CN115838639B - Endophytic fungi DF101 of cogongrass seed and application thereof - Google Patents
Endophytic fungi DF101 of cogongrass seed and application thereof Download PDFInfo
- Publication number
- CN115838639B CN115838639B CN202211626667.3A CN202211626667A CN115838639B CN 115838639 B CN115838639 B CN 115838639B CN 202211626667 A CN202211626667 A CN 202211626667A CN 115838639 B CN115838639 B CN 115838639B
- Authority
- CN
- China
- Prior art keywords
- seed
- cadmium
- phragmitis
- cogongrass
- seeds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000233866 Fungi Species 0.000 title claims description 13
- 240000007171 Imperata cylindrica Species 0.000 title abstract 2
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 26
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 24
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 18
- 239000011574 phosphorus Substances 0.000 claims abstract description 18
- 239000000589 Siderophore Substances 0.000 claims abstract description 11
- 230000001737 promoting effect Effects 0.000 claims abstract description 6
- 238000009629 microbiological culture Methods 0.000 claims abstract description 3
- 238000004321 preservation Methods 0.000 claims abstract description 3
- 241001598107 Imperata Species 0.000 claims description 9
- 230000035784 germination Effects 0.000 claims description 8
- 235000000509 Chenopodium ambrosioides Nutrition 0.000 claims description 2
- 241000309574 Dysphania ambrosioides Species 0.000 claims 1
- 241000196324 Embryophyta Species 0.000 abstract description 16
- 230000007226 seed germination Effects 0.000 abstract description 8
- 239000002689 soil Substances 0.000 abstract description 8
- 244000005700 microbiome Species 0.000 abstract description 4
- 230000008439 repair process Effects 0.000 abstract description 3
- 230000004083 survival effect Effects 0.000 abstract description 3
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 241000347029 Septoriella phragmitis Species 0.000 description 30
- 239000000243 solution Substances 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 239000001963 growth medium Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 230000001580 bacterial effect Effects 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 238000005067 remediation Methods 0.000 description 6
- 239000008223 sterile water Substances 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 241000951473 Schizonepeta Species 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000000877 morphologic effect Effects 0.000 description 4
- 230000008635 plant growth Effects 0.000 description 4
- 239000012086 standard solution Substances 0.000 description 4
- WYWFMUBFNXLFJK-UHFFFAOYSA-N [Mo].[Sb] Chemical compound [Mo].[Sb] WYWFMUBFNXLFJK-UHFFFAOYSA-N 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000000855 fermentation Methods 0.000 description 3
- 230000004151 fermentation Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- JCRIDWXIBSEOEG-UHFFFAOYSA-N 2,6-dinitrophenol Chemical compound OC1=C([N+]([O-])=O)C=CC=C1[N+]([O-])=O JCRIDWXIBSEOEG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- -1 dipotassium hydrogen Chemical class 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 2
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229960004799 tryptophan Drugs 0.000 description 2
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 229930192334 Auxin Natural products 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 244000281762 Chenopodium ambrosioides Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 241001520921 Leersia virginica Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- BIGPRXCJEDHCLP-UHFFFAOYSA-N ammonium bisulfate Chemical compound [NH4+].OS([O-])(=O)=O BIGPRXCJEDHCLP-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000002363 auxin Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000020057 cognac Nutrition 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 235000006645 dysphania ambrosioides Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229940032296 ferric chloride Drugs 0.000 description 1
- 229940044631 ferric chloride hexahydrate Drugs 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000006799 invasive growth in response to glucose limitation Effects 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- NQXWGWZJXJUMQB-UHFFFAOYSA-K iron trichloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].Cl[Fe+]Cl NQXWGWZJXJUMQB-UHFFFAOYSA-K 0.000 description 1
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- CDUFCUKTJFSWPL-UHFFFAOYSA-L manganese(II) sulfate tetrahydrate Chemical compound O.O.O.O.[Mn+2].[O-]S([O-])(=O)=O CDUFCUKTJFSWPL-UHFFFAOYSA-L 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 231100000783 metal toxicity Toxicity 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000015816 nutrient absorption Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000003375 plant hormone Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 238000003900 soil pollution Methods 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000013582 standard series solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域Technical field
本发明属于微生物技术领域,具体涉及一株种子内生真菌(Septoriella phragmitis)DF101及其在重金属污染的生物修复中的应用。The invention belongs to the field of microbial technology, and specifically relates to a seed endophytic fungus ( Septoriella phragmitis ) DF101 and its application in bioremediation of heavy metal pollution.
背景技术Background technique
由于矿山开采与冶炼、化肥农药的大量使用、农田污灌以及固体废弃物弃置等人类活动,土壤重金属污染越来越严重。我国土壤总超标率为16.1%,其中镉、汞、砷等8种重金属超标点位数占全部超标点位的82.8%。在各种重金属污染物中,镉(Cd)因其强大的生物毒性和高转移风险而被确定为最重要的污染物之一。土壤中过量的重金属不仅会抑制作物生长,还会通过食物链产生毒性放大作用,严重威胁着人类健康。因此,修复土壤中的重金属污染已迫在眉睫。Due to human activities such as mining and smelting, extensive use of chemical fertilizers and pesticides, farmland sewage irrigation, and solid waste disposal, soil heavy metal pollution is becoming more and more serious. The total exceedance rate of soil in my country is 16.1%, among which the number of exceedance points for eight heavy metals such as cadmium, mercury, and arsenic accounts for 82.8% of all exceedance points. Among various heavy metal contaminants, cadmium (Cd) has been identified as one of the most important due to its strong biological toxicity and high transfer risk. Excessive heavy metals in the soil will not only inhibit crop growth, but also produce toxic amplification through the food chain, seriously threatening human health. Therefore, it is urgent to remediate heavy metal pollution in soil.
在所有修复方法中,植物修复因其原位、环保、费用低、操作简单而在重金属污染土壤修复中展现出较好的应用前景。然而,在实际应用中,植物修复仍存在修复效率低、费时等问题,植物-微生物联合修复有望解决这些问题。因为许多微生物能通过产生植物生长素、改善植物的营养吸收、改变土壤中重金属的生物有效性等促进植物在重金属污染环境的生长,从而增加其生物量,提高修复效率。Among all remediation methods, phytoremediation shows good application prospects in the remediation of heavy metal contaminated soil because of its in-situ, environmental protection, low cost, and simple operation. However, in practical applications, phytoremediation still has problems such as low repair efficiency and time-consuming, and plant-microbial joint remediation is expected to solve these problems. Because many microorganisms can promote the growth of plants in heavy metal-polluted environments by producing auxins, improving plant nutrient absorption, changing the bioavailability of heavy metals in the soil, etc., thereby increasing their biomass and improving remediation efficiency.
种子是植物的繁殖器官,种子内定殖有一定数量的内生菌。研究表明,许多作物的种子,包括水稻、小麦、棉花、玉米等都含有内生菌,内生菌不但可以促进宿主植物的生长发育还可以保护其免受病原体的侵害。由于部分种子内生菌是通过种子进行垂直传播并成为新生植物体内最早定殖的微生物,因而对宿主植物来说,种子内生菌具有更重要的生态学意义。例如,Mastretta等证明了接种抗镉内生菌的烟草种子可以在镉胁迫下生长,该种子内生菌降低了镉对烟草的重金属毒性;Johnston-Monje 等发现来源于玉米种子的内生菌,可通过固氮、分泌铁载体等功能刺激宿主植物,使其能够快速适应包括重金属胁迫在内的恶劣环境;Truyens等研究表明,在镉胁迫下拟南芥(Arabidopsis thaliana)连续几代种子内生菌比无镉胁迫的种子内生菌具有更显著的重金属抗性。这些研究表明某些内生菌可以垂直传播给下一代并赋予其重金属抗性,对植物适应重金属胁迫环境具有重要意义。种子内生菌在提高植物-内生菌联合修复重金属土壤污染效率方面显示出巨大应用前景。Seeds are the reproductive organs of plants, and there are a certain number of endophytic bacteria colonizing the seeds. Research shows that the seeds of many crops, including rice, wheat, cotton, corn, etc., contain endophytes, which can not only promote the growth and development of host plants but also protect them from pathogens. Because some seed endophytes are vertically transmitted through seeds and become the earliest microorganisms to colonize new plants, seed endophytes have more important ecological significance for the host plant. For example, Mastretta et al. demonstrated that tobacco seeds inoculated with cadmium-resistant endophytes can grow under cadmium stress, and the seed endophytes reduce the heavy metal toxicity of cadmium to tobacco; Johnston-Monje et al. found that endophytes derived from corn seeds, It can stimulate the host plant through functions such as nitrogen fixation and secretion of siderophores, allowing it to quickly adapt to harsh environments including heavy metal stress; Truyens et al. have shown that under cadmium stress, Arabidopsis thaliana seed endophytes grow continuously over several generations. The seed endophytes had more significant heavy metal resistance than those without cadmium stress. These studies indicate that certain endophytes can be vertically transmitted to the next generation and confer heavy metal resistance, which is of great significance for plants to adapt to heavy metal stress environments. Seed endophytes show great application prospects in improving the efficiency of plant-endophyte joint remediation of heavy metal soil pollution.
发明内容Contents of the invention
本发明提供了一株植物种子内生真菌DF101,分类命名为Septoriella phragmitis,其分离自白茅(Imperata cylindrica L.)种子,其于2022年11月14日保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC No.40427,保藏地址:北京市朝阳区北辰西路1号院3号中国科学院微生物研究所。The invention provides a plant seed endophytic fungus DF101, classified and named Septoriella phragmitis, which is isolated from the seeds of Imperata cylindrica L., and was deposited in the General Microorganisms of the China Microbial Culture Collection Committee on November 14, 2022. Center, the collection number is CGMCC No.40427, and the collection address is: Institute of Microbiology, Chinese Academy of Sciences, No. 3, No. 1, Beichen West Road, Chaoyang District, Beijing.
本发明另一目的是提供上述植物种子内生真菌DF101的新用途,即将其应用在镉污染的生物修复中,本发明白茅种子内生真菌DF101具有产IAA、产铁载体的能力、较高的解磷能力,具有较强的镉耐受性,在镉胁迫下能促进种子萌发、提高幼苗存活率、增强其镉抗性。Another object of the present invention is to provide a new use of the above-mentioned plant seed endophytic fungus DF101, that is, to apply it in the bioremediation of cadmium pollution. The whitegrass seed endophytic fungus DF101 of the present invention has the ability to produce IAA and siderophores, and has higher It has the ability to dissolve phosphorus and has strong cadmium tolerance. It can promote seed germination, improve seedling survival rate and enhance its cadmium resistance under cadmium stress.
为了实现以上目的,本发明采取以下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:
1、将采集自云南省建水市普雄乡的白茅(I. cylindrica)植物样品置于阳光下晾晒风干至种子可以自然脱落,然后将种子样品置于4℃冰箱中保存备用;1. Place the I. cylindrica plant samples collected from Puxiong Township, Jianshui City, Yunnan Province in the sun to dry until the seeds can fall off naturally, and then store the seed samples in a 4°C refrigerator for later use;
2、从植物样品中随机挑选出种子600粒,按下列程序进行表面消毒:体积浓度75%的乙醇表面消毒2次,每次时间为1min,然后用无菌水冲洗5次,置于无菌滤纸上吸干水分。之后将表面消毒后的种子贴到PDA平板上,25℃培养,隔天观察,培养期间见组织块周围有真菌长出,则挑取、纯化;同时,通过漂洗液检验法检验种子表面消毒是否彻底;2. Randomly select 600 seeds from the plant samples and conduct surface disinfection according to the following procedures: surface disinfection with ethanol with a volume concentration of 75% twice, each time for 1 minute, then rinse with sterile water 5 times, and place in a sterile place. Blot dry on filter paper. Then, stick the surface-sterilized seeds onto a PDA plate, culture them at 25°C, and observe them the next day. During the culture period, if fungi grow around the tissue blocks, pick them out and purify them. At the same time, use the rinse solution test method to check whether the seeds are surface-disinfected. thorough;
3、配制含不同Cd2+浓度的PDB培养基,分装至锥形瓶中,将分离得到的内生菌株挑取大小均匀的菌丝体于锥形瓶中,每个浓度三次重复,置于28℃的恒温水平摇床上于135rpm振荡培养6d后,观察不同浓度下菌落的长势;选出对Cd2+具有较强抗性的菌株,保存于PDA斜面上,并将该真菌命名为DF101;3. Prepare PDB culture medium containing different Cd 2+ concentrations and distribute them into Erlenmeyer flasks. Pick out the mycelium of uniform size from the isolated endophytic strains and put them into Erlenmeyer flasks. Repeat three times for each concentration and place them in the Erlenmeyer flasks. After culturing for 6 days on a constant-temperature horizontal shaker at 28°C and shaking at 135 rpm, observe the growth of the colonies at different concentrations; select a strain with strong resistance to Cd 2+ and store it on a PDA slant, and name the fungus DF101 ;
4、菌株DF101的鉴定4. Identification of strain DF101
(1)DF101形态学特征:培养初期菌落边缘整齐呈白色,长有茂密的灰色菌丝,呈棉絮状,近圆形,不透明,6d后菌落开始变成黄褐色;(1) Morphological characteristics of DF101: In the early stage of culture, the edges of the colonies are neatly white, with dense gray hyphae, cotton-like, nearly round, and opaque. After 6 days, the colonies begin to turn yellowish brown;
(2)分子鉴定:采用MoBio PowerSoil® DNA试剂盒提取该菌株总DNA,经检测后送测序公司进行序列测定,将测序结果与NCBI上序列进行比对;结合形态学特征和分子鉴定结果,最终将该菌株鉴定为Septoriella phragmitis ;该菌株保存和活化所用培养基均为PDA培养基;(2) Molecular identification: Use the MoBio PowerSoil® DNA kit to extract the total DNA of the strain. After detection, it is sent to a sequencing company for sequence determination. The sequencing results are compared with the sequence on NCBI; combined with the morphological characteristics and molecular identification results, the final The strain was identified as Septoriella phragmitis ; the culture medium used for preservation and activation of this strain was PDA culture medium;
5、本发明将从白茅中分离得到的种子内生真菌S. phragmitisDF101进行种子萌发实验,探讨其对种子萌发的影响,即进行了种子内生真菌S. phragmitis DF101接种对种子在重金属胁迫下萌发的影响研究,为植物-微生物联合修复提供真菌菌种和理论研究依据。5. The present invention conducts a seed germination experiment with the seed endophytic fungus S. phragmitis DF101 isolated from Cogongrass to explore its impact on seed germination. That is, the seed endophytic fungus S. phragmitis DF101 is inoculated to affect the effects of seed under heavy metal stress. Research on the effects of germination provides fungal strains and theoretical research basis for plant-microbial joint repair.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明提供的种子内生真菌S. phragmitis DF101来源于白茅种子,其具有溶磷、产IAA、产铁载体能力,较好的耐镉能力,且通过简单液体发酵即可获得大量的菌丝体,菌体易获取,成本低廉,拥有商业化应用的潜能;在镉胁迫下能促进种子的萌发,能够显著提高种子在重金属环境中的萌发率,提高其生存能力,增强其镉抗性,对重金属污染土壤的修复有重要意义。The seed endophytic fungus S. phragmitis DF101 provided by the present invention is derived from Imperata cognac seeds. It has the ability to dissolve phosphorus, produce IAA, and produce siderophores, has good cadmium resistance, and can obtain a large amount of mycelium through simple liquid fermentation. , the bacteria are easy to obtain, low cost, and have the potential for commercial application; they can promote the germination of seeds under cadmium stress, significantly improve the germination rate of seeds in a heavy metal environment, improve their viability, and enhance their cadmium resistance, which is beneficial to The remediation of heavy metal contaminated soil is of great significance.
附图说明Description of the drawings
图1为白茅种子内生真菌DF101在PDA培养基上的菌落形态(图A:正面,B:背面);Figure 1 shows the colony morphology of Imperata seed endophytic fungus DF101 on PDA medium (Figure A: front, B: back);
图2为磷标准溶液的标准工作曲线;Figure 2 is the standard working curve of phosphorus standard solution;
图3为IAA标准溶液的标准工作曲线;Figure 3 is the standard working curve of IAA standard solution;
图4为S. phragmitis DF101解磷、产IAA能力测定结果;Figure 4 shows the results of measuring the ability of S. phragmitis DF101 to solubilize phosphorus and produce IAA;
图5为对不同浓度镉胁迫下,S. phragmitis DF101接种(E+)和未接种(CK)下土荆芥的种子萌发率。Figure 5 shows the seed germination rate of S. phragmitis DF101 inoculated (E+) and uninoculated (CK) under different concentrations of cadmium stress.
具体实施方式Detailed ways
下面结合具体实施例和附图对本发明的技术方案做进一步详细说明,但本发明并不局限于以下技术方案。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。本领域的普通技术人员可以参照本发明申请日之前的各种常用工具书、科技文献或相关的说明书、手册等加以实施;The technical solutions of the present invention will be further described in detail below with reference to specific embodiments and drawings, but the present invention is not limited to the following technical solutions. Unless otherwise specified, the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in this technical field. Persons of ordinary skill in the art can implement the method by referring to various commonly used reference books, scientific and technological documents or related instructions, manuals, etc. before the filing date of the present invention;
下述实施例中铬天青S(CAS)检测液的配制为:The preparation of chromium azure S (CAS) detection solution in the following examples is:
溶液A:称取60.5mg铬天青溶解于50mL去离子水中,加入10mL Fe3+溶液(含有1mM六水氯化铁、10mM稀盐酸)搅拌混匀;Solution A: Weigh 60.5 mg of chromium azure and dissolve it in 50 mL of deionized water, add 10 mL of Fe 3+ solution (containing 1 mM ferric chloride hexahydrate, 10 mM dilute hydrochloric acid) and stir to mix;
溶液B:将72.9mg十六烷基三甲基溴化胺溶于40mL去离子水;Solution B: Dissolve 72.9mg cetyltrimethylamine bromide in 40mL deionized water;
将溶液A缓慢倒入溶液B中搅拌均匀,即得CAS蓝色检测液。Slowly pour solution A into solution B and stir evenly to obtain CAS blue detection solution.
实施例1:种子内生真菌S. phragmitis DF101的分离、筛选与鉴定Example 1: Isolation, screening and identification of seed endophytic fungus S. phragmitis DF101
(1)采集云南省建水市普雄乡的白茅样品,将植物样品置于阳光下晾晒风干至种子可以自然脱落,然后将种子样品置于4℃冰箱中保存备用;(1) Collect Imperata samples from Puxiong Township, Jianshui City, Yunnan Province, dry the plant samples in the sun until the seeds can fall off naturally, and then store the seed samples in a 4°C refrigerator for later use;
(2)内生菌的分离:从种子样品中随机挑选出种子600粒,用体积浓度75%的乙醇表面消毒2次,每次时间为1min,然后用无菌水冲洗5次,置于无菌滤纸上吸干水分。之后将表面消毒后的种子贴到PDA平板上(90mm),每皿6粒,25℃培养60d,隔天观察,培养期间见组织块周围有真菌长出,则挑取、纯化;同时,通过漂洗液检验法检验种子表面消毒是否彻底;(2) Isolation of endophytes: 600 seeds were randomly selected from the seed samples, surface sterilized twice with ethanol with a volume concentration of 75%, each time for 1 minute, then rinsed 5 times with sterile water, and placed in a sterile place. Absorb the water on bacterial filter paper. Then, stick the surface-sterilized seeds onto a PDA plate (90mm), 6 seeds per plate, and incubate at 25°C for 60 days. Observe every other day. If fungi grow around the tissue block during the culture period, pick and purify them; at the same time, The rinse liquid test method tests whether the seed surface is completely disinfected;
(3)镉抗性菌株的筛选:配制含Cd2+0、100、200、400mg/L的PDB培养基,分装至100mL锥形瓶中,分装体积均为50mL,将分离得到的内生菌株挑取大小均匀的菌丝体于锥形瓶中,每个浓度三次重复,置于28℃的恒温水平摇床上于135rpm振荡培养6d后,观察不同浓度下菌落的长势;选择对Cd2+具有较强抗性的菌株,保存于PDA斜面上,并将该菌株命名为DF101;(3) Screening of cadmium-resistant strains: Prepare PDB culture medium containing Cd 2+ 0, 100, 200, and 400 mg/L, and aliquot into 100 mL Erlenmeyer flasks. The aliquot volumes are all 50 mL. The separated contents Pick mycelium of uniform size in a Erlenmeyer flask, repeat each concentration three times, place it on a constant-temperature horizontal shaker at 28°C and shake at 135 rpm for 6 days, and observe the growth of the colonies under different concentrations; select Cd 2 + The strain with strong resistance was stored on the PDA slant and named DF101;
(4)菌株DF101的鉴定(4) Identification of strain DF101
①DF101形态学特征:培养初期菌落边缘整齐呈白色,长有茂密的灰色菌丝,呈棉絮状,近圆形,不透明,6d后菌落开始变成黄褐色(图1 A:正面、B:背面);① Morphological characteristics of DF101: In the early stage of culture, the edges of the colonies are neatly white, with dense gray hyphae, cotton-like, nearly round, and opaque. After 6 days, the colonies begin to turn yellowish brown (Figure 1 A: front, B: back) ;
②分子鉴定:采用MoBio PowerSoil® DNA试剂盒提取该菌株总DNA,经检测后送测序公司进行序列测定,测序结果如SEQ ID NO:1所示,将测序结果与NCBI上序列进行比对;结合形态学特征和分子鉴定结果,其与S. phragmitis同源性达98.93%,最终将该菌株鉴定为S. phragmitis。② Molecular identification: Use the MoBio PowerSoil® DNA kit to extract the total DNA of the strain. After testing, it is sent to a sequencing company for sequence determination. The sequencing results are shown as SEQ ID NO: 1. Compare the sequencing results with the sequence on NCBI; combine According to the morphological characteristics and molecular identification results, it has 98.93% homology with S. phragmitis , and the strain was finally identified as S. phragmitis .
实施例 2:种子内生真菌S. phragmitis DF101镉耐性实验Example 2: Cadmium tolerance experiment of seed endophytic fungus S. phragmitis DF101
将分离得到的内生菌株接种到PDA平板上,配制含Cd2+浓度0、50、100、200、400、600mg/L的PDB培养基,分装至100mL锥形瓶中,分装体积均为50mL,将长势良好的菌株挑取大小均匀的菌块于锥形瓶中,每个浓度三次重复,置于28℃的恒温水平摇床上于135rpm振荡培养6d后,观察菌块长势,用重量法测定菌丝体干重,其中Cd2+浓度为0mg/L的培养液为对照组,按公式计算可得重金属对菌株的抑制效率;Inoculate the isolated endophytic strains onto PDA plates, prepare PDB culture media containing Cd 2+ concentrations of 0, 50, 100, 200, 400, and 600 mg/L, and dispense them into 100 mL Erlenmeyer flasks. When the concentration is 50 mL, pick out uniformly sized bacterial blocks from well-growing strains and place them in a conical flask. Repeat three times for each concentration. Place them on a constant-temperature horizontal shaker at 28°C and shake at 135 rpm for 6 days. After 6 days of culture, observe the growth of the bacterial blocks and weigh them. The dry weight of mycelium was determined by the method, in which the culture medium with a Cd 2+ concentration of 0 mg/L was the control group. The inhibitory efficiency of heavy metals on the bacterial strain can be calculated according to the formula;
生长抑制率=(对照菌丝干质量-处理菌丝干质量)/对照菌丝干质量×100 %Growth inhibition rate = (dry mass of control mycelium - dry mass of treated mycelium)/dry mass of control mycelium × 100%
结果见表1,菌株S. phragmitis DF101在较高镉浓度的PDB培养基内的可以生长,说明S. phragmitis DF101具有较好的镉耐受能力;The results are shown in Table 1. The strain S. phragmitis DF101 can grow in PDB medium with higher cadmium concentration, indicating that S. phragmitis DF101 has better cadmium tolerance;
表1 菌株DF101重金属耐受能力Table 1 Heavy metal tolerance of strain DF101
注:上表中“+”具良好抗性;“+-”有抗性,但生长状况不佳;“-”无抗性。Note: In the above table, "+" has good resistance; "+-" has resistance, but the growth condition is not good; "-" has no resistance.
实施例 3:种子内生真菌S. phragmitis DF101解磷能力的测定Example 3: Determination of phosphate-solubilizing ability of seed endophytic fungus S. phragmitis DF101
溶磷能力:将S. phragmitis DF101在PDB培养基中28℃、125rpm摇床培养4d后,将长势良好的菌株挑取大小均匀的菌块接入无机磷液体发酵培养基(含葡萄糖10g、硫酸氨0.5g、氯化钠0.3g、氯化钾0.3g、七水硫酸镁0.3g、七水硫酸亚铁0.03g、四水硫酸锰1g、磷酸三钙5g、蒸馏水1L,pH 7.0-7.5)上,同时以接入同等量的PDB液体培养基作为空白对照,每种处理设三个重复,28℃、125rpm在摇床上培养10d;采用钼锑抗比色法测定可溶性磷含量(分光光度计波长700nm),具体步骤如下:Phosphorus solubilizing ability: After culturing S. phragmitis DF101 in PDB culture medium on a shaking table at 28°C and 125 rpm for 4 days, pick out evenly sized bacterial clumps from well-growing strains and insert them into inorganic phosphorus liquid fermentation medium (containing 10g of glucose, sulfuric acid Ammonia 0.5g, sodium chloride 0.3g, potassium chloride 0.3g, magnesium sulfate heptahydrate 0.3g, ferrous sulfate heptahydrate 0.03g, manganese sulfate tetrahydrate 1g, tricalcium phosphate 5g, distilled water 1L, pH 7.0-7.5) At the same time, the same amount of PDB liquid culture medium was added as a blank control. Three replicates were set up for each treatment, and the culture was carried out on a shaking table at 28°C and 125 rpm for 10 days; the molybdenum antimony colorimetric method was used to determine the soluble phosphorus content (spectrophotometer Wavelength 700nm), the specific steps are as follows:
①取发酵液10000rpm离心15min,取上清液1mL置于50mL容量瓶中,加入2,6-二硝基苯酚指示剂2滴,用10%氢氧化钠或者5%稀硫酸调节pH至溶液刚呈微黄色,加入钼锑抗显色剂5mL后加入去离子水定容至50mL;① Take the fermentation broth and centrifuge it for 15 minutes at 10000 rpm. Take 1 mL of the supernatant and place it in a 50 mL volumetric flask. Add 2 drops of 2,6-dinitrophenol indicator and adjust the pH with 10% sodium hydroxide or 5% dilute sulfuric acid until the solution is just right. It turns slightly yellow, add 5mL of molybdenum antimony anti-chromogenic agent and then add deionized water to adjust the volume to 50mL;
②静置30min后在分光光度计700nm下比色,同时测定空白对照组;② After standing for 30 minutes, measure the color with a spectrophotometer at 700nm and measure the blank control group at the same time;
③实验同时绘制磷标准曲线,分别吸取5mg/L磷标准溶液0、2、4、6、8、10mL于50mL容量瓶中,加入2,6-二硝基苯酚指示剂2滴,用10%氢氧化钠或者5%稀硫酸调节pH至溶液刚呈微黄色,加入钼锑抗显色剂5mL后加入去离子水定容至50mL,获得0、0.2、0.4、0.6、0.8、1.0mg/L磷标准系列溶液,静置30min后在分光光度计700nm下比色,绘制标准工作曲线(图2),然后将步骤②测得的吸光度值代入标准工作曲线,获得S. phragmitis DF101在无机磷培养液中的溶磷量为43.026 mg/L(图4),说明S. phragmitis DF101具有将无机磷转化成有机磷的能力,使植物更易吸收磷,进而促进植物生长。③ Draw a phosphorus standard curve during the experiment. Take 0, 2, 4, 6, 8, and 10 mL of 5 mg/L phosphorus standard solution into a 50 mL volumetric flask, add 2 drops of 2,6-dinitrophenol indicator, and use 10% Adjust the pH with sodium hydroxide or 5% dilute sulfuric acid until the solution just turns slightly yellow. Add 5 mL of molybdenum antimony antichromogenic agent and then add deionized water to adjust the volume to 50 mL to obtain 0, 0.2, 0.4, 0.6, 0.8, 1.0 mg/L. For the phosphorus standard series solution, let it stand for 30 minutes and then measure the color with a spectrophotometer at 700nm. Draw a standard working curve (Figure 2). Then substitute the absorbance value measured in step ② into the standard working curve to obtain the results of S. phragmitis DF101 cultured with inorganic phosphorus. The amount of dissolved phosphorus in the solution was 43.026 mg/L (Figure 4), indicating that S. phragmitis DF101 has the ability to convert inorganic phosphorus into organic phosphorus, making it easier for plants to absorb phosphorus, thereby promoting plant growth.
实施例4:种子内生真菌S. phragmitis DF101产IAA能力的测定Example 4: Determination of IAA-producing ability of seed endophytic fungus S. phragmitis DF101
S. phragmitis DF101在PDB培养基(含有L-色氨酸0.5mg/mL)中28℃、125rpm的摇床上黑暗培养10天,取1mL菌液12000rpm离心15min,去沉淀,取0.5mL上清液添加等量的Salkowski's 反应液(1mL 0.5M氯化铁,49mL 35%高氯酸),在黑暗处反应30min,在530nm下测定吸光值,每组重复三次,以不接菌培养基同上处理作为对照调零;浓度0、2.5、5、10、20、40、60、80、100 mg/L的 IAA标准溶液采用上述方法测定吸光度值并绘制标准曲线(图3),然后将接种S. phragmitis的实验组的吸光度值代入标准曲线,获得S. phragmitis DF101分泌IAA量为17.637 mg/L(图4),S. phragmitis DF101以L-色氨酸为前体合成植物激素IAA,刺激植物细胞生长和增殖,有效吸收水分和养分,同时调节植物体的生命活动。 S. phragmitis DF101 was cultured in PDB medium (containing 0.5 mg/mL L-tryptophan) in the dark on a shaker at 28°C and 125 rpm for 10 days. Centrifuge 1 mL of bacterial liquid at 12,000 rpm for 15 min, remove the precipitate, and take 0.5 mL of the supernatant. Add an equal amount of Salkowski's reaction solution (1mL 0.5M ferric chloride, 49mL 35% perchloric acid), react in the dark for 30 minutes, and measure the absorbance value at 530nm. Each group is repeated three times, and the non-inoculated culture medium is treated as above. The control is zeroed; the IAA standard solution with concentrations of 0, 2.5, 5, 10, 20, 40, 60, 80, and 100 mg/L is used to measure the absorbance value and draw a standard curve (Figure 3) using the above method, and then inoculate S. phragmitis The absorbance value of the experimental group was substituted into the standard curve, and the amount of IAA secreted by S. phragmitis DF101 was 17.637 mg/L (Figure 4). S. phragmitis DF101 uses L-tryptophan as the precursor to synthesize the plant hormone IAA and stimulate the growth of plant cells. and proliferation, effectively absorbing water and nutrients, and regulating the life activities of plants.
实施例5:种子内生真菌S. phragmitis DF101产铁载体能力的测定Example 5: Determination of siderophore-producing ability of seed endophytic fungus S. phragmitis DF101
将S. phragmitis DF101在PDB培养基中28℃、125rpm摇床培养4d后,将长势良好的菌株挑取大小均匀的菌块接入无铁察氏培养基(含有蔗糖30g、硝酸钠2g、磷酸氢二钾1g、七水硫酸镁0.5g、氯化钾0.5g、蒸馏水1L)中,并在28℃、125rpm下振荡培养5d后,8000rpm离10min后收集培养上清液,将1mL上清液与1mL CAS检测液混匀,混合物在黑暗中反应15min,在630nm下测定吸光值,该值记为As,在空白不接菌对照中用同样的方法测定OD630值,记为Ar,以去离子水作为对照调零,具体计算公式为铁载体活性=[(Ar-As)/Ar]×100%;After S. phragmitis DF101 was cultured in PDB culture medium at 28°C and 125 rpm shaker for 4 days, the well-growing strains were picked into uniformly sized bacterial clumps and inserted into iron-free Zarbanz medium (containing 30g of sucrose, 2g of sodium nitrate, and phosphoric acid). 1g dipotassium hydrogen, 0.5g magnesium sulfate heptahydrate, 0.5g potassium chloride, 1L distilled water), and incubate with shaking at 28°C, 125rpm for 5 days, then separate at 8000rpm for 10 minutes, collect the culture supernatant, and add 1 mL of the supernatant Mix with 1 mL CAS detection solution, react the mixture in the dark for 15 minutes, measure the absorbance value at 630 nm, and record the value as As. Use the same method to measure the OD 630 value in the blank control without bacteria, record it as Ar, and remove Ionized water was used as a control for zero adjustment. The specific calculation formula is siderophore activity = [(Ar-As)/Ar] × 100%;
计算结果为菌株DF101的螯合铁载体能力为74.52%,铁载体是一类由低铁环境中细菌和真菌合成并分泌的具有很强特异性螯合Fe3+的小分子化合物,研究表明一些产铁载体的菌能使铁元素在植物根际富集,从而改善了植物铁营养的吸收,达到促进植物生长的作用。The calculated result is that the capacity of strain DF101 to chelate siderophores is 74.52%. Siderophores are a type of small molecule compounds that are synthesized and secreted by bacteria and fungi in low-iron environments and have strong specificity for chelating Fe 3+ . Studies have shown that some Siderophore-producing bacteria can enrich iron in the rhizosphere of plants, thereby improving the absorption of plant iron nutrients and promoting plant growth.
实施例6:重金属胁迫下种子内生真菌S. phragmitis DF101对土荆芥种子萌发的影响Example 6: Effect of seed endophytic fungus S. phragmitis DF101 on seed germination of Schizonepeta under heavy metal stress
本实施例旨在证明S. phragmitis DF101对种子萌发的促进作用;以土荆芥(Dysphania ambrosioides L.)为供试植物,实验过程如下:This example aims to prove the promoting effect of S. phragmitis DF101 on seed germination; using Dysphania ambrosioides L. as the test plant, the experimental process is as follows:
A、S. phragmitis DF101悬浮液的制备:挑选之前纯化后的DF101菌株,接种到PDA平板中活化,置于28℃隔水式恒温培养箱中培养7d后,挑选长势良好且无污染的平板,挑取菌丝体接种到PDB培养基中,于28℃、125rpm的恒温摇床中培养4d后,在无菌条件下,将菌丝体滤出,用无菌水冲洗3遍,避免菌丝体上沾有培养基,然后用无菌剪刀剪碎,将剪碎后的菌丝转移至无菌水中定容至150mL,制成DF101菌丝悬浮液;A. Preparation of S. phragmitis DF101 suspension: Select the previously purified DF101 strain, inoculate it into a PDA plate for activation, place it in a 28°C water-isolated constant-temperature incubator and cultivate it for 7 days, select a plate with good growth and no pollution, Pick the mycelium and inoculate it into the PDB medium. After culturing for 4 days in a constant temperature shaker at 28°C and 125 rpm, filter out the mycelium under sterile conditions and rinse it with sterile water three times to avoid mycelium. The body is stained with culture medium, and then cut into pieces with sterile scissors. The chopped hyphae are transferred to sterile water and the volume is adjusted to 150mL to prepare a DF101 mycelium suspension;
B、选择大小均匀且饱满的土荆芥种子进行表面消毒: 体积分数75%的乙醇漂洗2次,每次时间为2min30s,无菌水冲洗5次。将表面消毒后的种子浸泡在DF101菌丝悬浮液中为(E+),浸泡2h定殖,种子浸泡在等体积的无菌水中为对照组(CK)将浸泡后的种子置于浸润在含有不同浓度的Cd2+溶液的培养皿中(培养皿铺有两层灭菌的滤纸,每个培养皿中Cd2+溶液为5mL);Cd2+溶液浓度为 0、30、50、100、200mg/L,每个浓度设置三个重复组,每皿放置25粒种子,在自然光照下进行培养,从种子开始萌发记录种子的萌发数,直到无萌发为止,统计种子发芽粒数,计算萌发率(%)为(Gt/T) ×100,其中Gt为萌发种子数,T为种子数。B. Select evenly sized and plump Schizonepeta seeds for surface disinfection: rinse twice with ethanol with a volume fraction of 75%, each time for 2 minutes and 30 seconds, and rinse with sterile water five times. The surface-sterilized seeds were soaked in DF101 mycelium suspension for colonization (E+) and soaked for 2 hours for colonization. The seeds were soaked in an equal volume of sterile water to form the control group (CK). The soaked seeds were soaked in a solution containing different The concentration of Cd 2+ solution is in a petri dish (the petri dish is covered with two layers of sterilized filter paper, and the Cd 2+ solution in each petri dish is 5mL); the concentration of Cd 2+ solution is 0, 30, 50, 100, 200mg /L, set three replicate groups for each concentration, place 25 seeds in each dish, culture under natural light, record the number of seeds from the beginning of germination until no germination, count the number of seeds germinated, and calculate the germination rate (%) is (Gt/T) ×100, where Gt is the number of germinated seeds and T is the number of seeds.
结果如图5所示,结果显示S. phragmitis DF101在重金属胁迫下对土荆芥种子有明显的促进萌发的作用、提高幼苗存活率、增强其镉抗性。The results are shown in Figure 5. The results show that S. phragmitis DF101 can significantly promote the germination of Schizonepeta seeds under heavy metal stress, improve the survival rate of seedlings, and enhance its cadmium resistance.
上述实施例的结果说明本发明中分离得到的种子内生真菌S. phragmitisDF101,具有溶磷、产IAA和铁载体的能力,以及较好的耐镉能力,且在重金属胁迫下对土荆芥种子萌发有较好的促进作用。The results of the above examples illustrate that the seed endophytic fungus S. phragmitis DF101 isolated in the present invention has the ability to dissolve phosphorus, produce IAA and siderophores, as well as have good cadmium tolerance, and is resistant to Schizonepeta under heavy metal stress. It has a better promoting effect on seed germination.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211626667.3A CN115838639B (en) | 2022-12-17 | 2022-12-17 | Endophytic fungi DF101 of cogongrass seed and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211626667.3A CN115838639B (en) | 2022-12-17 | 2022-12-17 | Endophytic fungi DF101 of cogongrass seed and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115838639A CN115838639A (en) | 2023-03-24 |
CN115838639B true CN115838639B (en) | 2024-02-13 |
Family
ID=85578749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211626667.3A Active CN115838639B (en) | 2022-12-17 | 2022-12-17 | Endophytic fungi DF101 of cogongrass seed and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115838639B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116121147B (en) * | 2023-03-14 | 2023-12-01 | 昆明理工大学 | Chenopodium ambrosioides seed endophytic Larimol agrobacterium and application thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1147276A (en) * | 1994-04-25 | 1997-04-09 | 希巴-盖吉股份公司 | Detection of fungal pathogens using polymerase chain reaction |
CN106591156A (en) * | 2017-01-16 | 2017-04-26 | 昆明理工大学 | Epicoccum nigrum FXZ2 and application thereof |
CN112094760A (en) * | 2020-10-13 | 2020-12-18 | 昆明理工大学 | An endophytic fungus D2G24 of Acanthospora terrestris and its application |
CN112358974A (en) * | 2020-12-09 | 2021-02-12 | 昆明理工大学 | Endophytic fungus epicoccum nigrum FZT214 and application thereof |
CN116103161A (en) * | 2022-11-16 | 2023-05-12 | 三峡大学 | A plant endophytic fungus producing eupholm and its application |
CN116121147A (en) * | 2023-03-14 | 2023-05-16 | 昆明理工大学 | Chenopodium ambrosioides seed endophytic Larimol agrobacterium and application thereof |
CN117143937A (en) * | 2023-06-29 | 2023-12-01 | 武汉软件工程职业学院(武汉开放大学) | Application of compound in preparation of PTP1B inhibitor and pharmaceutical composition thereof |
CN117158442A (en) * | 2023-08-23 | 2023-12-05 | 南昌航空大学 | A microbial agent capable of reducing the enrichment of rare earth elements in the edible part of water spinach and its application |
CN117230132A (en) * | 2023-08-03 | 2023-12-15 | 三峡大学 | Culture method and pharmaceutical application of xanthone compound Austonysin R |
CN117298250A (en) * | 2023-06-28 | 2023-12-29 | 武汉软件工程职业学院(武汉开放大学) | Application of cyclopeptide compound in preparation of anticancer drugs and pharmaceutical composition thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4518542B2 (en) * | 2004-03-29 | 2010-08-04 | 独立行政法人産業技術総合研究所 | Plant germination inhibitor and method of using the same |
-
2022
- 2022-12-17 CN CN202211626667.3A patent/CN115838639B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1147276A (en) * | 1994-04-25 | 1997-04-09 | 希巴-盖吉股份公司 | Detection of fungal pathogens using polymerase chain reaction |
CN106591156A (en) * | 2017-01-16 | 2017-04-26 | 昆明理工大学 | Epicoccum nigrum FXZ2 and application thereof |
CN112094760A (en) * | 2020-10-13 | 2020-12-18 | 昆明理工大学 | An endophytic fungus D2G24 of Acanthospora terrestris and its application |
CN112358974A (en) * | 2020-12-09 | 2021-02-12 | 昆明理工大学 | Endophytic fungus epicoccum nigrum FZT214 and application thereof |
CN116103161A (en) * | 2022-11-16 | 2023-05-12 | 三峡大学 | A plant endophytic fungus producing eupholm and its application |
CN116121147A (en) * | 2023-03-14 | 2023-05-16 | 昆明理工大学 | Chenopodium ambrosioides seed endophytic Larimol agrobacterium and application thereof |
CN117298250A (en) * | 2023-06-28 | 2023-12-29 | 武汉软件工程职业学院(武汉开放大学) | Application of cyclopeptide compound in preparation of anticancer drugs and pharmaceutical composition thereof |
CN117143937A (en) * | 2023-06-29 | 2023-12-01 | 武汉软件工程职业学院(武汉开放大学) | Application of compound in preparation of PTP1B inhibitor and pharmaceutical composition thereof |
CN117230132A (en) * | 2023-08-03 | 2023-12-15 | 三峡大学 | Culture method and pharmaceutical application of xanthone compound Austonysin R |
CN117158442A (en) * | 2023-08-23 | 2023-12-05 | 南昌航空大学 | A microbial agent capable of reducing the enrichment of rare earth elements in the edible part of water spinach and its application |
Non-Patent Citations (4)
Title |
---|
The Genera of Fungi - fixing the application of the type species of generic names - G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia;Crous PW等;IMA Fungus;第1-13页 * |
不同生长时期凤丹内生真菌的分离鉴定及多样性研究;张培良;王国凯;郁阳;刘劲松;王举涛;许凤清;马宗慧;张楠;王刚;;安徽中医药大学学报(第05期);第78-82页 * |
江苏沿海滩涂植物根际促生菌的筛选鉴定及其耐盐促生特性;王小兵;叶赛克;汪晓丽;封克;王小治;尤云春;饶伟林;;扬州大学学报(农业与生命科学版)(第02期);第81-86页 * |
高蛋白含量餐厨垃圾水解真菌的筛选和应用;郝杰威;何再华;周长芳;田兴军;;环境工程学报;20180105(第01期);第292-299页 * |
Also Published As
Publication number | Publication date |
---|---|
CN115838639A (en) | 2023-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115433697B (en) | Streptomyces silica-releasing strain CS13-6 and its application | |
CN110616164A (en) | Enterobacter cloacae Y16 capable of activating insoluble phosphorus and cadmium and application thereof | |
CN102747017A (en) | Bacillus amyloliquefaciens and application thereof | |
CN108485998A (en) | The agrobacterium T29 of one plant height effect activation mineral element and heavy metal cadmium | |
CN106591205A (en) | Acinetobacter bacteria NJAU-3 having functions of phosphate solubilizing and growth promoting, and applications thereof | |
CN113801817B (en) | Phosphate solubilizing bacteria 3-1 and application thereof in dissolving phosphate | |
CN116121147B (en) | Chenopodium ambrosioides seed endophytic Larimol agrobacterium and application thereof | |
CN107841477B (en) | Application of an arsenic oxidizing bacteria in reducing trivalent arsenic pollution in rice | |
CN115838639B (en) | Endophytic fungi DF101 of cogongrass seed and application thereof | |
CN110760455B (en) | Ferrophore-producing hydrogen-oxidizing bacterium and separation method and application thereof | |
CN114317373B (en) | Sphingomonas PAH02, microbial preparation and application thereof as crop cadmium-reducing selenium-enriched functional conditioner | |
CN118853507B (en) | Large Listeria with carbon fixation function, fermentation liquor and application thereof | |
CN109136147B (en) | A multi-heavy metal-resistant indoleacetic acid-producing strain and its application | |
CN113980830B (en) | Pseudomonas stutzeri, culture thereof and application thereof | |
CN119570680A (en) | Burkholderia strain and application thereof in tobacco growth promotion | |
CN110628674A (en) | Preparation and application of a strain of Bacillus pumilus with the functions of improving acidic soil and dissolving potassium and its bacterial agent | |
CN102676431A (en) | Denitrifying bacteria and aquatic plant-microbe combined repair method using same | |
CN118667686A (en) | Burkholderia cepacia, inoculants and/or biofertilizers and applications thereof | |
CN115739977B (en) | Application of Paenibacillus clarkii space mutant strain in restoration of Cd pollution | |
CN111334457A (en) | Bacillus acquired immaturus with soil heavy metal restoration effect and application thereof | |
CN114107123B (en) | Sword fungus strain and application thereof | |
CN112011487A (en) | Aroma-like bacterial strain C40 capable of degrading phenol and having growth promoting function and application thereof | |
CN114107117B (en) | Rice endophyte and application thereof | |
CN115820457B (en) | A strain with growth-promoting and salt-tolerant function derived from mangrove ecosystem and its application | |
CN113980863B (en) | Bacillus siamensis and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |