CN115816787A - Intelligent injection molding production control method and device - Google Patents
Intelligent injection molding production control method and device Download PDFInfo
- Publication number
- CN115816787A CN115816787A CN202211658727.XA CN202211658727A CN115816787A CN 115816787 A CN115816787 A CN 115816787A CN 202211658727 A CN202211658727 A CN 202211658727A CN 115816787 A CN115816787 A CN 115816787A
- Authority
- CN
- China
- Prior art keywords
- real
- temperature
- deviation
- data
- temperature data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
技术领域technical field
本申请涉及注塑机控制技术领域,特别涉及一种智能化注塑生产控制方法、装置。The present application relates to the technical field of injection molding machine control, in particular to an intelligent injection molding production control method and device.
背景技术Background technique
目前,世界能源危机不断威胁着工业发展,金属材料和木质材料的使用不利于可持续发展,渐渐无法满足需求。这致使塑料行业的发展趋于繁荣,塑料制品的需求量与日俱增,实现以高性能的塑料材料代替钢材、代替木制材料、代替其他非金属材料等是应对能源危机和资源紧缺的有效方法,因此,作为最常用的塑料成型方式,注塑加工技术应用越来越广泛。且随着科学技术的发展,注塑生产也逐渐自动化,然而目前注塑机的自动化程度仍然不高,这导致注塑机的温度控制精度不高,从而使得注塑机的智能化程度较低,因此现有的注塑机制造水平不高。At present, the world's energy crisis is constantly threatening industrial development, and the use of metal materials and wood materials is not conducive to sustainable development, and gradually cannot meet the demand. This has led to the prosperity of the plastic industry, and the demand for plastic products is increasing day by day. It is an effective way to deal with the energy crisis and resource shortage by replacing steel, wooden materials, and other non-metallic materials with high-performance plastic materials. , as the most commonly used plastic molding method, injection molding processing technology is more and more widely used. And with the development of science and technology, injection molding production is gradually automated. However, the degree of automation of injection molding machines is still not high, which leads to low temperature control accuracy of injection molding machines, which makes injection molding machines less intelligent. Therefore, existing The injection molding machine manufacturing level is not high.
发明内容Contents of the invention
本申请提供了一种智能化注塑生产控制方法、装置,旨在解决现有技术中注塑机温度控制精度不高的技术问题。The present application provides an intelligent injection molding production control method and device, aiming to solve the technical problem of low temperature control accuracy of injection molding machines in the prior art.
本申请提供了一种智能化注塑生产控制方法,包括:This application provides an intelligent injection molding production control method, including:
传感器采集模腔压力数据;The sensor collects cavity pressure data;
温度巡检仪采集料筒的第一实时温度数据;The temperature inspection instrument collects the first real-time temperature data of the barrel;
PID控制器获取第一预设温度数据,并根据第一实时温度数据和第一预设温度数据计算温度偏差和偏差变化率;The PID controller acquires the first preset temperature data, and calculates the temperature deviation and the deviation change rate according to the first real-time temperature data and the first preset temperature data;
根据所述温度偏差和偏差变化率对料筒的实时温度进行调整,得到第二实时温度数据;adjusting the real-time temperature of the barrel according to the temperature deviation and the deviation change rate to obtain second real-time temperature data;
PLC控制器获取压力数据,并判断所述压力数据是否超出预设压力范围;The PLC controller obtains the pressure data, and judges whether the pressure data exceeds the preset pressure range;
若所述压力数据超出预设压力范围,所述PLC控制器停止系统运行;If the pressure data exceeds the preset pressure range, the PLC controller stops the system operation;
PLC控制器获取第二实时温度数据,并判断所述第二实时温度数据是否超出预设温度范围;The PLC controller acquires second real-time temperature data, and judges whether the second real-time temperature data exceeds a preset temperature range;
若所述第二实时温度数据超出预设温度范围,所述PLC控制器停止系统运行。If the second real-time temperature data exceeds a preset temperature range, the PLC controller stops system operation.
作为优选,所述传感器采集模腔压力数据的步骤,包括:As preferably, the step of collecting cavity pressure data by the sensor includes:
采集电流模拟量,并对电流模拟量进行A/D转换;Collect the current analog quantity and perform A/D conversion on the current analog quantity;
判断A/D转换是否完成;Determine whether the A/D conversion is complete;
若A/D转换完成,则开启模拟量通道;If the A/D conversion is completed, open the analog channel;
获取模拟量通道地址;Get the analog channel address;
传感器基于模拟量通道地址对压力数据、位移数据进行读取,并将压力数据、位移数据存储于PLC寄存器中。The sensor reads the pressure data and displacement data based on the analog channel address, and stores the pressure data and displacement data in the PLC register.
作为优选,所述温度巡检仪采集料筒的第一实时温度数据的步骤,包括:Preferably, the step of collecting the first real-time temperature data of the barrel by the temperature patrol instrument includes:
按照预设值对料筒分段,得到多段料筒;Segment the barrel according to the preset value to obtain a multi-segment barrel;
在每一段料筒上固定加热装置,以使加热装置对每一段料筒进行单独加热;Fix the heating device on each section of the barrel so that the heating device can heat each section of the barrel separately;
获取预设采集时间;Obtain the preset collection time;
根据预设采集时间分别采集每一段料筒的第一实时温度数据。The first real-time temperature data of each section of barrel is collected respectively according to the preset collection time.
作为优选,所述并根据第一实时温度数据和第一预设温度数据计算温度偏差和偏差变化率的步骤,包括:As preferably, the step of calculating temperature deviation and deviation rate of change according to the first real-time temperature data and the first preset temperature data includes:
根据第一实时温度数据和第一预设温度数据计算温度偏差,其中,计算公式为:Calculate the temperature deviation according to the first real-time temperature data and the first preset temperature data, wherein the calculation formula is:
P(n)=W(n)-W0;P(n)=W(n)-W 0 ;
其中,P(n)表示第n次采集的温度偏差,W(n)表示第n次采集的第一实时温度数据,W0表示第一预设温度数据;Wherein, P(n) represents the temperature deviation collected for the nth time, W(n) represents the first real-time temperature data collected for the nth time, and W 0 represents the first preset temperature data;
根据温度偏差计算温度偏差率,其中,计算公式为:Calculate the temperature deviation rate according to the temperature deviation, where the calculation formula is:
PC(n)=P(n)-P(n-1);PC(n)=P(n)-P(n-1);
其中,PC(n)表示温度偏差率,P(n-1)表示第n-1次采集的温度偏差。Among them, PC(n) represents the temperature deviation rate, and P(n-1) represents the temperature deviation collected for the n-1th time.
作为优选,根据所述温度偏差和偏差变化率对料筒的实时温度进行调整,得到第二实时温度数据的步骤,包括:Preferably, the step of adjusting the real-time temperature of the barrel according to the temperature deviation and the deviation change rate to obtain the second real-time temperature data includes:
对第n次采集的温度偏差和偏差变化率基于模糊化算法进行模糊化,得到模糊化后的模糊温度偏差和模糊偏差变化率;Perform fuzzification on the temperature deviation and deviation change rate collected for the nth time based on the fuzzy algorithm, and obtain the fuzzy temperature deviation and fuzzy deviation change rate after fuzzification;
将模糊温度偏差和模糊偏差变化率作为输入变量输入PID控制器中;Input the fuzzy temperature deviation and the rate of change of the fuzzy deviation into the PID controller as input variables;
PID控制器基于输入变量确定模糊化的基本论域、量化论域以及量化因子参数;Based on the input variables, the PID controller determines the fuzzy basic discourse domain, quantitative discourse domain and quantization factor parameters;
PID控制器基于基本论域、量化论域以及量化因子参数获取模糊规则,并基于模糊规则输出模糊查询表,其中,模糊参数查询表中包括不同模糊温度偏差和模糊偏差变化率所对应的调整值;The PID controller obtains fuzzy rules based on the basic domain of discourse, quantitative domain of discourse and quantitative factor parameters, and outputs a fuzzy lookup table based on the fuzzy rules, where the fuzzy parameter lookup table includes adjustment values corresponding to different fuzzy temperature deviations and fuzzy deviation change rates ;
基于不同模糊温度偏差和模糊偏差变化率所对应的调整值对料筒的实时温度进行调整,得到第二实时温度数据。The real-time temperature of the barrel is adjusted based on adjustment values corresponding to different fuzzy temperature deviations and fuzzy deviation change rates to obtain second real-time temperature data.
作为优选,所述根据所述温度偏差和偏差变化率对料筒的实时温度进行调整,得到第二实时温度数据的步骤之后,还包括:As a preference, after the step of adjusting the real-time temperature of the barrel according to the temperature deviation and the deviation change rate to obtain the second real-time temperature data, it also includes:
根据第二实时温度数据输出PWM脉宽调制信号;Outputting a PWM pulse width modulation signal according to the second real-time temperature data;
根据PWM脉宽调制信号控制料筒的加热线圈是否进行加热。According to the PWM pulse width modulation signal, whether the heating coil of the barrel is heated or not is controlled.
作为优选,智能化注塑生产控制方法,还包括:As a preference, the intelligent injection molding production control method also includes:
获取永磁同步电机运转时的电枢电流矢量;Obtain the armature current vector when the permanent magnet synchronous motor is running;
获取永磁同步电机运转时的磁通磁链分量;Obtain the flux flux linkage component when the permanent magnet synchronous motor is running;
获取定子绕组的电感分量以及转子磁场对三相绕组产生的等效磁链;Obtain the inductance component of the stator winding and the equivalent flux linkage generated by the rotor magnetic field to the three-phase winding;
获取永磁同步电机的机械角速度;Obtain the mechanical angular velocity of the permanent magnet synchronous motor;
基于电枢电流矢量、磁通磁链分量、电感分量和等效磁链计算永磁同步电机的直轴电压和交轴电压,其中,计算公式为:Calculate the direct-axis voltage and quadrature-axis voltage of the permanent magnet synchronous motor based on the armature current vector, flux flux linkage component, inductance component and equivalent flux linkage, where the calculation formula is:
其中,Ud表示直轴电压,Uq表示交轴电压,ωr为永磁同步电机的机械角速度,lq为定子绕组的电感分量,φd为磁通磁链分量,iq为此时的电枢电流分量,φf为转子磁场对三相绕组产生的等效磁链;Among them, U d represents the direct-axis voltage, U q represents the quadrature-axis voltage, ω r is the mechanical angular velocity of the permanent magnet synchronous motor, l q is the inductance component of the stator winding, φ d is the magnetic flux flux linkage component, and i q is the current The armature current component of , φ f is the equivalent flux linkage generated by the rotor magnetic field to the three-phase winding;
将直轴电压和交轴电压输入至永磁同步电机的定子中,以使永磁同步电机根据预设的转速和转矩进行运转。The direct-axis voltage and the quadrature-axis voltage are input into the stator of the permanent magnet synchronous motor, so that the permanent magnet synchronous motor operates according to the preset speed and torque.
本申请还提供一种智能化注塑生产控制装置,包括:The present application also provides an intelligent injection molding production control device, including:
传感器,用于采集模腔压力数据;A sensor for collecting mold cavity pressure data;
温度巡检仪,用于采集料筒的第一实时温度数据;The temperature inspection instrument is used to collect the first real-time temperature data of the barrel;
PID控制器,用于获取第一预设温度数据,并根据第一实时温度数据和第一预设温度数据计算温度偏差和偏差变化率;PID controller, used to acquire first preset temperature data, and calculate temperature deviation and deviation change rate according to first real-time temperature data and first preset temperature data;
还还用于根据所述温度偏差和偏差变化率对料筒的实时温度进行调整,得到第二实时温度数据;It is also used to adjust the real-time temperature of the barrel according to the temperature deviation and the deviation change rate to obtain second real-time temperature data;
PLC控制器还用于获取压力数据,并判断所述压力数据是否超出预设压力范围;The PLC controller is also used to obtain pressure data and judge whether the pressure data exceeds a preset pressure range;
若所述压力数据超出预设压力范围,所述PLC控制器停止系统运行;If the pressure data exceeds the preset pressure range, the PLC controller stops the system operation;
PLC控制器还用于获取第二实时温度数据,并判断所述第二实时温度数据是否超出预设温度范围;The PLC controller is also used to acquire second real-time temperature data, and determine whether the second real-time temperature data exceeds a preset temperature range;
若所述第二实时温度数据超出预设温度范围,所述PLC控制器停止系统运行。If the second real-time temperature data exceeds a preset temperature range, the PLC controller stops system operation.
作为优选,所述传感器包括:Preferably, the sensor includes:
采集单元,用于采集电流模拟量,并对电流模拟量进行A/D转换;The acquisition unit is used to acquire the current analog quantity and perform A/D conversion on the current analog quantity;
判断单元,用于判断A/D转换是否完成;a judging unit for judging whether the A/D conversion is completed;
开启单元,用于若A/D转换完成,则开启模拟量通道;The opening unit is used to open the analog channel if the A/D conversion is completed;
获取单元,用于获取模拟量通道地址;The obtaining unit is used to obtain the analog channel address;
存储单元,用于基于模拟量通道地址对压力数据、位移数据进行读取,并将压力数据、位移数据存储于PLC寄存器中。The storage unit is used to read the pressure data and displacement data based on the analog channel address, and store the pressure data and displacement data in the PLC register.
本申请的有益效果为:本申请通过采集模腔的压力数据,并通过PLC控制器读取压力数据,判断压力数据是否超出预设范围,这样能够通过压力数据的具体数值判断当前模腔的注塑注射是否符合预期,若不符合,PLC控制器能够及时停止系统运行,这样能够提高注塑过程中的成型率,保证注塑件的加工质量;通过温度巡检仪采集料筒的第一实时温度数据,并通过PID控制器计算温度偏差和偏差变化率,这样能够根据温度偏差和偏差变化率对料筒的实时温度进行调整,从而提高料筒加热温度的精度,当温度调整后,PLC控制器获取第二实时温度数据,若第二实时温度数据超出预设温度范围,PLC控制器则停止系统运行,这样能够提高注塑机的智能化,提高注塑机的制造水平。The beneficial effects of the application are: the application collects the pressure data of the mold cavity and reads the pressure data through the PLC controller to judge whether the pressure data exceeds the preset range, so that the injection molding of the current mold cavity can be judged by the specific value of the pressure data. Whether the injection meets expectations, if not, the PLC controller can stop the system in time, which can improve the molding rate in the injection molding process and ensure the processing quality of injection molded parts; the first real-time temperature data of the barrel is collected by the temperature inspection instrument, And calculate the temperature deviation and deviation change rate through the PID controller, so that the real-time temperature of the barrel can be adjusted according to the temperature deviation and deviation change rate, thereby improving the accuracy of the barrel heating temperature. After the temperature is adjusted, the PLC controller obtains the first Two real-time temperature data, if the second real-time temperature data exceeds the preset temperature range, the PLC controller will stop the system operation, which can improve the intelligence of the injection molding machine and improve the manufacturing level of the injection molding machine.
附图说明Description of drawings
图1为本申请一实施例的方法流程示意图。FIG. 1 is a schematic flowchart of a method according to an embodiment of the present application.
图2为本申请一实施例的装置结构示意图。FIG. 2 is a schematic structural diagram of a device according to an embodiment of the present application.
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization, functional features and advantages of the present application will be further described in conjunction with the embodiments and with reference to the accompanying drawings.
具体实施方式Detailed ways
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。It should be understood that the specific embodiments described here are only used to explain the present application, and are not intended to limit the present application.
如图1、图2所示,本申请提供了一种智能化注塑生产控制方法,包括:As shown in Figure 1 and Figure 2, this application provides an intelligent injection molding production control method, including:
S1、传感器采集模腔压力数据;S1. The sensor collects cavity pressure data;
S2、温度巡检仪采集料筒的第一实时温度数据;S2. The temperature inspection instrument collects the first real-time temperature data of the barrel;
S3、PID控制器获取第一预设温度数据,并根据第一实时温度数据和第一预设温度数据计算温度偏差和偏差变化率;S3. The PID controller acquires the first preset temperature data, and calculates the temperature deviation and the deviation change rate according to the first real-time temperature data and the first preset temperature data;
S4、根据所述温度偏差和偏差变化率对料筒的实时温度进行调整,得到第二实时温度数据;S4. Adjust the real-time temperature of the barrel according to the temperature deviation and the deviation change rate to obtain second real-time temperature data;
S5、PLC控制器获取压力数据,并判断所述压力数据是否超出预设压力范围;S5. The PLC controller acquires pressure data, and judges whether the pressure data exceeds a preset pressure range;
S6、若所述压力数据超出预设压力范围,所述PLC控制器停止系统运行;S6. If the pressure data exceeds the preset pressure range, the PLC controller stops the system operation;
S7、PLC控制器获取第二实时温度数据,并判断所述第二实时温度数据是否超出预设温度范围;S7. The PLC controller acquires second real-time temperature data, and judges whether the second real-time temperature data exceeds a preset temperature range;
S8、若所述第二实时温度数据超出预设温度范围,所述PLC控制器停止系统运行。S8. If the second real-time temperature data exceeds a preset temperature range, the PLC controller stops system operation.
如上述步骤S1-S8所述,在注塑加工的注射过程中,需要采用高射压以维持注射速度,同时为了对抗注射压力,需要使用锁模压力,注射完成后需要在模腔内部激进型保压,因此,本申请通过采集模腔的压力数据,并通过PLC控制器读取压力数据,判断压力数据是否超出预设范围,这样能够通过压力数据的具体数值判断当前模腔的注塑注射是否符合预期,若不符合,PLC控制器能够及时停止系统运行,这样能够提高注塑过程中的成型率,保证注塑件的加工质量;且在注塑加工的过程中,塑料原料需要在料筒中加热,以转化为熔融状态,不同塑料原料的加热温度不同,因此料筒的加热温度控制精度不高的话,会对产品质量、生产效率以及生产过程中的安全产生影响,为了提高温度控制精度,本申请首先通过温度巡检仪采集料筒的第一实时温度数据,并通过PID控制器(Proportion IntegrationDfferentiation,比例-积分-微分控制器)计算温度偏差和偏差变化率,这样能够根据温度偏差和偏差变化率对料筒的实时温度进行调整,从而提高料筒加热温度的精度,当温度调整后,PLC控制器获取第二实时温度数据,若第二实时温度数据超出预设温度范围,PLC控制器则停止系统运行,这样能够提高注塑机的智能化,提高注塑机的制造水平。As described in the above steps S1-S8, during the injection process of injection molding, high injection pressure is required to maintain the injection speed. At the same time, in order to resist the injection pressure, mold clamping pressure needs to be used. After the injection is completed, aggressive pressure maintenance is required inside the mold cavity , Therefore, this application collects the pressure data of the mold cavity and reads the pressure data through the PLC controller to judge whether the pressure data exceeds the preset range, so that it can be judged whether the injection molding of the current mold cavity meets expectations through the specific value of the pressure data , if not, the PLC controller can stop the system operation in time, which can improve the molding rate in the injection molding process and ensure the processing quality of injection molded parts; and in the process of injection molding processing, plastic raw materials need to be heated in the barrel to convert into In the molten state, different plastic raw materials have different heating temperatures, so if the heating temperature control accuracy of the barrel is not high, it will have an impact on product quality, production efficiency and safety in the production process. In order to improve the temperature control accuracy, this application first passes the temperature The inspection instrument collects the first real-time temperature data of the barrel, and calculates the temperature deviation and the deviation change rate through the PID controller (Proportion Integration Dfferentiation, proportional-integral-differential controller), so that the barrel can be adjusted according to the temperature deviation and the deviation change rate. The real-time temperature is adjusted to improve the accuracy of the barrel heating temperature. When the temperature is adjusted, the PLC controller obtains the second real-time temperature data. If the second real-time temperature data exceeds the preset temperature range, the PLC controller stops the system operation. This can improve the intelligence of the injection molding machine and improve the manufacturing level of the injection molding machine.
在一个实施例中,所述传感器采集模腔压力数据的步骤S1,包括:In one embodiment, the step S1 of collecting mold cavity pressure data by the sensor includes:
S11、采集电流模拟量,并对电流模拟量进行A/D转换;S11, collecting the current analog quantity, and performing A/D conversion on the current analog quantity;
S12、判断A/D转换是否完成;S12, judging whether the A/D conversion is completed;
S13、若A/D转换完成,则开启模拟量通道;S13, if the A/D conversion is completed, then open the analog channel;
S14、获取模拟量通道地址;S14. Obtain an analog channel address;
S15、传感器基于模拟量通道地址对压力数据、位移数据进行读取,并将压力数据、位移数据存储于PLC寄存器中。S15. The sensor reads the pressure data and the displacement data based on the analog channel address, and stores the pressure data and the displacement data in the PLC register.
如上述步骤S11-S15所述,在对压力数据进行采集时,可通过采集电流模拟量,再对电流模拟量进行A/D转换,转换完成后打开模拟量通道,这样能够通过获取模拟量通道的地址对压力数据、位移数据进行读取,这样除了能够对模腔内部进行保压之外,还能够通过位移数据对开模装置的位置量进行实时检测,进而判断开模装置的移动位移的准确性,间接提高注塑产品的质量和产品精度。As described in the above steps S11-S15, when collecting pressure data, you can collect the current analog quantity, and then perform A/D conversion on the current analog quantity. After the conversion is completed, open the analog quantity channel, so that you can obtain the analog quantity channel The address to read the pressure data and displacement data, so that in addition to keeping the pressure inside the mold cavity, the position of the mold opening device can be detected in real time through the displacement data, and then the movement displacement of the mold opening device can be judged. Accuracy, indirectly improve the quality and product precision of injection molding products.
在一个实施例中,所述温度巡检仪采集料筒的第一实时温度数据的步骤S2,包括:In one embodiment, the step S2 of collecting the first real-time temperature data of the barrel by the temperature patrol instrument includes:
S21、按照预设值对料筒分段,得到多段料筒;S21. Segment the barrel according to the preset value to obtain a multi-segment barrel;
S22、在每一段料筒上固定加热装置,以使加热装置对每一段料筒进行单独加热;S22. Fixing a heating device on each section of the barrel so that the heating device can individually heat each section of the barrel;
S23、获取预设采集时间;S23. Obtain a preset collection time;
S24、根据预设采集时间分别采集每一段料筒的第一实时温度数据。S24. Collect the first real-time temperature data of each section of barrel respectively according to the preset collection time.
如上述步骤S21-S24所述,现有技术中对料筒温度进行采集时,通常需要独立的温度转换芯片和滤波方法电路,且料筒上只有一个加热装置,因此对温度采集时,温度采集点的温度并不能够代表整个料筒的加热温度,因此现有温度数据采集的准确率较低,基于此,本申请首先对料筒进行分段,可将一个料筒依照其体积大小分为多段,例如四段,并在每段上固定加热装置,温度巡检仪对料筒温度采集时,温度传感器使用热电偶,可以直接将热电偶与多段料筒接触,这样中途不需要温度转换芯片和滤波方法电路,从而提供检测精度,温度巡检仪可根据采集时间,获取多个温度传感器的第一实时温度数据,并对第一实时温度数据进行滤波、放大,并将第一实时温度数据传输至PLC控制器。As described in the above steps S21-S24, when collecting the temperature of the barrel in the prior art, an independent temperature conversion chip and a filter method circuit are usually required, and there is only one heating device on the barrel, so when collecting the temperature, the temperature acquisition The temperature at the point cannot represent the heating temperature of the entire barrel, so the accuracy of the existing temperature data collection is low. Based on this, this application first divides the barrel into sections, and a barrel can be divided according to its volume. Multi-section, such as four sections, and a heating device is fixed on each section. When the temperature inspection instrument collects the temperature of the barrel, the temperature sensor uses a thermocouple, which can directly contact the thermocouple with the multi-section barrel, so that no temperature conversion chip is needed in the middle And filtering method circuit, so as to provide detection accuracy, the temperature inspection instrument can obtain the first real-time temperature data of multiple temperature sensors according to the collection time, and filter and amplify the first real-time temperature data, and convert the first real-time temperature data transmitted to the PLC controller.
在一个实施例中,所述并根据第一实时温度数据和第一预设温度数据计算温度偏差和偏差变化率的步骤S3,包括:In one embodiment, the step S3 of calculating temperature deviation and deviation rate of change according to the first real-time temperature data and the first preset temperature data includes:
S31、根据第一实时温度数据和第一预设温度数据计算温度偏差,其中,计算公式为:S31. Calculate the temperature deviation according to the first real-time temperature data and the first preset temperature data, wherein the calculation formula is:
P(n)=W(n)-W0;P(n)=W(n)-W 0 ;
其中,P(n)表示第n次采集的温度偏差,W(n)表示第n次采集的第一实时温度数据,W0表示第一预设温度数据;Wherein, P(n) represents the temperature deviation collected for the nth time, W(n) represents the first real-time temperature data collected for the nth time, and W 0 represents the first preset temperature data;
S32、根据温度偏差计算温度偏差率,其中,计算公式为:S32. Calculate the temperature deviation rate according to the temperature deviation, wherein the calculation formula is:
PC(n)=P(n)-P(n-1);PC(n)=P(n)-P(n-1);
其中,PC(n)表示温度偏差率,P(n-1)表示第n-1次采集的温度偏差。Among them, PC(n) represents the temperature deviation rate, and P(n-1) represents the temperature deviation collected for the n-1th time.
如上述步骤S31-S32所述,在注塑机的运行过程中,通过不断的检测第一实时温度数据和第一预设温度数据之间的温度偏差,这样能够根据温度偏差计算温差偏差率,便于后期根据温度偏差和温度偏差率进行模糊推理计算,从而能够灵活的对PID控制器的温度参数进行调整,提高加热温度的精度。As described in the above steps S31-S32, during the operation of the injection molding machine, by continuously detecting the temperature deviation between the first real-time temperature data and the first preset temperature data, the temperature difference deviation rate can be calculated according to the temperature deviation, which is convenient In the later stage, the fuzzy reasoning calculation is performed according to the temperature deviation and temperature deviation rate, so that the temperature parameters of the PID controller can be flexibly adjusted to improve the accuracy of the heating temperature.
在一个实施例中,根据所述温度偏差和偏差变化率对料筒的实时温度进行调整,得到第二实时温度数据的步骤S4,包括:In one embodiment, the step S4 of obtaining the second real-time temperature data by adjusting the real-time temperature of the barrel according to the temperature deviation and the deviation change rate includes:
S41、对第n次采集的温度偏差和偏差变化率基于模糊化算法进行模糊化,得到模糊化后的模糊温度偏差和模糊偏差变化率;S41. Perform fuzzification on the temperature deviation and deviation change rate collected for the nth time based on a fuzzification algorithm, and obtain a fuzzy temperature deviation and a fuzzy deviation change rate;
S42、将模糊温度偏差和模糊偏差变化率作为输入变量输入PID控制器中;S42. Input the fuzzy temperature deviation and the rate of change of the fuzzy deviation into the PID controller as input variables;
S43、PID控制器基于输入变量确定模糊化的基本论域、量化论域以及量化因子参数;S43. The PID controller determines the fuzzy basic domain of discourse, quantization domain of discourse, and quantization factor parameters based on the input variables;
S44、PID控制器基于基本论域、量化论域以及量化因子参数获取模糊规则,并基于模糊规则输出模糊查询表,其中,模糊参数查询表中包括不同模糊温度偏差和模糊偏差变化率所对应的调整值;S44. The PID controller obtains fuzzy rules based on the basic domain of discourse, quantized domain of discourse, and quantitative factor parameters, and outputs a fuzzy lookup table based on the fuzzy rules, wherein the fuzzy parameter lookup table includes values corresponding to different fuzzy temperature deviations and fuzzy deviation change rates adjustment value;
S45、基于不同模糊温度偏差和模糊偏差变化率所对应的调整值对料筒的实时温度进行调整,得到第二实时温度数据。S45. Adjust the real-time temperature of the barrel based on adjustment values corresponding to different fuzzy temperature deviations and fuzzy deviation change rates to obtain second real-time temperature data.
如上述步骤S41-S45所述,现有技术中,对料筒温度进行温度控制调节时,通常基于实际温度与给定温度之间的偏差,将偏差作为PID控制器的输入,PID控制器进行比例、积分、微分调节后输出对偏差的调节信号,但是这种方法存在滞后性和耦合性,并不能够快速准确的达到精确调整温度的效果,因此,本申请在进行温度调节时,将模糊温度偏差和模糊偏差变化率作为输入变量输入PID控制器中,并基于基本论域、量化论域以及量化因子参数获取模糊规则,并基于模糊规则输出模糊查询表,、基于不同模糊温度偏差和模糊偏差变化率所对应的调整值对料筒的实时温度进行调整,得到第二实时温度数据,这样可在线对PID控制器的比例、积分、微分进行调节,从而对料筒的温度进行实时调整,避免出现滞后性和耦合性,这样在提高温度调整的精度的同时,还能够确保系统的稳定性,防止超调,减少振荡现象。As described in the above steps S41-S45, in the prior art, when performing temperature control and adjustment on the temperature of the barrel, it is usually based on the deviation between the actual temperature and the given temperature, and the deviation is used as the input of the PID controller, and the PID controller performs Proportional, integral, and differential adjustments output an adjustment signal to the deviation, but this method has hysteresis and coupling, and cannot quickly and accurately achieve the effect of accurately adjusting the temperature. Therefore, when the application performs temperature adjustment, it will be blurred The temperature deviation and the fuzzy deviation change rate are input into the PID controller as input variables, and the fuzzy rules are obtained based on the basic discourse domain, quantization discourse domain and quantization factor parameters, and the fuzzy query table is output based on the fuzzy rules, and based on different fuzzy temperature deviation and fuzzy The adjustment value corresponding to the deviation change rate adjusts the real-time temperature of the barrel to obtain the second real-time temperature data. In this way, the proportion, integral, and differential of the PID controller can be adjusted online to adjust the temperature of the barrel in real time. Avoid hysteresis and coupling, so that while improving the accuracy of temperature adjustment, it can also ensure the stability of the system, prevent overshoot, and reduce oscillation.
在一个实施例中,所述根据所述温度偏差和偏差变化率对料筒的实时温度进行调整,得到第二实时温度数据的步骤S4之后,还包括:In one embodiment, after the step S4 of obtaining the second real-time temperature data by adjusting the real-time temperature of the barrel according to the temperature deviation and the deviation change rate, the method further includes:
S401、根据第二实时温度数据输出PWM脉宽调制信号;S401. Output a PWM pulse width modulation signal according to the second real-time temperature data;
S402、根据PWM脉宽调制信号控制料筒的加热线圈是否进行加热。S402. Control whether the heating coil of the barrel is heated according to the PWM pulse width modulation signal.
如上述步骤S401-S402所述,通过输出PWM脉宽调制信号,这样能够控制加热装置上加热线圈的通断,从而能够打掉对料筒温度的闭环控制,进而提高注塑机的制造水平。As described in the above steps S401-S402, by outputting PWM pulse width modulation signals, the on-off of the heating coil on the heating device can be controlled, so that the closed-loop control of the barrel temperature can be eliminated, and the manufacturing level of the injection molding machine can be improved.
在一个实施例中,智能化注塑生产控制方法还包括:In one embodiment, the intelligent injection molding production control method further includes:
S91、获取永磁同步电机运转时的电枢电流矢量;S91. Obtain the armature current vector when the permanent magnet synchronous motor is running;
S92、获取永磁同步电机运转时的磁通磁链分量;S92. Obtain the magnetic flux flux linkage component when the permanent magnet synchronous motor is running;
S93、获取定子绕组的电感分量以及转子磁场对三相绕组产生的等效磁链;S93. Obtain the inductance component of the stator winding and the equivalent flux linkage generated by the rotor magnetic field to the three-phase winding;
S94、获取永磁同步电机的机械角速度;S94. Obtaining the mechanical angular velocity of the permanent magnet synchronous motor;
S95、基于电枢电流矢量、磁通磁链分量、电感分量和等效磁链计算永磁同步电机的直轴电压和交轴电压,其中,计算公式为:S95. Calculate the direct-axis voltage and the quadrature-axis voltage of the permanent magnet synchronous motor based on the armature current vector, flux flux linkage component, inductance component and equivalent flux linkage, wherein the calculation formula is:
其中,Ud表示直轴电压,Uq表示交轴电压,ωr为永磁同步电机的机械角速度,lq为定子绕组的电感分量,φd为磁通磁链分量,iq为此时的电枢电流分量,φf为转子磁场对三相绕组产生的等效磁链;Among them, U d represents the direct-axis voltage, U q represents the quadrature-axis voltage, ω r is the mechanical angular velocity of the permanent magnet synchronous motor, l q is the inductance component of the stator winding, φ d is the magnetic flux flux linkage component, and i q is the current The armature current component of , φ f is the equivalent flux linkage generated by the rotor magnetic field to the three-phase winding;
S96、将直轴电压和交轴电压输入至永磁同步电机的定子中,以使永磁同步电机根据预设的转速和转矩进行运转。S96. Inputting the direct-axis voltage and the quadrature-axis voltage into the stator of the permanent magnet synchronous motor, so that the permanent magnet synchronous motor operates according to a preset rotational speed and torque.
如上述步骤S91-S96所述,本实施例使用永磁同步电机,用永磁体代替了电励磁三相同步电机里的电励磁系统,由于永磁同步电机没有转子电流和无功励磁电流,这样能够减小转子和定子的损耗,同时使功率因素得到提高。且由于永磁同步电机没有励磁绕组、电刷和集电环,电机结构也更加简化;由于永磁同步电机的控制效果的好坏直接影响了整个注塑机系统的响应速度和精度,对整个注塑过程和塑料制品的质量至关重要,基于此,本实施例通过计算其直轴电压和交轴电压,能够使得永磁同步电机基于预设的转速和转矩进行运转,提高永磁同步电机的控制效果,从而提高注塑机的响应速度和精度。As described in the above steps S91-S96, this embodiment uses a permanent magnet synchronous motor, and replaces the electric excitation system in the electric excitation three-phase synchronous motor with permanent magnets. Since the permanent magnet synchronous motor has no rotor current and reactive excitation current, so The loss of the rotor and the stator can be reduced, and the power factor can be improved at the same time. And because the permanent magnet synchronous motor has no excitation winding, brush and collector ring, the motor structure is also more simplified; because the control effect of the permanent magnet synchronous motor directly affects the response speed and accuracy of the entire injection molding machine system, it has a great impact on the entire injection molding machine. The quality of the process and plastic products is very important. Based on this, this embodiment can make the permanent magnet synchronous motor run based on the preset speed and torque by calculating its direct-axis voltage and quadrature-axis voltage, and improve the performance of the permanent magnet synchronous motor. Control the effect, thereby improving the response speed and precision of the injection molding machine.
本申请还提供一种智能化注塑生产控制装置,包括:The present application also provides an intelligent injection molding production control device, including:
传感器模块1,用于采集模腔压力数据;The
温度巡检仪模块2,用于采集料筒的第一实时温度数据;The temperature
PID控制器模块3,用于获取第一预设温度数据,并根据第一实时温度数据和第一预设温度数据计算温度偏差和偏差变化率;The
还用于根据所述温度偏差和偏差变化率对料筒的实时温度进行调整,得到第二实时温度数据;It is also used to adjust the real-time temperature of the barrel according to the temperature deviation and the deviation change rate to obtain second real-time temperature data;
PLC控制器还用于获取压力数据,并判断所述压力数据是否超出预设压力范围;The PLC controller is also used to obtain pressure data and judge whether the pressure data exceeds a preset pressure range;
若所述压力数据超出预设压力范围,所述PLC控制器停止系统运行;If the pressure data exceeds the preset pressure range, the PLC controller stops the system operation;
PLC控制器还用于获取第二实时温度数据,并判断所述第二实时温度数据是否超出预设温度范围;The PLC controller is also used to acquire second real-time temperature data, and determine whether the second real-time temperature data exceeds a preset temperature range;
若所述第二实时温度数据超出预设温度范围,所述PLC控制器停止系统运行。If the second real-time temperature data exceeds a preset temperature range, the PLC controller stops system operation.
在一个实施例中,所述传感器模块1包括:In one embodiment, the
采集单元,用于采集电流模拟量,并对电流模拟量进行A/D转换;The acquisition unit is used to acquire the current analog quantity and perform A/D conversion on the current analog quantity;
判断单元,用于判断A/D转换是否完成;a judging unit for judging whether the A/D conversion is completed;
开启单元,用于若A/D转换完成,则开启模拟量通道;The opening unit is used to open the analog channel if the A/D conversion is completed;
获取单元,用于获取模拟量通道地址;The obtaining unit is used to obtain the analog channel address;
存储单元,用于基于模拟量通道地址对压力数据、位移数据进行读取,并将压力数据、位移数据存储于PLC寄存器中。The storage unit is used to read the pressure data and displacement data based on the analog channel address, and store the pressure data and displacement data in the PLC register.
在一个实施例中,所述温度巡检仪模块2,包括:In one embodiment, the temperature
分段单元,用于按照预设值对料筒分段,得到多段料筒;A segmentation unit is used to segment the barrel according to a preset value to obtain a multi-segment barrel;
固定单元,用于在每一段料筒上固定加热装置,以使加热装置对每一段料筒进行单独加热;The fixing unit is used to fix the heating device on each section of the barrel, so that the heating device can heat each section of the barrel separately;
第一获取单元,用于获取预设采集时间;a first acquisition unit, configured to acquire a preset acquisition time;
采集单元,用于根据预设采集时间分别采集每一段料筒的第一实时温度数据。The collection unit is used to separately collect the first real-time temperature data of each section of barrel according to the preset collection time.
在一个实施例中,所述PID控制器模块3,包括:In one embodiment, the
第一计算单元,用于根据第一实时温度数据和第一预设温度数据计算温度偏差,其中,计算公式为:The first calculation unit is used to calculate the temperature deviation according to the first real-time temperature data and the first preset temperature data, wherein the calculation formula is:
P(n)=W(n)-W0;P(n)=W(n)-W 0 ;
其中,P(n)表示第n次采集的温度偏差,W(n)表示第n次采集的第一实时温度数据,W0表示第一预设温度数据;Wherein, P(n) represents the temperature deviation collected for the nth time, W(n) represents the first real-time temperature data collected for the nth time, and W0 represents the first preset temperature data;
第二计算单元,用于根据温度偏差计算温度偏差率,其中,计算公式为:The second calculation unit is used to calculate the temperature deviation rate according to the temperature deviation, wherein the calculation formula is:
PC(n)=P(n)-P(n-1);PC(n)=P(n)-P(n-1);
其中,PC(n)表示温度偏差率,P(n-1)表示第n-1次采集的温度偏差。Among them, PC(n) represents the temperature deviation rate, and P(n-1) represents the temperature deviation collected for the n-1th time.
在一个实施例中,所述PID控制器模块3,还包括:In one embodiment, the
模糊单元,用于对第n次采集的温度偏差和偏差变化率基于模糊化算法进行模糊化,得到模糊化后的模糊温度偏差和模糊偏差变化率;The fuzzy unit is used to fuzzify the temperature deviation and the rate of change of the deviation collected for the nth time based on the fuzzy algorithm, and obtain the fuzzy temperature deviation and the rate of change of the fuzzy deviation after the fuzzification;
输入单元,用于将模糊温度偏差和模糊偏差变化率作为输入变量输入PID控制器中;The input unit is used for inputting the fuzzy temperature deviation and the rate of change of the fuzzy deviation into the PID controller as input variables;
确定单元,用于PID控制器基于输入变量确定模糊化的基本论域、量化论域以及量化因子参数;A determining unit is used for the PID controller to determine the fuzzy basic domain of discourse, quantization domain of discourse and quantization factor parameters based on the input variables;
第二获取单元,用于PID控制器基于基本论域、量化论域以及量化因子参数获取模糊规则,并基于模糊规则输出模糊查询表,其中,模糊参数查询表中包括不同模糊温度偏差和模糊偏差变化率所对应的调整值;The second acquisition unit is used for the PID controller to acquire fuzzy rules based on the basic domain of discourse, quantitative domain of discourse and quantization factor parameters, and output a fuzzy lookup table based on the fuzzy rules, wherein the fuzzy parameter lookup table includes different fuzzy temperature deviations and fuzzy deviations The adjustment value corresponding to the rate of change;
调整单元,用于基于不同模糊温度偏差和模糊偏差变化率所对应的调整值对料筒的实时温度进行调整,得到第二实时温度数据。The adjustment unit is configured to adjust the real-time temperature of the barrel based on adjustment values corresponding to different fuzzy temperature deviations and fuzzy deviation change rates, to obtain second real-time temperature data.
在一个实施例中,智能化注塑生产控制装置,还包括:In one embodiment, the intelligent injection molding production control device further includes:
数输出模块,用于根据第二实时温度数据输出PWM脉宽调制信号;A digital output module, for outputting a PWM pulse width modulation signal according to the second real-time temperature data;
控制模块,用于根据PWM脉宽调制信号控制料筒的加热线圈是否进行加热。The control module is used to control whether the heating coil of the barrel is heated according to the PWM pulse width modulation signal.
在一个实施例中,智能化注塑生产控制装置还包括:In one embodiment, the intelligent injection molding production control device further includes:
第一获取模块,用于获取永磁同步电机运转时的电枢电流矢量;The first obtaining module is used to obtain the armature current vector when the permanent magnet synchronous motor is running;
第二获取模块,用于获取永磁同步电机运转时的磁通磁链分量;The second acquisition module is used to acquire the magnetic flux flux linkage component of the permanent magnet synchronous motor;
第三获取模块,用于获取定子绕组的电感分量以及转子磁场对三相绕组产生的等效磁链;The third acquisition module is used to acquire the inductance component of the stator winding and the equivalent flux linkage generated by the rotor magnetic field to the three-phase winding;
第四获取模块,用于获取永磁同步电机的机械角速度;The fourth acquisition module is used to acquire the mechanical angular velocity of the permanent magnet synchronous motor;
电压计算模块,用于基于电枢电流矢量、磁通磁链分量、电感分量和等效磁链计算永磁同步电机的直轴电压和交轴电压,其中,计算公式为:The voltage calculation module is used to calculate the direct-axis voltage and quadrature-axis voltage of the permanent magnet synchronous motor based on the armature current vector, flux flux linkage component, inductance component and equivalent flux linkage, wherein the calculation formula is:
其中,Ud表示直轴电压,Uq表示交轴电压,ωr为永磁同步电机的机械角速度,lq为定子绕组的电感分量,φd为磁通磁链分量,iq为此时的电枢电流分量,φf为转子磁场对三相绕组产生的等效磁链;Among them, U d represents the direct-axis voltage, U q represents the quadrature-axis voltage, ω r is the mechanical angular velocity of the permanent magnet synchronous motor, l q is the inductance component of the stator winding, φ d is the magnetic flux flux linkage component, and i q is the current The armature current component of , φ f is the equivalent flux linkage generated by the rotor magnetic field to the three-phase winding;
输入模块,用于将直轴电压和交轴电压输入至永磁同步电机的定子中,以使永磁同步电机根据预设的转速和转矩进行运转。The input module is used to input the direct-axis voltage and the quadrature-axis voltage into the stator of the permanent magnet synchronous motor, so that the permanent magnet synchronous motor operates according to the preset speed and torque.
上述各模块、单元、均是用于对应执行上述智能化注塑生产控制方法中的各个步骤,其具体实现方式参照上述方法实施例所述,在此不再进行赘述。The above-mentioned modules and units are used to correspondingly execute each step in the above-mentioned intelligent injection molding production control method, and its specific implementation method refers to the description in the above-mentioned method embodiment, and will not be repeated here.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其它变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其它要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。It should be noted that, in this document, the terms "comprising", "comprising" or any other variation thereof are intended to cover a non-exclusive inclusion such that a process, apparatus, article or method comprising a set of elements includes not only those elements, It also includes other elements that are not expressly listed, or that are inherent in the process, apparatus, article, or method. Without further limitations, an element defined by the phrase "comprising a ..." does not preclude the presence of additional same elements in the process, apparatus, article or method comprising the element.
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。The above are only preferred embodiments of the application, and are not intended to limit the patent scope of the application. Any equivalent structure or equivalent process conversion made by using the specification and drawings of the application, or directly or indirectly used in other related All technical fields are equally included in the patent protection scope of the present application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211658727.XA CN115816787A (en) | 2022-12-22 | 2022-12-22 | Intelligent injection molding production control method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211658727.XA CN115816787A (en) | 2022-12-22 | 2022-12-22 | Intelligent injection molding production control method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115816787A true CN115816787A (en) | 2023-03-21 |
Family
ID=85517812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211658727.XA Pending CN115816787A (en) | 2022-12-22 | 2022-12-22 | Intelligent injection molding production control method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115816787A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117140896A (en) * | 2023-09-05 | 2023-12-01 | 宁波创基机械有限公司 | Injection molding machine charging barrel temperature control method, system and storage medium |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1059307A (en) * | 1990-08-27 | 1992-03-11 | 日精树脂工业株式会社 | The temperature controlled method of injection moulding forming machine |
CN104460764A (en) * | 2014-11-28 | 2015-03-25 | 广东工业大学 | Extruder cylinder temperature control method based on pseudo removal control type fuzzy PID |
CN104890205A (en) * | 2015-05-20 | 2015-09-09 | 华中科技大学 | Barrel temperature control method of injection molding machine |
CN105599254A (en) * | 2015-12-29 | 2016-05-25 | 珠海格力电器股份有限公司 | Injection mold monitoring method and injection mold monitoring device |
CN107086836A (en) * | 2017-05-10 | 2017-08-22 | 西北工业大学 | An improved speed regulation method for permanent magnet synchronous motor with field weakening |
KR102366126B1 (en) * | 2021-11-19 | 2022-02-23 | (주)우수아이 | Computing apparatus of calculating molding conditions for injection molding |
CN115378324A (en) * | 2022-09-29 | 2022-11-22 | 山东大学 | A permanent magnet synchronous motor control method, system, medium and electronic equipment |
-
2022
- 2022-12-22 CN CN202211658727.XA patent/CN115816787A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1059307A (en) * | 1990-08-27 | 1992-03-11 | 日精树脂工业株式会社 | The temperature controlled method of injection moulding forming machine |
CN104460764A (en) * | 2014-11-28 | 2015-03-25 | 广东工业大学 | Extruder cylinder temperature control method based on pseudo removal control type fuzzy PID |
CN104890205A (en) * | 2015-05-20 | 2015-09-09 | 华中科技大学 | Barrel temperature control method of injection molding machine |
CN105599254A (en) * | 2015-12-29 | 2016-05-25 | 珠海格力电器股份有限公司 | Injection mold monitoring method and injection mold monitoring device |
CN107086836A (en) * | 2017-05-10 | 2017-08-22 | 西北工业大学 | An improved speed regulation method for permanent magnet synchronous motor with field weakening |
KR102366126B1 (en) * | 2021-11-19 | 2022-02-23 | (주)우수아이 | Computing apparatus of calculating molding conditions for injection molding |
CN115378324A (en) * | 2022-09-29 | 2022-11-22 | 山东大学 | A permanent magnet synchronous motor control method, system, medium and electronic equipment |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117140896A (en) * | 2023-09-05 | 2023-12-01 | 宁波创基机械有限公司 | Injection molding machine charging barrel temperature control method, system and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Feng et al. | High-order terminal sliding-mode observer for parameter estimation of a permanent-magnet synchronous motor | |
CN104709748B (en) | A kind of film take-up tension control system based on FPGA and method | |
Ohba et al. | Sensorless force control for injection molding machine using reaction torque observer considering torsion phenomenon | |
CN105375848B (en) | A kind of permanent magnet synchronous motor Adaptive Identification control method and its control system | |
CN108832859A (en) | A Predictive Current Control Method for Permanent Magnet Linear Motor Based on Parameter Identification | |
CN115816787A (en) | Intelligent injection molding production control method and device | |
CN110112970B (en) | A speed control method and system for a permanent magnet vernier linear motor | |
CN109768753A (en) | Model Predictive Control Method for Position Sensorless Permanent Magnet Synchronous Motors with Novel Sliding Mode Observer | |
CN109507876B (en) | Credibility reasoning-based PID parameter setting method for electric propulsion ship motor | |
CN108696210A (en) | Direct current generator current loop controller methods of self-tuning based on parameter identification | |
Yang et al. | Adaptive identification of nonlinear friction and load torque for PMSM drives via a parallel-observer-based network with model compensation | |
CN109639200B (en) | Rotational inertia online identification method based on motor load torque detection | |
CN110784141B (en) | Control method of permanent magnet synchronous motor | |
CN105024612A (en) | Parameter identification-based motor current control method and system | |
Li et al. | A simple frequency-domain tuning method of fractional-order PID controllers for fractional-order delay systems | |
CN201467068U (en) | Intelligent control device of AC linear induction motor | |
CN104977850A (en) | Delay-free robust servo motor control method based on fractional order predictor | |
Yang | A neural network model reference adaptive system for speed estimation of sensorless induction motor | |
CN107421190A (en) | The control method and device of refrigerator and wherein condensation fan | |
CN113437911A (en) | Surface-mounted permanent magnet synchronous electric spindle vector control method based on id =0 control | |
Veligorskyi et al. | Variable structure controller for plastic injection moulding system | |
CN111969917A (en) | Model reference adaptive algorithm-based induction motor speed sensorless control method | |
CN104460764A (en) | Extruder cylinder temperature control method based on pseudo removal control type fuzzy PID | |
Song et al. | Fuzzy parameters self-tuning PID control of switched reluctance motor based on Simulink/NCD | |
CN105652661B (en) | A kind of method for controlling permanent magnet synchronous motor towards injection moulding process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |