CN115797451A - Acupuncture point identification method, device and equipment and readable storage medium - Google Patents
Acupuncture point identification method, device and equipment and readable storage medium Download PDFInfo
- Publication number
- CN115797451A CN115797451A CN202211618509.3A CN202211618509A CN115797451A CN 115797451 A CN115797451 A CN 115797451A CN 202211618509 A CN202211618509 A CN 202211618509A CN 115797451 A CN115797451 A CN 115797451A
- Authority
- CN
- China
- Prior art keywords
- human body
- data
- acupoint
- acupuncture point
- dimensional reconstruction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001467 acupuncture Methods 0.000 title claims abstract description 96
- 238000000034 method Methods 0.000 title claims abstract description 46
- 210000000746 body region Anatomy 0.000 claims abstract description 49
- 238000013507 mapping Methods 0.000 claims abstract description 14
- 238000005070 sampling Methods 0.000 claims description 18
- 238000012545 processing Methods 0.000 description 13
- 238000004590 computer program Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Landscapes
- Finger-Pressure Massage (AREA)
Abstract
Description
技术领域technical field
本申请涉及图像识别的技术领域,具体涉及一种穴位识别方法、装置、设备及可读存储介质。The present application relates to the technical field of image recognition, and in particular to an acupuncture point recognition method, device, equipment and readable storage medium.
背景技术Background technique
传统方法以体表解剖和骨节为依据寻找穴位,或通过自身手指的指寸寻找穴位。The traditional method is to find acupuncture points based on body surface anatomy and joints, or to find acupuncture points through the finger measurements of one's own fingers.
对非专业人员而言,穴位不易寻找,因此自动穴位识别显得尤为重要。现有技术中,技术人员开发了一款基于Web针刺面部穴位定位虚拟仿真系统软件,在静态人脸图片上标记穴位,一定程度上降低了穴位识别的难度。For non-professionals, acupoints are not easy to find, so automatic acupoint recognition is particularly important. In the prior art, technicians have developed a virtual simulation system software based on Web-based acupuncture facial acupoint positioning, marking acupoints on static face pictures, which reduces the difficulty of acupoint identification to a certain extent.
然而,该方法无法跟随人脸的移动而动态显示穴位。However, this method cannot dynamically display acupuncture points following the movement of the face.
发明内容Contents of the invention
本申请提供了一种穴位识别方法、装置、设备及可读存储介质,该技术方案如下。The present application provides an acupoint identification method, device, equipment and readable storage medium, and the technical solution is as follows.
一方面,提供了一种穴位识别方法,所述方法包括:On the one hand, provide a kind of acupuncture point recognition method, described method comprises:
获取人体表面三维重建数据;Obtain 3D reconstruction data of human body surface;
对所述人体表面三维重建数据进行分类识别,获取人体区域分类数据;classify and identify the three-dimensional reconstruction data of the human body surface, and obtain classified data of human body regions;
将人体区域分类数据与虚拟人体穴位数据进行位姿配准,并在人体表面三维重建数据中映射穴位位置;所述虚拟人体穴位数据根据人体穴位模型预先建立;performing pose registration on the human body area classification data and the virtual human acupoint data, and mapping the acupoint positions in the three-dimensional reconstruction data of the human body surface; the virtual human acupoint data is pre-established according to the human acupoint model;
将所述人体表面三维重建数据对应的图像以及所述穴位位置显示在显示设备中。The image corresponding to the three-dimensional reconstruction data of the human body surface and the positions of the acupoints are displayed on a display device.
又一方面,提供了一种穴位识别装置,所述装置包括:In yet another aspect, an acupoint identification device is provided, the device comprising:
数据采集模块,用于获取人体表面三维重建数据;The data acquisition module is used to obtain the three-dimensional reconstruction data of the human body surface;
分类识别模块,用于对所述人体表面三维重建数据进行分类识别,获取人体区域分类数据;A classification identification module, configured to classify and identify the three-dimensional reconstruction data of the human body surface, and obtain classification data of human body regions;
穴位映射模块,用于将人体区域分类数据与虚拟人体穴位数据进行位姿配准,并在人体表面三维重建数据中映射穴位位置;所述虚拟人体穴位数据根据人体穴位模型预先建立;The acupuncture point mapping module is used to perform pose registration on the human body area classification data and the virtual human acupuncture point data, and map the acupuncture point positions in the three-dimensional reconstruction data of the human body surface; the virtual human body acupuncture point data is pre-established according to the human body acupuncture point model;
显示模块,用于将所述人体表面三维重建数据对应的图像以及所述穴位位置显示在显示设备中。The display module is configured to display the image corresponding to the three-dimensional reconstruction data of the human body surface and the positions of the acupuncture points on a display device.
在一种可能的实现方式中,所述人体表面三维重建数据为通过对人体表面进行拍摄并三维重建获得的第一点集;In a possible implementation manner, the three-dimensional reconstruction data of the human body surface is a first point set obtained by photographing the human body surface and performing three-dimensional reconstruction;
所述对所述人体表面三维重建数据进行分类识别,获取人体区域分类数据,包括:The step of classifying and identifying the three-dimensional reconstruction data of the human body surface to obtain classified data of human body regions includes:
获取摄像机与人体的初始相对位置;所述初始相对位置为通过摄像机拍摄并进行人脸特征点检测得到的;Obtain the initial relative position of the camera and the human body; the initial relative position is captured by the camera and detected by face feature points;
结合摄像机与人体的初始相对位置以及陀螺仪与加速度计所采集的摄像机的移动轨迹,实时获取当前摄像机与人体的第一相对位置;Combining the initial relative position of the camera and the human body and the movement trajectory of the camera collected by the gyroscope and the accelerometer, the first relative position of the current camera and the human body is obtained in real time;
根据所述初始相对位置以及所述第一相对位置,获取当前人体区域。According to the initial relative position and the first relative position, the current body region is acquired.
在一种可能的实现方式中,所述根据所述初始相对位置以及所述第一相对位置,获取当前人体区域,包括:In a possible implementation manner, the acquiring the current body region according to the initial relative position and the first relative position includes:
对所述人体表面三维重建数据对应的图像进行轮廓纹理的提取;Extracting the contour texture of the image corresponding to the three-dimensional reconstruction data of the human body surface;
根据所述第一点集以及所述轮廓纹理,结合初始相对位置以及第一相对位置,与虚拟人体穴位数据中的人体区域信息进行匹配,匹配度最高的部位即为当前人体区域。According to the first point set and the outline texture, combined with the initial relative position and the first relative position, match with the human body area information in the virtual human acupuncture point data, and the part with the highest matching degree is the current human body area.
在一种可能的实现方式中,所述将人体区域分类数据与虚拟人体穴位数据进行位姿配准,并在人体表面三维重建数据中映射穴位位置,包括:In a possible implementation manner, the pose registration of the human body area classification data and the virtual human body acupoint data, and mapping the position of the acupoints in the three-dimensional reconstruction data of the human body surface includes:
将所述第一点集与虚拟人体穴位数据的第二点集根据人体区域分类数据进行粗配准;roughly registering the first point set and the second point set of the virtual human acupoint data according to the human body area classification data;
通过刚性配准,对粗配准后的第一点集与粗配准后的虚拟人体穴位数据的第二点集进行精配准。Through rigid registration, fine registration is performed on the first point set after rough registration and the second point set of virtual human acupoint data after rough registration.
在一种可能的实现方式中,所述将所述第一点集与虚拟人体穴位数据的第二点集根据人体区域分类数据进行粗配准,包括:In a possible implementation manner, the rough registration of the first point set and the second point set of virtual human acupoint data according to human body region classification data includes:
根据人体区域分类数据,对各个人体区域,分别提取第一点集的子集与第二点集的子集;Extracting a subset of the first point set and a subset of the second point set for each human body area according to the human body region classification data;
提取第一点集的各子集的凸包、第二点集的各子集的凸包以及各个凸包对应的人体区域面片;Extracting the convex hulls of each subset of the first point set, the convex hull of each subset of the second point set, and the human body region patches corresponding to each convex hull;
基于所述凸包以及所述人体区域面片,进行粗配准。Coarse registration is performed based on the convex hull and the human body area patch.
在一种可能的实现方式中,所述通过刚性配准,对粗配准后的第一点集与粗配准后的虚拟人体穴位数据的第二点集进行精配准,包括:In a possible implementation manner, the fine registration of the first point set after rough registration and the second point set of virtual human acupoint data after rough registration through rigid registration includes:
以第二点集的子集中的穴位位置为中心,以第一阈值为半径,设置球状目标区域;Set a spherical target area with the acupuncture point position in the subset of the second point set as the center and the first threshold as the radius;
提取第二点集的子集中的穴位位置的三维曲率分布以及轮廓分布,并加权点乘,获取第一空间特征图谱;extracting the three-dimensional curvature distribution and contour distribution of the acupoint positions in the subset of the second point set, and weighting the dot product to obtain the first spatial feature map;
根据所述球状目标区域提取第一点集的子集对应的第二空间特征图谱;extracting a second spatial feature map corresponding to a subset of the first point set according to the spherical target area;
基于第二空间特征图谱设置采样窗口,并通过所述采样窗口遍历第一空间特征图谱,获取与第一空间特征图谱之间测度最小的目标采样窗口,作为第一点集的子集中的穴位位置。Set the sampling window based on the second spatial characteristic map, and traverse the first spatial characteristic map through the sampling window, and obtain the target sampling window with the smallest measure between the first spatial characteristic map, as the acupuncture point position in the subset of the first point set .
在一种可能的实现方式中,通过投影法获取第一点集的子集中的各个穴位位置之间的表面距离;In a possible implementation manner, the surface distance between the positions of the acupuncture points in the subset of the first point set is acquired by a projection method;
对所述人体表面三维重建数据对应的图像进行轮廓识别,获取各个闭合轮廓,并计算各个闭合轮廓的中线与闭合轮廓中的穴位位置之间的距离;Perform contour recognition on the image corresponding to the three-dimensional reconstruction data of the human body surface, obtain each closed contour, and calculate the distance between the midline of each closed contour and the position of the acupuncture point in the closed contour;
结合所述表面距离以及所述闭合轮廓的中线与闭合轮廓中的穴位位置之间的距离,将所述穴位位置与知识图谱对应的记载位置进行比较,若比较结果超过第二阈值,则在显示设备中显示所述穴位位置标记错误;所述知识图谱根据已有穴位知识预先构建。Combining the surface distance and the distance between the midline of the closed contour and the position of the acupuncture point in the closed contour, compare the position of the acupuncture point with the recorded position corresponding to the knowledge map, and if the comparison result exceeds the second threshold, then display The device displays that the position of the acupoint is marked incorrectly; the knowledge graph is pre-built based on the existing acupoint knowledge.
再一方面,提供了一种计算机设备,所述计算机设备包括处理器和存储器,所述存储器中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现上述的穴位识别方法。In another aspect, a computer device is provided, the computer device includes a processor and a memory, at least one instruction is stored in the memory, and the at least one instruction is loaded and executed by the processor to realize the above-mentioned acupoint identification method.
又一方面,提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述至少一条指令由处理器加载并执行以实现上述的穴位识别方法。In yet another aspect, a computer-readable storage medium is provided, wherein at least one instruction is stored in the storage medium, and the at least one instruction is loaded and executed by a processor to implement the above-mentioned acupoint identification method.
再一方面,提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质中读取所述计算机指令,处理器执行所述计算机指令,使得所述计算机设备执行上述穴位识别方法。In yet another aspect, a computer program product or computer program is provided, the computer program product or computer program comprising computer instructions stored in a computer readable storage medium. The processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the above-mentioned acupoint identification method.
本申请提供的技术方案可以包括以下有益效果:The technical solution provided by this application may include the following beneficial effects:
本申请先获取人体表面三维重建数据;对人体表面三维重建数据进行分类识别,获取人体区域分类数据;将人体区域分类数据与虚拟人体穴位数据进行位姿配准,并在人体表面三维重建数据中映射穴位位置;虚拟人体穴位数据根据人体穴位模型预先建立;将人体表面三维重建数据对应的图像以及穴位位置显示在显示设备中。上述方案,通过将人体区域分类数据与虚拟人体穴位数据进行位姿配准,并在人体表面三维重建数据中映射穴位位置,简化了穴位识别难度。This application first obtains the three-dimensional reconstruction data of the human body surface; classifies and identifies the three-dimensional reconstruction data of the human body surface, and obtains the classification data of the human body area; performs pose registration on the classification data of the human body area and the virtual human acupuncture point data, and puts them in the three-dimensional reconstruction data of the human body surface The location of the acupuncture points is mapped; the virtual human body acupuncture point data is pre-established according to the human body acupuncture point model; the image corresponding to the three-dimensional reconstruction data of the human body surface and the acupuncture point positions are displayed on the display device. The above scheme simplifies the difficulty of acupoint recognition by performing pose registration on the classification data of the human body area and the virtual human acupoint data, and mapping the acupoint positions in the three-dimensional reconstruction data of the human body surface.
附图说明Description of drawings
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific embodiments of the present application or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the description of the specific embodiments or prior art. Obviously, the accompanying drawings in the following description The drawings are some implementations of the present application, and those skilled in the art can obtain other drawings based on these drawings without creative work.
图1是根据一示例性实施例示出的一种穴位识别系统的结构示意图。Fig. 1 is a schematic structural diagram of an acupoint recognition system according to an exemplary embodiment.
图2是根据一示例性实施例示出的一种穴位识别方法的流程图。Fig. 2 is a flow chart of a method for identifying acupuncture points according to an exemplary embodiment.
图3是根据一示例性实施例示出的一种穴位识别方法的流程图。Fig. 3 is a flow chart of a method for identifying acupuncture points according to an exemplary embodiment.
图4示出了本申请实施例涉及的一种平板电脑与摄像机的连接示例图。Fig. 4 shows an example diagram of connection between a tablet computer and a camera according to the embodiment of the present application.
图5是根据一示例性实施例示出的一种穴位识别装置的结构方框图。Fig. 5 is a structural block diagram of an acupuncture point recognition device according to an exemplary embodiment.
图6是根据一示例性实施例示出的计算机设备的结构框图。Fig. 6 is a structural block diagram of a computer device according to an exemplary embodiment.
具体实施方式Detailed ways
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions of the present application will be clearly and completely described below in conjunction with the accompanying drawings. Apparently, the described embodiments are some of the embodiments of the present application, not all of them. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of this application.
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。In the description of the embodiments of the present application, the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
本申请实施例中,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。In the embodiment of this application, "predefinition" can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices). The implementation method is not limited.
图1是根据一示例性实施例示出的一种穴位识别系统的结构示意图。该穴位识别系统中包含数据处理设备110、图像采集设备120以及显示设备130。Fig. 1 is a schematic structural diagram of an acupoint recognition system according to an exemplary embodiment. The acupoint recognition system includes a
可选的,该图像采集设备120中包含有数据存储器,当图像采集设备对目标图像进行采集,得到目标图像数据后,可以将该图像数据保存在该数据存储器中。例如,该图像采集设备可以是单反相机、数码相机、手机或者深度相机。Optionally, the image acquisition device 120 includes a data storage device. When the image acquisition device collects the target image and obtains target image data, the image data can be stored in the data storage device. For example, the image acquisition device may be a SLR camera, a digital camera, a mobile phone or a depth camera.
可选的,该数据处理设备110可以是具有较高算力的计算机设备,该数据处理设备用于对采集到的目标图像数据进行分析,从而得到目标图像数据的特性。Optionally, the
可选的,该数据处理设备110可以是安装有图像分析软件的终端设备,当该终端设备接收到对目标图像数据分析的指令时,该终端设备可以从图像采集设备120中的数据存储器中读取对应的目标图像数据,并对该目标图像数据进行分析,从而得到该目标图像数据的特性。Optionally, the
可选的,该数据处理设备110还可以是安装有图像分析软件的服务器,该图像采集设备可以为终端设备,当该终端设备采集到目标图像数据后,可以将该目标图像数据传输至服务器中以完成目标图像数据的特性分析。Optionally, the
可选的,当完成对目标图像数据的特性分析后,该显示设备130可以对特性分析结果进行显示。Optionally, after the characteristic analysis of the target image data is completed, the display device 130 may display the characteristic analysis result.
可选的,该数据处理设备110、图像采集设备120以及显示设备130之间可以通过有线或无线网络实现通信连接。Optionally, the
可选的,上述服务器可以是由多个物理服务器构成的服务器集群或者是分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、CDN、以及大数据和人工智能平台等技术运计算服务的云服务器。Optionally, the above server may be a server cluster or a distributed system composed of multiple physical servers, and may also provide cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, cloud communications, middleware Cloud server for computing services, domain name services, security services, CDN, and big data and artificial intelligence platforms.
可选的,该系统还可以包括管理设备,该管理设备用于对该系统进行管理(如管理各个模块与服务器之间的连接状态等),该管理设备与服务器之间通过通信网络相连。可选的,该通信网络是有线网络或无线网络。Optionally, the system may also include a management device, which is used to manage the system (such as managing the connection status between each module and the server, etc.), and the management device and the server are connected through a communication network. Optionally, the communication network is a wired network or a wireless network.
可选的,上述的无线网络或有线网络使用标准通信技术和/或协议。网络通常为因特网,但也可以是其他任何网络,包括但不限于局域网、城域网、广域网、移动、有限或无线网络、专用网络或者虚拟专用网络的任何组合。在一些实施例中,使用包括超文本标记语言、可扩展标记语言等的技术和/或格式来代表通过网络交换的数据。此外还可以使用诸如安全套接字层、传输层安全、虚拟专用网络、网际协议安全等常规加密技术来加密所有或者一些链路。在另一些实施例中,还可以使用定制和/或专用数据通信技术取代或者补充上述数据通信技术。Optionally, the aforementioned wireless network or wired network uses standard communication technologies and/or protocols. The network is typically the Internet, but can be any other network including, but not limited to, any combination of local area networks, metropolitan area networks, wide area networks, mobile, wired or wireless networks, private networks, or virtual private networks. In some embodiments, data exchanged over a network is represented using techniques and/or formats including Hypertext Markup Language, Extensible Markup Language, and the like. In addition, all or some links may be encrypted using conventional encryption techniques such as Secure Sockets Layer, Transport Layer Security, Virtual Private Network, Internet Protocol Security, etc. In some other embodiments, customized and/or dedicated data communication technologies may also be used to replace or supplement the above data communication technologies.
图2是根据一示例性实施例示出的一种穴位识别方法的流程图。该方法由计算机设备执行,该计算机设备可以是如图1中所示的数据处理设备110。如图2所示,该穴位识别方法可以包括如下步骤:Fig. 2 is a flow chart of a method for identifying acupuncture points according to an exemplary embodiment. The method is performed by a computer device, which may be a
步骤201,获取人体表面三维重建数据。
三维重建是用摄像机拍摄真实世界的物体、场景,通过计算机视觉技术进行处理,从而得到物体的三维模型。Three-dimensional reconstruction is to use a camera to shoot real-world objects and scenes, and process them through computer vision technology to obtain a three-dimensional model of the object.
可选的,通过摄像机对人体进行拍摄,得到人体的二维图像,根据人体的二维图像的纹理分布等信息恢复深度信息,进而获取人体表面三维重建数据。Optionally, the human body is photographed by a camera to obtain a two-dimensional image of the human body, and depth information is restored according to information such as texture distribution of the two-dimensional image of the human body, and then three-dimensional reconstruction data of the human body surface is obtained.
可选的,通过深度相机直接获取人体的三维信息。Optionally, the 3D information of the human body is directly acquired through the depth camera.
可选的,还可以通过结构光法和激光扫描法等获取人体表面三维重建数据。Optionally, the three-dimensional reconstruction data of the human body surface can also be obtained by structured light method and laser scanning method.
步骤202,对该人体表面三维重建数据进行分类识别,获取人体区域分类数据。In
由于人体表面三维重建数据是一个整体的三维数据,因此可以先对该人体表面三维重建数据进行分类识别,将该人体表面三维重建数据按照人体表面的各个区域划分为不同的人体区域,以便将该人体表面三维重建数据与虚拟人体穴位数据进行配准。Since the 3D reconstruction data of the human body surface is a whole 3D data, the 3D reconstruction data of the human body surface can be classified and identified firstly, and the 3D reconstruction data of the human body surface can be divided into different human body regions according to each area of the human body surface, so that the The 3D reconstruction data of the human body surface are registered with the virtual human acupuncture point data.
获取到人体表面三维重建数据后,将人体表面划分为不同的区域,并依据划分的区域对该人体表面三维重建数据进行分类识别,以将人体表面三维重建数据也划分为相应的不同的区域,便于接下来的位姿配准。划分的不同区域可以根据实际需要进行调整,例如,划分为头部、躯干部、手臂部、腿部,或者划分为上半身、下半身。After obtaining the 3D reconstruction data of the human body surface, divide the human body surface into different areas, and classify and identify the 3D reconstruction data of the human body surface according to the divided areas, so as to divide the 3D reconstruction data of the human body surface into corresponding different areas, It is convenient for the next pose registration. The different divided areas can be adjusted according to actual needs, for example, divided into head, torso, arms, and legs, or divided into upper body and lower body.
步骤203,将人体区域分类数据与虚拟人体穴位数据进行位姿配准,并在人体表面三维重建数据中映射穴位位置;该虚拟人体穴位数据根据人体穴位模型预先建立。In
该虚拟人体穴位数据根据现有的人体穴位模型预先建立,人体穴位模型即表面标注了人体穴位的人体模型。该虚拟人体数据还可以包含各个穴位的描述文本,如名称、位置以及编号。The virtual human acupoint data is pre-established according to the existing human acupoint model, which is a human body model with human acupoints marked on its surface. The virtual human body data may also include descriptive text of each acupuncture point, such as name, location and number.
因此,将人体区域分类数据与虚拟人体穴位数据进行位姿配准后,即可根据虚拟人体穴位数据将人体区域分类数据中对应的穴位位置通过算法映射出来。Therefore, after the pose registration of the human body region classification data and the virtual human acupoint data, the corresponding acupoint positions in the human body region classification data can be mapped out by an algorithm according to the virtual human acupoint data.
步骤204,将该人体表面三维重建数据对应的图像以及该穴位位置显示在显示设备中。In
可选的,在该显示设备中,显示摄像机拍摄到的人体的图像,并将穴位位置、穴位名称以及穴位信息等叠加在图像中,以便用户查看。Optionally, in the display device, the image of the human body captured by the camera is displayed, and the position of the acupoint, the name of the acupoint, and the information of the acupoint are superimposed on the image, so that the user can view it.
综上所述,本申请先获取人体表面三维重建数据;对人体表面三维重建数据进行分类识别,获取人体区域分类数据;将人体区域分类数据与虚拟人体穴位数据进行位姿配准,并在人体表面三维重建数据中映射穴位位置;虚拟人体穴位数据根据人体穴位模型预先建立;将人体表面三维重建数据对应的图像以及穴位位置显示在显示设备中。上述方案,通过将人体区域分类数据与虚拟人体穴位数据进行位姿配准,并在人体表面三维重建数据中映射穴位位置,简化了穴位识别难度。To sum up, this application first obtains the 3D reconstruction data of the human body surface; classifies and recognizes the 3D reconstruction data of the human body surface, and obtains the classification data of the human body area; performs pose registration on the classification data of the human body area and the data of virtual human acupuncture points, and The position of the acupuncture point is mapped in the surface three-dimensional reconstruction data; the virtual human body acupuncture point data is pre-established according to the human body acupuncture point model; the image corresponding to the three-dimensional reconstruction data of the human body surface and the position of the acupuncture point are displayed on the display device. The above scheme simplifies the difficulty of acupoint recognition by performing pose registration on the classification data of the human body area and the virtual human acupoint data, and mapping the acupoint positions in the three-dimensional reconstruction data of the human body surface.
图3是根据一示例性实施例示出的一种穴位识别方法的流程图。该方法由计算机设备执行,该计算机设备可以是如图1中所示的穴位识别系统中的数据处理设备。如图3所示,该穴位识别方法可以包括如下步骤:Fig. 3 is a flow chart of a method for identifying acupuncture points according to an exemplary embodiment. The method is executed by a computer device, which may be a data processing device in the acupoint recognition system as shown in FIG. 1 . As shown in Figure 3, the acupuncture point identification method may include the following steps:
步骤301,获取人体表面三维重建数据。In
可选的,该人体表面三维重建数据为通过对人体表面进行拍摄并三维重建获得的第一点集。Optionally, the 3D reconstruction data of the human body surface is the first point set obtained by photographing the human body surface and performing 3D reconstruction.
例如,通过深度相机对人体表面进行拍摄,获取人体表面的点云数据,进而根据人体表面的点云数据进行三维重建,以获取人体表面三维重建数据。For example, the surface of the human body is photographed by a depth camera to obtain point cloud data of the surface of the human body, and then 3D reconstruction is performed based on the point cloud data of the surface of the human body to obtain 3D reconstruction data of the human body surface.
步骤302,对该人体表面三维重建数据进行分类识别,获取人体区域分类数据。In
由于人体表面三维重建数据是一个整体的三维数据,因此可以先对该人体表面三维重建数据进行分类识别,将该人体表面三维重建数据按照人体表面的各个区域划分为不同的人体区域,以便将该人体表面三维重建数据与虚拟人体穴位数据进行配准。例如,人体表面的各个区域可以是头部左侧、头部右侧、前胸左侧、前胸右侧等,将人体按前后左右进行区分。Since the 3D reconstruction data of the human body surface is a whole 3D data, the 3D reconstruction data of the human body surface can be classified and identified firstly, and the 3D reconstruction data of the human body surface can be divided into different human body regions according to each area of the human body surface, so that the The 3D reconstruction data of the human body surface are registered with the virtual human acupuncture point data. For example, each area on the surface of the human body may be the left side of the head, the right side of the head, the left side of the chest, the right side of the chest, etc., and the human body is distinguished according to front, back, left, and right.
该虚拟人体穴位数据根据现有的人体穴位模型预先建立,人体穴位模型即表面标注了人体穴位的人体模型。该虚拟人体数据还可以包含各个穴位的描述文本,如名称、位置以及编号。The virtual human acupoint data is pre-established according to the existing human acupoint model, which is a human body model with human acupoints marked on its surface. The virtual human body data may also include descriptive text of each acupuncture point, such as name, location and number.
可选的,采用摄像机拍摄人体穴位模型,获取人体穴位模型的图像,并根据人体穴位模型的图像进行三维重建,获取该虚拟人体穴位数据。Optionally, a camera is used to shoot the acupoint model of the human body to obtain an image of the acupoint model of the human body, and perform three-dimensional reconstruction based on the image of the acupoint model of the human body to obtain data of the virtual acupoint point of the human body.
在对人体表面三维重建数据进行分类识别后,由于在实际应用场景中,当需要人体某一区域的穴位信息时,需要移动摄像机对准该人体区域进行拍摄并识别穴位,因此需要先知道当前的人体区域具体是什么。After classifying and identifying the 3D reconstruction data of the human body surface, in the actual application scenario, when the acupuncture point information of a certain area of the human body is needed, it is necessary to move the camera to point at the area of the human body to shoot and identify the acupuncture points, so it is necessary to know the current What exactly is the body area.
可选的,将平板电脑与摄像机刚性连接,摄像机朝向平板背面方向,平板电脑中配备有陀螺仪与加速度计,也就是说通过平板电脑中的陀螺仪与加速度计即可获取摄像机的当前位置与摄像机的初始位置的距离和相对方位。图4示出了本申请实施例涉及的一种平板电脑与摄像机的连接示例图。如图4所示,摄像机包括深度相机和可见光相机。Optionally, the tablet is rigidly connected to the camera, and the camera faces the back of the tablet. The tablet is equipped with a gyroscope and an accelerometer, which means that the current position and location of the camera can be obtained through the gyroscope and accelerometer in the tablet. The distance and relative bearing of the camera's initial position. Fig. 4 shows an example diagram of connection between a tablet computer and a camera according to the embodiment of the present application. As shown in Figure 4, the cameras include depth cameras and visible light cameras.
进一步的,可以将人体的某一区域作为基准,先得到摄像机与人体的初始相对位置,进而通过计算得到当前的人体区域。Furthermore, a certain area of the human body can be used as a reference, and the initial relative position between the camera and the human body can be obtained first, and then the current human body area can be obtained through calculation.
可选的,获取摄像机与人体的初始相对位置;该初始相对位置为通过摄像机拍摄并进行人脸特征点检测得到的。由于人脸是人体中较为容易识别的区域,因此可以选择人脸作为基准。调整摄像机的位置,对人体进行拍摄并通过人脸特征点检测进行识别,直到识别到人脸,将此时摄像机与人体的相对位置作为摄像机与人体的初始相对位置。Optionally, the initial relative position between the camera and the human body is obtained; the initial relative position is obtained by taking pictures with the camera and detecting facial feature points. Since the human face is an easily identifiable area in the human body, the human face can be selected as a benchmark. Adjust the position of the camera, shoot the human body and recognize it through face feature point detection until the face is recognized, and take the relative position between the camera and the human body at this time as the initial relative position between the camera and the human body.
例如,该摄像机为深度相机,通过深度相机拍摄头顶部,得到头顶部的表面点云数据,在屏幕上点选所采集到的区域,调用基于PointNet的深度神经网络构建的表面分类模型,自动将该区域识别为头部。For example, the camera is a depth camera, and the top of the head is captured by the depth camera to obtain surface point cloud data on the top of the head. Click the collected area on the screen, and call the surface classification model built based on PointNet's deep neural network. This region is identified as the head.
进一步的,结合摄像机与人体的初始相对位置以及陀螺仪与加速度计所采集的摄像机的移动轨迹,实时获取当前摄像机与人体的第一相对位置。Further, the current first relative position between the camera and the human body is acquired in real time in combination with the initial relative position of the camera and the human body and the movement track of the camera collected by the gyroscope and the accelerometer.
进一步的,根据该初始相对位置以及该第一相对位置,获取当前人体区域。先对该人体表面三维重建数据对应的图像进行轮廓纹理的提取,再根据该第一点集以及该轮廓纹理,结合初始相对位置以及第一相对位置,与虚拟人体穴位数据中的人体区域信息进行匹配,匹配度最高的区域即为当前人体区域。Further, the current body region is acquired according to the initial relative position and the first relative position. First extract the contour texture of the image corresponding to the 3D reconstruction data of the human body surface, and then combine the initial relative position and the first relative position with the human body area information in the virtual human body acupoint data according to the first point set and the contour texture. Matching, the area with the highest matching degree is the current human body area.
例如,先结合摄像机与人体的初始相对位置以及陀螺仪与加速度计所采集的摄像机的移动轨迹粗略估计当前摄像机与人体的第一相对位置。进一步的,该人体表面三维重建数据对应的图像可以为可见光图像,对该图像进行轮廓纹理的提取,并将提取出的轮廓纹理与进行分类识别后的人体表面三维重建数据进行匹配,将匹配度最高的区域认定为当前摄像机拍摄的当前人体区域。For example, the first relative position of the current camera and the human body is roughly estimated in combination with the initial relative position of the camera and the human body and the movement track of the camera collected by the gyroscope and the accelerometer. Further, the image corresponding to the 3D reconstruction data of the human body surface can be a visible light image, the contour texture of the image is extracted, and the extracted contour texture is matched with the 3D reconstruction data of the human body surface after classification and recognition, and the matching degree The highest area is identified as the current human body area captured by the current camera.
步骤303,将人体区域分类数据与虚拟人体穴位数据进行位姿配准,并在人体表面三维重建数据中映射穴位位置。
通过步骤302可以获取到人体区域分类数据以及摄像机当前拍摄的人体区域,接下来对如何获取摄像机当前拍摄的人体区域中的穴位进行描述。可选的,由于虚拟人体穴位数据中包含了人体各穴位的名称和位置,因此将人体区域分类数据和虚拟人体穴位数据进行位姿配准,进而即可在人体表面三维重建数据中对应得到人体各穴位的名称和位置。Through
可选的,将该第一点集与虚拟人体穴位数据的第二点集根据人体区域分类数据进行粗配准。Optionally, rough registration is performed on the first point set and the second point set of the virtual human acupoint data according to the classification data of human body regions.
进一步的,根据人体区域分类数据,对各个人体区域,分别提取第一点集的子集与第二点集的子集。将人体表面三维重建数据(即第一点集)按照人体区域分类数据分为多个子集,再按照人体区域分类数据将第二点集也对应分为多个子集。Further, according to the human body region classification data, for each human body region, a subset of the first point set and a subset of the second point set are respectively extracted. The three-dimensional reconstruction data of the human body surface (that is, the first point set) is divided into multiple subsets according to the classification data of human body regions, and then the second point set is also correspondingly divided into multiple subsets according to the classification data of human body regions.
进一步的,提取第一点集的各子集的凸包、第二点集的各子集的凸包以及各个凸包对应的人体区域面片。凸包即包含一个点集中所有点的最小凸多边形,在本申请实施例中,凸包是包含目标点云中所有点的最小凸集合。通过提取第一点集的各子集以及第二点集的各子集的凸包,可以将第一点集以及第二点集表面近似表示为凸多面体,凸多面体的每个面即为人体区域面片。Further, the convex hulls of each subset of the first point set, the convex hulls of each subset of the second point set, and the human body region patches corresponding to each convex hull are extracted. The convex hull is the smallest convex polygon including all points in a point set. In the embodiment of the present application, the convex hull is the smallest convex set including all points in the target point cloud. By extracting the convex hulls of each subset of the first point set and each subset of the second point set, the surface of the first point set and the second point set can be approximated as a convex polyhedron, and each face of the convex polyhedron is the human body Region patches.
进一步的,基于该凸包以及该人体区域面片进行粗配准。基于第一点集对应的凸多面体的凸包与人体区域面片以及第二点集对应的凸多面体的凸包与人体区域面片,进行粗配准。Further, rough registration is performed based on the convex hull and the human body area patch. Coarse registration is performed based on the convex hull of the convex polyhedron and the human body area patch corresponding to the first point set and the convex hull of the convex polyhedron and the human body area patch corresponding to the second point set.
例如,构建第一点集A的凸包与第二点集B的凸包,分别得到第一点集的凸包的顶点数据a与第二点集的凸包的顶点数据b。计算a、b的中心、长短径以及表面曲率,再按照中心重合、长短径重合、曲率分布相同的标准进行a与b的位姿调整,得到a、b的位姿变换矩阵M,将M应用至A与B。最后采用AA-ICP或4PCS或基于t分布混合模型配准等算法,对A与B进行进一步配准,完成粗配准。For example, the convex hull of the first point set A and the convex hull of the second point set B are constructed, and the vertex data a of the convex hull of the first point set and the vertex data b of the convex hull of the second point set are respectively obtained. Calculate the centers, long and short diameters, and surface curvatures of a and b, and then adjust the poses of a and b according to the standards of center coincidence, long and short diameter coincidence, and the same curvature distribution, to obtain the pose transformation matrix M of a and b, and apply M to to A and B. Finally, AA-ICP or 4PCS or algorithms based on t-distribution mixed model registration are used to further register A and B to complete the rough registration.
进一步的,通过刚性配准,对粗配准后的第一点集与粗配准后的虚拟人体穴位数据的第二点集进行精配准。刚性配准即配准对象在变换前后任意两点的距离保持不变的配准。Further, through rigid registration, fine registration is performed on the first point set after rough registration and the second point set of virtual human acupoint data after rough registration. Rigid registration refers to the registration in which the distance between any two points of the registration object remains unchanged before and after transformation.
可选的,以第二点集的子集中的穴位位置为中心,以第一阈值为半径,设置球状目标区域;Optionally, a spherical target area is set with the acupuncture point position in the subset of the second point set as the center and the first threshold as the radius;
进一步的,提取第二点集的子集中的穴位位置的三维曲率分布以及轮廓分布,并加权点乘,获取第一空间特征图谱;Further, extract the three-dimensional curvature distribution and contour distribution of the acupoint positions in the subset of the second point set, and perform weighted point multiplication to obtain the first spatial feature map;
进一步的,根据该球状目标区域提取第一点集的子集对应的第二空间特征图谱;Further, a second spatial feature map corresponding to a subset of the first point set is extracted according to the spherical target area;
进一步的,基于第二空间特征图谱设置采样窗口,并通过该采样窗口遍历第一空间特征图谱,获取与第一空间特征图谱之间测度最小的目标采样窗口,作为第一点集的子集中的穴位位置。Further, the sampling window is set based on the second spatial feature map, and the first spatial feature map is traversed through the sampling window, and the target sampling window with the smallest measure between the first spatial feature map is obtained as a subset of the first point set Acupoint location.
可选的,将互信息或者欧式距离作为第二空间特征图谱的采样窗口与第一空间特征图谱的采样窗口之间的测度。可选的,将目标采样窗口的中心位置作为第一点集的子集中的穴位位置。Optionally, mutual information or Euclidean distance is used as a measure between the sampling window of the second spatial feature map and the sampling window of the first spatial feature map. Optionally, the center position of the target sampling window is used as the acupuncture point position in the subset of the first point set.
例如,以第二点集B上穴位位置X为例,以X为中心,在空间中构建10mm半径的球形区域,得到A上对应的被包含在该球形区域内的点集y。提取X周围20mm的三维曲率分布、轮廓分布,对两者数据进行加权点乘,其中曲率分布权重0.6,轮廓分布权重0.4,形成第一空间特征图谱P,提取y的相应第二空间特征图谱Q。以Q为基础,按同样尺度设置采样窗口,对P上进行遍历,并计算采样窗口在各个位置时与P的距离测度(如互信息、欧氏距离等),寻找得到测度最小的窗口,则此时窗口对应的中心位置即为A中相应穴位的最大可能位置Y。对B上的每个穴位,重复寻找A中相应穴位的最大可能位置,得到A上各个穴位的估计位置{Y}。For example, taking the acupoint position X on the second point set B as an example, a spherical area with a radius of 10 mm is constructed in space with X as the center, and the corresponding point set y contained in the spherical area on A is obtained. Extract the three-dimensional curvature distribution and contour distribution of 20mm around X, and perform weighted point multiplication on the two data, in which the curvature distribution weight is 0.6, and the contour distribution weight is 0.4 to form the first spatial feature map P, and extract the corresponding second spatial feature map Q of y . Based on Q, set the sampling window according to the same scale, traverse P, and calculate the distance measure (such as mutual information, Euclidean distance, etc.) between the sampling window and P at each position, and find the window with the smallest measure, then At this time, the center position corresponding to the window is the maximum possible position Y of the corresponding acupuncture point in A. For each acupoint on B, repeatedly find the maximum possible position of the corresponding acupoint in A, and obtain the estimated position {Y} of each acupoint on A.
步骤304,将该人体表面三维重建数据对应的图像以及该穴位位置显示在显示设备中。
例如,摄像机拍摄到的人体的图像为可见光摄像头视频图像,在该图像上叠加显示所估计的穴位位点、所识别的轮廓以及穴位与轮廓间的距离、所识别的穴位与穴位之间的距离、所识别的穴位与中线间的距离以及中线以及当前图像中涉及到的穴位对应的位置描述信息。For example, the image of the human body captured by the camera is a visible light camera video image, and the estimated acupoint point, the identified contour, the distance between the acupoint and the contour, and the distance between the identified acupoint and the acupoint are superimposed on the image , the distance between the recognized acupoint and the midline, and the midline and the position description information corresponding to the acupoint involved in the current image.
步骤305,将穴位位置与知识图谱对应的记载位置进行比较,若比较结果超过第二阈值,则在显示设备中显示该穴位位置标记错误。
应说明的是,该知识图谱根据已有穴位知识预先构建。例如,利用实体抽取或关键字识别,提取穴位描述信息中与位置、边缘、距离、穴位相关的字段,以及相关的具体尺度信息,构建各个穴位以及测量区域、测量值、穴位位置间的知识图谱。It should be noted that the knowledge map is pre-constructed based on the existing acupoint knowledge. For example, use entity extraction or keyword recognition to extract fields related to location, edge, distance, and acupoints in the acupoint description information, as well as related specific scale information, and construct a knowledge map between each acupoint, measurement area, measurement value, and acupoint location .
可选的,通过投影法获取第一点集的子集中的各个穴位位置之间的表面距离。Optionally, the surface distance between the positions of various acupoints in the subset of the first point set is acquired through a projection method.
进一步的,对该人体表面三维重建数据对应的图像进行轮廓识别,获取各个闭合轮廓,并计算各个闭合轮廓的中线与闭合轮廓中的穴位位置之间的距离。Further, contour recognition is performed on the image corresponding to the three-dimensional reconstruction data of the human body surface, each closed contour is obtained, and the distance between the midline of each closed contour and the position of the acupoint in the closed contour is calculated.
进一步的,结合表面距离以及闭合轮廓的中线与闭合轮廓中的穴位位置之间的距离,将穴位位置与知识图谱对应的记载位置通过算法进行比较,若比较结果超过第二阈值,则在显示设备中显示该穴位位置标记错误,进一步的可以对标记错误的穴位位置重新调整。Further, in combination with the surface distance and the distance between the midline of the closed contour and the acupoint position in the closed contour, the acupoint position is compared with the recorded position corresponding to the knowledge map through an algorithm, and if the comparison result exceeds the second threshold, the display device It shows that the position of the acupoint is marked incorrectly, and further, the position of the acupoint with the wrong mark can be readjusted.
例如,对于{Y},对于已具有预测穴位的数据,基于投影法计算同一平面上多个穴位之间的表面距离,即按照两个穴位点连线与点集间的平均最短距离作为投影平面,计算投影平面与点集表面侧的交线长度。识别可见光摄像头视频图像中的轮廓,得到头顶区域的轮廓,计算长短轴,并得到与长轴方向相似的中线,计算{Y}中每个穴位与中线的距离。根据穴位的编号从知识图谱中提取相应的位置描述信息,并与自动识别的距离、轮廓进行自动的比较,当出现量值偏差率超过20%的不相符时,即输出定位错误的标识。比较顺序为先比较对单独穴位的描述,再比较对多个穴位相关性的描述。对输出定位错误标识的穴位,按照所调用的描述进行位置的调整,但当位置偏差超过20mm时,保持原位置不变。在对所有穴位调整完成后,得到真实穴位位置{Y’}。将{Y’}根据摄像机内外参数、屏幕坐标系参数进行坐标变换,得到屏幕上的坐标位置,叠加显示在屏幕的人体表面。For example, for {Y}, for the data that already has predicted acupoints, the surface distance between multiple acupoints on the same plane is calculated based on the projection method, that is, the average shortest distance between the connecting line of two acupoint points and the point set is used as the projection plane , to calculate the length of the intersection line between the projected plane and the surface side of the point set. Identify the outline in the video image of the visible light camera, get the outline of the top of the head, calculate the long and short axes, and get the midline similar to the long axis, and calculate the distance between each acupoint in {Y} and the midline. Extract the corresponding position description information from the knowledge map according to the number of acupuncture points, and automatically compare it with the distance and contour of the automatic recognition. When there is a discrepancy of more than 20% in the value deviation rate, it will output the identification of the positioning error. The order of comparison is to first compare the description of a single acupoint, and then compare the description of the correlation of multiple acupoints. For the acupoints identified by output positioning errors, adjust the position according to the called description, but when the position deviation exceeds 20mm, keep the original position unchanged. After the adjustment of all acupoints is completed, the real acupoint position {Y'} is obtained. Coordinate transformation is performed on {Y’} according to the internal and external parameters of the camera and the parameters of the screen coordinate system to obtain the coordinate position on the screen, which is superimposed and displayed on the human body surface on the screen.
可选的,实时获取人体表面三维重建数据,并重复上述步骤,以对穴位位置进行实时更新。Optionally, the three-dimensional reconstruction data of the human body surface is acquired in real time, and the above steps are repeated, so as to update the acupoint positions in real time.
综上所述,本申请先获取人体表面三维重建数据;对人体表面三维重建数据进行分类识别,获取人体区域分类数据;将人体区域分类数据与虚拟人体穴位数据进行位姿配准,并在人体表面三维重建数据中映射穴位位置;虚拟人体穴位数据根据人体穴位模型预先建立;将人体表面三维重建数据对应的图像以及穴位位置显示在显示设备中。上述方案,通过将人体区域分类数据与虚拟人体穴位数据进行位姿配准,并在人体表面三维重建数据中映射穴位位置,简化了穴位识别难度。To sum up, this application first obtains the 3D reconstruction data of the human body surface; classifies and recognizes the 3D reconstruction data of the human body surface, and obtains the classification data of the human body area; performs pose registration on the classification data of the human body area and the data of virtual human acupuncture points, and The position of the acupuncture point is mapped in the surface three-dimensional reconstruction data; the virtual human body acupuncture point data is pre-established according to the human body acupuncture point model; the image corresponding to the three-dimensional reconstruction data of the human body surface and the position of the acupuncture point are displayed on the display device. The above scheme simplifies the difficulty of acupoint recognition by performing pose registration on the classification data of the human body area and the virtual human acupoint data, and mapping the acupoint positions in the three-dimensional reconstruction data of the human body surface.
图5是根据一示例性实施例示出的一种穴位识别装置的结构方框图。该穴位识别装置包括:Fig. 5 is a structural block diagram of an acupuncture point recognition device according to an exemplary embodiment. The acupoint recognition device includes:
数据采集模块501,用于获取人体表面三维重建数据;A
分类识别模块502,用于对该人体表面三维重建数据进行分类识别,获取人体区域分类数据;Classification and
穴位映射模块503,用于将人体区域分类数据与虚拟人体穴位数据进行位姿配准,并在人体表面三维重建数据中映射穴位位置;该虚拟人体穴位数据根据人体穴位模型预先建立;The acupuncture
显示模块504,用于将该人体表面三维重建数据对应的图像以及该穴位位置显示在显示设备中。The
在一种可能的实现方式中,该人体表面三维重建数据为通过对人体表面进行拍摄并三维重建获得的第一点集;In a possible implementation manner, the 3D reconstruction data of the human body surface is a first point set obtained by photographing the human body surface and performing 3D reconstruction;
该对该人体表面三维重建数据进行分类识别,获取人体区域分类数据,包括:The three-dimensional reconstruction data of the human body surface should be classified and identified to obtain the classification data of the human body area, including:
获取摄像机与人体的初始相对位置;该初始相对位置为通过摄像机拍摄并进行人脸特征点检测得到的;Obtain the initial relative position of the camera and the human body; the initial relative position is obtained by shooting with the camera and detecting facial feature points;
结合摄像机与人体的初始相对位置以及陀螺仪与加速度计所采集的摄像机的移动轨迹,实时获取当前摄像机与人体的第一相对位置;Combining the initial relative position of the camera and the human body and the movement trajectory of the camera collected by the gyroscope and the accelerometer, the first relative position of the current camera and the human body is obtained in real time;
根据该初始相对位置以及该第一相对位置,获取当前人体区域。According to the initial relative position and the first relative position, the current body region is obtained.
在一种可能的实现方式中,该根据该初始相对位置以及该第一相对位置,获取当前人体区域,包括:In a possible implementation manner, acquiring the current human body region according to the initial relative position and the first relative position includes:
对该人体表面三维重建数据对应的图像进行轮廓纹理的提取;Extracting the contour texture of the image corresponding to the three-dimensional reconstruction data of the human body surface;
根据该第一点集以及该轮廓纹理,结合初始相对位置以及第一相对位置,与虚拟人体穴位数据中的人体区域信息进行匹配,匹配度最高的部位即为当前人体区域。According to the first point set and the contour texture, combined with the initial relative position and the first relative position, it is matched with the human body area information in the virtual human acupuncture point data, and the part with the highest matching degree is the current human body area.
在一种可能的实现方式中,该将人体区域分类数据与虚拟人体穴位数据进行位姿配准,并在人体表面三维重建数据中映射穴位位置,包括:In a possible implementation, the pose registration is performed on the human body area classification data and the virtual human acupoint data, and the acupoint positions are mapped in the three-dimensional reconstruction data of the human body surface, including:
将该第一点集与虚拟人体穴位数据的第二点集根据人体区域分类数据进行粗配准;Roughly registering the first point set and the second point set of the virtual human acupoint data according to the human body area classification data;
通过刚性配准,对粗配准后的第一点集与粗配准后的虚拟人体穴位数据的第二点集进行精配准。Through rigid registration, fine registration is performed on the first point set after rough registration and the second point set of virtual human acupoint data after rough registration.
在一种可能的实现方式中,该将该第一点集与虚拟人体穴位数据的第二点集根据人体区域分类数据进行粗配准,包括:In a possible implementation manner, the rough registration of the first point set and the second point set of the virtual human acupoint data according to the human body region classification data includes:
根据人体区域分类数据,对各个人体区域,分别提取第一点集的子集与第二点集的子集;Extracting a subset of the first point set and a subset of the second point set for each human body area according to the human body region classification data;
提取第一点集的各子集的凸包、第二点集的各子集的凸包以及各个凸包对应的人体区域面片;Extracting the convex hulls of each subset of the first point set, the convex hull of each subset of the second point set, and the human body region patches corresponding to each convex hull;
基于该凸包以及该人体区域面片,进行粗配准。Coarse registration is performed based on the convex hull and the human body area patch.
在一种可能的实现方式中,该通过刚性配准,对粗配准后的第一点集与粗配准后的虚拟人体穴位数据的第二点集进行精配准,包括:In a possible implementation, the rigid registration is used to fine-register the first point set after rough registration and the second point set of virtual human acupoint data after rough registration, including:
以第二点集的子集中的穴位位置为中心,以第一阈值为半径,设置球状目标区域;Set a spherical target area with the acupuncture point position in the subset of the second point set as the center and the first threshold as the radius;
提取第二点集的子集中的穴位位置的三维曲率分布以及轮廓分布,并加权点乘,获取第一空间特征图谱;extracting the three-dimensional curvature distribution and contour distribution of the acupoint positions in the subset of the second point set, and weighting the dot product to obtain the first spatial feature map;
根据该球状目标区域提取第一点集的子集对应的第二空间特征图谱;extracting a second spatial feature map corresponding to a subset of the first point set according to the spherical target area;
基于第二空间特征图谱设置采样窗口,并通过该采样窗口遍历第一空间特征图谱,获取与第一空间特征图谱之间测度最小的目标采样窗口,作为第一点集的子集中的穴位位置。A sampling window is set based on the second spatial characteristic atlas, and the first spatial characteristic atlas is traversed through the sampling window to obtain a target sampling window with the smallest measure between the first spatial characteristic atlas as the acupoint position in the subset of the first point set.
在一种可能的实现方式中,通过投影法获取第一点集的子集中的各个穴位位置之间的表面距离;In a possible implementation manner, the surface distance between the positions of the acupuncture points in the subset of the first point set is acquired by a projection method;
对该人体表面三维重建数据对应的图像进行轮廓识别,获取各个闭合轮廓,并计算各个闭合轮廓的中线与闭合轮廓中的穴位位置之间的距离;Perform contour recognition on the image corresponding to the three-dimensional reconstruction data of the human body surface, obtain each closed contour, and calculate the distance between the midline of each closed contour and the position of the acupuncture point in the closed contour;
结合该表面距离以及该闭合轮廓的中线与闭合轮廓中的穴位位置之间的距离,将该穴位位置与知识图谱对应的记载位置进行比较,若比较结果超过第二阈值,则在显示设备中显示该穴位位置标记错误;该知识图谱根据已有穴位知识预先构建。Combining the surface distance and the distance between the midline of the closed contour and the position of the acupuncture point in the closed contour, the position of the acupuncture point is compared with the recorded position corresponding to the knowledge map, and if the comparison result exceeds the second threshold, it is displayed on the display device The acupoint location is marked incorrectly; the knowledge map is pre-built based on the existing acupoint knowledge.
综上所述,本申请先获取人体表面三维重建数据;对人体表面三维重建数据进行分类识别,获取人体区域分类数据;将人体区域分类数据与虚拟人体穴位数据进行位姿配准,并在人体表面三维重建数据中映射穴位位置;虚拟人体穴位数据根据人体穴位模型预先建立;将人体表面三维重建数据对应的图像以及穴位位置显示在显示设备中。上述方案,通过将人体区域分类数据与虚拟人体穴位数据进行位姿配准,并在人体表面三维重建数据中映射穴位位置,简化了穴位识别难度。To sum up, this application first obtains the 3D reconstruction data of the human body surface; classifies and recognizes the 3D reconstruction data of the human body surface, and obtains the classification data of the human body area; performs pose registration on the classification data of the human body area and the data of virtual human acupuncture points, and The position of the acupuncture point is mapped in the surface three-dimensional reconstruction data; the virtual human body acupuncture point data is pre-established according to the human body acupuncture point model; the image corresponding to the three-dimensional reconstruction data of the human body surface and the position of the acupuncture point are displayed on the display device. The above scheme simplifies the difficulty of acupoint recognition by performing pose registration on the classification data of the human body area and the virtual human acupoint data, and mapping the acupoint positions in the three-dimensional reconstruction data of the human body surface.
图6示出了本申请一示例性实施例示出的计算机设备600的结构框图。该计算机设备可以实现为本申请上述方案中的服务器。所述计算机设备600包括中央处理单元(Central Processing Unit,CPU)601、包括随机存取存储器(Random Access Memory,RAM)602和只读存储器(Read-Only Memory,ROM)603的系统存储器604,以及连接系统存储器604和中央处理单元601的系统总线605。所述计算机设备600还包括用于存储操作系统609、应用程序610和其他程序模块611的大容量存储设备606。Fig. 6 shows a structural block diagram of a
所述大容量存储设备606通过连接到系统总线605的大容量存储控制器(未示出)连接到中央处理单元601。所述大容量存储设备606及其相关联的计算机可读介质为计算机设备600提供非易失性存储。也就是说,所述大容量存储设备606可以包括诸如硬盘或者只读光盘(Compact Disc Read-Only Memory,CD-ROM)驱动器之类的计算机可读介质(未示出)。The
不失一般性,所述计算机可读介质可以包括计算机存储介质和通信介质。计算机存储介质包括以用于存储诸如计算机可读指令、数据结构、程序模块或其他数据等信息的任何方法或技术实现的易失性和非易失性、可移动和不可移动介质。计算机存储介质包括RAM、ROM、可擦除可编程只读寄存器(Erasable Programmable Read Only Memory,EPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-OnlyMemory,EEPROM)闪存或其他固态存储其技术,CD-ROM、数字多功能光盘(DigitalVersatile Disc,DVD)或其他光学存储、磁带盒、磁带、磁盘存储或其他磁性存储设备。当然,本领域技术人员可知所述计算机存储介质不局限于上述几种。上述的系统存储器604和大容量存储设备606可以统称为存储器。Without loss of generality, such computer-readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media include RAM, ROM, Erasable Programmable Read-Only Memory (EPROM), Electrically-Erasable Programmable Read-Only Memory (EEPROM) flash memory or other solid state Storage technology, CD-ROM, Digital Versatile Disc (DVD) or other optical storage, cassette, tape, disk storage or other magnetic storage devices. Certainly, those skilled in the art know that the computer storage medium is not limited to the above-mentioned ones. The above-mentioned
根据本公开的各种实施例,所述计算机设备600还可以通过诸如因特网等网络连接到网络上的远程计算机运行。也即计算机设备600可以通过连接在所述系统总线605上的网络接口单元607连接到网络608,或者说,也可以使用网络接口单元607来连接到其他类型的网络或远程计算机系统(未示出)。According to various embodiments of the present disclosure, the
所述存储器还包括至少一条计算机程序,所述至少一条计算机程序存储于存储器中,中央处理单元601通过执行该至少一条计算机程序来实现上述各个实施例所示的方法中的全部或部分步骤。The memory also includes at least one computer program, the at least one computer program is stored in the memory, and the
在一示例性实施例中,还提供了一种计算机可读存储介质,用于存储有至少一条计算机程序,所述至少一条计算机程序由处理器加载并执行以实现上述方法中的全部或部分步骤。例如,该计算机可读存储介质可以是只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)、磁带、软盘和光数据存储设备等。In an exemplary embodiment, there is also provided a computer-readable storage medium for storing at least one computer program, and the at least one computer program is loaded and executed by a processor to implement all or part of the steps in the above method . For example, the computer-readable storage medium may be a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a read-only optical disc (Compact Disc Read-Only Memory, CD-ROM), Magnetic tapes, floppy disks, and optical data storage devices, etc.
在一示例性实施例中,还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述图2或图3任一实施例所示方法的全部或部分步骤。In an exemplary embodiment, there is also provided a computer program product or computer program comprising computer instructions stored in a computer readable storage medium. The processor of the computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device executes all or part of the steps of the method shown in any one of the embodiments in FIG. 2 or FIG. 3 above.
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。Other embodiments of the present application will be readily apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. This application is intended to cover any modification, use or adaptation of the application, these modifications, uses or adaptations follow the general principles of the application and include common knowledge or conventional technical means in the technical field not disclosed in the application . The specification and examples are to be considered exemplary only, with a true scope and spirit of the application indicated by the following claims.
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。It should be understood that the present application is not limited to the precise constructions which have been described above and shown in the accompanying drawings, and various modifications and changes may be made without departing from the scope thereof. The scope of the application is limited only by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211618509.3A CN115797451A (en) | 2022-12-15 | 2022-12-15 | Acupuncture point identification method, device and equipment and readable storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211618509.3A CN115797451A (en) | 2022-12-15 | 2022-12-15 | Acupuncture point identification method, device and equipment and readable storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115797451A true CN115797451A (en) | 2023-03-14 |
Family
ID=85425686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211618509.3A Pending CN115797451A (en) | 2022-12-15 | 2022-12-15 | Acupuncture point identification method, device and equipment and readable storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115797451A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116531248A (en) * | 2023-05-10 | 2023-08-04 | 上海芯兀极智能科技有限公司 | Human body acupoint positioning method based on multi-sensor fusion |
CN118365709A (en) * | 2024-06-19 | 2024-07-19 | 江汉大学 | Hand acupoint positioning method, device, acupuncture robot and storage medium |
-
2022
- 2022-12-15 CN CN202211618509.3A patent/CN115797451A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116531248A (en) * | 2023-05-10 | 2023-08-04 | 上海芯兀极智能科技有限公司 | Human body acupoint positioning method based on multi-sensor fusion |
CN118365709A (en) * | 2024-06-19 | 2024-07-19 | 江汉大学 | Hand acupoint positioning method, device, acupuncture robot and storage medium |
US12266206B1 (en) | 2024-06-19 | 2025-04-01 | Jianghan University | Hand acupoint positioning method, device, acupuncture robot and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11928800B2 (en) | Image coordinate system transformation method and apparatus, device, and storage medium | |
CN110662484B (en) | System and method for whole body measurement extraction | |
US11238272B2 (en) | Method and apparatus for detecting face image | |
CN108875524B (en) | Line of sight estimation method, device, system and storage medium | |
US10515259B2 (en) | Method and system for determining 3D object poses and landmark points using surface patches | |
JP4950787B2 (en) | Image processing apparatus and method | |
WO2018228218A1 (en) | Identification method, computing device, and storage medium | |
JP4951498B2 (en) | Face image recognition device, face image recognition method, face image recognition program, and recording medium recording the program | |
CN110472460B (en) | Face image processing method and device | |
US20150243035A1 (en) | Method and device for determining a transformation between an image coordinate system and an object coordinate system associated with an object of interest | |
JP2000306095A (en) | Image collation / search system | |
WO2022257456A1 (en) | Hair information recognition method, apparatus and device, and storage medium | |
CN115797451A (en) | Acupuncture point identification method, device and equipment and readable storage medium | |
US11931166B2 (en) | System and method of determining an accurate enhanced Lund and Browder chart and total body surface area burn score | |
CN115994944B (en) | Training method of key point prediction model, three-dimensional key point prediction method and related equipment | |
Angladon et al. | The toulouse vanishing points dataset | |
CN114897001A (en) | Identity recognition method, device, equipment and storage medium | |
CN104951767A (en) | Three-dimensional face recognition technology based on correlation degree | |
CN112613457A (en) | Image acquisition mode detection method and device, computer equipment and storage medium | |
CN111275754A (en) | Face acne mark proportion calculation method based on deep learning | |
CN113808256B (en) | A high-precision holographic human body reconstruction method combined with identity recognition | |
US20230144111A1 (en) | A method for generating a 3d model | |
CN114627542A (en) | Method, device, storage medium and electronic device for determining eye movement position | |
CN112395912B (en) | A face segmentation method, electronic device and computer-readable storage medium | |
CN114663507A (en) | Distance detection method and device, electronic equipment and computer storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |