CN115830872B - A Method for Judging the Impact of Accidents on the Elasticity of Bicycle Use - Google Patents
A Method for Judging the Impact of Accidents on the Elasticity of Bicycle Use Download PDFInfo
- Publication number
- CN115830872B CN115830872B CN202211663826.7A CN202211663826A CN115830872B CN 115830872 B CN115830872 B CN 115830872B CN 202211663826 A CN202211663826 A CN 202211663826A CN 115830872 B CN115830872 B CN 115830872B
- Authority
- CN
- China
- Prior art keywords
- bicycle
- accident
- buffer zone
- usage
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 13
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000011218 segmentation Effects 0.000 claims description 2
- 206010039203 Road traffic accident Diseases 0.000 abstract description 4
- 101100504210 Arabidopsis thaliana GLDP1 gene Proteins 0.000 description 1
- 101100504216 Arabidopsis thaliana GLDP2 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 101150056490 gdp1 gene Proteins 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
Landscapes
- Traffic Control Systems (AREA)
Abstract
Description
技术领域technical field
本发明涉及交通安全与公共自行车技术领域,特别是一种判断事故发生对自行车使用弹性影响的方法。The invention relates to the technical fields of traffic safety and public bicycles, in particular to a method for judging the impact of accidents on bicycle use elasticity.
背景技术Background technique
为缓解城市交通拥堵,提高城市交通运行效率,各地政府都在积极推动公共自行车的使用。为提升自行车的使用,都是根据自行车站点使用量的情况增加或减少自行车投放。相关专利,例如CN101038685A城市自行车共用管理系统,只是研究公用自行车的统一管理。然而对于不确定事件,例如交通事故的发生,对周围自行车站点的自行车使用量影响却很少有研究,并且现有技术中,也没有考虑到不确定事件发生地的自行车使用状况还与诸多客观因素有关。目前针对不确定事件的发生,能够综合考虑相关因素,判断自行车使用弹性的影响,实现自行车调度达到最合理使用率是亟须解决的问题。In order to alleviate urban traffic congestion and improve the efficiency of urban traffic operation, local governments are actively promoting the use of public bicycles. In order to improve the use of bicycles, the distribution of bicycles is increased or decreased according to the usage of bicycle stations. Related patents, such as CN101038685A urban bicycle sharing management system, just study the unified management of public bicycles. However, for uncertain events, such as the occurrence of traffic accidents, there is little research on the impact on the bicycle usage of surrounding bicycle stations, and in the prior art, it has not considered that the bicycle usage status of the place where the uncertain event occurs is also related to many objective factors. factors. At present, for the occurrence of uncertain events, it is an urgent problem to be able to comprehensively consider relevant factors, judge the impact of bicycle use elasticity, and realize the most reasonable utilization rate of bicycle scheduling.
发明内容Contents of the invention
本发明的目的在于:克服现有技术的不足,提供一种判断事故发生对自行车使用弹性影响的方法,通过划分影响缓冲区以及设定单元时间考虑影响因素准确的评估事故发生对自行车使用的弹性影响。The purpose of the present invention is: to overcome the deficiencies in the prior art, to provide a method for judging the impact of accidents on the elasticity of bicycle use, and to accurately evaluate the elasticity of accidents to bicycle use by dividing the impact buffer zone and setting unit time considering the impact factors Influence.
为实现上述目的一种判断事故发生对自行车使用弹性影响的方法,包括以下步骤:A method for judging the elastic impact of accidents on bicycle use in order to achieve the above purpose, comprising the following steps:
S1、获取目标区域内关于各个事故发生时间和地点的样本信息;S1. Obtain sample information about the time and place of each accident in the target area;
S2、基于样本信息中事故发生的时间,预设事故发生时间段,并对事故发生时间段划分时间单元;具体为:基于事故发生的时间,以每t分钟为单位对事故发生前后G小时进行时间单元切分,如下式:S2. Based on the time of the accident in the sample information, preset the time period of the accident, and divide the time period of the accident into time units; specifically: based on the time of the accident, perform G hours before and after the accident in units of t minutes Time unit segmentation, as follows:
Gi={t1…tn},G i = {t 1 ...t n },
其中i为事故样本的编号;Where i is the number of the accident sample;
S3、根据样本信息中事故发生的地点,预设事故发生缓冲区,并采集缓冲区内自行车站点信息;所述预设事故发生缓冲区具体为:以事故发生地点为圆心,分别以预设距离为半径建立事故的影响缓冲区,并相应的采集事故缓冲区内的自行车站点信息,S3. According to the location of the accident in the sample information, preset the accident buffer zone, and collect the bicycle station information in the buffer zone; the preset accident buffer zone is specifically: take the accident location as the center of the circle, and respectively take the preset distance Establish the impact buffer zone of the accident for the radius, and collect the bicycle station information in the accident buffer zone accordingly,
ni={d1…dk}n i = {d 1 ...d k }
其中ni为事故i的预设距离缓冲区,dk为缓冲区内的自行车站点,其中k>1;Among them, n i is the preset distance buffer of accident i, and d k is the bicycle station in the buffer, where k>1;
S4、根据步骤S2的时间单元、以及步骤S3获得的自行车站点信息,统计各时间单元内各自行车站点的自行车使用量,并进一步统计缓冲区的自行车使用量;所述统计缓冲区的自行车使用量如下式:S4, according to the time unit of step S2 and the bicycle station information obtained in step S3, count the bicycle usage of each bicycle station in each time unit, and further count the bicycle usage of the buffer zone; the bicycle usage of the statistical buffer zone as follows:
其中,Q(dk)为各时间单元内各自行车站点的自行车使用量;Among them, Q(d k ) is the bicycle usage of each bicycle station in each time unit;
S5、采集缓冲区影响因素,结合缓冲区的自行车使用量,构建自行车使用量弹性模型;具体为采集影响因素:路网密度Kti、经济GDPti、人口Pti、公交站点数Dti,结合缓冲区的自行车使用量Mti,构建自行车使用量弹性模型如下式:S5. Collect the influencing factors of the buffer zone, and combine the bicycle usage in the buffer zone to build an elastic model of bicycle usage; specifically, collect the influencing factors: road network density K ti , economic GDP ti , population P ti , and number of bus stops D ti , combined with For the bicycle usage M ti in the buffer zone, the elastic model of bicycle usage is constructed as follows:
其中,为影响因素;ε为模型误差项,αi为各影响因素的回归系数,β0为模型的常数项;in, is the influencing factor; ε is the model error item, α i is the regression coefficient of each influencing factor, and β 0 is the constant item of the model;
其中,C是随机参数的方差及协方差矩阵,j是随机参数的个数,指其他的随机且不相关的变量;Among them, C is the variance and covariance matrix of random parameters, j is the number of random parameters, Refers to other random and uncorrelated variables;
S6、应用自行车使用量弹性模型,根据影响系数判断各影响因素对自行车使用的影响,应用自行车使用量弹性模型,获得影响系数α,若α为正数,则该α对应的影响因素对自行车使用量是正影响,否则为负影响。S6. Apply the elastic model of bicycle usage, judge the impact of each influencing factor on bicycle use according to the influence coefficient, apply the elastic model of bicycle usage, and obtain the influence coefficient α, if α is a positive number, then the influencing factors corresponding to this α have an The quantity is a positive influence, otherwise it is a negative influence.
进一步地,前述的一种判断事故发生对自行车使用弹性影响的方法,预设事故发生缓冲区时以事故发生地点为圆心,以400米为半径建立事故发生缓冲区。Further, in the aforementioned method for judging the impact of accidents on the elasticity of bicycle use, the buffer zone for accidents is preset with the accident location as the center and the accident buffer zone with a radius of 400 meters.
相较于现有技术,本发明的有益效果如下:通过确定交通事故发生时间设定不同的单元时间,以合理的预设距离为半径事故发生地为核心建立影响缓冲区,通过计算单位时间缓冲区内的自行车使用量变化分析事故发生对自行车使用弹性的影响。该方法可以更好的指导交通管理部门在交通事故发生时如何有效率进行自行车调度。Compared with the prior art, the beneficial effects of the present invention are as follows: set different unit times by determining the traffic accident occurrence time, establish an impact buffer zone with a reasonable preset distance as the radius of the accident occurrence place, and calculate the unit time buffer The change of bicycle usage in the district analyzes the impact of accidents on the elasticity of bicycle use. This method can better guide the traffic management department on how to efficiently dispatch bicycles when traffic accidents occur.
附图说明Description of drawings
图1是本发明的一种实施例的方法流程图。Fig. 1 is a method flow chart of an embodiment of the present invention.
具体实施方式Detailed ways
为了更了解本发明的技术内容,特举具体实施例并配合所附图式说明如下。In order to better understand the technical content of the present invention, specific embodiments are given together with the attached drawings for description as follows.
在本发明中参照附图来描述本发明的各方面,附图中示出了许多说明性实施例。本发明的实施例不局限于附图所述。应当理解,本发明通过上面介绍的多种构思和实施例,以及下面详细描述的构思和实施方式中的任意一种来实现,这是因为本发明所公开的构思和实施例并不限于任何实施方式。另外,本发明公开的一些方面可以单独使用,或者与本发明公开的其他方面的任何适当组合来使用。Aspects of the invention are described herein with reference to the accompanying drawings, in which a number of illustrative embodiments are shown. Embodiments of the present invention are not limited to those described in the drawings. It should be understood that the present invention can be realized by any one of the various concepts and embodiments described above, as well as the concepts and embodiments described in detail below, because the disclosed concepts and embodiments of the present invention are not limited to any implementation Way. In addition, some aspects of the present disclosure may be used alone or in any suitable combination with other aspects of the present disclosure.
如图1所示,一种判断事故发生对自行车使用弹性影响的方法,包括如下步骤:As shown in Figure 1, a method for judging the impact of accidents on the elasticity of bicycle use includes the following steps:
步骤S1、获取目标区域内关于各个事故发生时间和地点的样本信息;Step S1, obtaining sample information about the time and location of each accident in the target area;
步骤S2、基于样本信息中事故发生的时间,预设事故发生时间段,并对事故发生时间段划分时间单元.划分时间单元具体为:基于事故发生的时间,以每t分钟为单位对事故发生前后G小时进行时间单元切分,如下式:Step S2. Based on the accident occurrence time in the sample information, preset the accident occurrence time period, and divide the accident occurrence time period into time units. The specific time division is: based on the accident occurrence time, the accident occurrence time is calculated in units of t minutes The time unit is divided into G hours before and after, as follows:
Gi={t1…tn},G i = {t 1 ...t n },
其中i为事故样本的编号。where i is the number of the accident sample.
步骤S3、根据样本信息中事故发生的地点,预设事故发生缓冲区,并采集缓冲区内自行车站点信息;,预设事故发生缓冲区具体为:以事故发生地点为圆心,分别以400米为半径建立事故的影响缓冲区,并相应的采集事故缓冲区内的自行车站点信息,Step S3, according to the location of the accident in the sample information, preset the accident buffer zone, and collect the bicycle station information in the buffer zone; the preset accident buffer zone is specifically: take the accident location as the center, and take 400 meters as the center Radius establishes the impact buffer zone of the accident, and correspondingly collects the bicycle station information in the accident buffer zone,
ni={d1…dk}n i = {d 1 ...d k }
其中ni为事故i的预设距离缓冲区,dk为缓冲区内的自行车站点,其中k>1。Among them, n i is the preset distance buffer of accident i, and d k is the bicycle station in the buffer, where k>1.
自行车站点信息如表1所示:The bicycle station information is shown in Table 1:
表1Table 1
步骤S4、根据步骤S2的时间单元、以及步骤S3获得的自行车站点信息,统计各时间单元内各自行车站点的自行车使用量,并进一步统计缓冲区的自行车使用量。统计缓冲区的自行车使用量如下式:Step S4, according to the time unit of step S2 and the bicycle station information obtained in step S3, count the bicycle usage of each bicycle station in each time unit, and further count the bicycle usage of the buffer zone. The bicycle usage in the statistical buffer zone is as follows:
其中,Q(dk)为各时间单元内各自行车站点的自行车使用量。Among them, Q(d k ) is the bicycle usage of each bicycle station in each time unit.
步骤S5、采集影响因素:路网密度Kti、经济GDPti、人口Pti、公交站点数Dti,结合缓冲区的自行车使用量Mti,构建自行车使用量弹性模型如下式:Step S5, collect influencing factors: road network density K ti , economic GDP ti , population P ti , number of bus stops D ti , combined with the bicycle usage M ti in the buffer zone, construct the elastic model of bicycle usage as follows:
其中,xi为影响因素;Among them, x i is the influencing factor;
其中,C是随即参数的方差及协方差矩阵,j是随即参数的个数,指其他的随机且不相关的变量。Among them, C is the variance and covariance matrix of random parameters, j is the number of random parameters, Refers to other random and uncorrelated variables.
影响因素统计表如表2所示:The statistical table of influencing factors is shown in Table 2:
表2Table 2
步骤S6、应用自行车使用量弹性模型,可以判断事故发生后的单元时间内影响因素对自行车使用的影响,如影响系数α为正则表示该因素对自行车使用有正向的影响,反之则表示该因素对自行车使用是负向影响。根据因素的影响可以有目标性的进行策略减少事故的发生对自行车系统稳定性的影响。Step S6, applying the elastic model of bicycle usage, can judge the impact of the influencing factors on the use of bicycles in the unit time after the accident, if the influence coefficient α is positive, it means that the factor has a positive impact on the use of bicycles, otherwise it means that the factor Negative effect on bicycle use. According to the influence of factors, strategies can be targeted to reduce the impact of accidents on the stability of the bicycle system.
虽然本发明已以较佳实施例阐述如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。Although the present invention has been described above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention may make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the claims.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211663826.7A CN115830872B (en) | 2022-12-23 | 2022-12-23 | A Method for Judging the Impact of Accidents on the Elasticity of Bicycle Use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211663826.7A CN115830872B (en) | 2022-12-23 | 2022-12-23 | A Method for Judging the Impact of Accidents on the Elasticity of Bicycle Use |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115830872A CN115830872A (en) | 2023-03-21 |
CN115830872B true CN115830872B (en) | 2023-09-01 |
Family
ID=85517991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211663826.7A Active CN115830872B (en) | 2022-12-23 | 2022-12-23 | A Method for Judging the Impact of Accidents on the Elasticity of Bicycle Use |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115830872B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL186237A0 (en) * | 2007-09-24 | 2008-01-20 | Schaffer Alon | Flexible bicycle derailleur hanger |
CN107679668A (en) * | 2017-10-16 | 2018-02-09 | 东南大学 | The electric bicycle travel time prediction method of duration model based on risk |
CN108022015A (en) * | 2017-12-07 | 2018-05-11 | 华蓝设计(集团)有限公司 | A kind of modification method of left-hand rotation autos only ability |
GB201807571D0 (en) * | 2018-05-09 | 2018-06-20 | Dan Plant Engineering Ltd | Impact detection |
CN108550218A (en) * | 2018-06-01 | 2018-09-18 | 厦门市市政工程设计院有限公司 | A kind of bicycle capacity integrated control system and its management-control method |
CN108766031A (en) * | 2018-05-29 | 2018-11-06 | 北京京东金融科技控股有限公司 | A kind of method and apparatus of detection lane obstructions object |
CN109559504A (en) * | 2018-09-02 | 2019-04-02 | 吉林大学 | Signalized intersections electric bicycle opens the determination method of bright time in advance |
CN110390483A (en) * | 2019-07-24 | 2019-10-29 | 东南大学 | A method for evaluating the impact of bicycle expressways on the running speed of buses |
CN111507617A (en) * | 2020-04-15 | 2020-08-07 | 桂林电子科技大学 | Analysis system based on electric bicycle risk driving behavior scale |
CN111984924A (en) * | 2020-07-07 | 2020-11-24 | 东南大学 | A method to assess the impact of public bike rental policies on regional bike safety |
-
2022
- 2022-12-23 CN CN202211663826.7A patent/CN115830872B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL186237A0 (en) * | 2007-09-24 | 2008-01-20 | Schaffer Alon | Flexible bicycle derailleur hanger |
CN107679668A (en) * | 2017-10-16 | 2018-02-09 | 东南大学 | The electric bicycle travel time prediction method of duration model based on risk |
CN108022015A (en) * | 2017-12-07 | 2018-05-11 | 华蓝设计(集团)有限公司 | A kind of modification method of left-hand rotation autos only ability |
GB201807571D0 (en) * | 2018-05-09 | 2018-06-20 | Dan Plant Engineering Ltd | Impact detection |
CN108766031A (en) * | 2018-05-29 | 2018-11-06 | 北京京东金融科技控股有限公司 | A kind of method and apparatus of detection lane obstructions object |
CN108550218A (en) * | 2018-06-01 | 2018-09-18 | 厦门市市政工程设计院有限公司 | A kind of bicycle capacity integrated control system and its management-control method |
CN109559504A (en) * | 2018-09-02 | 2019-04-02 | 吉林大学 | Signalized intersections electric bicycle opens the determination method of bright time in advance |
CN110390483A (en) * | 2019-07-24 | 2019-10-29 | 东南大学 | A method for evaluating the impact of bicycle expressways on the running speed of buses |
CN111507617A (en) * | 2020-04-15 | 2020-08-07 | 桂林电子科技大学 | Analysis system based on electric bicycle risk driving behavior scale |
CN111984924A (en) * | 2020-07-07 | 2020-11-24 | 东南大学 | A method to assess the impact of public bike rental policies on regional bike safety |
Non-Patent Citations (1)
Title |
---|
电动自行车骑行者事故伤害程度影响因素分析;王卫杰;沈轩霆;王贵彬;方琪璐;;中国安全科学学报(02);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN115830872A (en) | 2023-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104064028B (en) | Based on public transport arrival time Forecasting Methodology and the system of multiple information data | |
CN107610469A (en) | A kind of day dimension regional traffic index forecasting method for considering multifactor impact | |
CN104809344B (en) | A kind of interval passenger flow method of estimation in the bus station based on IC-card data | |
CN103984994B (en) | Method for predicting urban rail transit passenger flow peak duration | |
CN103903430B (en) | Dynamic fusion type travel time predicting method with multi-source and isomorphic data adopted | |
CN102157075B (en) | Method for predicting bus arrivals | |
CN103035123B (en) | Abnormal data acquisition methods and system in a kind of traffic track data | |
CN107195177B (en) | Urban traffic road condition prediction method based on distributed memory computing framework | |
CN113538067B (en) | Inter-city network vehicle-closing demand prediction method and system based on machine learning | |
CN104166895A (en) | Public bike scheduling area dividing method | |
CN105868861A (en) | Bus passenger flow evolution analysis method based on time-space data fusion | |
CN108038578B (en) | Static scheduling method of public bicycles based on demand forecasting and hub-and-spoke network | |
CN103870890B (en) | The Forecasting Methodology of freeway net traffic flow distribution | |
CN102129771A (en) | System for automatically distributing emergency resources of expressway network | |
CN104916124B (en) | Public bicycle system regulation and control method based on Markov model | |
CN103956042A (en) | Public bike scheduling area intelligent partition method based on graph theory | |
CN106803347A (en) | Urban intersection traffic state judging method based on RFID data | |
Esawey et al. | Determination and application of standard K factors for bicycle traffic | |
CN106327867B (en) | Bus punctuation prediction method based on GPS data | |
CN109544967B (en) | A method for monitoring the operation status of bus network based on low-frequency AVL data | |
CN108108859A (en) | A kind of traffic administration duties optimization method based on big data analysis | |
CN115830872B (en) | A Method for Judging the Impact of Accidents on the Elasticity of Bicycle Use | |
CN106650209A (en) | Method for determining reliability growth tendency and parameter based on vehicle application real-time information | |
CN115759639A (en) | Scheduling method of shared bicycles during high-incidence periods of non-rental returns based on small-sample incremental learning | |
CN115238487A (en) | Simulation analysis evaluation method for hydrogen fuel cell bus dispatching algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |