CN115808869A - Flight control system - Google Patents
Flight control system Download PDFInfo
- Publication number
- CN115808869A CN115808869A CN202211659684.7A CN202211659684A CN115808869A CN 115808869 A CN115808869 A CN 115808869A CN 202211659684 A CN202211659684 A CN 202211659684A CN 115808869 A CN115808869 A CN 115808869A
- Authority
- CN
- China
- Prior art keywords
- actuator
- flight control
- processor
- signal
- control computer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Safety Devices In Control Systems (AREA)
Abstract
Description
技术领域technical field
本发明涉及飞行器技术领域,尤其涉及一种飞控系统。The invention relates to the technical field of aircraft, in particular to a flight control system.
背景技术Background technique
随着小型飞行器设计技术、生产制造技术及相关配套产业的发展,小型飞行器的功能、性能、产量也逐渐稳定和成熟,小型飞行器的运营也逐渐向物流运输、载人运输等民用通航领域发展。然而,由于飞行平台本身的特殊性,对飞行器的安全性也提出了全新的挑战。相关技术中,各个飞控计算机的控制链路是固定的,当某一控制路径上的飞控计算机出现故障时,由于正常控制路径上的控制系统无法管控其他控制路径上发生故障的设备,导致飞行器的可靠性降低。With the development of small aircraft design technology, manufacturing technology and related supporting industries, the functions, performance, and output of small aircraft have gradually stabilized and matured. However, due to the particularity of the flight platform itself, it also poses a new challenge to the safety of the aircraft. In related technologies, the control links of each flight control computer are fixed. When a flight control computer on a certain control path fails, the control system on the normal control path cannot control the faulty equipment on other control paths, resulting in The reliability of the aircraft is reduced.
发明内容Contents of the invention
本申请实施例通过提供一种飞控系统,旨在提高飞行器的稳定性和安全性。The embodiments of the present application aim to improve the stability and safety of the aircraft by providing a flight control system.
本申请实施例提供了一种飞控系统,所述飞控系统,包括:An embodiment of the present application provides a flight control system, the flight control system includes:
至少两个飞控计算机;At least two flight control computers;
至少两个信号开关,与所述飞控计算机对应设置,用于连接飞控计算机与作动器处理模块;At least two signal switches, set corresponding to the flight control computer, for connecting the flight control computer and the actuator processing module;
仲裁单元,所述仲裁单元分别与各个所述飞控计算机以及信号开关连接,用于在飞控计算机发生故障时,向发生故障的飞控计算机对应的信号开关发送断开信号,所述信号开关的默认状态为闭合状态。An arbitration unit, the arbitration unit is respectively connected with each of the flight control computers and the signal switch, and is used to send a disconnection signal to the signal switch corresponding to the flight control computer where the failure occurs when the flight control computer fails, and the signal switch The default state of is closed.
可选地,所述飞控计算机包括:第一飞控计算机和第二飞控计算机,所述信号开关包括:第一信号开关和第二信号开关;所述第一信号开关和所述第二信号开关均与所述作动器处理模块连接。Optionally, the flight control computer includes: a first flight control computer and a second flight control computer, and the signal switch includes: a first signal switch and a second signal switch; the first signal switch and the second signal switch The signal switches are all connected to the actuator processing module.
可选地,所述作动器处理模块包括至少两个作动处理单元,每个作动处理单元均包括作动器处理器、作动器、动力开关以及执行机构,所述动力开关连接在所述作动器与所述执行机构之间;Optionally, the actuator processing module includes at least two actuation processing units, each actuation processing unit includes an actuator processor, an actuator, a power switch and an actuator, and the power switch is connected to between the actuator and the actuator;
锁止机构,所述锁止机构位于各所述执行机构之间;a locking mechanism, the locking mechanism is located between each of the actuators;
每个所述作动器处理器分别与对应的动力开关和所述锁止机构连接,用于在检测到作动器处理器发生故障时,向故障的作动器处理器的动力开关发送断开信号,并向锁止机构发送锁止信号;所述锁止机构的默认状态为断开状态。Each of the actuator processors is respectively connected to the corresponding power switch and the locking mechanism, and is used to send an interrupt to the power switch of the faulty actuator processor when a failure of the actuator processor is detected. open signal, and send a locking signal to the locking mechanism; the default state of the locking mechanism is off.
可选地,所述作动器处理器包括:第一作动器处理器和第二作动器处理器,所述第一信号开关和所述第二信号开关均与所述第一作动器处理器连接;和/或,所述第一信号开关和第二信号开关均与所述第二作动器处理器连接。Optionally, the actuator processor includes: a first actuator processor and a second actuator processor, the first signal switch and the second signal switch are both connected to the first actuator and/or, both the first signal switch and the second signal switch are connected to the second actuator processor.
可选地,所述飞控系统还包括:限制器,所述限制器连接所述作动器处理器和所述动力开关,用于在接收到所有的作动器处理器发送的断开信号时,控制至少一个作动器处理器连接的动力开关闭合,或者用于在接收到所有的作动器处理器发送的断开信号时,控制至少一个作动器处理器向所述锁止机构发送锁合信号。Optionally, the flight control system further includes: a limiter, the limiter is connected to the actuator processor and the power switch, and is configured to receive disconnection signals sent by all the actuator processors. , to control the power switch connected to at least one actuator processor to close, or to control at least one actuator processor to switch to the locking mechanism when receiving disconnection signals sent by all actuator processors Send lock signal.
可选地,所述作动器与所述作动器处理器连接,所述作动器处理器还用于在检测到执行机构发生故障时,向对应的所述作动器发送断开信号,并向锁止机构发送锁止信号。Optionally, the actuator is connected to the actuator processor, and the actuator processor is further configured to send a disconnection signal to the corresponding actuator when a failure of the actuator is detected. , and send a locking signal to the locking mechanism.
可选地,所述飞控系统还包括:检测传感器,所述检测传感器连接所述执行机构和所述作动器处理器,用于采集所述执行机构的实际操纵量,并将所述实际操纵量反馈至所述作动器处理器,以使所述作动器处理器根据所述实际操纵量检测执行机构是否发生故障。Optionally, the flight control system further includes: a detection sensor, the detection sensor is connected to the actuator processor and is used to collect the actual manipulation amount of the actuator, and the actual The manipulated amount is fed back to the actuator processor, so that the actuator processor detects whether the actuator fails according to the actual manipulated amount.
可选地,所述执行机构包括舵面、起落架收放单元、倾转单元或舱门。Optionally, the actuator includes a rudder surface, a landing gear retractable unit, a tilting unit or a cabin door.
可选地,所述飞控系统还包括:第三信号开关,所述第三信号开关连接操纵杆和所述作动器处理模块;所述仲裁单元还用于:在所有的飞控计算机均发生故障时,向所述第三信号开关发送闭合信号;所述第三信号开关的默认状态为断开状态。Optionally, the flight control system further includes: a third signal switch, the third signal switch is connected to the joystick and the actuator processing module; the arbitration unit is also used to: When a fault occurs, a close signal is sent to the third signal switch; the default state of the third signal switch is an open state.
可选地,所述飞控系统还包括显示模块,所述显示模块与所述仲裁单元连接,用于显示存在故障的飞控计算机的确定结果。Optionally, the flight control system further includes a display module, the display module is connected to the arbitration unit, and is used to display the determination result of the faulty flight control computer.
本申请实施例中提供的一种飞控系统的技术方案,通过设置多个冗余的飞控计算机,且每个飞控计算机均对应设置有信号开关,通过该信号开关连接飞控计算机与作动器处理模块。另外本申请还增加一个仲裁单元,该仲裁单元与所有飞控计算机以及对应的信号开关连接,用于判断飞控计算机是否存在故障。在某个飞控计算机发生故障时,向故障的飞控计算机所对应的信号开关发送断开信号,进而通过正常的飞控计算机控制执行机构,提高飞行器的稳定性和安全性。In the technical solution of a flight control system provided in the embodiment of the present application, a plurality of redundant flight control computers are set, and each flight control computer is correspondingly provided with a signal switch, and the flight control computer and the operating system are connected through the signal switch. actuator processing module. In addition, the present application also adds an arbitration unit, which is connected with all flight control computers and corresponding signal switches, and is used for judging whether the flight control computers are faulty. When a flight control computer fails, a disconnect signal is sent to the signal switch corresponding to the faulty flight control computer, and then the normal flight control computer controls the actuator to improve the stability and safety of the aircraft.
附图说明Description of drawings
图1为本发明飞控系统第一实施例的结构示意图;Fig. 1 is a schematic structural diagram of the first embodiment of the flight control system of the present invention;
图2为本发明第一飞控计算机故障时的连接示意图;Fig. 2 is a connection diagram when the first flight control computer of the present invention fails;
图3为本发明操纵杆控制的结构示意图;Fig. 3 is the structural representation of joystick control of the present invention;
图4为本发明仲裁单元与显示模块的连接示意图;4 is a schematic diagram of the connection between the arbitration unit and the display module of the present invention;
图5为本发明飞控系统所有作动器处理器正常工作时的结构示意图;Fig. 5 is a schematic structural diagram of all actuator processors of the flight control system of the present invention when they are working normally;
图6为本发明第一作动器处理器故障时的连接示意图。Fig. 6 is a schematic diagram of connection when the processor of the first actuator fails in the present invention.
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明,上述附图只是一个实施例图,而不是发明的全部。The realization of the object of the present application, functional features and advantages will be further described in conjunction with the embodiments, with reference to the accompanying drawings. The above-mentioned accompanying drawings are only a diagram of an embodiment, rather than the whole of the invention.
附图标号说明:Explanation of reference numbers:
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。It should be noted that all directional indications (such as up, down, left, right, front, back...) in the embodiments of the present invention are only used to explain the relationship between the components in a certain posture (as shown in the accompanying drawings). Relative positional relationship, movement conditions, etc., if the specific posture changes, the directional indication will also change accordingly.
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。In addition, the descriptions involving "first", "second" and so on in the present invention are only for descriptive purposes, and should not be understood as indicating or implying their relative importance or implicitly indicating the quantity of the indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In addition, the technical solutions of the various embodiments can be combined with each other, but it must be based on the realization of those skilled in the art. When the combination of technical solutions is contradictory or cannot be realized, it should be considered that the combination of technical solutions does not exist , nor within the scope of protection required by the present invention.
目前,传统的飞控系统架构采用联邦式架构。其中,联邦式架构是指不同的控制系统获取指定的某几个传感单元采集的数据,并在处理后分管指定的某几个作动单元。但是,联邦式架构存在的缺陷在于:第一、其不具备扩展性,对于特定的构型或构型改型,飞行控制系统都面临很大的重新设计与验证工作。第二、无法做到功能冗余与故障隔离,一旦联邦式中的某一控制路径上的某一设备或模块出现故障时,正常控制路径上的控制系统无法管控其他控制路径上发生故障的设备或模块。严重影响飞行器的稳定性和可靠性,不利于飞行安全。At present, the traditional flight control system architecture adopts a federated architecture. Among them, the federated architecture means that different control systems obtain the data collected by certain designated sensing units, and are in charge of designated certain actuating units after processing. However, the disadvantages of the federated architecture are as follows: First, it does not have scalability. For a specific configuration or configuration modification, the flight control system is facing a lot of redesign and verification work. Second, it is impossible to achieve functional redundancy and fault isolation. Once a certain device or module on a certain control path in the federation fails, the control system on the normal control path cannot control the faulty equipment on other control paths. or modules. Seriously affect the stability and reliability of the aircraft, which is not conducive to flight safety.
因此,本申请提出了一种飞控系统10,该飞控系统10可以在某一个飞控计算机发生故障时,采用正常的飞控计算机对发生故障的飞控计算机的路径上的设备进行控制,从而提高飞行器的稳定性和安全性。Therefore, the present application proposes a
请参阅图1-图4,在本实施例中,所述飞控系统10包括至少两个飞控计算机;至少两个信号开关,与所述飞控计算机对应设置,用于连接飞控计算机与作动器处理模块160;仲裁单元150,所述仲裁单元150分别与各个所述飞控计算机以及信号开关连接,用于在飞控计算机发生故障时,向发生故障的飞控计算机对应的信号开关发送断开信号,所述信号开关的默认状态为闭合状态。Please refer to Fig. 1-Fig. 4, in the present embodiment, described
可选地,每个信号开关均包括两种状态,分别为闭合状态和断开状态。每个信号开关的默认状态为闭合状态。在每个信号开关闭合时,每个飞控计算机可通过对应的信号开关控制作动器处理模块160。可选地,飞控计算机可设置成多余度的。即在飞控系统10中,飞控计算机可以是两个甚至多个,可根据实际使用情况和具体应用场景设置该飞控计算机的数量。Optionally, each signal switch includes two states, namely a closed state and an open state. The default state of each signal switch is closed. When each signal switch is closed, each flight control computer can control the
可选地,各个飞控计算机在飞行过程中,会实时向作动器处理模块160发送控制指令,从而使得作动器处理模块160能基于飞控计算机发送的控制指令控制执行机构。而由于飞行过程中可能遇到各种突发情况,导致飞控计算机无法正常工作,为了提高飞行安全性能,本申请还设置一个仲裁单元150。此仲裁单元150分别与各个飞控计算机以及信号开关连接。各个飞控计算机的控制信息会发送至仲裁单元150,采用仲裁单元150实时判断飞控计算机是否存在故障,并根据判断结果确定对应的控制策略控制作动器处理模块160,从而提高飞行安全。Optionally, each flight control computer will send control instructions to the
可选地,每个飞控计算机均会将自身的控制信息发送至仲裁单元150,所述控制信息包括控制指令和校验码。在仲裁单元150中接收至少两个飞控计算机的控制信息;根据所述控制信息,确定飞控计算机是否存在故障;切断存在故障的飞控计算机的信号输出;控制正常工作的飞控计算机将接收到的所述控制指令发送至作动器处理模块160。Optionally, each flight control computer will send its own control information to the
可选地,每个飞控计算机在输出控制指令时,附带一组效验码以证明其还在正常工作,该仲裁单元150会通过对每个飞控计算机输出的控制指令进行比对和校验码核对的方式来判断飞控计算机是否有故障情况。Optionally, when each flight control computer outputs a control command, it is accompanied by a set of verification codes to prove that it is still working normally. The
可选地,在仲裁单元150中会预先设置预设校验码,该预设校验码的格式和类型应当与飞控计算机所发送的校验码的格式和类型一致。也即仲裁单元150在接收到各个飞控计算机的校验码之后,会将所接收到的各个飞控计算机的校验码分别与预设校验码进行格式匹配和类型匹配。若飞控计算机的校验码与预设校验码不匹配时,则确定不匹配的飞控计算机为存在故障的飞控计算机,即失效的飞控计算机。可选地,也可将无信号输出或乱码输出的飞控计算机确定为存在故障的飞控计算机。可选地,飞控计算机以恒定频率输出控制指令时,仲裁单元150若检测到输出频率断开,则确定该飞控计算机为存在故障的飞控计算机。Optionally, a preset check code is preset in the
可选地,当校验码匹配的飞控计算机包括至少两个时,则确定匹配的飞控计算机所接收到的控制指令之间的误差。确定误差大于预设误差的飞控计算机均为存在故障的飞控计算机。Optionally, when there are at least two flight control computers whose verification codes match, an error between the control instructions received by the matching flight control computers is determined. The flight control computers whose determination error is greater than the preset error are faulty flight control computers.
可选地,飞控计算机包括第一飞控计算机110和第一飞控计算机120。信号开关包括第一信号开关130和第二信号开关140。其中,第一信号开关130用于连接第一飞控计算机110和作动器处理模块160,第二信号开关140用于连接第一飞控计算机120和作动器处理模块160。Optionally, the flight control computer includes a first
例如,假设第一飞控计算机110的校验码与预设校验码不一致时,将该第一飞控计算机110确定为存在故障的飞控计算机;若第一飞控计算机120的校验码与预设校验码不一致时,将该第一飞控计算机120确定为存在故障的飞控计算机;假设第一飞控计算机110和第一飞控计算机120的校验码均与预设校验码不一致时,则将第一飞控计算机110和第一飞控计算机120均确定为存在故障的飞控计算机。For example, assuming that the check code of the first
假设在判定第一飞控计算机110发生故障,则向第一飞控计算机110所连接的第一信号开关130发送断开信号,进而采用第一飞控计算机120对作动器处理模块160进行控制。同理,在判定第一飞控计算机120发生故障,则向第一飞控计算机120所连接的第二信号开关140发送断开信号,进而采用第一飞控计算机110对作动器处理模块160进行控制。Assuming that the first
参照图1,在第一信号开关130和第二信号开关140闭合时,第一飞控计算机110可控制作动器处理模块160。第一飞控计算机120也可控制作动器处理模块160。此时,第一飞控计算机110和第一飞控计算机120对作动器处理模块160的控制优先级或者以哪个飞控计算机控制为主,可根据实际情况进行确定。Referring to FIG. 1 , when the
参照图2,在某个信号开关断开时,则断开对应的飞控计算机与作动器处理模块160之间的传输通道。假设断开第一信号开关130,则断开第一飞控计算机110与作动器处理模块160之间的传输通道;假设断开第二信号开关140,则断开第一飞控计算机120与作动器处理模块160之间的传输通道。Referring to FIG. 2 , when a certain signal switch is turned off, the transmission channel between the corresponding flight control computer and the
在一实施例中,本申请的飞行器的控制除了可采用飞控计算机进行控制,还可以切换至人工控制模式。当所有的仲裁单元150判定所有的飞控计算机均存在故障时,则可切换至人工控制模式;可选地,本申请的飞控系统10还包括第三信号开关200,该第三信号开关200连接操纵杆220和作动器处理模块160。该第三信号开关200包括两种状态,分别为闭合状态和断开状态。该第三信号开关200的默认状态为断开状态。在该第三信号开关200闭合时,连通操纵杆220与作动器处理模块160之间的传输通道。In one embodiment, the control of the aircraft of the present application can be controlled by a flight control computer, and can also be switched to a manual control mode. When all
可选地,所述仲裁单元150在判定所有的飞控计算机均发生故障时,向第三信号开关200发送闭合信号,从而连通操纵杆220与作动器处理模块160之间的传输通道。Optionally, the
参照图3,仲裁单元150在判定第一飞控计算机110和第一飞控计算机120均存在故障时,向第一信号开关130和第二信号开关140发送断开信号,向第三信号开关200发送闭合信号,从而连通操纵杆220与作动器处理模块160之间的传输通道,使得操纵杆220可以控制作动器处理模块160,从而避免在所有的飞控计算机均发生故障时对飞行器的稳定性和安全性的影响。在所有飞控计算机故障时通过人工操纵杆220的控制,从而提高飞行器的安全性和稳定性。可选地,操作人员还可随时选择以何种方式控制飞行器。可以是在所有的飞控计算机正常工作下,向第一信号开关130和第二信号开关140发送断开信号,向第三信号开关200发送闭合信号,切断所有的飞控计算机的控制输出,连通操纵杆220与所述作动器处理器之间的信号通道,以将所述操纵杆220输出的控制信号发送至所述作动器处理器。Referring to FIG. 3 , when the
在一实施例中,参照图4,本申请的飞控系统10还包括显示模块210,该显示模块210与仲裁单元150连接,用于显示存在故障的飞控计算机的确定结果。仲裁单元150可将存在故障的飞控计算机的确定结果发送至该显示模块210上显示。其中,该确定结果为具体是哪一台飞控计算机发生故障,可以是该发生故障的飞控计算机的序号。可选地,仲裁单元150还会将故障判断的理由发送至显示模块210,该故障判断的理由可以是校验码不一致、控制指令之间的误差大于预设误差等。从而使得操作人员可以直观的看到所有飞控计算机的运行情况,以便及时的调整飞行器的控制方式,提高飞行安全。In one embodiment, referring to FIG. 4 , the
本实施例根据上述技术方案,通过设置多个冗余的飞控计算机,且每个飞控计算机均对应设置有信号开关,通过该信号开关连接飞控计算机与作动器处理模块160。另外本申请还增加一个仲裁单元150,该仲裁单元150与所有飞控计算机以及对应的信号开关连接,用于判断飞控计算机是否存在故障。在某个飞控计算机发生故障时,向故障的飞控计算机所对应的信号开关发送断开信号,进而通过正常的飞控计算机控制设备,提高飞行器的稳定性和安全性。另外,通过设置操纵杆220和第三信号开关200,使得在所有的飞控计算机均发生故障时,通过操纵杆220可以控制作动器处理模块160,从而提高飞行器的安全性和稳定性。此外,还设置一个显示模块210,该显示模块210用于显示存在故障的飞控计算机的确定结果以及故障判断的理由,从而使得操作人员可以直观的看到所有飞控计算机的运行情况,以便及时的调整飞行器的控制方式,提高飞行安全。In this embodiment, according to the above technical solution, multiple redundant flight control computers are provided, and each flight control computer is correspondingly provided with a signal switch, and the flight control computer and the
请参阅图5-图6,基于第一实施例。在本申请的第二实施例中,本申请的作动器处理模块160包括至少两个作动处理单元,每个作动处理单元均包括作动器处理器、作动器、动力开关以及执行机构,所述动力开关连接在所述作动器与所述执行机构之间;锁止机构170,所述锁止机构170位于各所述执行机构之间;每个所述作动器处理器分别与对应的动力开关和所述锁止机构170连接,用于在检测到作动器处理器发生故障时,向故障的作动器处理器的动力开关发送断开信号,并向锁止机构170发送锁止信号;所述锁止机构170的默认状态为断开状态。Please refer to Fig. 5-Fig. 6, based on the first embodiment. In the second embodiment of the present application, the
本申请的作动处理单元设置为两个或两个以上。本申请以两个作动处理器单元为例。每个作动器处理器用于验证对方作动器处理器是否发生故障,并在对方作动器处理器发生故障时,切断对方作动器处理器的信号输出。每个作动器处理器还用于在验证执行机构的实际操纵量和主飞控指令的理论操纵量不匹配时,向自身所连接的作动器发送断开信号,并向锁止机构170发送锁止信号,从而使得正常的作动器能同步控制所有的执行机构,使得飞行器可以安全飞行。There are two or more action processing units in the present application. This application takes two motion processor units as an example. Each actuator processor is used to verify whether the other party's actuator processor fails, and when the other party's actuator processor fails, cut off the signal output of the other party's actuator processor. Each actuator processor is also used to send a disconnection signal to the actuator connected to itself, and send a disconnection signal to the
可选地,所述作动器处理器包括:第一作动器处理器161和第二作动器处理器165。所述作动器包括第一作动器162和第二作动器166。所述执行机构包括第一执行机构164和第二执行机构168。所述动力开关包括第一动力开关163和第二动力开关167。所述锁止机构170包括两种状态,分别为锁止状态和断开状态。在锁止机构170锁止时,可以将第一执行机构164和第二执行机构168锁合在一起,可以对锁合在一起的第一执行机构164和第二执行机构168进行同步控制。在锁止机构170断开时,第一执行机构164和第二执行机构168分离,可以通过不同的控制路径对分离的第一执行机构164和第二执行机构168独立控制。Optionally, the actuator processor includes: a
参照图5,在所有的飞控计算机和所有的作动器处理器正常工作的情况下,第一飞控计算机110通过第一信号开关130与第一作动器处理器161连接;第一动力开关163连接第一作动器162和第一执行机构164,且该第一作动器处理器161会将第一飞控计算机110发送的控制指令转化为电流信号后转发至第一作动器162。同理,第一飞控计算机120通过第二信号开关140与第二作动器处理器165连接;第二动力开关167连接第二作动器166和第二执行机构168,且该第二作动器处理器165会将第一飞控计算机120发送的控制指令转化为电流信号后转发至第二作动器166。Referring to Fig. 5, under the condition that all flight control computers and all actuator processors work normally, the first
控制流程为:第一飞控计算机110将主飞控指令发送至第一作动器处理器161;第一作动器处理器161将该主控制指令转化为电流信号并发送至第一作动器162,该第一作动器162再将该电流信号发送至第一执行机构164,从而实现第一飞控计算机110对第一执行机构164的驱动。同时,第一飞控计算机120将主飞控指令发送至第二作动器处理器165;第二作动器处理器165将该主控制指令转化为电流信号并发送至第二作动器166,该第二作动器166再将该电流信号发送至第二执行机构168,从而实现第一飞控计算机120对第二执行机构168的驱动。从而在所有设备均正常工作的情况下,每个设备均能各司其职,使得飞行器能够正常的工作。在这个过程中,锁止机构170处于断开状态,第一动力开关163和第二动力开关167为闭合状态。The control process is as follows: the first
参照图6,针对所有的飞控计算机正常,第一作动器处理器161或者第二作动器处理器165故障的情况。对于第一作动器处理器161故障的控制流程为:第一飞控计算机120将主控制指令发送至第二作动器处理器165,第二作动器处理器165将该主控制指令转化为电流信号并发送至第二作动器166。同时第二作动器处理器165向锁止机构170发送锁止信号以将第一执行机构164和第二执行机构168进行锁合,并向第一作动器处理器161对应的第一动力开关163发送断开信号,以关闭第一动力开关163的输出。使得飞控计算机能通过第二作动器处理器165控制所有的执行机构。同理,对于第二作动器处理器165故障的控制流程为:第一飞控计算机110将主控制指令发送至第一作动器处理器161,第一作动器处理器161将该主控制指令转化为电流信号并发送至第一作动器162。同时第一作动器处理器161向锁止机构170发送锁止信号以将执行机构进行锁合,并向第二作动器处理器165对应的第二动力开关167发送断开信号,使得飞控计算机能通过第一作动器处理器161控制所有的执行机构。从而使得在一方作动器处理器发生故障时,可采用正常工作的飞控计算机控制正常工作的作动器处理器对所有的执行机构进行控制,提高飞行安全。Referring to FIG. 6 , for the case where all the flight control computers are normal, but the
可选地,参照图5,在第一作动器处理器161和第二作动器处理器165均正常工作时,在作动器处理器包括第一作动器处理器161和第二作动器处理器165时,所述第一信号开关130和所述第二信号开关140均与所述第一作动器处理器161连接,所述第一信号开关130和第二信号开关140均与所述第二作动器处理器165连接,从而可同时接收来自两个飞控计算机的控制指令。从而使每个作动器处理器可同时接收来自两个飞控计算机的控制指令。由于每个信号开关均可与所有的作动器处理器连接,从而使得在其中一条控制路径出现故障时,可以采用另外一条正常的控制路径进行控制,保证飞行器的飞行安全。Optionally, referring to FIG. 5 , when both the
可选地,参照图6,在第一作动器处理器161发生故障时,所述第一信号开关130和第二信号开关140均与所述第二作动器处理器165连接,第二作动器处理器165可同时接收第一飞控计算机110和第一飞控计算机120的控制指令。第二作动器处理器165将该主控制指令转化为电流信号并发送至第二作动器166。同时第二作动器处理器165向锁止机构170发送锁止信号以将第一执行机构164和第二执行机构168进行锁合,并向第一作动器处理器161对应的第一动力开关163发送断开信号,以关闭第一动力开关163的输出。使得飞控计算机能通过第二作动器处理器165控制所有的执行机构。从而使得在一方作动器处理器发生故障时,可采用正常工作的飞控计算机控制正常工作的作动器处理器对所有的执行机构进行控制,提高飞行安全。Optionally, referring to FIG. 6, when the
同理,在第二作动器处理器165发生故障时,所述第一信号开关130和所述第二信号开关140均与所述第一作动器处理器161连接,其控制方式与第一作动器处理器161发生故障的控制流程类似,在此不再赘述。Similarly, when the
可选地,作动器与作动器处理器连接,作动器处理器还用于在检测到执行机构发生故障时,向对应的作动器发送断开信号,并向锁止结构发送锁止信号。Optionally, the actuator is connected to the actuator processor, and the actuator processor is also used to send a disconnection signal to the corresponding actuator and send a lock to the locking structure when a failure of the actuator is detected. stop signal.
在一实施例中,飞控系统10还包括检测传感器,该检测传感器可用于检测执行机构的偏转角度等。可为每个执行机构设置对应的检测传感器,该检测传感器与执行机构和作动器处理器连接,用于采集执行机构的实际操纵量,并将实际操纵量反馈至作动器处理器,使得作动器处理器根据实际操纵量检测执行机构是否发生故障。In an embodiment, the
可选地,可在第一执行机构164处设置第一检测传感器,将第一检测传感器采集的第一执行机构164的实际操纵量发送至第一作动器处理器161,使得第一作动器处理器161能根据该实际操纵量与第一飞控计算机110的理论操纵量的匹配结果确定第一执行机构164是否发生故障。可选地,还可在第二执行机构168处设置第二检测传感器,将第二检测传感器采集的第二执行机构168的实际操纵量发送至第二作动器处理器165,使得第二作动器处理器165能根据该实际操纵量与第一飞控计算机120的理论操纵量的匹配结果确定第二执行机构168是否发生故障。Optionally, a first detection sensor can be provided at the
在一实施例中,第一执行机构164和第二执行机构168为飞机上所有能动的部件,所述执行机构均可包括舵面、起落架收放单元、倾转单元或舱门。其中,倾转单元为旋翼倾转单元;舵面包括机翼上的舵面、垂直尾翼上的舵面和水平尾翼上的舵面。In one embodiment, the
在一实施例中,作动器在接受控制之前,需要作动器处理器将飞控计算机发送的主控制指令转换成输出电流至作动器。而为了能够正常的控制,需确保作动器处理器能够正常的工作。因此,本申请采用作动器处理器互相监督的机制,每一个作动器处理器会接受所有飞控计算机的控制指令,其中一个控制指令为自己的主控制指令,用于输出至作动器以驱动执行机构;另一飞控计算机控制指令具有验证另一作动器处理器是否正常的作用。使得在单个作动器处理器出现失效故障时,让另一正常工作的作动器处理器介入来切断故障作动器处理器的输出,同时锁合两分离执行机构从而让正常工作的作动器操纵所有执行机构。In one embodiment, before the actuator is controlled, the actuator processor needs to convert the main control command sent by the flight control computer into an output current to the actuator. In order to be able to control normally, it is necessary to ensure that the actuator processor can work normally. Therefore, this application adopts the mutual supervision mechanism of the actuator processors, each actuator processor will receive all the control instructions of the flight control computer, and one of the control instructions is its own main control instruction, which is used to output to the actuator to drive the actuator; another flight control computer control command has the function of verifying whether the other actuator processor is normal. When a single actuator processor fails, another normally working actuator processor will intervene to cut off the output of the faulty actuator processor, and at the same time lock the two separate actuators so that the normal working actuator The actuator operates all actuators.
可选地,若第一作动器处理器161和第二作动器处理器165均校验出对方存在故障。为了避免所有的作动器处理器全部关闭,出现无法对作动器或者执行机构进行控制,进而导致飞行器无法正常飞行的问题,本申请的飞控系统10还包括限制器。本申请的限制器连接作动器处理器和动力开关,用于在接收到所有作动器处理器发送的断开信号时,控制至少一个作动器处理器连接的动力开关闭合。Optionally, if both the
可选地,若第一作动器处理器161和第二作动器处理器165均校验出对方存在输入故障,可断开最先校验出对方存在故障的作动器处理器的对方作动器处理器的作动器的输出。例如,若第一作动器处理器161最先验算出第二作动器处理器165存在故障,那么,可向第二作动器处理器165对应的动力开关发送断开信号。可选地,向限制器发送断开信号,从而避免在第二作动器处理器165也验算出第一作动器处理器161存在输入故障时,断开第一作动器处理器161对应的动力开关。Optionally, if both the
可选地,若第一作动器处理器161和第二作动器处理器165均校验出自身的作动器或者执行机构出现故障时。为了避免所有的作动器或者执行机构全部关闭,导致飞行器无法正常飞行的问题,本申请还设置有一个限制器,该限制器连接作动器处理器和动力开关。该作动器层级与作动器处理器层级共用一个限制器,用于限制同一时间只能切断一侧信号,即用于在接收到所有的作动器处理器发送的断开信号时,控制至少一个作动器处理器向锁止机构170发送锁合信号。Optionally, if both the
本实施例根据上述技术方案,通过在作动器输出层面,将执行机构分为两部分由每个作动器同步执行。每个作动器各自控制左右两部分,当其中一执行机构反馈的操纵量不匹配对应作动器处理器控制输出,则切断该作动器,并连接锁止机构170使另一作动器同时控制所有执行机构,保护整体执行机构的操纵性,提高飞行安全。另外,通过设置一个限制器,从而限制同一时间只能切断一侧信号,避免所有的作动器处理器均断开或者限制存在至少一个作动器处理器向锁止机构170发送锁合信号,提高飞行器的稳定性。In this embodiment, according to the above technical solution, the actuator is divided into two parts at the output level of the actuator, and each actuator performs synchronously. Each actuator controls the left and right parts separately. When the manipulation value fed back by one of the actuators does not match the control output of the corresponding actuator processor, the actuator is cut off and the
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the patent scope of the present invention. Under the conception of the present invention, the equivalent structural transformation made by using the description of the present invention and the contents of the accompanying drawings, or directly/indirectly used in Other relevant technical fields are included in the patent protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211659684.7A CN115808869A (en) | 2022-12-22 | 2022-12-22 | Flight control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211659684.7A CN115808869A (en) | 2022-12-22 | 2022-12-22 | Flight control system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115808869A true CN115808869A (en) | 2023-03-17 |
Family
ID=85486676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211659684.7A Pending CN115808869A (en) | 2022-12-22 | 2022-12-22 | Flight control system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115808869A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116125870A (en) * | 2022-12-22 | 2023-05-16 | 成都沃飞天驭科技有限公司 | Redundancy control method, arbitration unit, flight control system and storage medium |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101604162A (en) * | 2009-07-02 | 2009-12-16 | 北京航空航天大学 | A civil aircraft avionics integrated modular core processing system |
CN103823362A (en) * | 2014-02-17 | 2014-05-28 | 南京航空航天大学 | Arbitration mechanism-based similar dual-redundancy flight control computer and redundancy control method |
CN104749949A (en) * | 2015-03-19 | 2015-07-01 | 南京航空航天大学 | PowerPC and x86 based hybrid tri-redundancy UAV flying control computer and core design method |
US20160376003A1 (en) * | 2015-06-26 | 2016-12-29 | Yuri Feldman | Aircraft |
CN108107910A (en) * | 2017-12-28 | 2018-06-01 | 中航联创科技有限公司 | A kind of system for flight control computer based on distributed redundance bus and winged prosecutor method |
CN109062028A (en) * | 2018-09-04 | 2018-12-21 | 北京实干兴邦科技有限公司 | A kind of redundance control system of flight control computer |
CN111443593A (en) * | 2020-04-08 | 2020-07-24 | 中国人民解放军国防科技大学 | A Networked Redundant Aircraft Control System |
CN111976968A (en) * | 2020-08-24 | 2020-11-24 | 中航飞机起落架有限责任公司 | Control circuit and control method for electric turning mechanism of front wheel of airplane |
CN113386949A (en) * | 2021-08-16 | 2021-09-14 | 中国商用飞机有限责任公司 | Control system for controlling flaps and/or slats of an aircraft, and aircraft |
CN114114894A (en) * | 2021-11-24 | 2022-03-01 | 中国商用飞机有限责任公司 | Telex flight backup control system and telex flight backup control method |
CN115390432A (en) * | 2022-10-27 | 2022-11-25 | 之江实验室 | A kind of redundant unmanned aerial vehicle flight control system and flight control method |
-
2022
- 2022-12-22 CN CN202211659684.7A patent/CN115808869A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101604162A (en) * | 2009-07-02 | 2009-12-16 | 北京航空航天大学 | A civil aircraft avionics integrated modular core processing system |
CN103823362A (en) * | 2014-02-17 | 2014-05-28 | 南京航空航天大学 | Arbitration mechanism-based similar dual-redundancy flight control computer and redundancy control method |
CN104749949A (en) * | 2015-03-19 | 2015-07-01 | 南京航空航天大学 | PowerPC and x86 based hybrid tri-redundancy UAV flying control computer and core design method |
US20160376003A1 (en) * | 2015-06-26 | 2016-12-29 | Yuri Feldman | Aircraft |
CN108107910A (en) * | 2017-12-28 | 2018-06-01 | 中航联创科技有限公司 | A kind of system for flight control computer based on distributed redundance bus and winged prosecutor method |
CN109062028A (en) * | 2018-09-04 | 2018-12-21 | 北京实干兴邦科技有限公司 | A kind of redundance control system of flight control computer |
CN111443593A (en) * | 2020-04-08 | 2020-07-24 | 中国人民解放军国防科技大学 | A Networked Redundant Aircraft Control System |
CN111976968A (en) * | 2020-08-24 | 2020-11-24 | 中航飞机起落架有限责任公司 | Control circuit and control method for electric turning mechanism of front wheel of airplane |
CN113386949A (en) * | 2021-08-16 | 2021-09-14 | 中国商用飞机有限责任公司 | Control system for controlling flaps and/or slats of an aircraft, and aircraft |
CN114114894A (en) * | 2021-11-24 | 2022-03-01 | 中国商用飞机有限责任公司 | Telex flight backup control system and telex flight backup control method |
CN115390432A (en) * | 2022-10-27 | 2022-11-25 | 之江实验室 | A kind of redundant unmanned aerial vehicle flight control system and flight control method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116125870A (en) * | 2022-12-22 | 2023-05-16 | 成都沃飞天驭科技有限公司 | Redundancy control method, arbitration unit, flight control system and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112498664B (en) | Flight control system and flight control method | |
US4644538A (en) | Autopilot flight director system | |
US4765568A (en) | Method and system for controlling the elevator assemblies of an aircraft | |
US20120290153A1 (en) | Flight control system with alternate control path | |
CN115963717A (en) | Redundancy control method, actuator processing module, flight control system and storage medium | |
CN110710164B (en) | flight control system | |
US20060100750A1 (en) | Dual/triplex flight control architecture | |
EP0573106A1 (en) | Multiaxis redundant fly-by-wire primary flight control system | |
JPS61128339A (en) | Automatic fleight controller | |
US7693616B2 (en) | System and method of redundancy management for fault effect mitigation | |
JP3965243B2 (en) | Control device | |
CN115808869A (en) | Flight control system | |
US7182296B2 (en) | Methods and apparatus for error-tolerant wrap-back ACE monitor | |
RU2485568C2 (en) | Modular electronic flight control system | |
CN103092186A (en) | Voting structure of two out of three secure output and voting method thereof | |
CN116125870A (en) | Redundancy control method, arbitration unit, flight control system and storage medium | |
KR101530181B1 (en) | Redundant driving control system having virtual control structure | |
KR102100657B1 (en) | Flight control system with fault recovery function | |
CN110667826B (en) | High-lift distributed telex control system | |
CN105550077A (en) | Backup control system | |
CN218675711U (en) | Flight control system | |
CN112346330B (en) | Servo control computer with complex fault-tolerant structure | |
CN114114894B (en) | Fly-by-wire backup control system and fly-by-wire backup control method | |
CN114560074B (en) | A flap control system and flap control command calculation method | |
EP1980924A1 (en) | System and method of redundancy management for fault effect mitigation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 6th Floor, Block A, Building 4, No. 200 Tianfu Fifth Street, Chengdu High tech Zone, Free Trade Zone, Chengdu, Sichuan Province 610000 Applicant after: Sichuan Wofei Changkong Technology Development Co.,Ltd. Applicant after: ZHEJIANG GEELY HOLDING GROUP Co.,Ltd. Address before: 6th Floor, Block A, Building 4, No. 200 Tianfu 5th Street, Chengdu High tech Zone, China (Sichuan) Pilot Free Trade Zone, Chengdu, Sichuan Province Applicant before: Chengdu wofeitianyu Technology Co.,Ltd. Country or region before: China Applicant before: ZHEJIANG GEELY HOLDING GROUP Co.,Ltd. |