CN115807257B - A dynamic monitoring method for micro-arc ceramic oxidation plating process - Google Patents
A dynamic monitoring method for micro-arc ceramic oxidation plating process Download PDFInfo
- Publication number
- CN115807257B CN115807257B CN202211018142.1A CN202211018142A CN115807257B CN 115807257 B CN115807257 B CN 115807257B CN 202211018142 A CN202211018142 A CN 202211018142A CN 115807257 B CN115807257 B CN 115807257B
- Authority
- CN
- China
- Prior art keywords
- micro
- sodium
- arc ceramic
- ceramic oxidation
- ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 109
- 230000003647 oxidation Effects 0.000 title claims abstract description 104
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 104
- 238000000034 method Methods 0.000 title claims abstract description 82
- 238000012544 monitoring process Methods 0.000 title claims abstract description 48
- 238000007747 plating Methods 0.000 title claims description 27
- 150000002500 ions Chemical class 0.000 claims abstract description 120
- 239000007788 liquid Substances 0.000 claims abstract description 44
- 238000009713 electroplating Methods 0.000 claims abstract description 37
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 9
- 238000004458 analytical method Methods 0.000 claims abstract description 7
- 238000005070 sampling Methods 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 31
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 claims description 24
- 235000019982 sodium hexametaphosphate Nutrition 0.000 claims description 24
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 claims description 24
- 239000011684 sodium molybdate Substances 0.000 claims description 24
- 235000015393 sodium molybdate Nutrition 0.000 claims description 24
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 claims description 24
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 24
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 claims description 24
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 claims description 24
- 239000004115 Sodium Silicate Substances 0.000 claims description 23
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 23
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 238000004540 process dynamic Methods 0.000 claims description 13
- 238000000132 electrospray ionisation Methods 0.000 claims description 12
- 230000005686 electrostatic field Effects 0.000 claims description 6
- 238000004252 FT/ICR mass spectrometry Methods 0.000 claims description 5
- 238000010790 dilution Methods 0.000 claims description 5
- 239000012895 dilution Substances 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 229940005740 hexametaphosphate Drugs 0.000 claims description 4
- ALTWGIIQPLQAAM-UHFFFAOYSA-N metavanadate Chemical group [O-][V](=O)=O ALTWGIIQPLQAAM-UHFFFAOYSA-N 0.000 claims description 4
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 claims description 4
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical group [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims 1
- 150000005837 radical ions Chemical class 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000011734 sodium Substances 0.000 description 15
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 9
- 238000001819 mass spectrum Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- -1 ferrous metals Chemical class 0.000 description 4
- 238000004896 high resolution mass spectrometry Methods 0.000 description 4
- 238000007781 pre-processing Methods 0.000 description 4
- 239000012086 standard solution Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229910021642 ultra pure water Inorganic materials 0.000 description 3
- 239000012498 ultrapure water Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000006199 nebulizer Substances 0.000 description 2
- 238000007745 plasma electrolytic oxidation reaction Methods 0.000 description 2
- 238000004451 qualitative analysis Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 241001342895 Chorus Species 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- HAORKNGNJCEJBX-UHFFFAOYSA-N cyprodinil Chemical compound N=1C(C)=CC(C2CC2)=NC=1NC1=CC=CC=C1 HAORKNGNJCEJBX-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
技术领域Technical field
本发明涉及电镀过程监测领域,具体是一种微弧陶瓷氧化电镀过程动态监测方法。The invention relates to the field of electroplating process monitoring, specifically a method for dynamic monitoring of the micro-arc ceramic oxidation electroplating process.
背景技术Background technique
铝及其合金因其重量轻而被广泛应用于航天、航空和其他民用、军事工业中,但其缺点是表面硬度低,不耐磨损。微弧氧化是一种新兴的材料表面陶瓷化处理技术,它是在传统的阳极氧化基础上发展起来的一种在Al、Mg、Ti等有色金属表面原位生长陶瓷膜的新技术。经微弧氧化处理后,材料表面可生成一层厚度大、硬度和绝缘电阻均较高的晶态或非晶态Al2O3陶瓷膜。该膜层耐磨、耐腐蚀、耐高温冲击和热稳定性好,综合性能明显优于传统的阳极氧化膜,因此在航空、航天、汽车、机械和轻工等工业领域有着广阔的应用前景。Aluminum and its alloys are widely used in aerospace, aviation and other civil and military industries because of their light weight. However, their disadvantages are low surface hardness and poor wear resistance. Micro-arc oxidation is an emerging material surface ceramic treatment technology. It is a new technology developed on the basis of traditional anodizing to grow ceramic films in situ on the surfaces of Al, Mg, Ti and other non-ferrous metals. After micro-arc oxidation treatment, a crystalline or amorphous Al 2 O 3 ceramic film with large thickness, high hardness and high insulation resistance can be formed on the surface of the material. The film has good wear resistance, corrosion resistance, high temperature impact resistance and thermal stability, and its overall performance is significantly better than traditional anodized films. Therefore, it has broad application prospects in industrial fields such as aviation, aerospace, automobiles, machinery and light industry.
由于陶瓷膜性能的优越性与电镀过程中的质量息息相关,因此,为了获得性能优越的陶瓷膜,需要对微弧陶瓷氧化电镀过程进行实时监测,进而对电镀质量进行严格控制。但是,现有技术并没有能够效监测微弧陶瓷氧化电镀过程中质量变化的手段。Since the superiority of ceramic film performance is closely related to the quality of the electroplating process, in order to obtain a ceramic film with superior performance, it is necessary to monitor the micro-arc ceramic oxidation plating process in real time, and then strictly control the plating quality. However, the existing technology does not have a means to effectively monitor quality changes during micro-arc ceramic oxidation plating.
因此,亟需一种可以全面掌握微弧陶瓷氧化电镀过程各因素的变量及其影响因素、进而对微弧陶瓷氧化电镀过程进行质量控制的方法。Therefore, there is an urgent need for a method that can comprehensively grasp the variables and influencing factors of various factors in the micro-arc ceramic oxidation plating process, and then conduct quality control of the micro-arc ceramic oxidation plating process.
发明内容Contents of the invention
本发明的目的是提供一种微弧陶瓷氧化电镀过程动态监测方法,包括以下步骤:The purpose of the invention is to provide a dynamic monitoring method for the micro-arc ceramic oxidation plating process, which includes the following steps:
1)对微弧陶瓷氧化电镀过程中的微弧陶瓷氧化槽液进行实时取样,并进行前处理,得到待测溶液;1) Real-time sampling of the micro-arc ceramic oxidation bath liquid during the micro-arc ceramic oxidation plating process, and pre-processing to obtain the solution to be tested;
2)利用离子源对待测溶液分子进行电离,并将电离得到的粒子输入到高分辨质谱仪中;2) Use an ion source to ionize the molecules of the solution to be measured, and input the ionized particles into a high-resolution mass spectrometer;
3)所述高分辨质谱仪利用内置质量分析器对离子束进行质量分析,得到待测溶液中微弧陶瓷氧化槽液各组分的特征离子及其质荷比,并输入到存储有电镀过程动态监测模型的电镀过程动态监测模块中;3) The high-resolution mass spectrometer uses a built-in mass analyzer to perform mass analysis of the ion beam to obtain the characteristic ions and their mass-to-charge ratios of each component of the micro-arc ceramic oxidation bath solution in the solution to be tested, and input them into the stored electroplating process In the electroplating process dynamic monitoring module of the dynamic monitoring model;
4)所述电镀过程动态监测模块将待测溶液中微弧陶瓷氧化槽液各组分的特征离子及其质荷比输入到电镀过程动态监测模型中,得到微弧陶瓷氧化槽液各组分实时浓度,以反应微弧陶瓷氧化电镀过程中的实时状态。4) The electroplating process dynamic monitoring module inputs the characteristic ions and their mass-to-charge ratios of the components of the micro-arc ceramic oxidation bath in the solution to be measured into the electroplating process dynamic monitoring model to obtain the components of the micro-arc ceramic oxidation bath. Real-time concentration to reflect the real-time status during the micro-arc ceramic oxidation plating process.
进一步,所述前处理包括过滤和稀释。Further, the pretreatment includes filtration and dilution.
进一步,稀释微弧陶瓷氧化槽液时,将微弧陶瓷氧化槽液溶解于氢氧化钠或氢氧化钾溶液中。Further, when diluting the micro-arc ceramic oxidation bath liquid, the micro-arc ceramic oxidation bath liquid is dissolved in sodium hydroxide or potassium hydroxide solution.
进一步,所述离子源包括电喷雾电离源。Further, the ion source includes an electrospray ionization source.
进一步,所述高分辨质谱仪的内置质量分析器包括飞行时间质量分析器、静电场轨道阱质量分析器、傅里叶变换离子回旋共振质量分析器。Furthermore, the built-in mass analyzer of the high-resolution mass spectrometer includes a time-of-flight mass analyzer, an electrostatic field orbitrap mass analyzer, and a Fourier transform ion cyclotron resonance mass analyzer.
进一步,所述微弧陶瓷氧化槽液的组分包括六偏磷酸钠、偏钒酸钠、钼酸钠、钨酸钠、硅酸钠。Further, the components of the micro-arc ceramic oxidation bath liquid include sodium hexametaphosphate, sodium metavanadate, sodium molybdate, sodium tungstate, and sodium silicate.
进一步,所述六偏磷酸钠的特征离子包括六偏磷酸根离子P6O18 6-;Further, the characteristic ions of sodium hexametaphosphate include hexametaphosphate ion P 6 O 18 6- ;
所述偏钒酸钠的特征离子包括偏钒酸根离子VO3 -;The characteristic ions of sodium metavanadate include metavanadate ion VO 3 - ;
所述钼酸钠的特征离子包括钼酸根离子HMoO4 -;The characteristic ions of the sodium molybdate include molybdate ion HMoO 4 - ;
所述钨酸钠的特征离子包括钨酸根离子HWO4 -;The characteristic ions of sodium tungstate include tungstate ion HWO 4 - ;
所述硅酸钠的特征离子包括硅酸根离子HSiO3 -。The characteristic ions of sodium silicate include silicate ions HSiO 3 - .
进一步,所述电镀过程动态监测模型存储有微弧陶瓷氧化槽液各组分特征离子质荷比与偏磷酸微弧陶瓷氧化槽液各组分实时浓度的线性关系。Furthermore, the electroplating process dynamic monitoring model stores a linear relationship between the characteristic ion mass-charge ratio of each component of the micro-arc ceramic oxidation bath liquid and the real-time concentration of each component of the metaphosphoric acid micro-arc ceramic oxidation bath liquid.
进一步,所述微弧陶瓷氧化槽液各组分特征离子质荷比与偏磷酸微弧陶瓷氧化槽液各组分实时浓度的线性关系分别如下所示:Further, the linear relationship between the characteristic ion mass-charge ratio of each component of the micro-arc ceramic oxidation bath liquid and the real-time concentration of each component of the metaphosphoric acid micro-arc ceramic oxidation bath liquid is as follows:
y1=617.62x1+7150; (1)y1=617.62x1+7150; (1)
y2=3862x2+39540; (2)y2=3862x2+39540; (2)
y3=806.62x3+2750.3; (3)y3=806.62x3+2750.3; (3)
y4=596.27x4+4537.4; (4)y4=596.27x4+4537.4; (4)
y5=995.4x5+27247; (5)y5=995.4x5+27247; (5)
式中,y1、y2、y3、y4、y5分别表示六偏磷酸钠特征离子、偏钒酸钠特征离子、钼酸钠特征离子、钨酸钠特征离子、硅酸钠特征离子的质荷比;x1、x2、x3、x4、x5分别表示偏磷酸微弧陶瓷氧化槽液中六偏磷酸钠、偏钒酸钠、钼酸钠、钨酸钠、硅酸钠的实时浓度。In the formula, y1, y2, y3, y4, and y5 respectively represent the mass-to-charge ratio of the characteristic ion of sodium hexametaphosphate, the characteristic ion of sodium metavanadate, the characteristic ion of sodium molybdate, the characteristic ion of sodium tungstate, and the characteristic ion of sodium silicate; x1, x2, x3, x4, and x5 respectively represent the real-time concentrations of sodium hexametaphosphate, sodium metavanadate, sodium molybdate, sodium tungstate, and sodium silicate in the metaphosphoric acid micro-arc ceramic oxidation bath liquid.
本发明的技术效果是毋庸置疑的,本发明探究微弧陶瓷氧化电镀过程中各物质组分迁移转化规律,进而对微弧陶瓷氧化电镀过程进行动态监测,为微弧陶瓷氧化生产过程提供了技术支撑。The technical effect of the present invention is beyond doubt. The present invention explores the migration and transformation rules of each material component during the micro-arc ceramic oxidation plating process, and then dynamically monitors the micro-arc ceramic oxidation plating process, providing technology for the micro-arc ceramic oxidation production process. support.
本发明无需对各物质组分进行分离即可对微弧陶瓷氧化电镀过程中使用的各组分物质进行定性定量分析,操作简单,分析时间短,便捷快速。The present invention can conduct qualitative and quantitative analysis of each component material used in the micro-arc ceramic oxidation plating process without separating each material component. The operation is simple, the analysis time is short, and it is convenient and fast.
本发明对微弧陶瓷氧化工艺过程的质量监控具有重要的意义。The invention has important significance for quality monitoring of the micro-arc ceramic oxidation process.
附图说明Description of the drawings
图1为Na6P6O18的ESI-模式质谱图及特征离子;Figure 1 shows the ESI-mode mass spectrum and characteristic ions of Na 6 P 6 O 18 ;
图2为NaVO3的ESI-模式质谱图及特征离子;Figure 2 shows the ESI-mode mass spectrum and characteristic ions of NaVO 3 ;
图3为Na2MoO4的ESI-模式质谱图及特征离子;Figure 3 shows the ESI-mode mass spectrum and characteristic ions of Na 2 MoO 4 ;
图4为Na2WO4的ESI-模式质谱图及特征离子;Figure 4 is the ESI-mode mass spectrum and characteristic ions of Na 2 WO 4 ;
图5为Na2SiO3的ESI-模式质谱图及特征离子;Figure 5 shows the ESI-mode mass spectrum and characteristic ions of Na 2 SiO 3 ;
图6为Na6P6O18的标准曲线;Figure 6 is the standard curve of Na 6 P 6 O 18 ;
图7为NaVO3的标准曲线;Figure 7 is the standard curve of NaVO 3 ;
图8为Na2MoO4的标准曲线;Figure 8 is the standard curve of Na 2 MoO 4 ;
图9为Na2WO4的标准曲线;Figure 9 is the standard curve of Na 2 WO 4 ;
图10为Na2SiO3的标准曲线。Figure 10 is the standard curve of Na 2 SiO 3 .
具体实施方式Detailed ways
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。The present invention will be further described below with reference to the examples, but it should not be understood that the above subject scope of the present invention is limited to the following examples. Without departing from the above-mentioned technical ideas of the present invention, various substitutions and changes can be made based on common technical knowledge and common means in the art, and all of them should be included in the protection scope of the present invention.
实施例1:Example 1:
参见图1至图10,一种微弧陶瓷氧化电镀过程动态监测方法,包括以下步骤:Referring to Figures 1 to 10, a method for dynamic monitoring of the micro-arc ceramic oxidation plating process includes the following steps:
1)对微弧陶瓷氧化电镀过程中的微弧陶瓷氧化槽液进行实时取样,并进行前处理,得到待测溶液;1) Real-time sampling of the micro-arc ceramic oxidation bath liquid during the micro-arc ceramic oxidation plating process, and pre-processing to obtain the solution to be tested;
2)利用离子源对待测溶液分子进行电离,得到若干离子,并将得到的离子汇聚成离子束,输入到高分辨质谱仪中;2) Use an ion source to ionize the molecules of the solution to be measured to obtain a number of ions, and converge the obtained ions into an ion beam, which is input into a high-resolution mass spectrometer;
3)所述高分辨质谱仪利用内置质量分析器对离子束进行质量分析,得到待测溶液中微弧陶瓷氧化槽液各组分的特征离子及其质荷比,并输入到存储有电镀过程动态监测模型的电镀过程动态监测模块中;3) The high-resolution mass spectrometer uses a built-in mass analyzer to perform mass analysis of the ion beam to obtain the characteristic ions and their mass-to-charge ratios of each component of the micro-arc ceramic oxidation bath solution in the solution to be tested, and input them into the stored electroplating process In the electroplating process dynamic monitoring module of the dynamic monitoring model;
4)所述电镀过程动态监测模块将待测溶液中微弧陶瓷氧化槽液各组分的特征离子及其质荷比输入到电镀过程动态监测模型中,得到微弧陶瓷氧化槽液各组分实时浓度,以反应微弧陶瓷氧化电镀过程中的实时状态。4) The electroplating process dynamic monitoring module inputs the characteristic ions and their mass-to-charge ratios of the components of the micro-arc ceramic oxidation bath in the solution to be measured into the electroplating process dynamic monitoring model to obtain the components of the micro-arc ceramic oxidation bath. Real-time concentration to reflect the real-time status during the micro-arc ceramic oxidation plating process.
所述前处理包括过滤和稀释。The pre-treatment includes filtration and dilution.
稀释微弧陶瓷氧化槽液时,将微弧陶瓷氧化槽液溶解于氢氧化钠或氢氧化钾溶液中。When diluting the micro-arc ceramic oxidation bath liquid, dissolve the micro-arc ceramic oxidation bath liquid in sodium hydroxide or potassium hydroxide solution.
所述离子源包括电喷雾电离源。The ion source includes an electrospray ionization source.
所述高分辨质谱仪的内置质量分析器包括飞行时间质量分析器、静电场轨道阱质量分析器、傅里叶变换离子回旋共振质量分析器。The built-in mass analyzer of the high-resolution mass spectrometer includes a time-of-flight mass analyzer, an electrostatic field orbitrap mass analyzer, and a Fourier transform ion cyclotron resonance mass analyzer.
所述微弧陶瓷氧化槽液的组分包括六偏磷酸钠、偏钒酸钠、钼酸钠、钨酸钠、硅酸钠。The components of the micro-arc ceramic oxidation bath liquid include sodium hexametaphosphate, sodium metavanadate, sodium molybdate, sodium tungstate, and sodium silicate.
所述六偏磷酸钠的特征离子包括六偏磷酸根离子P6O18 6-;The characteristic ions of sodium hexametaphosphate include hexametaphosphate ion P 6 O 18 6- ;
所述偏钒酸钠的特征离子包括偏钒酸根离子VO3 -;The characteristic ions of sodium metavanadate include metavanadate ion VO 3 - ;
所述钼酸钠的特征离子包括钼酸根离子HMoO4 -;The characteristic ions of the sodium molybdate include molybdate ion HMoO 4 - ;
所述钨酸钠的特征离子包括钨酸根离子HWO4 -;The characteristic ions of sodium tungstate include tungstate ion HWO 4 - ;
所述硅酸钠的特征离子包括硅酸根离子HSiO3 -。The characteristic ions of sodium silicate include silicate ions HSiO 3 - .
所述电镀过程动态监测模型存储有微弧陶瓷氧化槽液各组分特征离子质荷比与偏磷酸微弧陶瓷氧化槽液各组分实时浓度的线性关系。The electroplating process dynamic monitoring model stores a linear relationship between the characteristic ion mass-charge ratio of each component of the micro-arc ceramic oxidation bath liquid and the real-time concentration of each component of the metaphosphoric acid micro-arc ceramic oxidation bath liquid.
所述微弧陶瓷氧化槽液各组分特征离子质荷比与偏磷酸微弧陶瓷氧化槽液各组分实时浓度的线性关系分别如下所示:The linear relationship between the characteristic ion mass-charge ratio of each component of the micro-arc ceramic oxidation bath liquid and the real-time concentration of each component of the metaphosphoric acid micro-arc ceramic oxidation bath liquid is as follows:
y1=617.62x1+7150; (1)y1=617.62x1+7150; (1)
y2=3862x2+39540; (2)y2=3862x2+39540; (2)
y3=806.62x3+2750.3; (3)y3=806.62x3+2750.3; (3)
y4=596.27x4+4537.4; (4)y4=596.27x4+4537.4; (4)
y5=995.4x5+27247; (5)y5=995.4x5+27247; (5)
式中,y1、y2、y3、y4、y5分别表示六偏磷酸钠特征离子、偏钒酸钠特征离子、钼酸钠特征离子、钨酸钠特征离子、硅酸钠特征离子的质荷比;x1、x2、x3、x4、x5分别表示偏磷酸微弧陶瓷氧化槽液中六偏磷酸钠、偏钒酸钠、钼酸钠、钨酸钠、硅酸钠的实时浓度。In the formula, y1, y2, y3, y4, and y5 respectively represent the mass-to-charge ratio of the characteristic ion of sodium hexametaphosphate, the characteristic ion of sodium metavanadate, the characteristic ion of sodium molybdate, the characteristic ion of sodium tungstate, and the characteristic ion of sodium silicate; x1, x2, x3, x4, and x5 respectively represent the real-time concentrations of sodium hexametaphosphate, sodium metavanadate, sodium molybdate, sodium tungstate, and sodium silicate in the metaphosphoric acid micro-arc ceramic oxidation bath liquid.
实施例2:Example 2:
一种微弧陶瓷氧化电镀过程动态监测方法,包括以下步骤:A dynamic monitoring method for micro-arc ceramic oxidation plating process, including the following steps:
1)对微弧陶瓷氧化电镀过程中的微弧陶瓷氧化槽液进行实时取样,并进行前处理,得到待测溶液;1) Real-time sampling of the micro-arc ceramic oxidation bath liquid during the micro-arc ceramic oxidation plating process, and pre-processing to obtain the solution to be tested;
2)利用离子源对待测溶液分子进行电离,得到若干离子,并将得到的离子汇聚成离子束,输入到高分辨质谱仪中;2) Use an ion source to ionize the molecules of the solution to be measured to obtain a number of ions, and converge the obtained ions into an ion beam, which is input into a high-resolution mass spectrometer;
3)所述高分辨质谱仪利用内置质量分析器对离子束进行质量分析,得到待测溶液中微弧陶瓷氧化槽液各组分的特征离子及其质荷比,并输入到存储有电镀过程动态监测模型的电镀过程动态监测模块中;3) The high-resolution mass spectrometer uses a built-in mass analyzer to perform mass analysis of the ion beam to obtain the characteristic ions and their mass-to-charge ratios of each component of the micro-arc ceramic oxidation bath solution in the solution to be tested, and input them into the stored electroplating process In the electroplating process dynamic monitoring module of the dynamic monitoring model;
4)所述电镀过程动态监测模块将待测溶液中微弧陶瓷氧化槽液各组分的特征离子及其质荷比输入到电镀过程动态监测模型中,得到微弧陶瓷氧化槽液各组分实时浓度,以反应微弧陶瓷氧化电镀过程中的实时状态。4) The electroplating process dynamic monitoring module inputs the characteristic ions and their mass-to-charge ratios of the components of the micro-arc ceramic oxidation bath in the solution to be measured into the electroplating process dynamic monitoring model to obtain the components of the micro-arc ceramic oxidation bath. Real-time concentration to reflect the real-time status during the micro-arc ceramic oxidation plating process.
实施例3:Example 3:
一种微弧陶瓷氧化电镀过程动态监测方法,主要内容见实施例2,其中,所述前处理包括过滤和稀释。A method for dynamic monitoring of a micro-arc ceramic oxidation plating process. The main content is shown in Embodiment 2, wherein the pretreatment includes filtration and dilution.
实施例4:Example 4:
一种微弧陶瓷氧化电镀过程动态监测方法,主要内容见实施例3,其中,稀释微弧陶瓷氧化槽液时,将微弧陶瓷氧化槽液溶解于氢氧化钠或氢氧化钾溶液中。A method for dynamic monitoring of a micro-arc ceramic oxidation electroplating process. The main content is shown in Example 3. When diluting the micro-arc ceramic oxidation bath liquid, the micro-arc ceramic oxidation bath liquid is dissolved in a sodium hydroxide or potassium hydroxide solution.
实施例5:Example 5:
一种微弧陶瓷氧化电镀过程动态监测方法,主要内容见实施例2,其中,所述离子源包括电喷雾电离源。A method for dynamic monitoring of a micro-arc ceramic oxidation plating process. The main content is shown in Embodiment 2, wherein the ion source includes an electrospray ionization source.
实施例6:Example 6:
一种微弧陶瓷氧化电镀过程动态监测方法,主要内容见实施例2,其中,所述高分辨质谱仪的内置质量分析器包括飞行时间质量分析器、静电场轨道阱质量分析器、傅里叶变换离子回旋共振质量分析器。A method for dynamic monitoring of micro-arc ceramic oxidation electroplating process. The main content is shown in Embodiment 2, in which the built-in mass analyzer of the high-resolution mass spectrometer includes a time-of-flight mass analyzer, an electrostatic field orbital mass analyzer, and a Fourier transformer. Transform ion cyclotron resonance mass analyzer.
实施例7:Example 7:
一种微弧陶瓷氧化电镀过程动态监测方法,主要内容见实施例2,其中,所述微弧陶瓷氧化槽液的组分包括六偏磷酸钠、偏钒酸钠、钼酸钠、钨酸钠、硅酸钠。A method for dynamic monitoring of micro-arc ceramic oxidation electroplating process. The main content is shown in Example 2, wherein the components of the micro-arc ceramic oxidation bath liquid include sodium hexametaphosphate, sodium metavanadate, sodium molybdate, and sodium tungstate. , sodium silicate.
实施例8:Example 8:
一种微弧陶瓷氧化电镀过程动态监测方法,主要内容见实施例2,其中,所述六偏磷酸钠的特征离子包括六偏磷酸根离子P6O18 6-;A method for dynamic monitoring of micro-arc ceramic oxidation electroplating process. The main content is shown in Example 2, wherein the characteristic ions of sodium hexametaphosphate include hexametaphosphate ions P 6 O 18 6- ;
所述偏钒酸钠的特征离子包括偏钒酸根离子VO3 -;The characteristic ions of sodium metavanadate include metavanadate ion VO 3 - ;
所述钼酸钠的特征离子包括钼酸根离子HMoO4 -;The characteristic ions of the sodium molybdate include molybdate ion HMoO 4 - ;
所述钨酸钠的特征离子包括钨酸根离子HWO4 -;The characteristic ions of sodium tungstate include tungstate ion HWO 4 - ;
所述硅酸钠的特征离子包括硅酸根离子HSiO3 -。The characteristic ions of sodium silicate include silicate ions HSiO 3 - .
实施例9:Example 9:
一种微弧陶瓷氧化电镀过程动态监测方法,主要内容见实施例2,其中,所述电镀过程动态监测模型存储有微弧陶瓷氧化槽液各组分特征离子质荷比与偏磷酸微弧陶瓷氧化槽液各组分实时浓度的线性关系。A method for dynamic monitoring of micro-arc ceramic oxidation electroplating process. The main content is shown in Embodiment 2, wherein the dynamic monitoring model of the electroplating process stores the characteristic ion mass-charge ratio of each component of the micro-arc ceramic oxidation bath liquid and the metaphosphoric acid micro-arc ceramic Linear relationship between the real-time concentrations of each component in the oxidation bath.
实施例10:Example 10:
一种微弧陶瓷氧化电镀过程动态监测方法,主要内容见实施例2,其中,所述微弧陶瓷氧化槽液各组分特征离子质荷比与偏磷酸微弧陶瓷氧化槽液各组分实时浓度的线性关系分别如下所示:A method for dynamic monitoring of micro-arc ceramic oxidation electroplating process. The main content is shown in Example 2, in which the characteristic ion mass-charge ratio of each component of the micro-arc ceramic oxidation bath liquid and the real-time relationship between the components of the metaphosphoric acid micro-arc ceramic oxidation bath liquid are The linear relationships between concentrations are as follows:
y1=617.62x1+7150; (1)y1=617.62x1+7150; (1)
y2=3862x2+39540; (2)y2=3862x2+39540; (2)
y3=806.62x3+2750.3; (3)y3=806.62x3+2750.3; (3)
y4=596.27x4+4537.4; (4)y4=596.27x4+4537.4; (4)
y5=995.4x5+27247; (5)y5=995.4x5+27247; (5)
式中,y1、y2、y3、y4、y5分别表示六偏磷酸钠特征离子、偏钒酸钠特征离子、钼酸钠特征离子、钨酸钠特征离子、硅酸钠特征离子的质荷比;x1、x2、x3、x4、x5分别表示偏磷酸微弧陶瓷氧化槽液中六偏磷酸钠、偏钒酸钠、钼酸钠、钨酸钠、硅酸钠的实时浓度。In the formula, y1, y2, y3, y4, and y5 respectively represent the mass-to-charge ratio of the characteristic ion of sodium hexametaphosphate, the characteristic ion of sodium metavanadate, the characteristic ion of sodium molybdate, the characteristic ion of sodium tungstate, and the characteristic ion of sodium silicate; x1, x2, x3, x4, and x5 respectively represent the real-time concentrations of sodium hexametaphosphate, sodium metavanadate, sodium molybdate, sodium tungstate, and sodium silicate in the metaphosphoric acid micro-arc ceramic oxidation bath liquid.
实施例11:Example 11:
一种微弧陶瓷氧化电镀过程动态监测方法,步骤包括:A method for dynamic monitoring of micro-arc ceramic oxidation plating process, the steps include:
(1)将所得的微弧陶瓷氧化槽液进行前处理;(1) Pre-process the obtained micro-arc ceramic oxidation bath liquid;
(2)采用高分辨质谱法对待测溶液进行测定;(2) Use high-resolution mass spectrometry to measure the solution to be tested;
(3)获得微弧陶瓷氧化槽液5种组分特征离子及响应强度;(3) Obtain the characteristic ions and response strengths of the five components of the micro-arc ceramic oxidation bath liquid;
(4)根据每种组分特征离子的响应强度,计算待测溶液中各种组分浓度。(4) Calculate the concentration of various components in the solution to be tested based on the response intensity of the characteristic ions of each component.
所述的微弧陶瓷氧化槽液组分为六偏磷酸钠、偏钒酸钠、钼酸钠、钨酸钠、硅酸钠,上述组分溶解于氢氧化钠或氢氧化钾溶液中。The components of the micro-arc ceramic oxidation bath liquid are sodium hexametaphosphate, sodium metavanadate, sodium molybdate, sodium tungstate, and sodium silicate, and the above components are dissolved in sodium hydroxide or potassium hydroxide solution.
高分辨质谱的离子源为电喷雾电离(ESI),以负离子模式进行检测。The ion source of high-resolution mass spectrometry is electrospray ionization (ESI), and detection is performed in negative ion mode.
所述的高分辨质谱的质量分析器可以是飞行时间质量分析器(TOF)、静电场轨道阱质量分析器(Obitrap)、傅里叶变换离子回旋共振质量分析器(FTICR)。The mass analyzer of the high-resolution mass spectrometer may be a time-of-flight mass analyzer (TOF), an electrostatic field orbitrap mass analyzer (Obitrap), or a Fourier transform ion cyclotron resonance mass analyzer (FTICR).
微弧陶瓷氧化槽液组分的特征离子及质荷比(m/z)如下,六偏磷酸钠的特征离子为P6O18 6-,m/z为78.9580,偏钒酸钠的特征离子为VO3 -,m/z为98.9282;钼酸钠的特征离子为HMoO4 -,m/z为162.8923;钨酸钠的特征离子为HWO4 -,m/z为248.9379;硅酸钠的特征离子为HSiO3,m/z为76.9689。The characteristic ions and mass-to-charge ratio (m/z) of the components of the micro-arc ceramic oxidation bath are as follows. The characteristic ions of sodium hexametaphosphate are P 6 O 18 6- , m/z is 78.9580, and the characteristic ions of sodium metavanadate are is VO 3 - , m/z is 98.9282; the characteristic ion of sodium molybdate is HMoO 4 - , m/z is 162.8923; the characteristic ion of sodium tungstate is HWO 4 - , m/z is 248.9379; the characteristic ion of sodium silicate is The ion is HSiO 3 and m/z is 76.9689.
实施例12:Example 12:
一种微弧陶瓷氧化电镀过程动态监测方法,步骤包括:A method for dynamic monitoring of micro-arc ceramic oxidation plating process, the steps include:
(1)将所得的微弧陶瓷氧化槽液进行前处理;(1) Pre-process the obtained micro-arc ceramic oxidation bath liquid;
(2)采用高分辨质谱法对待测溶液进行测定;(2) Use high-resolution mass spectrometry to measure the solution to be tested;
(2-1)仪器:高分辨液质联用仪,配ESI电喷雾离子源;超纯水仪;电子天平;(2-1) Instruments: high-resolution liquid mass spectrometry instrument, equipped with ESI electrospray ion source; ultrapure water instrument; electronic balance;
(2-2)试剂:超纯水、六偏磷酸钠、偏钒酸钠、钼酸钠、钨酸钠、硅酸钠、氢氧化钾;(2-2) Reagents: ultrapure water, sodium hexametaphosphate, sodium metavanadate, sodium molybdate, sodium tungstate, sodium silicate, potassium hydroxide;
(2-3)在一个实施方式中,仪器:四级杆飞行时间质谱仪(Q-TOF),条件为:ESI源负离子模式,GasTemp:350℃,DryingGas:12L/min,Nebulizer:35psi,SheathGasTemp:350℃,SheathGasFlow:12L/min;Vcap:3000V,NozzleVoltage:1500V;Fragmentor:-170V,Skimmer-65V,Oct 1RFVpp:750V;进样流速:0.1mL/min;(2-3) In one embodiment, the instrument: quadrupole time-of-flight mass spectrometer (Q-TOF), the conditions are: ESI source negative ion mode, GasTemp: 350°C, DryingGas: 12L/min, Nebulizer: 35psi, SheathGasTemp : 350℃, SheathGasFlow: 12L/min; Vcap: 3000V, NozzleVoltage: 1500V; Fragmentor: -170V, Skimmer-65V, Oct 1RFVpp: 750V; Injection flow rate: 0.1mL/min;
(3)获得微弧陶瓷氧化槽液5种组分特征离子及响应强度;(3) Obtain the characteristic ions and response strengths of the five components of the micro-arc ceramic oxidation bath liquid;
六偏磷酸钠的特征离子为P6O18 6-,m/z为78.9580,偏钒酸钠的特征离子为VO3 -,m/z为98.9282;钼酸钠的特征离子为HMoO4 -,m/z为162.8923;钨酸钠的特征离子为HWO4 -,m/z为248.9379;硅酸钠的特征离子为HSiO3,m/z为76.9689。The characteristic ion of sodium hexametaphosphate is P 6 O 18 6- , m/z is 78.9580, the characteristic ion of sodium metavanadate is VO 3 - , m/z is 98.9282; the characteristic ion of sodium molybdate is HMoO 4 - , m/z is 162.8923; the characteristic ion of sodium tungstate is HWO 4 - and m/z is 248.9379; the characteristic ion of sodium silicate is HSiO 3 and m/z is 76.9689.
(4)根据特征离子的响应强度,计算待测溶液中各种组分的浓度,在20~200mg/L的浓度范围内,5种组分的浓度与特征离子响应强度呈线性关系:(4) Calculate the concentrations of various components in the solution to be tested based on the response intensity of the characteristic ions. Within the concentration range of 20 to 200 mg/L, the concentrations of the five components have a linear relationship with the response intensity of the characteristic ions:
六偏磷酸钠浓度x与对应的特征离子(m/z 78.9580)响应强度y的线性关系为:y=617.62x+7150,R2=0.9937;The linear relationship between the concentration x of sodium hexametaphosphate and the response intensity y of the corresponding characteristic ion (m/z 78.9580) is: y=617.62x+7150, R 2 =0.9937;
偏钒酸钠浓度x与对应的特征离子(m/z 98.9315)响应强度y的线性关系为:y=3862x+39540,R2=0.9995;The linear relationship between the sodium metavanadate concentration x and the corresponding characteristic ion (m/z 98.9315) response intensity y is: y=3862x+39540, R 2 =0.9995;
钼酸钠浓度x与对应的特征离子(m/z 162.8923)响应强度y的线性关系为:y=806.62x+2750.3,R2=0.9999;The linear relationship between the sodium molybdate concentration x and the corresponding characteristic ion (m/z 162.8923) response intensity y is: y=806.62x+2750.3, R 2 =0.9999;
钨酸钠浓度x与对应的特征离子(m/z 248.9379)响应强度y的线性关系为:y=y=596.27x+4537.4,R2=0.9999;The linear relationship between the sodium tungstate concentration x and the corresponding characteristic ion (m/z 248.9379) response intensity y is: y=y=596.27x+4537.4, R 2 =0.9999;
硅酸钠浓度x与对应的特征离子(m/z76.9689)响应强度y的线性关系为:y=995.4x+27247,R2=0.9992;The linear relationship between the sodium silicate concentration x and the corresponding characteristic ion (m/z76.9689) response intensity y is: y=995.4x+27247, R 2 =0.9992;
其中,浓度x的单位为mg/L;Among them, the unit of concentration x is mg/L;
所述的高分辨质谱的离子源为电喷雾电离(ESI),以负离子模式进行检测。The ion source of the high-resolution mass spectrometer is electrospray ionization (ESI), and detection is performed in negative ion mode.
所述的高分辨质谱的质量分析器可以是飞行时间质量分析器(TOF)、静电场轨道阱质量分析器(Obitrap)、傅里叶变换离子回旋共振质量分析器(FTICR)。The mass analyzer of the high-resolution mass spectrometer may be a time-of-flight mass analyzer (TOF), an electrostatic field orbitrap mass analyzer (Obitrap), or a Fourier transform ion cyclotron resonance mass analyzer (FTICR).
实施例13:Example 13:
一种微弧陶瓷氧化电镀过程动态监测方法,内容包括:A dynamic monitoring method for micro-arc ceramic oxidation plating process, including:
1.仪器与试剂:1.Instruments and reagents:
(1)仪器:QTOF 6545XT型高分辨液质联用仪(美国Agilent公司),配ESI电喷雾源以及注射泵;Ellga Chorus 1Complete超纯水仪;Sartorious Quintix213电子天平。(1) Instrument: QTOF 6545XT high-resolution liquid mass spectrometer (Agilent Company of the United States), equipped with ESI electrospray source and syringe pump; Ellga Chorus 1Complete ultrapure water meter; Sartorious Quintix213 electronic balance.
(2)试剂:六偏磷酸钠(Na6P6O18)、偏钒酸钠(NaVO3)、钼酸钠(Na2MoO4)、钨酸钠(Na2MoO4)、硅酸钠(Na2SiO3),氢氧化钾(KOH)优级纯,均来自Sigma试剂公司。微弧陶瓷氧化槽液来自某公司。(2) Reagents: sodium hexametaphosphate (Na 6 P 6 O 18 ), sodium metavanadate (NaVO 3 ), sodium molybdate (Na 2 MoO 4 ), sodium tungstate (Na 2 MoO 4 ), sodium silicate (Na 2 SiO 3 ), potassium hydroxide (KOH), excellent grade, all from Sigma Reagent Company. The micro-arc ceramic oxidation bath liquid comes from a certain company.
2.方法与结果2. Methods and results
(1)溶液配制(1) Solution preparation
a.氢氧化钾溶液:称取2.0g氢氧化钾,溶解于1L水中,浓度为2g/L.a. Potassium hydroxide solution: Weigh 2.0g of potassium hydroxide and dissolve it in 1L of water. The concentration is 2g/L.
b.标准溶液储备液配制:分别精确称取Na6P6O18、NaVO3、Na2MoO4、Na2MoO4、Na2SiO3各0.1g,用氢氧化钾溶液(2g/L)分别溶解并定容于100mL,浓度均为1g/L。b. Preparation of standard solution stock solution: Accurately weigh 0.1g each of Na 6 P 6 O 18 , NaVO 3 , Na 2 MoO 4 , Na 2 MoO 4 , and Na 2 SiO 3 , and use potassium hydroxide solution (2g/L) Dissolve and adjust to 100mL respectively, the concentration is 1g/L.
c.混合标准溶液:取相应体积的各标准储备溶液,配制成浓度20、50、100、200mg/L混合标准溶液;c. Mixed standard solution: Take corresponding volumes of each standard stock solution and prepare mixed standard solutions with concentrations of 20, 50, 100, and 200 mg/L;
d.待测试样的样品溶液制备:取待测溶液,过0.22um滤膜,可根据响应强度用氢氧化钾溶液(2g/L)继续稀释至合适浓度;d. Preparation of sample solution for the sample to be tested: Take the solution to be tested, pass it through a 0.22um filter membrane, and continue to dilute it with potassium hydroxide solution (2g/L) to the appropriate concentration according to the response intensity;
(2)仪器条件(2)Instrument conditions
质谱条件:ESI源负离子模式,GasTemp:350℃,DryingGas:12L/min,Nebulizer:35psi,SheathGasTemp:350℃,SheathGasFlow:12L/min;Vcap:3000V,NozzleVoltage:1500V;Fragmentor:-170V,Skimmer-65V,Oct 1RFVpp:750V;进样流速:0.1mL/min;Mass spectrometry conditions: ESI source negative ion mode, GasTemp: 350℃, DryingGas: 12L/min, Nebulizer: 35psi, SheathGasTemp: 350℃, SheathGasFlow: 12L/min; Vcap: 3000V, NozzleVoltage: 1500V; Fragmentor: -170V, Skimmer-65V , Oct 1RFVpp: 750V; injection flow rate: 0.1mL/min;
(3)特征离子及质荷比(m/z)(3) Characteristic ions and mass-to-charge ratio (m/z)
根据每种标准溶液质谱响应情况,确定5种组分的特征离子及质荷比如下:特征离子分别为P6O18 6-、VO3 -、HMoO4 -、HWO4 -、HSiO3 -,m/z分别为78.9580、98.9282、162.8923、248.9379、76.9689。According to the mass spectrum response of each standard solution, the characteristic ions and mass-to-charge ratios of the five components are determined as follows: the characteristic ions are P 6 O 18 6- , VO 3 - , HMoO 4 - , HWO 4 - and HSiO 3 - respectively. m/z are 78.9580, 98.9282, 162.8923, 248.9379, 76.9689 respectively.
(4)标准曲线(4)Standard curve
在浓度范围20~200mg/L内,四种物质的浓度与其特征离子强度之和呈现线性关系,相关标准曲线的拟合参数见表1.Within the concentration range of 20 to 200 mg/L, the concentrations of the four substances and the sum of their characteristic ion strengths show a linear relationship. The fitting parameters of the relevant standard curves are shown in Table 1.
表1五种配方组分标准曲线参数Table 1 Standard curve parameters of five formula components
(5)测定结果(5)Measurement results
根据待测试样中每一种物质的特征离子强度,对照标准曲线,计算溶液中的配方组分的浓度,根据稀释倍数,计算得到微弧陶瓷氧化配方各组分的含量。结果如下:According to the characteristic ion strength of each substance in the sample to be tested and compared with the standard curve, the concentration of the formula components in the solution is calculated. Based on the dilution factor, the content of each component of the micro-arc ceramic oxidation formula is calculated. The result is as follows:
六偏磷酸钠含量为0.61g/L,偏钒酸钠含量为0.59g/L,钼酸钠含量为1.56g/L,钨酸钠含量为0,硅酸钠含量为0.29g/L,The content of sodium hexametaphosphate is 0.61g/L, the content of sodium metavanadate is 0.59g/L, the content of sodium molybdate is 1.56g/L, the content of sodium tungstate is 0, and the content of sodium silicate is 0.29g/L.
本发明的目的是提供一种微弧陶瓷氧化槽液组分含量的测定方法。包括对获取的微弧陶瓷氧化槽液进行前处理;采用电喷雾高分辨质谱法对待测溶液进行测定、获得待测溶液中特征离子强度;根据特征离子强度,计算待测溶液中各种组分的浓度等步骤。较传统检测方法,本发明方法操作简单,分析时间短,便捷快速,方法特异性好,灵敏度高,无需对微弧陶瓷氧化槽液组分进行分离即可各种组分进行定性定量分析。The object of the present invention is to provide a method for measuring the component content of micro-arc ceramic oxidation bath liquid. It includes pre-processing the obtained micro-arc ceramic oxidation bath liquid; using electrospray high-resolution mass spectrometry to measure the solution to be tested and obtaining the characteristic ion intensity in the solution to be tested; and calculating various components in the solution to be tested based on the characteristic ion intensity. concentration and other steps. Compared with traditional detection methods, the method of the present invention is simple to operate, has short analysis time, is convenient and fast, has good specificity and high sensitivity. It can conduct qualitative and quantitative analysis of various components without separating the components of the micro-arc ceramic oxidation bath liquid.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211018142.1A CN115807257B (en) | 2022-08-24 | 2022-08-24 | A dynamic monitoring method for micro-arc ceramic oxidation plating process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211018142.1A CN115807257B (en) | 2022-08-24 | 2022-08-24 | A dynamic monitoring method for micro-arc ceramic oxidation plating process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115807257A CN115807257A (en) | 2023-03-17 |
CN115807257B true CN115807257B (en) | 2023-09-26 |
Family
ID=85482528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211018142.1A Active CN115807257B (en) | 2022-08-24 | 2022-08-24 | A dynamic monitoring method for micro-arc ceramic oxidation plating process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115807257B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6878932B1 (en) * | 2003-05-09 | 2005-04-12 | John D. Kroska | Mass spectrometer ionization source and related methods |
CN1749749A (en) * | 2004-09-13 | 2006-03-22 | 安捷伦科技有限公司 | Sampling device for mass spectrometer ion source with multiple inlets |
CN111058077A (en) * | 2020-01-19 | 2020-04-24 | 常州大学 | A kind of electrolyte for micro-arc oxidation black ceramic membrane and preparation method thereof and micro-arc oxidation method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8808521B2 (en) * | 2010-01-07 | 2014-08-19 | Boli Zhou | Intelligent control system for electrochemical plating process |
-
2022
- 2022-08-24 CN CN202211018142.1A patent/CN115807257B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6878932B1 (en) * | 2003-05-09 | 2005-04-12 | John D. Kroska | Mass spectrometer ionization source and related methods |
CN1749749A (en) * | 2004-09-13 | 2006-03-22 | 安捷伦科技有限公司 | Sampling device for mass spectrometer ion source with multiple inlets |
CN111058077A (en) * | 2020-01-19 | 2020-04-24 | 常州大学 | A kind of electrolyte for micro-arc oxidation black ceramic membrane and preparation method thereof and micro-arc oxidation method |
Non-Patent Citations (1)
Title |
---|
"Simultaneous Determination of Twenty Amino Acids in In Vitro Fertilization Medium by the HPLC-MS/MS Method";Qin, Shi-jiang等;《CHROMATOGRAPHIA》;第85卷(第7期);第643-654页 * |
Also Published As
Publication number | Publication date |
---|---|
CN115807257A (en) | 2023-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Blades et al. | Mechanism of electrospray mass spectrometry. Electrospray as an electrolysis cell | |
Shrivas et al. | Method for simultaneous imaging of endogenous low molecular weight metabolites in mouse brain using TiO2 nanoparticles in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry | |
Saeedikhani et al. | Anodizing of 2024-T3 aluminum alloy in sulfuric-boric-phosphoric acids and its corrosion behavior | |
TWI434314B (en) | Substrate for mass spectrometry, mass spectrometry, and mass spectrometer | |
Li et al. | Significant signal enhancement of dielectric barrier discharge plasma induced vapor generation by using non-ionic surfactants for determination of mercury and cadmium by atomic fluorescence spectrometry | |
CN101281165A (en) | Ionization method and device for mass spectrometry sample | |
CN106884191B (en) | Electrolyte for micro-arc oxidation, micro-arc oxidation method and application | |
CN101975545B (en) | Method and electrolytic oxidation device for detecting film layer on surface of metal | |
Howlett et al. | The effect of potential bias on the formation of ionic liquid generated surface films on Mg alloys | |
CN115807257B (en) | A dynamic monitoring method for micro-arc ceramic oxidation plating process | |
Choudhary et al. | Recent insights in corrosion science from atomic spectroelectrochemistry | |
Zhou et al. | Degradation mechanism of lacquered tinplate in energy drink by in-situ EIS and EN | |
Prysiazhnyi et al. | Gas-aggregated Ag nanoparticles for detection of small molecules using LDI MS | |
Sun et al. | Fluorographene nanosheets: a new carbon-based matrix for the detection of small molecules by MALDI-TOF MS | |
Dammulla et al. | Inhibiting the oxygen reduction reaction kinetics on carbon fiber epoxy composites through diazonium surface modification-impacts on the galvanic corrosion of coupled aluminum alloys | |
Usman | Green and effective anodizing of AA 2024-T3 in methionine-sulfuric acid electrolyte | |
WO2018163576A1 (en) | Plasma cone for inductively coupled plasma mass spectrometer, inductively coupled plasma mass spectrometer, and method for manufacturing plasma cone for inductively coupled plasma mass spectrometer | |
US20070114670A1 (en) | Corrosion-resistant aluminum conductive material and process for producing the same | |
CN101281114A (en) | Immersion color transfer method for evaluating the corrosion resistance of magnesium, aluminum and their alloys | |
CN104950001A (en) | Rapid identification method for quality of lead paste of lead-acid storage battery | |
Rosalbino et al. | Influence of rare earth metals on the characteristics of anodic oxide films on aluminium and their dissolution behaviour in NaOH solution | |
JP2018036160A (en) | Induction coupling plasma mass analysis method | |
Xie et al. | A novel electrochemical sensor based on nafion-stabilized Au (i)–alkanethiolate nanotubes modified glassy carbon electrode for the detection of Hg 2+ | |
CN110057967A (en) | Aluminum ions quantitative detecting method in a kind of aluminum electric pole foil corrosive liquid | |
JP2011179097A (en) | Coated stainless steel and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DD01 | Delivery of document by public notice | ||
DD01 | Delivery of document by public notice |
Addressee: Chongqing University (patent director|Shou ) Document name: Notice of Deemed Not Entrusting Patent Agency |
|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
DD01 | Delivery of document by public notice | ||
DD01 | Delivery of document by public notice |
Addressee: Chongqing University (patent director|Shou ) Document name: Notification of Qualified Procedures |
|
GR01 | Patent grant | ||
GR01 | Patent grant |