CN115805590B - Disturbance compensation control method and device for mobile robot arm - Google Patents
Disturbance compensation control method and device for mobile robot arm Download PDFInfo
- Publication number
- CN115805590B CN115805590B CN202211458379.1A CN202211458379A CN115805590B CN 115805590 B CN115805590 B CN 115805590B CN 202211458379 A CN202211458379 A CN 202211458379A CN 115805590 B CN115805590 B CN 115805590B
- Authority
- CN
- China
- Prior art keywords
- mobile
- disturbance
- model
- mobile platform
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000005457 optimization Methods 0.000 claims description 18
- 238000004590 computer program Methods 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 9
- 230000006870 function Effects 0.000 claims description 5
- 108010046685 Rho Factor Proteins 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 3
- 238000013461 design Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 description 26
- 230000000694 effects Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 4
- 239000004753 textile Substances 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Landscapes
- Feedback Control In General (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及机械臂控制技术领域,更具体地说,是涉及一种移动机械臂的扰动补偿控制方法和装置。The present application relates to the technical field of robot arm control, and more specifically, to a disturbance compensation control method and device for a mobile robot arm.
背景技术Background Art
移动机械臂集成了移动机器人底盘的灵活性和多轴机械臂高精度的特点。移动机械臂作为目前最为活跃的机械臂研究领域,在物流行业、服务行业和纺织领域等取得了广泛的应用。移动机械臂能够在大范围内实现位置移动,便于移动机械臂快速到达目标点,实现了移动机械臂在大尺寸范围内的粗定位。同时,移动机械臂能够利用机械臂在小范围内的高速高精度的定位特点,可以实现小尺度范围内的精准操作,实现对小尺寸范围内的精度补偿。通过移动机械臂在大尺寸范围内和小尺寸范围内的运动,满足了大空间场景下的末端高效精准操作。The mobile manipulator integrates the flexibility of the mobile robot chassis and the high precision of the multi-axis manipulator. As the most active research field of manipulators, mobile manipulators have been widely used in the logistics industry, service industry, and textile industry. The mobile manipulator can move its position within a large range, which makes it easy for the mobile manipulator to quickly reach the target point and realizes the rough positioning of the mobile manipulator within a large size range. At the same time, the mobile manipulator can utilize the high-speed and high-precision positioning characteristics of the manipulator within a small range to achieve precise operation within a small scale range and achieve precision compensation within a small size range. Through the movement of the mobile manipulator within a large size range and a small size range, the terminal efficient and precise operation in a large space scene is met.
现有的移动机械臂的控制方法,仅仅基于当前位置的状态对移动机械臂的下一时刻的移动平台的运动状态进行控制,导致移动机械臂的控制振动大和鲁棒性差等问题,普遍会在移动机械臂的运动过程中产生较大的震颤,无法实现移动机械臂的平稳快速运行。The existing control method of the mobile robotic arm only controls the motion state of the mobile platform of the mobile robotic arm at the next moment based on the state of the current position, which leads to problems such as large control vibration and poor robustness of the mobile robotic arm. Generally, large vibration will be generated during the movement of the mobile robotic arm, and the smooth and fast operation of the mobile robotic arm cannot be achieved.
发明内容Summary of the invention
本申请的目的是提供一种移动机械臂的扰动补偿控制方法和装置,解决了移动机械臂的控制振动大和鲁棒性差的技术问题,达到了减小移动机械臂的控制振动和提高鲁棒性的技术效果。The purpose of this application is to provide a disturbance compensation control method and device for a mobile robotic arm, which solves the technical problems of large control vibration and poor robustness of the mobile robotic arm, and achieves the technical effect of reducing the control vibration of the mobile robotic arm and improving the robustness.
第一方面,本申请实施例提供了一种移动机械臂的扰动补偿控制方法,包括:根据移动机械臂的结构参数和运行参数,确定移动机械臂的移动平台运行时的运动通用模型,根据运动通用模型,确定移动机械臂的移动平台运行时的状态空间模型,对状态空间模型进行一阶泰勒展开,得到移动机械臂的移动平台运行时的线性运动模型,根据线性运动模型,确定移动机械臂的移动平台运行时的分数阶模型;确定移动机械臂的移动平台运行时的集成扰动,集成扰动包括分数阶模型的泰勒展开高阶余项扰动、模型不确定性扰动和参数扰动,并确定移动机械臂的移动平台运行时在有限数据集下的优化控制模型;根据集成扰动,确定移动机械臂的移动平台运行时的扰动观测模型,并确定扰动观测模型收敛时的扰动收敛估计值,将扰动收敛估计值应用至优化控制模型,得到移动机械臂的移动平台运行时的扰动补偿控制律;根据扰动补偿控制律,控制移动机械臂的移动平台的运行。In a first aspect, an embodiment of the present application provides a disturbance compensation control method for a mobile robotic arm, comprising: determining a general motion model of a mobile platform of the mobile robotic arm when operating according to structural parameters and operating parameters of the mobile robotic arm, determining a state space model of the mobile platform of the mobile robotic arm when operating according to the general motion model, performing a first-order Taylor expansion on the state space model to obtain a linear motion model of the mobile platform of the mobile robotic arm when operating, and determining a fractional order model of the mobile platform of the mobile robotic arm when operating according to the linear motion model; determining an integrated disturbance when the mobile platform of the mobile robotic arm is operating, the integrated disturbance including a high-order residual disturbance of the Taylor expansion of the fractional order model, a model uncertainty disturbance and a parameter disturbance, and determining an optimal control model when the mobile platform of the mobile robotic arm is operating under a finite data set; determining a disturbance observation model when the mobile platform of the mobile robotic arm is operating according to the integrated disturbance, and determining a disturbance convergence estimate when the disturbance observation model converges, applying the disturbance convergence estimate to the optimal control model, and obtaining a disturbance compensation control law when the mobile platform of the mobile robotic arm is operating; and controlling the operation of the mobile platform of the mobile robotic arm according to the disturbance compensation control law.
在第一方面一种可能的实现方式中,运动通用模型通过如下公式表示;In a possible implementation of the first aspect, the general motion model is represented by the following formula:
其中,表示移动机械臂的移动平台运行时的坐标x的导数,表示移动机械臂的移动平台运行时的坐标y的导数,表示移动机械臂的移动平台运行时的角速度ω的导数,V表示移动机械臂的移动平台运行时的移动速度;in, represents the derivative of the coordinate x of the mobile platform of the mobile manipulator when it is running, represents the derivative of the coordinate y of the mobile platform of the mobile robot when it is running, represents the derivative of the angular velocity ω of the mobile platform of the mobile manipulator when it is in operation, and V represents the moving speed of the mobile platform of the mobile manipulator when it is in operation;
状态空间模型通过如下公式表示:The state space model is expressed as follows:
其中,X表示移动机械臂的移动平台运行时在全局坐标系下的状态变量,表示X的导数,U表示输入移动机械臂的移动平台运行时的控制信号值;Where X represents the state variable of the mobile platform of the mobile manipulator in the global coordinate system when it is running. represents the derivative of X, and U represents the control signal value input to the mobile platform of the mobile manipulator when it is running;
线性运动模型通过如下公式表示:The linear motion model is expressed by the following formula:
其中,Xr表示移动机械臂的移动平台运行时的理想参考模型的理想状态量,Ur表示理想参考模型的理想控制信号值;Wherein, X r represents the ideal state quantity of the ideal reference model when the mobile platform of the mobile manipulator is running, and U r represents the ideal control signal value of the ideal reference model;
分数阶模型通过如下公式表示:The fractional order model is expressed by the following formula:
其中,Dυ(t)表示变化的分数阶次,υmin表示分数阶次的最小值,υmax分数阶次的最大值,表示状态空间模型f(X,U)在Xr的一阶导数,表示状态空间模型f(X,U)在Ur的一阶导数。Where D υ(t) represents the fractional order of change, υ min represents the minimum value of the fractional order, and υ max represents the maximum value of the fractional order. represents the first-order derivative of the state-space model f(X,U) at X r , Represents the first-order derivative of the state-space model f(X,U) at Ur .
在第一方面另一种可能的实现方式中,集成扰动通过如下公式表示:In another possible implementation manner of the first aspect, the integrated disturbance is expressed by the following formula:
其中,d1(t)表示模型不确定性扰动值,d2(t)表示控制输入干扰值,ω(t)表示参数扰动值,D(t)表示移动机械臂的移动平台运行过程中受到的总扰动值,t表示采样时间。Wherein, d 1 (t) represents the model uncertainty disturbance value, d 2 (t) represents the control input disturbance value, ω(t) represents the parameter disturbance value, D(t) represents the total disturbance value received by the mobile platform of the mobile manipulator during operation, and t represents the sampling time.
在第一方面另一种可能的实现方式中,优化控制模型通过如下公式表示:In another possible implementation of the first aspect, the optimization control model is expressed by the following formula:
其中,表示中间变量值,表示惩罚项,τ表示时间因子值,R和Q均表示正定权值矩阵,表示t时刻预测得到的τ时刻的参考误差值,表示t时刻计算得到的τ时刻的控制信号波动值,表示关于矩阵R的二次项集,表示关于矩阵Q的二次项集,表示t时刻预测得到的t+T时刻的参考误差值,ρ表示惩罚因子,ρ∈(0,1),Nc表示控制时域,Np表示预测时域;in, represents the intermediate variable value, represents the penalty term, τ represents the time factor value, R and Q both represent positive definite weight matrices, It represents the reference error value at time τ predicted at time t, represents the control signal fluctuation value at time τ calculated at time t, express Regarding the quadratic itemsets of the matrix R, express Regarding the quadratic itemsets of the matrix Q, represents the reference error value at time t+T predicted at time t, ρ represents the penalty factor, ρ∈(0,1), Nc represents the control time domain, and Np represents the prediction time domain;
优化控制模型的约束包括:The constraints of the optimization control model include:
其中,tk表示预测时刻,表示惩罚项在时刻τ的导数。Among them, tk represents the prediction time, Indicates penalty item The derivative at time τ.
在第一方面另一种可能的实现方式中,扰动观测模型通过如下公式表示:In another possible implementation of the first aspect, the disturbance observation model is expressed by the following formula:
其中,α1(Xr)表示扰动观测的增益值,表示扰动估计值,y1表示扰动估计的中间变量值,表示扰动估计的中间变量的导数值,δ1(Xr)表示设计函数。Among them, α 1 (X r ) represents the gain value of the disturbance observation, represents the disturbance estimate, y1 represents the intermediate variable value of the disturbance estimate, represents the derivative value of the intermediate variable of disturbance estimation, and δ 1 (X r ) represents the design function.
在第一方面另一种可能的实现方式中,扰动观测模型的收敛条件通过如下公式表示:In another possible implementation of the first aspect, the convergence condition of the disturbance observation model is expressed by the following formula:
其中,其中表示正系数值,δ1(Xr)表示扰动观测增益值,η1,η2,η3分别表示扰动观测增益值的调节参数。Among them, represents the positive coefficient value, δ 1 (X r ) represents the disturbance observation gain value, and η 1 , η 2 , and η 3 represent the adjustment parameters of the disturbance observation gain value respectively.
在第一方面另一种可能的实现方式中,扰动补偿控制律通过如下公式表示:In another possible implementation of the first aspect, the disturbance compensation control law is expressed by the following formula:
其中,表示对移动机械臂的移动平台在时间[tk,tk+1]上tk时刻的优化控制序列,表示移动机械臂的移动平台在tk时刻的第一个优化控制序列,表示移动机械臂的移动平台在tk时刻的第Np个优化控制序列,表示tk时刻估计的扰动,Υ表示扰动补偿的投影矩阵。in, represents the optimal control sequence of the mobile platform of the mobile manipulator at time [t k ,t k+1 ] at time t k , represents the first optimal control sequence of the mobile platform of the mobile manipulator at time t k , represents the Npth optimal control sequence of the mobile platform of the mobile manipulator at time tk , represents the disturbance estimated at time t k , and Υ represents the projection matrix for disturbance compensation.
第二方面,本申请实施例还提供了一种移动机械臂的扰动补偿控制装置,包括用于执行如第一方面中任一项的方法的单元。In a second aspect, an embodiment of the present application further provides a disturbance compensation control device for a mobile robot arm, comprising a unit for executing any method as in the first aspect.
第三方面,本申请实施例还提供了一种移动机械臂的扰动补偿控制装置,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,其特征在于,处理器执行计算机程序时实现如第一方面中任一项的方法。In the third aspect, an embodiment of the present application also provides a disturbance compensation control device for a mobile robotic arm, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements a method as described in any one of the first aspects when executing the computer program.
第四方面,本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现如第一方面中任一项的方法。In a fourth aspect, an embodiment of the present application further provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the method according to any one of the first aspects is implemented.
本申请实施例与现有技术相比存在的有益效果是:Compared with the prior art, the embodiments of the present invention have the following beneficial effects:
通过泰勒展开的分数阶建模方式构建移动机械臂的移动平台运动的控制模型,进而实现移动机械臂的移动平台运动的控制模型与移动机械臂实际运动过程的精准拟合,进而对移动机械臂的移动平台的运动精准控制,提高了移动机械臂的移动平台的运动控制模型的精确性;同时考虑移动机械臂的移动平台在运动过程中受到的集成扰动,集成扰动包括机械臂运动对移动机械臂的移动平台的运动过程的运行造成的扰动,进而对实现对移动机械臂的移动平台的高精度控制,提高了移动机械臂整体在运动过程的稳定性。A control model of the motion of the mobile platform of the mobile robot is constructed by using the fractional order modeling method of Taylor expansion, thereby achieving accurate fitting of the control model of the motion of the mobile platform of the mobile robot with the actual motion process of the mobile robot, thereby accurately controlling the motion of the mobile platform of the mobile robot, and improving the accuracy of the motion control model of the mobile platform of the mobile robot; at the same time, the integrated disturbance to the mobile platform of the mobile robot during the motion process is considered, and the integrated disturbance includes the disturbance caused by the motion of the robot arm on the motion process of the mobile platform of the mobile robot, thereby achieving high-precision control of the mobile platform of the mobile robot and improving the overall stability of the mobile robot during the motion process.
可以理解的是,上述第二方面至第四方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。It can be understood that the beneficial effects of the second to fourth aspects mentioned above can be found in the relevant description of the first aspect mentioned above, and will not be repeated here.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present application. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying any creative labor.
图1是本申请实施例中的移动机械臂的扰动补偿控制方法所应用的移动机械臂的结构示意图。FIG1 is a schematic diagram of the structure of a mobile mechanical arm to which a disturbance compensation control method for a mobile mechanical arm in an embodiment of the present application is applied.
图2是本申请实施例提供的一种移动机械臂的扰动补偿控制方法的流程示意图;FIG2 is a flow chart of a disturbance compensation control method for a mobile mechanical arm provided in an embodiment of the present application;
图3是本申请实施例提供的一种移动机械臂的扰动补偿控制装置的结构示意图;3 is a schematic structural diagram of a disturbance compensation control device for a mobile mechanical arm provided in an embodiment of the present application;
图4是本申请实施例提供的另一种移动机械臂的扰动补偿控制装置的结构示意图。FIG. 4 is a schematic structural diagram of another disturbance compensation control device for a mobile robot arm provided in an embodiment of the present application.
具体实施方式DETAILED DESCRIPTION
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the technical problems, technical solutions and beneficial effects to be solved by this application more clearly understood, this application is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain this application and are not used to limit this application.
需要说明的是,当一个部件或结构被称为“固定于”或“设置于”另一个部件或结构,它可以直接在另一个部件或结构上或者间接在该另一个部件或结构上。当一个部件或结构被称为是“连接于”另一个部件或结构,它可以是直接连接到另一个部件或结构或间接连接至该另一个部件或结构上。It should be noted that when a component or structure is referred to as being "fixed to" or "disposed on" another component or structure, it may be directly on the other component or structure or indirectly on the other component or structure. When a component or structure is referred to as being "connected to" another component or structure, it may be directly connected to the other component or structure or indirectly connected to the other component or structure.
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或一个部件或结构必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。It should be understood that the terms "length", "width", "up", "down", "front", "back", "left", "right", "vertical", "horizontal", "top", "bottom", "inside", "outside", etc., indicating the orientation or position relationship, are based on the orientation or position relationship shown in the drawings, and are only for the convenience of describing the present application and simplifying the description, and do not indicate or imply that the device or a component or structure referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be understood as a limitation on the present application.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, a feature defined as "first" or "second" may explicitly or implicitly include one or more of the features. In the description of this application, the meaning of "plurality" is two or more, unless otherwise clearly and specifically defined.
移动机械臂包括移动平台和安装在移动平台上的机械臂。移动机械臂的运动过程中,移动平台的运动会受到机械臂的运动和移动机械臂的控制模型不确定性的扰动,现有的移动机械臂控制方法中,没有考虑机械臂的运动和移动机械臂的控制模型不确定性的扰动,导致移动平台在运动过程中的振动较大,降低了移动机械臂运行过程的稳定性。The mobile manipulator includes a mobile platform and a manipulator mounted on the mobile platform. During the movement of the mobile manipulator, the movement of the mobile platform will be disturbed by the movement of the manipulator and the uncertainty of the control model of the mobile manipulator. The existing control method of the mobile manipulator does not consider the disturbance of the movement of the manipulator and the uncertainty of the control model of the mobile manipulator, resulting in large vibration of the mobile platform during the movement, which reduces the stability of the operation process of the mobile manipulator.
有鉴于此,本申请实施例提供了一种移动机械臂的扰动补偿控制方法,通过泰勒展开的分数阶建模方式构建移动机械臂的移动平台运动的控制模型,进而实现移动机械臂的移动平台运动的控制模型与移动平台的实际运动过程的精准拟合,进而对移动机械臂的移动平台的运动精准控制,提高了移动机械臂的移动平台的运动控制模型的精确性;同时考虑移动机械臂的移动平台在运动过程中受到的集成扰动,集成扰动包括机械臂运动对移动机械臂的移动平台的运动过程的运行造成的扰动,进而对实现对移动机械臂的移动平台的高精度控制,提高了移动机械臂运动过程的稳定性。In view of this, an embodiment of the present application provides a disturbance compensation control method for a mobile robotic arm, which constructs a control model of the motion of a mobile platform of the mobile robotic arm through a fractional-order modeling method of Taylor expansion, thereby achieving accurate fitting of the control model of the motion of the mobile platform of the mobile robotic arm and the actual motion process of the mobile platform, thereby accurately controlling the motion of the mobile platform of the mobile robotic arm, and improving the accuracy of the motion control model of the mobile platform of the mobile robotic arm; at the same time, the integrated disturbance to which the mobile platform of the mobile robotic arm is subjected during the motion process is considered, and the integrated disturbance includes the disturbance caused by the motion of the robotic arm on the motion process of the mobile platform of the mobile robotic arm, thereby achieving high-precision control of the mobile platform of the mobile robotic arm and improving the stability of the motion process of the mobile robotic arm.
在一些场景中,本申请实施例所提供的移动机械臂的扰动补偿控制方法可以应用于移动纺织机械臂上,移动纺织机械臂可以应用在大尺寸、大曲率突变的工件加工上,提高对工件的加工效果。例如,移动纺织机械臂可以对飞船或高超音速导弹等表面的蒙皮织物的一体化成型中。In some scenarios, the disturbance compensation control method of the mobile manipulator provided in the embodiment of the present application can be applied to the mobile textile manipulator, and the mobile textile manipulator can be used to process large-sized workpieces with large curvature mutations to improve the processing effect of the workpiece. For example, the mobile textile manipulator can be used for the integrated molding of the skin fabric on the surface of a spacecraft or a hypersonic missile.
在另一些场景中,本申请实施例所提供的移动机械臂的扰动补偿控制方法可以应用于物流行业或服务行业中,移动物流机械臂能够实现对物料的高效稳定搬运,移动服务机械臂能够在稳定地进行各项服务工作。In other scenarios, the disturbance compensation control method of the mobile robotic arm provided in the embodiments of the present application can be applied to the logistics industry or the service industry. The mobile logistics robotic arm can realize efficient and stable handling of materials, and the mobile service robotic arm can perform various service tasks stably.
图1是本申请实施例中的移动机械臂的扰动补偿控制方法所应用的移动机械臂的结构示意图,如图1所示的,该移动机械臂100包括移动平台110和机械臂120,机械臂120安装在移动平台110上,机械臂120能够在移动平台110上执行各种动作,机械臂120随着移动平台110移动。机械臂120在执行各种动作的过程中,会对移动平台110的运动造成各种扰动。FIG1 is a schematic diagram of the structure of a mobile mechanical arm used in the disturbance compensation control method of a mobile mechanical arm in an embodiment of the present application. As shown in FIG1 , the mobile mechanical arm 100 includes a mobile platform 110 and a mechanical arm 120. The mechanical arm 120 is installed on the mobile platform 110. The mechanical arm 120 can perform various actions on the mobile platform 110, and the mechanical arm 120 moves with the mobile platform 110. In the process of performing various actions, the mechanical arm 120 will cause various disturbances to the movement of the mobile platform 110.
下面结合具体的例子对本申请实施例提供的一种移动机械臂的扰动补偿控制方法进行说明。A disturbance compensation control method for a mobile robotic arm provided in an embodiment of the present application is described below with reference to specific examples.
实施例1Example 1
图2是本申请实施例提供的一种移动机械臂的扰动补偿控制方法的流程示意图,如图2所示的,该移动机械臂的扰动补偿控制方法包括S210至S240,下面对S210至S240进行具体说明。FIG2 is a flow chart of a disturbance compensation control method for a mobile robotic arm provided in an embodiment of the present application. As shown in FIG2 , the disturbance compensation control method for the mobile robotic arm includes S210 to S240. S210 to S240 are described in detail below.
S210、根据移动机械臂的结构参数和运行参数,确定移动机械臂的移动平台运行时的运动通用模型,根据运动通用模型,确定移动机械臂的移动平台运行时的状态空间模型,对状态空间模型进行一阶泰勒展开,得到移动机械臂的移动平台运行时的线性运动模型,根据线性运动模型,确定移动机械臂的移动平台运行时的分数阶模型。S210. Determine a general motion model of the mobile platform of the mobile robotic arm when it is in operation based on the structural parameters and operating parameters of the mobile robotic arm. Determine a state space model of the mobile platform of the mobile robotic arm when it is in operation based on the general motion model. Perform a first-order Taylor expansion on the state space model to obtain a linear motion model of the mobile platform of the mobile robotic arm when it is in operation. Determine a fractional order model of the mobile platform of the mobile robotic arm when it is in operation based on the linear motion model.
具体地,对移动机械臂的运动进行控制时,根据移动机械臂的移动平台结构参数,并根据各种传感器获取移动机械臂的移动平台的运行参数,得到移动机械臂的移动平台的运动通用模型。得到移动机械臂的移动平台的运动通用模型之后,便能够将运动通用模型表示为移动平台的状态空间模型。Specifically, when the motion of the mobile manipulator is controlled, the general motion model of the mobile platform of the mobile manipulator is obtained according to the structural parameters of the mobile platform of the mobile manipulator and the operating parameters of the mobile platform of the mobile manipulator obtained by various sensors. After the general motion model of the mobile platform of the mobile manipulator is obtained, the general motion model can be expressed as a state space model of the mobile platform.
具体地,本申请实施例得到移动机械臂的移动平台的状态空间模型之后,对状态空间模型进行一阶泰勒展开,得到移动机械臂的移动平台运行时的线性运动模型,并将线性运动模型通过分数阶形式表示。由于通过分数阶形式进行建模更能真实地刻画与反映对象的性质,本申请实施例将状态空间模型表示为泰勒展开的分数阶形式,状态空间模型的泰勒展开的分数阶形式与移动平台的实际运动过程精准拟合,便于实现对移动平台的实际运动过程的高精度控制。Specifically, after obtaining the state space model of the mobile platform of the mobile manipulator, the embodiment of the present application performs a first-order Taylor expansion on the state space model to obtain the linear motion model of the mobile platform of the mobile manipulator during operation, and represents the linear motion model in a fractional order form. Since modeling in a fractional order form can more realistically characterize and reflect the properties of an object, the embodiment of the present application represents the state space model in a Taylor-expanded fractional order form, and the Taylor-expanded fractional order form of the state space model accurately fits the actual motion process of the mobile platform, which facilitates high-precision control of the actual motion process of the mobile platform.
S220、确定移动机械臂的移动平台运行时的集成扰动,集成扰动包括分数阶模型的泰勒展开高阶余项扰动、模型不确定性扰动和参数扰动,并确定移动机械臂的移动平台运行时在有限数据集下的优化控制模型。S220. Determine the integrated disturbance of the mobile platform of the mobile manipulator when it is running, the integrated disturbance includes the Taylor expansion high-order residual disturbance of the fractional order model, the model uncertainty disturbance and the parameter disturbance, and determine the optimal control model of the mobile platform of the mobile manipulator when it is running under a finite data set.
具体地,本申请实施例通过对泰勒展开高阶余项扰动、模型不确定性扰动和参数扰动等纳入移动平台的运动控制中,实现了对移动机械臂的控制过程受到的扰动的全面考量,进而便于后续对移动平台受到的扰动进行补偿控制,消除移动机械臂的移动平台在运动过程中受到的扰动,提高了移动机械臂的运动的稳定性。Specifically, the embodiments of the present application achieve comprehensive consideration of the disturbances experienced by the control process of the mobile robotic arm by incorporating Taylor expansion high-order residual disturbances, model uncertainty disturbances and parameter disturbances into the motion control of the mobile platform, thereby facilitating subsequent compensatory control of the disturbances experienced by the mobile platform, eliminating the disturbances experienced by the mobile platform of the mobile robotic arm during the movement process, and improving the stability of the movement of the mobile robotic arm.
具体地,本申请实施例中,模型不确定性扰动是指移动机械臂的移动平台的运动学的分数阶模型的模型不确定性误差。本申请实施例中,集成扰动中的参数扰动包括移动机械臂的移动平台的控制参数和建模参数。Specifically, in the embodiment of the present application, the model uncertainty disturbance refers to the model uncertainty error of the fractional order model of the kinematics of the mobile platform of the mobile manipulator. In the embodiment of the present application, the parameter disturbance in the integrated disturbance includes the control parameters and modeling parameters of the mobile platform of the mobile manipulator.
具体地,本申请实施例能够进一步构建移动平台运行时在有限数据集下的优化控制模型,进而提高移动机械臂的移动平台的控制稳定性,提高了移动机械臂运行时的稳定性。Specifically, the embodiments of the present application can further construct an optimized control model for the mobile platform under a limited data set when the mobile platform is running, thereby improving the control stability of the mobile platform of the mobile robotic arm and improving the stability of the mobile robotic arm during operation.
本申请实施例利用S210中得到的移动机械臂的移动平台的运动控制的分数阶模型,实现了移动机械臂的移动平台的运动过程的精确拟合,并能够后续消除移动机械臂的移动平台的运动控制的分数阶模型中的扰动,提高对移动机械臂的移动平台的控制精度。同时,本申请确定移动机械臂的移动平台运行时在有限数据集下的优化控制模型,进一步优化移动机械臂的移动平台的控制过程,提高了移动机械臂在运动过程中的控制效果。The embodiment of the present application utilizes the fractional order model of motion control of the mobile platform of the mobile manipulator obtained in S210 to achieve accurate fitting of the motion process of the mobile platform of the mobile manipulator, and can subsequently eliminate disturbances in the fractional order model of motion control of the mobile platform of the mobile manipulator, thereby improving the control accuracy of the mobile platform of the mobile manipulator. At the same time, the present application determines the optimal control model of the mobile platform of the mobile manipulator under a limited data set when the mobile platform of the mobile manipulator is running, further optimizes the control process of the mobile platform of the mobile manipulator, and improves the control effect of the mobile manipulator during the motion process.
本申请实施例综合利用移动平台控制的分数阶模型提高移动机械臂的控制精度,并消除了移动机械臂的分数阶模型控制过程的扰动,利用移动平台控制的分数阶模型优化了移动平台的控制过程,综合提高了移动机械臂的控制稳定性,大大优化了对移动机械臂的控制效果。The embodiment of the present application comprehensively utilizes the fractional-order model of mobile platform control to improve the control accuracy of the mobile robotic arm, eliminates the disturbance of the fractional-order model control process of the mobile robotic arm, optimizes the control process of the mobile platform by utilizing the fractional-order model of mobile platform control, comprehensively improves the control stability of the mobile robotic arm, and greatly optimizes the control effect of the mobile robotic arm.
S230、根据集成扰动,确定移动机械臂的移动平台运行时的扰动观测模型,并确定扰动观测模型收敛时的扰动收敛估计值,将扰动收敛估计值应用至优化控制模型,得到移动机械臂的移动平台运行时的扰动补偿控制律。S230. Determine a disturbance observation model of the mobile platform of the mobile manipulator when the mobile platform is in operation according to the integrated disturbance, and determine a disturbance convergence estimate when the disturbance observation model converges. Apply the disturbance convergence estimate to the optimization control model to obtain a disturbance compensation control law of the mobile platform of the mobile manipulator when the mobile platform is in operation.
具体地,为了消除移动平台在运动过程中的扰动,本申请实施例通过构建移动平台运行时的扰动观测模型,并根据扰动观测模型确定扰动观测模型收敛时的扰动收敛估计值,以便于在控制移动平台的运动时根据扰动收敛估计值对移动平台运动过程中受到的扰动进行消除。Specifically, in order to eliminate disturbances of a mobile platform during its movement, an embodiment of the present application constructs a disturbance observation model of the mobile platform during its operation, and determines a disturbance convergence estimate value when the disturbance observation model converges based on the disturbance observation model, so that the disturbances received by the mobile platform during its movement can be eliminated based on the disturbance convergence estimate value when controlling the movement of the mobile platform.
具体地,为了确定移动平台受到的扰动的无偏估计,本申请实施例通过扰动观测模型收敛时获取扰动收敛估计值,实现了后续通过扰动收敛估计值消除移动平台受到的的扰动的效果,提高了对移动平台的运动控制的稳定性。Specifically, in order to determine an unbiased estimate of the disturbance experienced by the mobile platform, the embodiment of the present application obtains a disturbance convergence estimate when the disturbance observation model converges, thereby achieving the effect of subsequently eliminating the disturbance experienced by the mobile platform through the disturbance convergence estimate, thereby improving the stability of motion control of the mobile platform.
具体地,本申请实施例将扰动收敛估计值应用至S220中得到的优化控制模型中,实现了在优化控制模型中应用扰动收敛估计值对移动平台的控制,实现了移动平台在优化的控制模型中的扰动补偿,从移动平台的优化控制角度和移动平台控制过程的扰动补偿角度,均提高了移动平台的控制稳定性。Specifically, the embodiment of the present application applies the disturbance convergence estimate value to the optimization control model obtained in S220, realizes the control of the mobile platform by applying the disturbance convergence estimate value in the optimization control model, realizes the disturbance compensation of the mobile platform in the optimized control model, and improves the control stability of the mobile platform from the perspective of optimization control of the mobile platform and the perspective of disturbance compensation of the mobile platform control process.
S240、根据扰动补偿控制律,控制移动机械臂的移动平台的运行。S240. Control the operation of the mobile platform of the mobile robot arm according to the disturbance compensation control law.
具体地,在S230中得到扰动补偿控制律之后,可以通过发送控制信号到移动机械臂的移动平台的各个工作驱动单元,实现根据扰动补偿控制律控制移动机械臂的移动平台的精确运动,实现了移动机械臂的高精度和稳定控制。Specifically, after obtaining the disturbance compensation control law in S230, control signals can be sent to the various working drive units of the mobile platform of the mobile robotic arm to achieve precise movement of the mobile platform of the mobile robotic arm according to the disturbance compensation control law, thereby achieving high-precision and stable control of the mobile robotic arm.
在一些实现方式中,在S210中,移动机械臂的移动平台的运动通用模型可以通过公式(1)表示:In some implementations, in S210, the general motion model of the mobile platform of the mobile robot arm can be expressed by formula (1):
公式(1)所表示的是移动机械臂的移动平台在运行过程中的状态参数。在公式(1)中,表示移动机械臂的移动平台运行时的坐标x的导数,表示移动机械臂的移动平台运行时的坐标y的导数,表示移动机械臂的移动平台运行时的角速度ω的导数,V表示移动机械臂的移动平台运行时的移动速度。Formula (1) represents the state parameters of the mobile platform of the mobile robot during operation. In formula (1), represents the derivative of the coordinate x of the mobile platform of the mobile manipulator when it is running, represents the derivative of the coordinate y of the mobile platform of the mobile robot when it is running, represents the derivative of the angular velocity ω of the mobile platform of the mobile robot arm when it is running, and V represents the moving speed of the mobile platform of the mobile robot arm when it is running.
在S210中,得到移动机械臂的移动平台的运动通用模型之后,可以通过状态空间模型表示移动平台的运动通用模型,移动平台的状态空间模型可以通过公式(2)表示:In S210, after obtaining the general motion model of the mobile platform of the mobile manipulator, the general motion model of the mobile platform can be represented by a state space model. The state space model of the mobile platform can be represented by formula (2):
公式(2)中,X表示移动机械臂的移动平台运行时在全局坐标系下的状态变量,表示X的导数,U表示输入移动机械臂的移动平台运行时的控制信号值。In formula (2), X represents the state variable of the mobile platform of the mobile manipulator in the global coordinate system when it is running. represents the derivative of X, and U represents the control signal value input when the mobile platform of the mobile robot is running.
在S210中,可以引入理想参考模型,理想参考模型可以通过公式(3)表示:In S210, an ideal reference model may be introduced, and the ideal reference model may be expressed by formula (3):
在公式(3)中,Xr表示移动机械臂的移动平台运行时的理想参考模型的理想状态量,Ur表示移动平台的理想参考模型的理想控制信号值。In formula (3), Xr represents the ideal state quantity of the ideal reference model when the mobile platform of the mobile robot is running, and Ur represents the ideal control signal value of the ideal reference model of the mobile platform.
进一步地,将移动机械臂的移动平台的实际运行轨迹的状态空间模型在点(Xr,Ur)处采用泰勒展开表示,并可以通过公式(4)进行表示:Furthermore, the state space model of the actual running trajectory of the mobile platform of the mobile robot is represented by Taylor expansion at the point (X r ,U r ), and can be expressed by formula (4):
在公式(4)中,表示移动平台的实际运行轨迹的状态空间模型对状态变量X的一阶偏导数,表示移动平台的实际运行轨迹的状态空间模型对控制信号U的一阶偏导数。In formula (4), The first-order partial derivative of the state space model representing the actual trajectory of the mobile platform with respect to the state variable X, The first-order partial derivative of the state space model representing the actual trajectory of the mobile platform with respect to the control signal U.
具体地,对移动平台的实际运行轨迹的状态空间模型在点(Xr,Ur)处采用泰勒展开表示,并进一步进行分数阶表示,可以通过公式(5)表示:Specifically, the state space model of the actual running trajectory of the mobile platform is represented by Taylor expansion at the point (X r ,U r ), and further represented by fractional order, which can be expressed by formula (5):
在公式(5)中,表示状态方程f(X,U)在Xr的一阶导数,表示状态方程f(X,U)在Ur的一阶导数,Dυ(t)表示变化的分数阶次,υmin表示分数阶次的最小值,υmax分数阶次的最大值。In formula (5), represents the first-order derivative of the state equation f(X,U) at X r , represents the first-order derivative of the state equation f(X,U) at Ur , Dυ (t) represents the fractional order of change, υmin represents the minimum value of the fractional order, and υmax represents the maximum value of the fractional order.
例如,分数阶次的变化区间可以为υ(t)∈(0.5,1),分数阶次的最大值为1,分数阶次的最小值为0.5,υ(t)具体可以取值为0.9。For example, the variation range of the fractional order may be υ(t)∈(0.5,1), the maximum value of the fractional order is 1, the minimum value of the fractional order is 0.5, and υ(t) may specifically be 0.9.
本申请实施例通过对移动平台的实际运行轨迹的状态空间模型采用泰勒展开表示,并进一步对状态空间模型的泰勒展开表示的进行分数阶表示,利用分数阶导数的性质,实现了移动平台的运动模型与移动平台的实际运行状态的高精度拟合,提高了移动平台的运行状态控制精度,进而便于后续提高移动机械臂的控制效果。The embodiment of the present application adopts Taylor expansion to represent the state-space model of the actual running trajectory of the mobile platform, further represents the Taylor expansion representation of the state-space model in fractional order, and utilizes the properties of fractional-order derivatives to achieve high-precision fitting of the motion model of the mobile platform and the actual running state of the mobile platform, thereby improving the control accuracy of the running state of the mobile platform, and facilitating the subsequent improvement of the control effect of the mobile robotic arm.
实施例2Example 2
为了对移动平台运动过程中的扰动进行度量,可以根据移动平台的分数阶模型构建移动平台的运动学模型,具体可以表示为公式(6):In order to measure the disturbance during the motion of the mobile platform, the kinematic model of the mobile platform can be constructed according to the fractional order model of the mobile platform, which can be specifically expressed as formula (6):
在公式(6)中,表示移动平台运动过程中的参考误差值,表示移动平台的输入控制信号的波动值。In formula (6), Represents the reference error value during the movement of the mobile platform. Indicates the fluctuation value of the input control signal of the mobile platform.
具体地,可以使用差分模型,得到公式(7)表示的离散的线性化运动学模型:Specifically, the differential model can be used to obtain the discrete linearized kinematic model expressed by formula (7):
在公式(7)中,A(k)和B(k)可以通过公式(8)表示:In formula (7), A(k) and B(k) can be expressed by formula (8):
在公式(8)中,t表示采样时间。In formula (8), t represents the sampling time.
进一步地,可以根据移动平台运动的分数阶模型,构建移动平台的扰动模型,移动平台的扰动模型可以表示为公式(9):Furthermore, the disturbance model of the mobile platform can be constructed according to the fractional-order model of the mobile platform motion. The disturbance model of the mobile platform can be expressed as formula (9):
在公式(9)中,d1(t)表示模型不确定性扰动值,d2(t)表示控制输入干扰值,ω(t)表示模型优化过程中的参数扰动值。In formula (9), d 1 (t) represents the model uncertainty disturbance value, d 2 (t) represents the control input disturbance value, and ω(t) represents the parameter disturbance value in the model optimization process.
具体地,公式(9)可以进一步表示为公式(10):Specifically, formula (9) can be further expressed as formula (10):
通过公式(10)可以得到移动平台运行过程中受到的总扰动值,移动平台运行过程中受到的总扰动值可以进一步表示为公式(11):The total disturbance value received by the mobile platform during operation can be obtained by formula (10), and the total disturbance value received by the mobile platform during operation can be further expressed as formula (11):
D(t)=A(t)d1(t)+B(t)d2(t)+ω(t) (11)D(t)=A(t)d 1 (t)+B(t)d 2 (t)+ω(t) (11)
在公式(11)中,D(t)表示移动平台运行过程中受到的总扰动值。In formula (11), D(t) represents the total disturbance value received by the mobile platform during operation.
本申请实施例利用移动平台的分数阶模型,实现移动机械臂的移动平台运动状态的高精度拟合的同时,通过对分数阶模型进行分析,实现了对移动平台的分数阶模型的泰勒展开高阶余项扰动、模型不确定性扰动和参数扰动的归纳,进而便于后续在移动平台的控制过程中对集成扰动进行消除,提高移动机械臂的移动平台控制过程的稳定性。The embodiment of the present application utilizes the fractional-order model of the mobile platform to achieve high-precision fitting of the motion state of the mobile platform of the mobile robotic arm. At the same time, by analyzing the fractional-order model, it realizes the induction of Taylor expansion high-order residual disturbances, model uncertainty disturbances and parameter disturbances of the fractional-order model of the mobile platform, thereby facilitating the elimination of integrated disturbances in the subsequent control process of the mobile platform and improving the stability of the mobile platform control process of the mobile robotic arm.
实施例3Example 3
在一些实现方式中,可以根据分数阶模型构建移动机械臂的移动平台的优化控制模型,优化控制的代价函数可以通过公式(12)表示:In some implementations, an optimization control model of a mobile platform of a mobile manipulator can be constructed according to a fractional order model, and the cost function of the optimization control can be expressed by formula (12):
在公式(12)中,表示中间变量值,表示惩罚项,τ表示时间因子值,R和Q均表示正定权值矩阵,表示t时刻预测得到的τ时刻的参考误差值,表示t时刻计算得到的τ时刻的控制信号波动值,表示关于矩阵R的二次项集,表示关于矩阵Q的二次项集,表示t时刻预测得到的t+T时刻的参考误差值,ρ表示惩罚因子,ρ∈(0,1),Nc表示控制时域,Np表示预测时域。In formula (12), represents the intermediate variable value, represents the penalty term, τ represents the time factor value, R and Q both represent positive definite weight matrices, It represents the reference error value at time τ predicted at time t, represents the control signal fluctuation value at time τ calculated at time t, express Regarding the quadratic itemsets of the matrix R, express Regarding the quadratic itemsets of the matrix Q, represents the reference error value at time t+T predicted at time t, ρ represents the penalty factor, ρ∈(0,1), Nc represents the control time domain, and Np represents the prediction time domain.
具体地,ρ具体可以取值为1。控制时域Nc和预测时域Np可以均取值为10。Specifically, ρ can be set to 1. The control time domain N c and the prediction time domain N p can both be set to 10.
具体地,针对以上优化控制模型,可以确定优化控制模型的约束,优化控制模型的约束可以表示为公式(13):Specifically, for the above optimization control model, the constraints of the optimization control model can be determined. The constraints of the optimization control model can be expressed as formula (13):
其中,tk表示预测时刻,表示惩罚项在时刻τ的导数。Among them, tk represents the prediction time, Indicates penalty item The derivative at time τ.
本申请实施例构建移动平台的优化控制模型,由给定的状态空间阈和控制阈值,实现移动平台运动过程中的优化,进一步提高移动平台的运动控制的效果,提高移动机械臂整体的运行的稳定性和运行精度。The embodiment of the present application constructs an optimization control model for the mobile platform, and realizes the optimization of the mobile platform during the movement process by a given state space threshold and control threshold, thereby further improving the motion control effect of the mobile platform and improving the overall operation stability and accuracy of the mobile robotic arm.
实施例4Example 4
本申请实施例可以构建扰动观测模型,实现对移动平台的扰动的观测。具体地,扰动观测模型通过公式(14)表示:The embodiment of the present application can construct a disturbance observation model to achieve observation of disturbances on the mobile platform. Specifically, the disturbance observation model is expressed by formula (14):
在公式(14)中,a1(Xr)表示扰动观测的增益值,表示扰动估计值,y1表示扰动估计的中间变量值,表示扰动估计的中间变量的导数值,δ1(Xr)表示设计函数。In formula (14), a 1 (X r ) represents the gain value of the disturbance observation, represents the disturbance estimate, y1 represents the intermediate variable value of the disturbance estimate, represents the derivative value of the intermediate variable of disturbance estimation, and δ 1 (X r ) represents the design function.
进一步地,为了实现精确的扰动估计,可以定义公式(15):Furthermore, in order to achieve accurate disturbance estimation, formula (15) can be defined:
在公式(15)中,eD(t)表示观测扰动的误差,为观测扰动的误差eD(t)的导数。In formula (15), e D (t) represents the error of the observed disturbance, is the derivative of the error e D (t) of the observed disturbance.
在一些实现方式中,通过公式(15)能够进一步地将扰动观测模型的收敛条件表示为公式(16):In some implementations, the convergence condition of the disturbance observation model can be further expressed as formula (16) through formula (15):
在公式(16)中,其中表示正系数值,δ1(Xr)表示扰动观测增益值,η1,η2和η3分别表示扰动观测增益值的调节参数。In formula (16), represents a positive coefficient value, δ 1 (X r ) represents a disturbance observation gain value, and η 1 , η 2 and η 3 represent adjustment parameters of the disturbance observation gain value, respectively.
示例性地,表示的正系数值可以取值为1;η1、η2和η3可以分别取值为0.8、1和1.1。For example, The positive coefficient value represented by can be 1; η 1 , η 2 and η 3 can be 0.8, 1 and 1.1 respectively.
本申请实施例通过对移动平台的集成扰动进行扰动估计,使得移动平台的扰动能够快速收敛,便于对移动平台的扰动及时有效消除,能够有效地消除移动平台运行过程中的分数阶模型的泰勒展开高阶余项扰动、模型不确定性扰动和参数扰动,提高了移动平台的运行稳定性。本申请实施例通过对扰动估计中的参数和增益的自适应调节,实现了移动平台的扰动的快速收敛,加快了扰动估计的收敛速度,进一步提高了无偏估计效率,进而提高了对移动机械臂的移动平台和移动机械臂整体的运动控制效果。The embodiment of the present application performs disturbance estimation on the integrated disturbance of the mobile platform, so that the disturbance of the mobile platform can converge quickly, which is convenient for timely and effective elimination of the disturbance of the mobile platform, and can effectively eliminate the Taylor expansion high-order residual disturbance of the fractional-order model, model uncertainty disturbance and parameter disturbance during the operation of the mobile platform, thereby improving the operation stability of the mobile platform. The embodiment of the present application realizes the rapid convergence of the disturbance of the mobile platform through adaptive adjustment of the parameters and gains in the disturbance estimation, accelerates the convergence speed of the disturbance estimation, further improves the unbiased estimation efficiency, and thus improves the motion control effect of the mobile platform and the mobile robot arm as a whole.
实施例5Example 5
在一些实现方式中,扰动补偿控制律可以通过公式(17)表示:In some implementations, the disturbance compensation control law can be expressed by formula (17):
在公式(17)中,表示对移动平台在时间[tk,tk+1]上tk时刻的优化控制序列,表示移动平台在tk时刻的第一个优化控制序列,表示移动平台在tk时刻的第Np个优化控制序列,表示tk时刻估计的扰动,Υ表示移动机械臂的移动平台扰动补偿的投影矩阵。In formula (17), represents the optimized control sequence of the mobile platform at time [t k ,t k+1 ] at time t k , represents the first optimized control sequence of the mobile platform at time t k , represents the Npth optimized control sequence of the mobile platform at time tk , represents the disturbance estimated at time tk , and Υ represents the projection matrix of the mobile platform disturbance compensation of the mobile manipulator.
示例性地,Np可以取值为10。Exemplarily, Np can take a value of 10.
具体地,表示考虑到扰动观测模型的扰动观测值的扰动补偿控制律。Specifically, represents the disturbance compensation control law taking into account the disturbance observation value of the disturbance observation model.
本申请实施例通过构建的优化控制模型和得到的扰动无偏估计值,实现了移动平台的运动过程的扰动补偿,提高了移动平台的移动平台的运行的平稳性,也提高了移动平台的运动控制精度,减小了移动机械臂整体在运行中的振动,提高了移动机械臂的使用效果。The embodiment of the present application realizes disturbance compensation in the motion process of the mobile platform through the constructed optimization control model and the obtained disturbance unbiased estimate, thereby improving the smoothness of the operation of the mobile platform, improving the motion control accuracy of the mobile platform, reducing the overall vibration of the mobile robotic arm during operation, and improving the use effect of the mobile robotic arm.
实施例6Example 6
本申请实施例提供了一种移动机械臂的扰动补偿控制装置,包括用于执行如上所述的移动机械臂的扰动补偿控制方法的单元。An embodiment of the present application provides a disturbance compensation control device for a mobile mechanical arm, comprising a unit for executing the disturbance compensation control method for the mobile mechanical arm as described above.
图3是本申请实施例提供的一种移动机械臂的扰动补偿控制装置的结构示意图,如图3所示的,该移动机械臂的扰动补偿控制装置300包括处理单元310、存储单元320和收发单元330,处理单元310、存储单元320和收发单元330之间相互通信,处理单元310、存储单元320和收发单元330用于执行如上所述的移动机械臂的扰动补偿控制方法。本申请实施例能够提高对移动平台的控制稳定性,能够提高移动机械臂的控制效果。FIG3 is a schematic diagram of the structure of a disturbance compensation control device for a mobile mechanical arm provided by an embodiment of the present application. As shown in FIG3, the disturbance compensation control device 300 for a mobile mechanical arm includes a processing unit 310, a storage unit 320, and a transceiver unit 330. The processing unit 310, the storage unit 320, and the transceiver unit 330 communicate with each other. The processing unit 310, the storage unit 320, and the transceiver unit 330 are used to execute the disturbance compensation control method for the mobile mechanical arm as described above. The embodiment of the present application can improve the control stability of the mobile platform and improve the control effect of the mobile mechanical arm.
实施例7Example 7
本申请实施例提供了一种移动机械臂的扰动补偿控制装置,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的移动机械臂的扰动补偿控制方法。An embodiment of the present application provides a disturbance compensation control device for a mobile robotic arm, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor. When the processor executes the computer program, the disturbance compensation control method for the mobile robotic arm as described above is implemented.
图4是本申请实施例提供的另一种移动机械臂的扰动补偿控制装置的结构示意图,如图4所示的,该移动机械臂的扰动补偿控制装置400包括存储器410、处理器420以及存储在存储器410中并可在处理器420上运行的计算机程序411,计算机程序411执行计算机程序时实现如上所述的移动机械臂的扰动补偿控制方法,本申请实施例能够提高对移动平台的控制稳定性,能够提高移动机械臂的控制效果。Figure 4 is a structural schematic diagram of another disturbance compensation control device for a mobile robotic arm provided in an embodiment of the present application. As shown in Figure 4, the disturbance compensation control device 400 for the mobile robotic arm includes a memory 410, a processor 420, and a computer program 411 stored in the memory 410 and executable on the processor 420. When the computer program 411 executes the computer program, the disturbance compensation control method for the mobile robotic arm as described above is implemented. The embodiment of the present application can improve the control stability of the mobile platform and can improve the control effect of the mobile robotic arm.
实施例8Example 8
本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现如上所述的移动机械臂的扰动补偿控制方法,本申请实施例能够提高对移动平台的控制稳定性,能够提高对移动机械臂的控制效果。An embodiment of the present application provides a computer-readable storage medium, which stores a computer program. When the computer program is executed by a processor, the disturbance compensation control method of the mobile robotic arm as described above is implemented. The embodiment of the present application can improve the control stability of the mobile platform and improve the control effect of the mobile robotic arm.
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。The above description is only a preferred embodiment of the present application and is not intended to limit the present application. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present application should be included in the protection scope of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211458379.1A CN115805590B (en) | 2022-11-17 | 2022-11-17 | Disturbance compensation control method and device for mobile robot arm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211458379.1A CN115805590B (en) | 2022-11-17 | 2022-11-17 | Disturbance compensation control method and device for mobile robot arm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115805590A CN115805590A (en) | 2023-03-17 |
CN115805590B true CN115805590B (en) | 2024-09-24 |
Family
ID=85483854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211458379.1A Active CN115805590B (en) | 2022-11-17 | 2022-11-17 | Disturbance compensation control method and device for mobile robot arm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115805590B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117444991B (en) * | 2023-12-26 | 2024-04-19 | 南通中远海运船务工程有限公司 | Dynamic path planning method, multi-mechanical arm platform structure and related device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109491251A (en) * | 2018-12-18 | 2019-03-19 | 华中科技大学 | Consider the AC servo identification Method and equipment of disturbance of data compensation |
CN109683478A (en) * | 2018-12-21 | 2019-04-26 | 南京埃斯顿机器人工程有限公司 | Flexible joint mechanical arm fractional order sliding formwork optimal control method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6542839B2 (en) * | 2017-06-07 | 2019-07-10 | ファナック株式会社 | Control device and machine learning device |
CN108491564B (en) * | 2018-01-30 | 2022-08-02 | 广东工业大学 | Mechanical control integrated design method based on prediction model and disturbance rapid elimination |
CN112959325B (en) * | 2021-03-23 | 2022-03-01 | 南京航空航天大学 | High-precision control method for collaborative machining of double-moving mechanical arm in large scene |
CN114942593B (en) * | 2022-06-15 | 2024-08-27 | 安徽工业大学 | An adaptive sliding mode control method for a manipulator based on disturbance observer compensation |
-
2022
- 2022-11-17 CN CN202211458379.1A patent/CN115805590B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109491251A (en) * | 2018-12-18 | 2019-03-19 | 华中科技大学 | Consider the AC servo identification Method and equipment of disturbance of data compensation |
CN109683478A (en) * | 2018-12-21 | 2019-04-26 | 南京埃斯顿机器人工程有限公司 | Flexible joint mechanical arm fractional order sliding formwork optimal control method |
Also Published As
Publication number | Publication date |
---|---|
CN115805590A (en) | 2023-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107738254B (en) | A method and system for converting and calibrating a manipulator coordinate system | |
CN114625129B (en) | Motion control method and system of position control leg-foot robot | |
CN110948504B (en) | Normal constant force tracking method and device for robot machining operation | |
WO2022068408A1 (en) | Mechanical arm, robot, control method for mechanical arm, processing device, and medium | |
CN115157238B (en) | A dynamic modeling and trajectory tracking method for multi-degree-of-freedom robots | |
CN115805590B (en) | Disturbance compensation control method and device for mobile robot arm | |
CN111553239A (en) | Robot joint visual servo control method, terminal device and storage medium | |
CN114952858A (en) | Industrial robot trajectory tracking method and system based on friction compensation control | |
CN114523477A (en) | Joint pose calibration method, system and storage medium | |
CN115388899B (en) | Visual-inertial fusion SLAM method for mobile robots based on variational Bayesian | |
CN112947430A (en) | Intelligent trajectory tracking control method for mobile robot | |
CN116079714A (en) | Six-axis mechanical arm track planning method based on B spline | |
CN115533916A (en) | A method, system, device and medium for identifying load quality at the end of a mechanical arm | |
CN112720492B (en) | Complex track fairing method and device for multi-axis robot, medium and electronic equipment | |
CN117444991B (en) | Dynamic path planning method, multi-mechanical arm platform structure and related device | |
CN116817684B (en) | Rocket orbit inclination correction method, rocket orbit inclination correction equipment and rocket orbit inclination correction medium based on firefly algorithm | |
CN112947523A (en) | Angle constraint guidance method and system based on nonsingular rapid terminal sliding mode control | |
JP2009023016A (en) | Inverse kinematics calculation method and inverse kinematics calculation device | |
CN115958595B (en) | Robotic arm guidance method, device, computer equipment and storage medium | |
CN109397293B (en) | Ground level error modeling and compensating method based on mobile robot | |
CN115179290B (en) | A mechanical arm and trajectory control method and device thereof | |
CN117067210A (en) | Motion control method and device for clamping-free mechanical arm, computer equipment and medium | |
CN116352701A (en) | Robot positioning error compensation method, system and medium based on extreme learning machine | |
CN115741629A (en) | Mobile textile mechanical arm control method and device based on tracking error model | |
CN116736748A (en) | Method for constructing controller of robot and robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |