkk2, bir1-1, ssi4, cpr22 and slh1 all showed different degrees of dwarf phenotype.

酪氨酸降解途径首先在动物和细菌中被发现,该代谢途径通过五个步骤进行降解,最后一个步骤在延胡索酰乙酰乙酸酶(fumarylacetoacetate hydrolase,FAH)的作用下形成乙酰乙酸和延胡索酸进入三羧酸循环彻底分解。已从拟南芥中鉴定出典型酪氨酸降解途径的基因和酶,并证明它们在体外具有各自的催化活性。发明人在拟南芥中筛选鉴定出一个在短日照条件下形成模拟病斑的突变体sscd1(short-day sensitive celldeath1),该突变体在长日照条件下与野生型拟南芥没有明显的差异;但在短日照条件下,在没有受到病原物侵染的情况下,叶片局部产生类似坏死的病斑。通过图位克隆的方法,已分离鉴定出SSCD1基因,发现该基因编码FAH。The tyrosine degradation pathway was first discovered in animals and bacteria. This metabolic pathway is degraded through five steps. The last step is the formation of acetoacetate and fumarate into the tricarboxylic acid under the action of fumarylacetoacetate hydrolase (FAH). The acid cycle breaks down completely. Genes and enzymes of the canonical tyrosine degradation pathway have been identified from Arabidopsis and demonstrated to have their respective catalytic activities in vitro. The inventor screened and identified a mutant sscd1 (short-day sensitive celldeath1) that forms simulated lesions in Arabidopsis under short-day conditions, and the mutant has no obvious difference from wild-type Arabidopsis under long-day conditions ; but under short-day conditions, without being infected by pathogens, some necrotic lesions appeared on the leaves. The SSCD1 gene has been isolated and identified by map-based cloning, and it is found that the gene encodes FAH.

本发明通过CRISPR/Cas9基因编辑技术对甘蓝型油菜FAH基因BnaA06G0083400WE的第六外显子进行基因编辑,得到矮化的甘蓝型油菜。甘蓝型油菜作为异源四倍体作物,其基因组比较复杂,同源拷贝较多,不同的同源拷贝之间往往存在基因冗余现象和基因加性效应。诱变育种存在较大盲目性,诱变的方向和性质不能控制,有利变异少,改良的数量性状较差。因此,利用载体构建简单、靶向特异性高的CRISPR/Cas9基因编辑技术对基因进行定向编辑,是实现目标性状改良,培育新材料的有效途径。具体技术方案如下:The invention uses the CRISPR/Cas9 gene editing technology to edit the sixth exon of the Brassica napus FAH gene BnaA06G0083400WE to obtain dwarf Brassica napus. As an allotetraploid crop, Brassica napus has a complex genome with many homologous copies, and gene redundancy and gene additive effects often exist between different homologous copies. Mutation breeding has a large blindness, the direction and nature of mutagenesis cannot be controlled, there are few beneficial mutations, and the improved quantitative traits are poor. Therefore, using CRISPR/Cas9 gene editing technology with simple vector construction and high targeting specificity to edit genes is an effective way to improve target traits and cultivate new materials. The specific technical scheme is as follows:

为实现上述目的,本发明第一方面提供一种利用基因编辑技术创制甘蓝型油菜矮化材料的方法,通过利用CRISPR/Cas9基因编辑技术编辑甘蓝型油菜BnaA06G0083400WE基因,获得甘蓝型油菜矮化材料(编辑的突变体材料);In order to achieve the above object, the first aspect of the present invention provides a method of using gene editing technology to create a dwarf material of Brassica napus, by editing the BnaA06G0083400WE gene of Brassica napus using CRISPR/Cas9 gene editing technology, and obtaining the dwarf material of Brassica napus ( edited mutant material);

所述甘蓝型油菜矮化材料的编码基因突变体的核苷酸序列为SEQ ID NO.1。The nucleotide sequence of the coding gene mutant of the brassica napus dwarf material is SEQ ID NO.1.

进一步的,所述方法包括以下具体步骤:Further, the method includes the following specific steps:

(1)甘蓝型油菜BnaA06G0083400WE基因CRISPR/Cas9表达载体的构建:(1) Construction of Brassica napus BnaA06G0083400WE gene CRISPR/Cas9 expression vector:

1)sgRNA靶位点的选择:1) Selection of sgRNA target sites:

所述sgRNA靶位点是针对甘蓝型油菜westar中BnaA06G0083400WE基因不同拷贝的结构和同源关系,基于CRISPRdirect网站设计,核苷酸序列为:The sgRNA target site is aimed at the structure and homology relationship of different copies of the BnaA06G0083400WE gene in Brassica napus westar, designed based on the CRISPRdirect website, and the nucleotide sequence is:

SEQ ID NO.2:5’-agaggtcaaggccatccacaagg-3’,命名为sgR-BnaA06G0083400WE;SEQ ID NO.2: 5'-agaggtcaaggccatccacaagg-3', named sgR-BnaA06G0083400WE;

2)引物设计和PCR扩增:2) Primer design and PCR amplification:

所述引物序列如下:The primer sequences are as follows:

SEQ ID NO.3(sgR-BnaA06G0083400WE-F):5’-cagtGGTCTCagtcaagaggtcaaggccatccaca-3’;SEQ ID NO.3 (sgR-BnaA06G0083400WE-F): 5'-cagtGGTCTCagtcaagaggtcaaggccatccaca-3';

SEQ ID NO.4(sgR-BnaA06G0083400WE-R):5’-cagtGGTCTCaaaactgtggatggccttgacctct-3’;SEQ ID NO.4 (sgR-BnaA06G0083400WE-R): 5'-cagtGGTCTCaaaactgtggatggccttgacctct-3';

所述PCR扩增过程如下:按50μL体系的PCR反应,以上下游引物混合,经PCR仪变性退火得到gRNA片段(双链DNA);本技术方案中由于靶标序列较短,故通过变性退火就可以得到目的序列;The PCR amplification process is as follows: According to the PCR reaction of 50 μ L system, the above and downstream primers are mixed, and the gRNA fragment (double-stranded DNA) is obtained by denaturation and annealing in a PCR instrument; in this technical solution, because the target sequence is relatively short, it can be obtained by denaturation and annealing. Get the target sequence;

3)CRISPR/Cas9表达载体的构建与农杆菌转化:3) Construction of CRISPR/Cas9 expression vector and Agrobacterium transformation:

利用T4连接酶将步骤2)所得gRNA片段与经过BsaI/Eco31I酶切的CRISPR/Cas9质粒进行T4连接,然后将连接产物转化大肠杆菌DH5a并用抗生素进行筛选后,做菌落PCR鉴定以及测序验证,得到表达载体;Use T4 ligase to T4-ligate the gRNA fragment obtained in step 2) with the CRISPR/Cas9 plasmid digested with BsaI/Eco31I, then transform the ligated product into Escherichia coli DH5a and screen with antibiotics, then perform colony PCR identification and sequencing verification to obtain Expression vector;

将验证含有sgRNA的载体转化农杆菌,进行菌落PCR验证得到含有表达载体的农杆菌菌株;Transform the vector containing sgRNA into Agrobacterium, and perform colony PCR verification to obtain the Agrobacterium strain containing the expression vector;

(2)甘蓝型油菜BnaA06G0083400WE基因CRISPR/Cas9基因编辑突变体的获得与鉴定:(2) Obtaining and identification of BnaA06G0083400WE gene CRISPR/Cas9 gene editing mutants in Brassica napus:

1)将预培养的下胚轴置于含有表达载体的农杆菌悬浮液中,进行愈伤的诱导,将产生愈伤的下胚轴转移至诱导诱导胚性愈伤生成的培养基上,进行胚性细胞的诱导,油菜遗传转化幼苗的分化与筛选同时进行,在分化培养基中加入相应的抗生素,分为初筛和二筛,得到阳性苗后进行幼苗生根培养;1) Place the pre-cultured hypocotyls in the Agrobacterium suspension containing the expression vector to induce callus, transfer the callus-producing hypocotyls to a medium for inducing embryogenic callus, and carry out The induction of embryogenic cells, the differentiation and screening of rapeseed genetically transformed seedlings are carried out at the same time, the corresponding antibiotics are added to the differentiation medium, divided into primary screening and secondary screening, and rooting culture of seedlings is carried out after positive seedlings are obtained;

2)利用PCR检测阳性甘蓝型油菜幼苗中的CRISPR/Cas9表达载体,通过测序检测CRISPR/Cas9基因编辑植株中BnaA06G0083400WE基因的编辑状况;2) Using PCR to detect the CRISPR/Cas9 expression vector in the positive Brassica napus seedlings, and detecting the editing status of the BnaA06G0083400WE gene in the CRISPR/Cas9 gene-edited plants by sequencing;

(3)验证甘蓝型油菜westar和BnaA06G0083400WE基因CRISPR/Cas9基因编辑突变体在细胞死亡和株高方面的差异。(3) To verify the differences in cell death and plant height between Brassica napus westar and BnaA06G0083400WE gene CRISPR/Cas9 gene editing mutants.

进一步的,所述sgRNA靶位点的核苷酸序列选自甘蓝型油菜westar中BnaA06G0083400WE基因的第六个外显子区域。Further, the nucleotide sequence of the sgRNA target site is selected from the sixth exon region of the BnaA06G0083400WE gene in Brassica napus westar.

进一步的,所述抗生素为氯霉素。Further, the antibiotic is chloramphenicol.

本发明第二方面,提供一种由上述利用基因编辑技术创制甘蓝型油菜矮化材料的方法在油菜育种中的应用。The second aspect of the present invention provides an application of the above-mentioned method for creating dwarf materials of Brassica napus by using gene editing technology in rapeseed breeding.

本发明的有益效果:Beneficial effects of the present invention:

本发明通过利用CRISPR/Cas9基因编辑技术对甘蓝型油菜BnaA06G0083400WE基因的第六外显子进行基因编辑,得到矮化的甘蓝型油菜,可为甘蓝型油菜育种提供宝贵的基因资源和种质资源。The present invention uses the CRISPR/Cas9 gene editing technology to edit the sixth exon of the Brassica napus BnaA06G0083400WE gene to obtain dwarf Brassica napus, which can provide valuable genetic resources and germplasm resources for Brassica napus breeding.

本发明的方法利用载体构建简单、靶向特异性高的CRISPR/Cas9基因编辑技术对基因进行定向编辑,特性强,容易获得,是实现目标性状改良,培育新材料的有效途径。The method of the present invention uses the CRISPR/Cas9 gene editing technology with simple vector construction and high targeting specificity to conduct directional editing of genes, has strong characteristics and is easy to obtain, and is an effective way to improve target traits and cultivate new materials.

附图说明Description of drawings

图1中A为wesatr与测序的CRISPR/Cas9-BnaA06G0083400WE序列Blast结果比对图;B为CRISPR/Cas9-BnaA06G0083400WE序列测序的峰图;其中,wesatr为甘蓝型油菜野生型,CRISPR/Cas9-BnaA06G0083400WE为编辑的突变体材料;In Figure 1, A is the comparison chart of wesatr and sequenced CRISPR/Cas9-BnaA06G0083400WE sequence Blast results; B is the peak diagram of CRISPR/Cas9-BnaA06G0083400WE sequence sequencing; where wesatr is the wild type of Brassica napus, and CRISPR/Cas9-BnaA06G0083400WE is Edited mutant material;

图2为本发明甘蓝型油菜BnaA06G0083400WE基因CRISPR/Cas9基因编辑的靶标位点(阴影部分)和缺失碱基(阴影部分白色碱基)示意图;Fig. 2 is a schematic diagram of the target site (shaded part) and missing base (shaded part white base) of Brassica napus BnaA06G0083400WE gene CRISPR/Cas9 gene editing of the present invention;

图3为本发明BnaA06G0083400WE基因纯合突变体材料和甘蓝型油菜野生型生长株型图;其中,A为长日照30天的甘蓝型油菜野生型(westar)和编辑的突变体材料(CRISPR/Cas9-BnaA06G0083400WE);B为长日照40天的甘蓝型油菜野生型(westar)和编辑的突变体材料(CRISPR/Cas9-BnaA06G0083400WE)。Fig. 3 is the BnaA06G0083400WE gene homozygous mutant material of the present invention and Brassica napus wild-type growth plant figure; Wherein, A is the mutant material (CRISPR/Cas9) of Brassica napus wild-type (westar) and editing for 30 days of long sunshine -BnaA06G0083400WE); B is Brassica napus wild type (westar) and edited mutant material (CRISPR/Cas9-BnaA06G0083400WE) with 40 days of long-day sunshine.

以下结合附图及实施例对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.

具体实施方式Detailed ways

为了更好地阐述本发明的技术方案,下面将结合实施例对本发明的方案进行解释。本领域技术人员将会理解,下面的实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件的,按照本领域内文献或参考书籍所描述的技术或者按照产品说明书进行。所用试剂或仪器设备未注明生产商者,均为常规产品。In order to better illustrate the technical solution of the present invention, the solution of the present invention will be explained below in conjunction with examples. Those skilled in the art will understand that the following examples are only for illustrating the present invention and should not be considered as limiting the scope of the present invention. If no specific technique or condition is indicated in the examples, it shall be performed according to the techniques described in documents or reference books in this field or according to the product instructions. The reagents or instruments used were not indicated by the manufacturer, and they were all conventional products.

本发明的上述各项技术特征和在下文(如实施案例)中具体描述的各项技术特征之间都可以互相组合,从而构成新的或优选的技术方案。The above-mentioned technical features of the present invention and the technical features specifically described in the following (such as examples of implementation) can be combined with each other to form a new or preferred technical solution.

实施例1:甘蓝型油菜BnaA06G0083400WE基因CRISPR/Cas9表达载体的构建Example 1: Construction of Brassica napus BnaA06G0083400WE Gene CRISPR/Cas9 Expression Vector

1.甘蓝型油菜westar中BnaA06G0083400WE基因全长编码区核酸序列的克隆:1. Cloning of the nucleic acid sequence of the full-length coding region of the BnaA06G0083400WE gene in Brassica napus westar:

以甘蓝型油菜westar的cDNA为模板,利用引物SEQ ID NO.5(BnaA06FAH-ty-F):5’-ACCATACATCATCCGTTT-3’和SEQ ID NO.6(BnaA06FAH-ty-R):5’-TCAAGGCAGTGAAGGTAAAA-3’,克隆westar中BnaA06G0083400WE基因。Using the cDNA of Brassica napus westar as a template, using primers SEQ ID NO.5 (BnaA06FAH-ty-F): 5'-ACCATACATCATCCGTTT-3' and SEQ ID NO.6 (BnaA06FAH-ty-R): 5'-TCAAGGCAGTGAAGGTAAAA -3', clone the BnaA06G0083400WE gene in westar.

将克隆得到的PCR产物进行1%的琼脂糖凝胶电泳,并对与目的片段长度一致的电泳条带按照TaKaRa胶回收试剂盒(MiniBEST Agarose Gel DNA Extraction Kit)进行纯化回收,纯化回收的PCR产物送至上海生工生物工程股份有限公司进行测序,得到甘蓝型油菜westar中BnaA06G0083400WE基因的全长编码区,核酸序列如下列SEQ ID NO.7所示:The cloned PCR product was subjected to 1% agarose gel electrophoresis, and the electrophoretic band consistent with the target fragment length was purified and recovered according to the TaKaRa gel recovery kit (MiniBEST Agarose Gel DNA Extraction Kit), and the recovered PCR product was purified Sent to Shanghai Sangon Bioengineering Co., Ltd. for sequencing to obtain the full-length coding region of the BnaA06G0083400WE gene in Brassica napus westar. The nucleic acid sequence is shown in the following SEQ ID NO.7:

ATG GCG TTG CTC AAG TCT TTC GTC GAT GTT GCT CCA CAC TCT CAC TTC CCTATC CAG AAC CTC CCT TAT GGCGTC TTC AAG CCC GAT TCC AAC TCT ACT CCC CGT CCCGCC GTC GCC ATC GGC GAT TCC GTC CTG GAC CTC TCAGCG ATC TCC GAA GCT GGG CTTTTC GAT GGT CCG ATC CTC AAC GGC TCC GAT TGC TTC CTT CAG CCT AAT CTGAAT AAGTTC TTA GCC ATG GGA CGA CCT GCT TGG AAG GAA GCG CGT TCT ACG CTT CAA AGA CTCTTG TCA TCTAGT GAG CCC ACT CTA CGA GAT AAC GAT GTT TTG AGG AGA AAG TCA TTTTAT GAG ATG AAT AAA GTG GAA ATGGTT GTT CCT ATG GTG ATT GGG GAC TAC ACA GACTTC TTT GCA TCC ATG CAT CAC GCC AAG AAC TGC GGT CTTATG TTT CGT GGG CCG CAGAAT GCT ATT AAC CCG AAT TGG TTT CGT CTT CCC ATT GCA TAT CAT GGA AGG GCATCATCT ATT GTC ATC TCT GGG ACT GAT ATT ATT CGA CCA AGA GGT CAA GGC CAT CCA CAAGGG GAC TCT GAACCG TAT TTT GGT CCT TCA AAG AAA CTT GAT TTT GAG CTT GAA ATGGCC GCT GTG GTT GGT CCA GGA AAT GAATTA GGA AAG CCT ATT GAC GTG AAC AAC GCAGCT GAC CAT ATA TTT GGC CTT GTA CTG ATG AAT GAC TGG AGTGCT AGG GAT ATT CAAGCG TGG GAG TAC GTA CCT CTT GGG CCT TTC CTA GGA AAG AGT TTC GGG ACT ACGGTATCT CCT TGG ATT GTT ACC TTA GAT GCG CTT GAA CCT TTC AGT TGT CAA GCT CCCAAG CAG GAT CCA CCT CCATTG CCA TAT CTA ACT GAG AAA GAA TCT GTC AAT TAC GATATC TCC TTG GAG GTT CAA CTC AAA CCT TCT GGCAAA GAT GAA TCT TCT GTA ATA ACAAAA AGC AAC TTC CAG AAC TTA TAC TGG ACC ATA ACG CAG CAG CTA GCGCAC CAT ACCGTT AAT GGT TGC AAC TTG AGA CCT GGT GAT CTC CTT GGA ACC GGA ACC ATA AGC GGACCC GAGCCA GAT TCA TAT GGG TGC CTA CTT GAG TTA ACT TGG AAT GGA CAG AAG CCTTTG TCA ATG AAC GGA ACA ACGCAG ACG TTT CTT CAA GAC GGA GAT CAA GTG ACC TTCTCA GGT GTA TGC AAG GGA GAT GGT TAC AAT GTC GGATTT GGA ACA TGC ACA GGG AAAATT TTA CCT TCA CTG CCT TGAATG GCG TTG CTC AAG TCT TTC GTC GAT GTT GCT CCA CAC TCT CAC TTC CCTATC CAG AAC CTC CCT TAT GGCGTC TTC AAG CCC GAT TCC AAC TCT ACT CCC CGT CCCGCC GTC GCC ATC GGC GAT TCC GTC CTG GAC CTC TCAGCG ATC TCC GAA GCT GGG CTTTTC GAT GGT CCG ATC CTC AAC GGC TCC GAT TGC TTC CTT CAG CCT AAT CTGAAT AAGTTC TTA GCC ATG GGA CGA CCT GCT TGG AAG GAA GCG CGT TCT ACG CTT CAA AGA CTCTTG TCA TCTAGT GAG CCC ACT CTA CGA GAT AAC GAT GTT TTG AGG AGA AAG TCA TTTTAT GAG ATG AAT AAA GTG GAA ATGGTT GTT CCT ATG GTG ATT GGG GAC TAC ACA GACTTC TTT GCA TCC ATG CAT CAC GCC AAG AAC TGC GGT CTTATG TTT CGT GGG CCG CAGAAT GCT ATT AAC CCG AAT TGG TTT CGT CTT CCC ATT GCA TAT CAT GGA AGG GCATCATCT ATT GTC ATC TCT GGG ACT GAT ATT ATT CGA CCA AGA GGT CAA GGC CAT CCA CAAGGG GAC TCT GAACCG TAT TTT GGT CCT TCA AAG AAA CTT GAT TTT GAG CTT GAA ATGGCC GCT GTG GTT GGT CCA GGA AAT GAATTA GGA AAG CCT ATT GAC GTG AAC AAC GCAGCT GAC CAT ATA TTT GGC CTT GTA CTG ATG AAT GAC TGG AGTGCT AGG GAT ATT CAAGCG TGG GAG TAC GTA CCT CTT GGG CCT TTC CTA GGA AAG AGT TTC GGG ACT ACGGTATCT CCT TGG ATT GTT ACC TTA GAT GCG CTT GAA CCT TTC AGT TGT CAA GCT CCCAAG CAG GAT CCA CCT CCATTG CCA TAT CTA ACT GAG AAA GAA TCT GTC AAT TAC GATATC TCC TTG GAG GTT CAA CTC AAA CCT TCT GGCAAA GAT GAA TCT TCT GTA ATA ACAAAA AGC AAC TTC CAG AAC TTA TAC TGG ACC ATA ACG CAG CAG CTA GCGCAC CAT ACCGTT AAT GGT TGC AAC TTG AGA CCT GGT GAT CTC CTT GGA ACC GGA ACC ATA AGC GGACCC GAGCCA GAT TCA TAT GGG TGC CTA CTT GAG TTA ACT TGG AAT GGA CAG AAG CCTTTG TCA ATG AAC GGA ACA ACGCAG ACG TTT CTT CAA GAC GGA GAT CAA GTG ACC TTCTCA GGT GTA TGC AAG GGA GAT GGT TAC AAT GTC GGATTT GGA ACA TGC ACA GGG AAAATT TTA CCT TCA CTG CCT TGA

氨基酸序列如下列SEQ ID NO.8所示:The amino acid sequence is shown in the following SEQ ID NO.8:

MALLKSFVDVAPHSHFPIQNLPYGVFKPDSNSTPRPAVAIGDSVLDLSAISEAGLFDGPILNGSDCFLQPNLNKFLAMGRPAWKEARSTLQRLLSSSEPTLRDNDVLRRKSFYEMNKVEMVVPMVIGDYTDFFASMHHAKNCGLMFRGPQNAINPNWFRLPIAYHGRASS IVISGTDIIRPRGQGHPQGDSEPYFGPSKKLDFELEMAAVVGPGNELGKPIDVNNAADHIFGLVLMNDWSARDIQAWEYVPLGPFLGKSFGTTVSPWIVT LDALEPFSCQ APKQDPPPLPYLTEKESVNYDISLEVQLKP SGKDESSVIT KSNFQNLYWT ITQQLAHHTV NGCNLRPGDL LGTGTISGPEPDSYGCLLELTWNGQKPLSMNGTTQTFLQDGDQVTFSGVCKGDGYNVGFGTCTGKILPSLP*。MALLKSFVDVAPHSHFPIQNLPYGVFKPDSNSTPRPAVAIGDSVLDLSAISEAGLFDGPILNGSDCFLQPNLNKFLAMGRPAWKEARSTLQRLLSSSEPTLRDNDVLRRKSFYEMNKVEMVVPMVIGDYTDFFASMHHAKNCGLMFRGPQNAINPNWFRLPIAYHGRASS IVISGTDIIRPRGQGHPQGDSEPYFGPSKKLDFELEMAAVVGPGNELGKPIDVNNAADHIFGLVLMNDWSARDIQAWEYVPLGPFLGKSFGTTVSPWIVT LDALEPFSCQ APKQDPPPLPYLTEKESVNYDISLEVQLKP SGKDESSVIT KSNFQNLYWT ITQQLAHHTV NGCNLRPGDL LGTGTISGPEPDSYGCLLELTWNGQKPLSMNGTTQTFLQDGDQVTFSGVCKGDGYNVGFGTCTGKILPSLP*。

2.sgRNA靶位点的选择和引物设计2. Selection of sgRNA target sites and primer design

针对靶标选择标准,利用CRISPRdirect(http://crispr.dbcls.jp/)设计靶标,位于BnaA06G0083400WE基因的第六个外显子,序列为SEQ ID NO.2:5’-agaggtcaaggccatccaca-3’,命名为sgR-BnaA06G0083400WE;According to the target selection criteria, CRISPRdirect (http://crispr.dbcls.jp/) was used to design the target, located in the sixth exon of the BnaA06G0083400WE gene, the sequence is SEQ ID NO.2: 5'-agaggtcaaggccatccaca-3', named for sgR-BnaA06G0083400WE;

为了便于将靶标序列与表达载体重组,在靶标序列前端加入BsaI/Eco31I酶切位点GGTCTC,因而引物为:In order to facilitate the recombination of the target sequence and the expression vector, a BsaI/Eco31I restriction site GGTCTC is added to the front of the target sequence, so the primers are:

SEQ ID NO.3:(sgR-BnaA06G0083400WE-F):cagtGGTCTCagtcaagaggtcaaggccatccacaSEQ ID NO.3: (sgR-BnaA06G0083400WE-F): cagtGGTCTCagtcaagaggtcaaggccatccaca

SEQ ID NO.4:(sgR-BnaA06G0083400WE-R):cagtGGTCTCaaaactgtggatggccttgacctctSEQ ID NO.4: (sgR-BnaA06G0083400WE-R): cagtGGTCTCaaaactgtggatggccttgacctct

3.双链gDNA的获得3. Obtaining double-stranded gDNA

将上述一对引物送至上海生工生物工程股份有限公司进行引物合成,合成好的引物通过PCR反应经过变性退火合成双链gDNA用于后续载体构建。PCR反应和程序如表1和表2所示。The above pair of primers were sent to Shanghai Sangon Bioengineering Co., Ltd. for primer synthesis, and the synthesized primers were denatured and annealed by PCR to synthesize double-stranded gDNA for subsequent vector construction. The PCR reactions and procedures are shown in Table 1 and Table 2.

表1 PCR反应Table 1 PCR reaction

Figure BDA0003840819960000071
Figure BDA0003840819960000071

Figure BDA0003840819960000081
Figure BDA0003840819960000081

表2 PCR程序Table 2 PCR program

温度temperature 时间time 95℃95°C 10min10min 55℃55°C 10min10min 14℃14°C 5min5min

将变性退火得到的PCR产物从PCR仪中取出,放入4℃保存,以方便与载体进行连接。The PCR product obtained by denaturation and annealing was taken out from the PCR instrument and stored at 4°C to facilitate connection with the carrier.

4.双链gDNA与CRISPR/Cas9载体的连接:4. Ligation of double-stranded gDNA to CRISPR/Cas9 vector:

用BsaI/Eco31I限制性内切酶将CRISPR/Cas9质粒在37℃恒温培养箱中酶切和连接2小时,酶切连接反应体系如表3所示。The CRISPR/Cas9 plasmid was digested and ligated with BsaI/Eco31I restriction endonuclease in a constant temperature incubator at 37°C for 2 hours. The enzyme digestion and ligation reaction system is shown in Table 3.

表3反应体系Table 3 reaction system

试剂Reagent 体积volume T4 BufferT4 Buffer 1μL1μL T4-ligaseT4-ligase 0.5μL0.5μL BsaI/Eco31IBsaI/Eco31I 0.5μL0.5μL CRISPR/Cas9载体CRISPR/Cas9 vector 1.5μL1.5μL 双链gDNAdsgDNA 2μL2μL Nuclease-free waterNuclease-free water 4.5μL4.5μL 10μL(Total)10μL (Total)

5.重组质粒转化和鉴定5. Recombinant plasmid transformation and identification

各取将5μL连接产物转化大肠杆菌DH5a感受态,重组载体转化涂氯霉素抗性平皿,37℃培养12小时,随机挑选阳性克隆进行菌落PCR验证,引物为SEQ ID NO.9(Forwardprimer):5’-CCAGAAATTGAACGCCGAAG-3’;SEQ ID NO.10(Reverse primer):5’-GTAAAACGACGGCCAGT-3’。验证正确的送上海生工进行测序,将测序验证正确的阳性克隆进行摇菌和质粒提取。其中,菌落PCR反应体系如表4所示,PCR反应条件如表5所示。Take 5 μL of the ligation product and transform it into Escherichia coli DH5a competent, transform the recombinant vector into a plate coated with chloramphenicol resistance, incubate at 37°C for 12 hours, randomly select positive clones for colony PCR verification, and the primer is SEQ ID NO.9 (Forwardprimer): 5'-CCAGAAATTGAACGCCGAAG-3'; SEQ ID NO. 10 (Reverse primer): 5'-GTAAAACGACGGCCAGT-3'. The correct ones were verified and sent to Shanghai Sangong for sequencing, and the positive clones verified by the sequencing were shaken and plasmid extracted. Wherein, the colony PCR reaction system is shown in Table 4, and the PCR reaction conditions are shown in Table 5.

表4菌落PCR反应体系Table 4 Colony PCR reaction system

试剂Reagent 体积volume 5×buffer5×buffer 4μL4μL 2.5m M dNTPs2.5mM dNTPs 1.6μL1.6μL TaqTaq 0.2μL0.2 μL 菌体悬浮液bacterial suspension 5μL5μL forward primerforward primer 1μL1μL Reverse primerreverse primer 1μL1μL Nuclease-free waterNuclease-free water 7.2μL7.2 μL 20μL(Total)20μL (Total)

表5菌落PCR反应体系Table 5 Colony PCR reaction system

94℃预变性Pre-denaturation at 94°C 2min2min 94℃94°C 30sec30sec 67℃67°C 30sec30sec 72℃72°C 1min 15sec1min 15sec

6.农杆菌的转化6. Transformation of Agrobacterium

用CaCl2冻融法将已验证的重组质粒转入农杆菌GV3101,挑选菌落PCR验证正确的农杆菌单菌落进行培养,28℃、220rpm振荡培养18~24h。6000g离心大量活化菌液2min,弃上清,用农杆菌悬浮液(5%蔗糖+1/2MS+0.02%Silwet-L77+0.01%6-BA)将菌体重悬至OD600在0.6-1.0之间。Transform the verified recombinant plasmid into Agrobacterium GV3101 by freezing and thawing with CaCl 2 , select a single colony of Agrobacterium that has been verified by PCR and culture it, and culture it with shaking at 28°C and 220rpm for 18 to 24 hours. Centrifuge a large amount of activated bacterial liquid at 6000 g for 2 min, discard the supernatant, and resuspend the bacterial cells with Agrobacterium suspension (5% sucrose + 1/2MS + 0.02% Silwet-L77 + 0.01% 6-BA) until the OD600 is between 0.6-1.0 between.

7.CRISPR/Cas9基因编辑载体的甘蓝型油菜遗传转化7. Genetic transformation of Brassica napus with CRISPR/Cas9 gene editing vector

(1)准备材料(1) Prepare materials

外植体的制备:油菜种子在75%酒精中浸泡1min,无菌水清洗一遍后,用0.15%HgCl2浸泡10-15min,再用无菌水清洗4-5次,每次5min。灭菌后播种于1/2MS(或MS)培养基中置于暗处,暗培养时间4-5d(新种子与旧种子萌发有差异)。下胚轴首先要在培养基中预培养2-3d。组培条件为:光周期为16h/d,温度为25±2℃。Preparation of explants: soak rapeseed in 75% alcohol for 1 min, wash once with sterile water, then soak with 0.15% HgCl 2 for 10-15 min, then wash with sterile water 4-5 times, 5 min each time. After sterilization, sow the seeds in 1/2 MS (or MS) medium and place them in a dark place for 4-5 days in dark (the germination of new seeds is different from that of old seeds). Hypocotyls are first pre-cultured in medium for 2-3 days. The tissue culture conditions are as follows: the photoperiod is 16h/d, and the temperature is 25±2°C.

(2)外植体的遗传转化(2) Genetic transformation of explants

将预培养的下胚轴置于农杆菌悬浮液中,侵染8-10min后,用无菌滤纸将下胚轴表面的农杆菌菌液吸干。The pre-cultured hypocotyls were placed in the Agrobacterium suspension, and after 8-10 minutes of infection, the Agrobacterium liquid on the surface of the hypocotyls was blotted dry with sterile filter paper.

(3)外植体与农杆菌的共培养(3) Co-cultivation of explants and Agrobacterium

将表面晾干的下胚轴置于共培培养基中,25℃,暗培养2-3d。侵染后的下胚轴用无菌滤纸吸干多余的菌液。Put the surface-dried hypocotyls in the co-cultivation medium at 25°C for 2-3 days in the dark. After infection, the hypocotyls were blotted dry with sterile filter paper.

(4)愈伤的诱导(4) Induction of callus

共培后将下胚轴转移至愈伤诱导培养基中,光周期16h/d,培养5-7d。After co-cultivation, the hypocotyls were transferred to the callus induction medium, the photoperiod was 16h/d, and the culture was 5-7d.

(5)胚性细胞的诱导(5) Induction of embryogenic cells

将产生愈伤的下胚轴转移至诱导诱导胚性愈伤生成的培养基上,下胚轴诱导出的愈伤慢慢变绿,诱导时间为5-7d。The hypocotyls that produced the callus were transferred to the medium for inducing embryogenic callus, and the callus induced by the hypocotyls gradually turned green, and the induction time was 5-7 days.

(6)分化与筛选(6) Differentiation and screening

油菜遗传转化幼苗的分化与筛选同时进行,在分化培养基中加入相应的抗生素,分为初筛和二筛,分化前期为初筛阶段,抗生素浓度较低,待分化的幼苗伸长以后提高抗生素浓度,该阶段为二筛,这样可以在检测前筛掉假阳性苗,提高阳性率并且减少后期工作量。The differentiation and screening of rapeseed genetically transformed seedlings are carried out at the same time. The corresponding antibiotics are added to the differentiation medium, which is divided into primary screening and secondary screening. Concentration, this stage is the second screening, which can screen out false positive seedlings before testing, increase the positive rate and reduce the workload in the later stage.

(7)幼苗的生根(7) Rooting of seedlings

在生根培养基中加入抗生素氯霉素,对分化的幼苗再次进行筛选。The antibiotic chloramphenicol was added to the rooting medium, and the differentiated seedlings were selected again.

实施例2:甘蓝型油菜BnaA06G0083400WE基因CRISPR/Cas9基因编辑突变体的鉴定Example 2: Identification of Brassica napus BnaA06G0083400WE Gene CRISPR/Cas9 Gene Editing Mutants

取0.5cm2的筛选得到的阳性甘蓝型油菜叶片,磨样,吸取磨样液作为DNA模板进行PCR扩增,通过琼脂糖凝胶电泳来判断阳性苗以及阳性率。将扩增产物切胶纯化,检测其质量和浓度,送至上海生工生物工程股份有限公司进行测序,以检测BnaA06G0083400WE基因的编辑情况。所编辑的突变体材料(CRISPR/Cas9-BnaA06G0083400WE)的测序结果以及与wesatr的BnaA06G0083400WE基因的Blast比对结果如图1所示,从图1的比对结果可以看出,经筛选的甘蓝型油菜为缺失碱基TCCA的纯合突变体。Take 0.5 cm 2 of the positive Brassica napus leaves obtained by screening, grind the samples, absorb the grinding liquid as a DNA template for PCR amplification, and determine the positive seedlings and positive rate by agarose gel electrophoresis. The amplified product was gel-cut and purified, its quality and concentration were tested, and it was sent to Shanghai Sangon Bioengineering Co., Ltd. for sequencing to detect the editing of the BnaA06G0083400WE gene. The sequencing results of the edited mutant material (CRISPR/Cas9-BnaA06G0083400WE) and the Blast comparison results with the BnaA06G0083400WE gene of wesatr are shown in Figure 1. From the comparison results in Figure 1, it can be seen that the screened Brassica napus It is a homozygous mutant for the deletion of base TCCA.

实施例3:验证甘蓝型油菜BnaA06G0083400WE基因编辑后对株高的影响Example 3: Verification of the effect of BnaA06G0083400WE gene editing on plant height in Brassica napus

通过测序结果,获得一株编辑了BnaA06G0083400WE基因第六外显子的油菜纯合编辑突变体,这个纯合突变体在靶标位点发生了碱基TCCA的缺失,其基因的氨基酸序列如SEQID NO.1,与正常BnaA06G0083400WE基因的对比结果如图2所示。Through the sequencing results, a homozygous editing mutant of rapeseed that edited the sixth exon of the BnaA06G0083400WE gene was obtained. This homozygous mutant has a deletion of the base TCCA at the target site, and the amino acid sequence of its gene is shown in SEQ ID NO. 1. The comparison results with the normal BnaA06G0083400WE gene are shown in Figure 2.

将纯合突变体与野生型westar植株进行比较,如图3A、3B所示。从图3可以看出,纯合突变体与野生型westar相比,株高明显变矮,分枝增多。说明本发明通过利用CRISPR/Cas9基因编辑技术编辑甘蓝型油菜BnaA06G0083400WE基因,获得了甘蓝型油菜矮化材料(纯合突变体材料)。The homozygous mutants were compared with wild-type westar plants, as shown in Figure 3A, 3B. It can be seen from Figure 3 that compared with the wild-type westar, the homozygous mutant has significantly shorter plant height and more branches. It shows that the present invention obtains the dwarf material (homozygous mutant material) of Brassica napus by using the CRISPR/Cas9 gene editing technology to edit the BnaA06G0083400WE gene of Brassica napus.

最后需要强调的是,以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种变化和更改,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。Finally, it should be emphasized that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention can have various changes and modifications. Any modifications, equivalent replacements, improvements, etc. made within the principles and principles shall be included within the protection scope of the present invention.

Claims (5)

1.一种利用基因编辑技术创制甘蓝型油菜矮化材料的方法,其特征在于,通过利用CRISPR/Cas9基因编辑技术编辑甘蓝型油菜BnaA06G0083400WE基因,获得甘蓝型油菜矮化材料;1. A method of using gene editing technology to create dwarfing materials of Brassica napus, characterized in that, by utilizing the CRISPR/Cas9 gene editing technology to edit the BnaA06G0083400WE gene of Brassica napus, obtain the dwarfing materials of Brassica napus; 所述甘蓝型油菜矮化材料的编码基因突变体的核苷酸序列为SEQ ID NO.1。The nucleotide sequence of the coding gene mutant of the brassica napus dwarf material is SEQ ID NO.1. 2.根据权利要求1所述的一种利用基因编辑技术创制甘蓝型油菜矮化材料的方法,其特征在于,包括以下具体步骤:2. A kind of method utilizing gene editing technology to create Brassica napus dwarfing material according to claim 1, is characterized in that, comprises the following specific steps: (1)甘蓝型油菜BnaA06G0083400WE基因CRISPR/Cas9表达载体的构建:(1) Construction of Brassica napus BnaA06G0083400WE gene CRISPR/Cas9 expression vector: 1)sgRNA靶位点的选择:1) Selection of sgRNA target sites: 所述sgRNA靶位点是针对甘蓝型油菜westar中BnaA06G0083400WE基因不同拷贝的结构和同源关系,基于CRISPRdirect网站设计,核苷酸序列为:The sgRNA target site is aimed at the structure and homology relationship of different copies of the BnaA06G0083400WE gene in Brassica napus westar, designed based on the CRISPRdirect website, and the nucleotide sequence is: SEQ ID NO.2:5’-agaggtcaaggccatccacaagg-3’;SEQ ID NO.2: 5'-agaggtcaaggccatccacaagg-3'; 2)引物设计和PCR扩增:2) Primer design and PCR amplification: 所述引物序列如下:The primer sequences are as follows: SEQ ID NO.3:5’-cagtGGTCTCagtca agaggtcaaggccatccaca-3’;SEQ ID NO.3: 5'-cagtGGTCTCagtca agaggtcaaggccatccaca-3'; SEQ ID NO.4:5’-cagtGGTCTCaaaac tgtggatggccttgacctct-3’;SEQ ID NO.4: 5'-cagtGGTCTCaaaac tgtggatggccttgacctct-3'; 所述PCR扩增过程如下:按50μL体系的PCR反应,以上下游引物混合,经PCR仪变性退火得到gRNA片段;The PCR amplification process is as follows: According to the PCR reaction of 50 μL system, the upper and lower primers are mixed, and denatured and annealed by a PCR instrument to obtain gRNA fragments; 3)CRISPR/Cas9表达载体的构建与农杆菌转化:3) Construction of CRISPR/Cas9 expression vector and Agrobacterium transformation: 利用T4连接酶将步骤2)所得gRNA片段与经过BsaI/Eco31I酶切的CRISPR/Cas9质粒进行T4连接,然后将连接产物转化大肠杆菌DH5a并用抗生素进行筛选后,做菌落PCR鉴定以及测序验证,得到表达载体;Use T4 ligase to T4-ligate the gRNA fragment obtained in step 2) with the CRISPR/Cas9 plasmid digested with BsaI/Eco31I, then transform the ligated product into Escherichia coli DH5a and screen with antibiotics, then perform colony PCR identification and sequencing verification to obtain Expression vector; 将验证含有sgRNA的载体转化农杆菌,进行菌落PCR验证得到含有表达载体的农杆菌菌株;Transform the vector containing sgRNA into Agrobacterium, and perform colony PCR verification to obtain the Agrobacterium strain containing the expression vector; (2)甘蓝型油菜BnaA06G0083400WE基因CRISPR/Cas9基因编辑突变体的获得与鉴定:(2) Obtaining and identification of BnaA06G0083400WE gene CRISPR/Cas9 gene editing mutants in Brassica napus: 1)将预培养的下胚轴置于含有表达载体的农杆菌悬浮液中,进行愈伤的诱导,将产生愈伤的下胚轴转移至诱导诱导胚性愈伤生成的培养基上,进行胚性细胞的诱导,油菜遗传转化幼苗的分化与筛选同时进行,在分化培养基中加入相应的抗生素,分为初筛和二筛,得到阳性苗后进行幼苗生根培养;1) Place the pre-cultured hypocotyls in the Agrobacterium suspension containing the expression vector to induce callus, transfer the callus-producing hypocotyls to a medium for inducing embryogenic callus, and carry out The induction of embryogenic cells, the differentiation and screening of rapeseed genetically transformed seedlings are carried out at the same time, the corresponding antibiotics are added to the differentiation medium, divided into primary screening and secondary screening, and rooting culture of seedlings is carried out after positive seedlings are obtained; 2)利用PCR检测阳性甘蓝型油菜幼苗中的CRISPR/Cas9表达载体,通过测序检测CRISPR/Cas9基因编辑植株中BnaA06G0083400WE基因的编辑状况;2) Using PCR to detect the CRISPR/Cas9 expression vector in the positive Brassica napus seedlings, and detecting the editing status of the BnaA06G0083400WE gene in the CRISPR/Cas9 gene-edited plants by sequencing; (3)验证甘蓝型油菜westar和BnaA06G0083400WE基因CRISPR/Cas9基因编辑突变体在株高方面的差异。(3) To verify the difference in plant height between Brassica napus westar and BnaA06G0083400WE gene CRISPR/Cas9 gene editing mutants. 3.根据权利要求2所述的一种利用基因编辑技术创制甘蓝型油菜矮化材料的方法,其特征在于,所述sgRNA靶位点的核苷酸序列选自甘蓝型油菜westar中BnaA06G0083400WE基因的第六个外显子区域。3. A method of using gene editing technology to create dwarfing materials in Brassica napus according to claim 2, wherein the nucleotide sequence of the sgRNA target site is selected from the BnaA06G0083400WE gene in Brassica napus westar The sixth exon region. 4.根据权利要求2所述的一种利用基因编辑技术创制甘蓝型油菜矮化材料的方法,其特征在于,所述抗生素为氯霉素。4. A method for creating dwarfing materials of Brassica napus by gene editing technology according to claim 2, characterized in that the antibiotic is chloramphenicol. 5.一种由权利要求1-4任一项所述利用基因编辑技术创制甘蓝型油菜矮化材料的方法在油菜育种中的应用。5. An application of the method for creating a dwarf material of Brassica napus by using gene editing technology according to any one of claims 1-4 in rapeseed breeding.
CN202211104290.5A 2022-09-09 2022-09-09 Method and application of gene editing technology to create dwarfing materials of Brassica napus Pending CN115838757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211104290.5A CN115838757A (en) 2022-09-09 2022-09-09 Method and application of gene editing technology to create dwarfing materials of Brassica napus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211104290.5A CN115838757A (en) 2022-09-09 2022-09-09 Method and application of gene editing technology to create dwarfing materials of Brassica napus

Publications (1)

Publication Number Publication Date
CN115838757A true CN115838757A (en) 2023-03-24

Family

ID=85575424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211104290.5A Pending CN115838757A (en) 2022-09-09 2022-09-09 Method and application of gene editing technology to create dwarfing materials of Brassica napus

Country Status (1)

Country Link
CN (1) CN115838757A (en)

Similar Documents

Publication Publication Date Title
WO2018086623A1 (en) A method for base editing in plants
CN108395472A (en) A kind of gene and its application of control rice class grain length and grain weight
CN110964743A (en) Method for editing and creating rice amylose content variation by using promoter
CN115287296A (en) Application of OsJMJ711 gene in improvement of rice grain number per ear trait
CN104628839B (en) A kind of paddy endosperm amyloplast development associated protein and its encoding gene and application
CN110881367A (en) Corn event Ttrans-4 and methods of use thereof
CN106399287B (en) A kind of rice MIT1 gene, its coded protein and application
CN110951772B (en) Application of rice OsPPR2-1 gene in construction of plants with improved fertility under natural conditions
CN118389567A (en) Application of Maize Gene ZmEREB202 in Controlling Maize Yield
CN115838757A (en) Method and application of gene editing technology to create dwarfing materials of Brassica napus
CN113151295B (en) Rice Thermosensitive Male Sterile Gene OsFMS1 and Its Application
CN104073491A (en) High-temperature-induced expressed plant promoter Posheat2 and application thereof
CN115838724A (en) Oligo DNA group of sgRNA of two fixed-point knockout rice gene OsZFP8 and application thereof
CN115697043A (en) Method for obtaining mutant plants by targeted mutagenesis
CN105969796A (en) Method creating rice high-yield material by utilizing TALENs (transcription activator-like effector nucleases) technology for site-directed mutagenesis of gene GW2
CN112980870A (en) Method for creating large-long-grain novel germplasm of rice and application thereof
CN114317597B (en) Application of gene OsBEAR1 in cultivation of early-flowering and early-maturing crop variety
CN116769799B (en) A soybean mutant gene that improves the yield of leguminous crops and its application
CN116590270A (en) A gene controlling rice grain size and its application
CN119177254A (en) Application of OsPTST gene in improving plant nitrogen utilization efficiency and increasing yield
JP2025512041A (en) Compositions and methods for increasing genome editing efficiency
CN120350027A (en) Rape BnaA09.SCL28 gene and promoter and application thereof
CN120138022A (en) Maize flowering period regulatory gene ZmDBB6 and its application
CN119320792A (en) Application of SIP7 gene and its coding protein in regulating plant ear shape and grain shape
CN119978086A (en) Protein DAP1 for regulating plant growth and development, coding gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination