CN115793027A - Measuring system and method for calibrating working efficiency of X-ray filter and mirror - Google Patents
Measuring system and method for calibrating working efficiency of X-ray filter and mirror Download PDFInfo
- Publication number
- CN115793027A CN115793027A CN202211494049.8A CN202211494049A CN115793027A CN 115793027 A CN115793027 A CN 115793027A CN 202211494049 A CN202211494049 A CN 202211494049A CN 115793027 A CN115793027 A CN 115793027A
- Authority
- CN
- China
- Prior art keywords
- unit
- sample
- vacuum
- mirror
- adjustment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000005259 measurement Methods 0.000 claims abstract description 52
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 32
- 229910052710 silicon Inorganic materials 0.000 claims description 32
- 239000010703 silicon Substances 0.000 claims description 32
- 230000003287 optical effect Effects 0.000 claims description 29
- 230000005469 synchrotron radiation Effects 0.000 claims description 17
- 238000009304 pastoral farming Methods 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims description 7
- 230000035945 sensitivity Effects 0.000 claims description 7
- 238000002834 transmittance Methods 0.000 claims description 7
- 238000003780 insertion Methods 0.000 claims description 2
- 230000037431 insertion Effects 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本发明涉及一种用于标定X射线滤片和反射镜工作效率的测量系统及方法,包括真空单元、瞄准准直单元、样品置放单元、调节单元、测角单元和信号采集控制单元;所述调节单元用于调节瞄准准直单元、样品置放单元以及测角单元的工作状态,调节单元与信号采集控制单元连接;所述真空单元与第一真空腔相连接;所述样品置放单元包括滤片样品架和反射镜样品架;所述瞄准准直单元置于第一真空腔内,样品置放单元、调节单元和测角单元置于第二真空腔内,两个真空腔通过密封真空法兰相连接。与现有技术相比,本发明能够同时测量多块滤片及反射镜样品,并实时测量输入信号以及输出信号,显著提高了测量效率,同时降低了测量误差。
The invention relates to a measurement system and method for calibrating the working efficiency of X-ray filters and mirrors, which includes a vacuum unit, an aiming and collimating unit, a sample placement unit, an adjustment unit, an angle measurement unit and a signal acquisition control unit; The adjustment unit is used to adjust the working state of the aiming collimation unit, the sample placement unit and the angle measurement unit, the adjustment unit is connected with the signal acquisition control unit; the vacuum unit is connected with the first vacuum chamber; the sample placement unit It includes a filter sample holder and a reflector sample holder; the aiming and collimating unit is placed in the first vacuum chamber, the sample placement unit, the adjustment unit and the angle measurement unit are placed in the second vacuum chamber, and the two vacuum chambers are sealed by Vacuum flange connection. Compared with the prior art, the invention can simultaneously measure a plurality of filters and reflector samples, and measure input signals and output signals in real time, significantly improving measurement efficiency and reducing measurement errors.
Description
技术领域technical field
本发明涉及X射线光学元件工作效率标定领域,尤其是涉及一种用于标定X射线滤片和反射镜工作效率的测量系统及方法。The invention relates to the field of calibration of working efficiency of X-ray optical elements, in particular to a measurement system and method for calibrating the working efficiency of X-ray filters and mirrors.
背景技术Background technique
软X射线能谱的绝对测量是ICF(inertial confinement fusion,惯性约束聚变)研究中的一个核心内容,其中软X射线滤片与软X射线反射镜是软X射线能谱诊断中的重要调节及色散元件。这些元件在ICF能谱及辐射流诊断领域常用的重要仪器如美国NIF激光装置中采用的Dante谱仪,我国神光III激光装置中的SXS(Soft x-ray spectrometer)能谱仪以及FXRD(Flat x-ray diode)都是核心测量元件。为了保证测量结果的精度,必须对这些光学元件的工作效率进行准确的标定测量。The absolute measurement of soft X-ray energy spectrum is a core content of ICF (inertial confinement fusion, inertial confinement fusion) research, in which soft X-ray filters and soft X-ray mirrors are important adjustments and Dispersion element. These components are important instruments commonly used in the field of ICF energy spectroscopy and radiation flow diagnosis, such as the Dante spectrometer used in the NIF laser facility in the United States, the SXS (Soft x-ray spectrometer) energy spectrometer in the Shenguang III laser facility in my country, and the FXRD (Flat x-ray spectrometer) energy spectrometer. x-ray diode) are the core measurement components. In order to ensure the accuracy of the measurement results, accurate calibration measurements must be made on the operating efficiency of these optical components.
在同步辐射上现有的X射线元件标定装置主要分为透射式的滤片标定装置以及反射式的反射率计装置。现有的标定装置由于光学结构的限制,难以兼顾透射式与反射式光学元件的标定测量,并且在样品更换过程中需要占用大量时间,这大大降低了标定效率,尤其在同步辐射装置工时紧张的情况下这对X射线光学元件的标定工作造成了巨大困难。同时,现有的反射率计由于采用单探测器,无法同时探测输入信号与输出信号,在同步辐射光束强度随时间变化的情况下,造成了大量的测量误差。The existing X-ray element calibration devices for synchrotron radiation are mainly divided into transmission filter calibration devices and reflective reflectance meter devices. Due to the limitations of the optical structure, the existing calibration device is difficult to take into account the calibration measurement of transmission and reflection optical elements, and it takes a lot of time in the process of sample replacement, which greatly reduces the calibration efficiency, especially when the working hours of the synchrotron radiation device are tight. Under the circumstances, this has caused great difficulties in the calibration of X-ray optical components. At the same time, because the existing reflectance meter uses a single detector, it cannot detect the input signal and the output signal at the same time, which causes a large number of measurement errors when the intensity of the synchrotron radiation beam changes with time.
发明内容Contents of the invention
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种用于标定X射线滤片和反射镜工作效率的测量系统及方法。The object of the present invention is to provide a measurement system and method for calibrating the working efficiency of X-ray filters and mirrors in order to overcome the above-mentioned defects in the prior art.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
一种用于标定X射线滤片和反射镜工作效率的测量系统,包括真空单元、瞄准准直单元、样品置放单元、调节单元、测角单元和信号采集控制单元;所述调节单元用于调节瞄准准直单元、样品置放单元以及测角单元的工作状态,调节单元与信号采集控制单元连接;所述真空单元与第一真空腔相连接;所述样品置放单元包括滤片样品架和反射镜样品架;所述瞄准准直单元置于第一真空腔内,样品置放单元、调节单元和测角单元置于第二真空腔内,两个真空腔通过密封真空法兰相连接。A measurement system for calibrating the working efficiency of X-ray filters and mirrors, comprising a vacuum unit, an aiming collimation unit, a sample placement unit, an adjustment unit, an angle measurement unit and a signal acquisition control unit; the adjustment unit is used for Adjust the working state of the aiming collimation unit, the sample placement unit and the angle measurement unit, the adjustment unit is connected with the signal acquisition control unit; the vacuum unit is connected with the first vacuum chamber; the sample placement unit includes a filter sample holder and the reflector sample holder; the aiming and collimating unit is placed in the first vacuum chamber, the sample placement unit, the adjustment unit and the angle measurement unit are placed in the second vacuum chamber, and the two vacuum chambers are connected by a sealed vacuum flange .
进一步地,所述的真空单元配备有真空泵和高精度真空计,装置真空度≤10-3pa。Further, the vacuum unit is equipped with a vacuum pump and a high-precision vacuum gauge, and the vacuum degree of the device is ≤10 -3 Pa.
进一步地,所述的瞄准准直单元包括可垂直调节的第一狭缝和第二狭缝以及可垂直调节的用于监控狭缝光斑的第一CCD相机和第二CCD相机,第一狭缝为横狭缝,第二狭缝为竖狭缝,狭缝宽度调节范围为1~3mm,狭缝间距为200mm,狭缝边缘涂抹有X射线荧光粉。Further, the aiming and collimating unit includes a vertically adjustable first slit and a second slit and a vertically adjustable first CCD camera and a second CCD camera for monitoring the slit spot, the first slit It is a horizontal slit, the second slit is a vertical slit, the adjustment range of the slit width is 1-3mm, the slit spacing is 200mm, and the edge of the slit is coated with X-ray phosphor.
进一步地,所述的测角单元包括闪烁体和可垂直调节的用于监控闪烁体光斑的第三CCD相机,闪烁体设置在第二真空腔内壁上,第三CCD相机与调节单元相连接,所述闪烁体为GAGG塑料闪烁体,闪烁体置于光路末端,直径为300mm。Further, the goniometric unit includes a scintillator and a vertically adjustable third CCD camera for monitoring the scintillator spot, the scintillator is arranged on the inner wall of the second vacuum chamber, the third CCD camera is connected to the adjustment unit, The scintillator is a GAGG plastic scintillator, and the scintillator is placed at the end of the optical path, with a diameter of 300 mm.
进一步地,所述的信号采集控制单元包括第二真空腔内部的两个硅光二极管探测器、弱电流计、上位机以及设置在第二真空腔体上的用于引出信号的电缆和真空航插法兰,所述硅光二极管为AXUV-100标准探测器,前后探测器灵敏度差异≤2%,信噪比≥100。Further, the signal acquisition control unit includes two silicon photodiode detectors inside the second vacuum chamber, a weak current meter, a host computer, and a cable and a vacuum aircraft set on the second vacuum chamber for leading out signals. Insert the flange, the silicon photodiode is AXUV-100 standard detector, the sensitivity difference between the front and rear detectors is ≤2%, and the signal-to-noise ratio is ≥100.
进一步地,所述的弱电流计灵敏度在pA量级,并可实时将数据传入上位机。Further, the sensitivity of the weak ammeter is on the pA level, and the data can be transmitted to the host computer in real time.
进一步地,所述的上位机接收弱电流计的实时信号,并对前后硅光二级管探测器输出的电信号进行处理,计算滤片样品的透射率及反射镜样品的反射率。Further, the host computer receives the real-time signal of the weak current meter, and processes the electrical signals output by the front and rear silicon photodiode detectors, and calculates the transmittance of the filter sample and the reflectance of the mirror sample.
进一步地,所述的调节单元包括搭载于狭缝、硅光二极管、滤片样品架和反射镜样品架中的真空电控调节架,所述真空电控调节架对狭缝、硅光二极管和滤片样品进行30mm的垂直调节;所述调节单元中的真空电控调节架对多层镜反射镜样品进行30mm的垂直调节、30mm的水平调节以及0度至20度的角度调节;对观察狭缝的第一CCD相机和第二CCD相机进行15mm的垂直调节;对观察闪烁体光斑的第三CCD相机进行200mm的垂直调节。Further, the adjustment unit includes a vacuum electric control adjustment frame mounted in the slit, silicon photodiode, filter sample holder and mirror sample holder, and the vacuum electric control adjustment frame is used for the slit, silicon photodiode and The filter sample is adjusted vertically by 30mm; the vacuum electric control adjustment frame in the adjustment unit is adjusted vertically by 30mm, horizontally by 30mm and angled from 0 to 20° to the multilayer mirror mirror sample; The vertical adjustment of 15mm is performed on the first CCD camera and the second CCD camera of the slit; the vertical adjustment of 200mm is performed on the third CCD camera for observing the scintillator facula.
进一步地,所述的信号采集控制单元中的上位机控制所有电控调节架,并通过Labview程序自动切换X射线光束能量以及滤片样品和反射镜样品。Further, the host computer in the signal acquisition control unit controls all the electronic control adjustment racks, and automatically switches the X-ray beam energy, filter samples and mirror samples through the Labview program.
进一步地,所述的上位机接收弱电流计的实时信号,并对来自同一时段同一样品的信号进行平均值与方差计算。Further, the host computer receives the real-time signal of the weak current meter, and calculates the average value and variance of the signal from the same sample at the same time period.
一种用于标定X射线滤片和反射镜工作效率的测量系统的测量方法,包括以下步骤:A method for measuring a measurement system for calibrating the operating efficiency of an X-ray filter and a mirror, comprising the following steps:
S1、将多块滤片样品及反射镜样品分别置于样品置放单元中的滤片样品架和反射镜样品架,通过真空单元将装置内真空度调节至≤10-3Pa;S1. Place multiple filter samples and mirror samples in the filter sample holder and mirror sample holder in the sample placement unit respectively, and adjust the vacuum degree in the device to ≤10 -3 Pa through the vacuum unit;
S2、将同步辐射X射线光束切换至0级衍射光,通过瞄准准直单元对光路进行瞄准和准直,测角单元测量反射镜样品的掠入射角度,将调节单元调节至反射镜样品所需的测量角度;S2. Switch the X-ray beam of synchrotron radiation to the 0th-order diffracted light, aim and collimate the optical path through the aiming and collimating unit, measure the grazing incidence angle of the mirror sample by the angle measuring unit, and adjust the adjustment unit to the required value of the mirror sample the measurement angle;
S3、将同步辐射X射线光束切换至750eV能量,通过调节单元(4)将第一个硅光二级管探测器置于光路中,测得没经过反射镜样品的数据,再将第二个硅光二级管探测器置于光路中,测得经过反射镜样品的数据;S3. Switch the synchrotron radiation X-ray beam to 750eV energy, place the first silicon photodiode detector in the optical path through the adjustment unit (4), measure the data of the sample that has not passed the mirror, and then place the second silicon photodiode detector The photodiode detector is placed in the optical path to measure the data of the sample passing through the mirror;
S4、将同步辐射X射线光束在100—1500eV能段内进行扫描,通过调节单元(4)先将两个硅光二级管探测器垂直调节移出光路,更换滤片样品以及反射镜样品,接着通过调节单元(4)将第一个硅光二级管探测器置于光路中,测得没经过反射镜样品的数据,再将第二个硅光二级管探测器置于光路中,测得经过反射镜样品的数据,信号采集控制单元(6)对前后硅光二级管探测器输出的电信号进行处理,并计算滤片样品的透射率及反射镜样品的反射率。S4. Scan the synchrotron radiation X-ray beam in the energy range of 100-1500eV, first move the two silicon photodiode detectors vertically out of the optical path through the adjustment unit (4), replace the filter sample and the mirror sample, and then pass The adjustment unit (4) places the first silicon photodiode detector in the optical path to measure the data of the sample that has not passed the reflector, and then places the second silicon photodiode detector in the optical path to measure the data of the sample that has not passed the reflector. For the data of the mirror sample, the signal acquisition control unit (6) processes the electrical signals output by the front and rear silicon photodiode detectors, and calculates the transmittance of the filter sample and the reflectance of the mirror sample.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1.本发明在光学结构设计上同时考虑了对X射线透射式与反射式光学元件的工作效率的标定,通过在第二真空腔里内设置有滤片样品架和反射镜样品架,能够同时标定X射线滤片与反射镜,样品架中能容纳多个样品;节省了大量换样的时间,显著提高了标定X射线光学元件的测量效率。1. The present invention considers the calibration of the working efficiency of the X-ray transmissive and reflective optical elements simultaneously in the design of the optical structure, by being provided with a filter sample holder and a reflector sample holder in the second vacuum chamber, it can simultaneously For calibrating X-ray filters and mirrors, multiple samples can be accommodated in the sample holder; a lot of time for changing samples is saved, and the measurement efficiency of calibrating X-ray optical components is significantly improved.
2.本发明采用了两个灵敏度差异≤2%的硅光二极管作为信号探测器,能够实时测量输入信号与经过光学元件透射或反射后的输出信号,避免了由于同步辐射光束强度随时间变化带来的大量误差,显著提高了标定X射线光学元件的测量精度。2. The present invention adopts two silicon photodiodes with sensitivity difference ≤ 2% as the signal detector, which can measure the input signal and the output signal after the transmission or reflection of the optical element in real time, avoiding the band caused by the synchrotron radiation beam intensity changing with time. A large number of errors come, which significantly improves the measurement accuracy of the calibrated X-ray optical components.
3.本发明通过使用第三CCD相机监控观察光路末端X射线闪烁体上的X射线光斑来实时测量反射镜掠入射角,而传统反射率计直接将转角作为掠入射角,本发明采用的测角方法有效避免了传统反射率计由于样品安装以及设备老化带来的角度测量误差,显著提高了标定X射线反射镜的测量精度。3. The present invention measures the grazing incidence angle of the reflection mirror in real time by using the third CCD camera to monitor and observe the X-ray spot on the X-ray scintillator at the end of the optical path, while the traditional reflectance meter directly uses the rotation angle as the grazing incidence angle. The angle method effectively avoids the angle measurement error caused by the sample installation and equipment aging of the traditional reflectance meter, and significantly improves the measurement accuracy of the calibrated X-ray reflector.
4.本发明通过设置有用于调节瞄准准直单元、样品置放单元以及测角单元的工作状态的调节单元,调节单元中的真空电控调节架对狭缝、硅光二极管和滤片样品进行垂直调节;对多层镜反射镜样品进行垂直、水平以及角度调节;对观察狭缝的第一CCD相机和第二CCD相机进行垂直调节;对观察闪烁体光斑的第三CCD相机进行精密垂直调节,实现了对不同测量要求的满足,具有实用性。4. The present invention is provided with an adjustment unit for adjusting the working state of the aiming collimation unit, the sample placement unit and the angle measurement unit, and the vacuum electric control adjustment frame in the adjustment unit performs the adjustment on the slit, the silicon photodiode and the filter sample. Vertical adjustment; vertical, horizontal and angular adjustment of the multilayer mirror mirror sample; vertical adjustment of the first CCD camera and the second CCD camera for observing the slit; precise vertical adjustment of the third CCD camera for observing the scintillator facula , to achieve the satisfaction of different measurement requirements, and has practicability.
附图说明Description of drawings
图1为本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2为本发明的滤片样品架示意图;Fig. 2 is a schematic diagram of a filter sample holder of the present invention;
图3为本发明的反射镜样品架示意图;Fig. 3 is the schematic diagram of mirror sample holder of the present invention;
图4为本发明的反射镜掠入射角度测量方法示意图。Fig. 4 is a schematic diagram of the method for measuring the grazing incidence angle of the mirror according to the present invention.
图中标号:真空单元1、瞄准准直单元2、样品置放单元3、调节单元4、测角单元5、信号采集控制单元6、反射镜样品架外框31、反射镜样品架转台32、反射镜镜框33、反射镜样品34、滤片架样品架外框35、滤片架样品架固定片36、滤片样品37、GAGG塑料闪烁体51。Symbols in the figure:
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments. This embodiment is carried out on the premise of the technical solution of the present invention, and detailed implementation and specific operation process are given, but the protection scope of the present invention is not limited to the following embodiments.
一种用于标定X射线滤片和反射镜工作效率的测量系统,包括真空单元1、瞄准准直单元2、样品置放单元3、调节单元4、测角单元5和信号采集控制单元6;调节单元4用于调节瞄准准直单元2、样品置放单元3以及测角单元5的工作状态,调节单元4与信号采集控制单元6连接;真空单元1与第一真空腔相连接;样品置放单元3包括滤片样品架和反射镜样品架;瞄准准直单元2置于第一真空腔内,样品置放单元3、调节单元4和测角单元5置于第二真空腔内,两个真空腔通过密封真空法兰相连接。A measurement system for calibrating the working efficiency of X-ray filters and mirrors, including a
真空单元1配备有真空泵和高精度真空计,装置真空度≤10-3pa;瞄准准直单元2包括可垂直调节的第一狭缝和第二狭缝以及可垂直调节的用于监控狭缝光斑的第一CCD相机和第二CCD相机,第一狭缝为横狭缝,第二狭缝为竖狭缝,狭缝宽度调节范围为1~3mm,狭缝间距为200mm,狭缝边缘涂抹有X射线荧光粉。The
测角单元5包括闪烁体和可垂直调节的用于监控闪烁体光斑的第三CCD相机,闪烁体设置在第二真空腔内壁上,第三CCD相机与调节单元4相连接,所述闪烁体为GAGG塑料闪烁体,闪烁体置于光路末端,直径为300mm。The
信号采集控制单元6包括第二真空腔内部的两个硅光二极管探测器、弱电流计、上位机以及设置在第二真空腔体上的用于引出信号的电缆和真空航插法兰,所述硅光二极管为AXUV-100标准探测器,前后探测器灵敏度差异≤2%,信噪比≥100;弱电流计灵敏度在pA量级,并可实时将数据传入上位机。The signal
上位机接收弱电流计的实时信号,并对前后硅光二级管探测器输出的电信号进行处理,计算滤片样品的透射率及反射镜样品的反射率。The upper computer receives the real-time signal of the weak current meter, and processes the electrical signal output by the front and rear silicon photodiode detectors, and calculates the transmittance of the filter sample and the reflectance of the mirror sample.
调节单元4包括搭载于狭缝、硅光二极管、滤片样品架和反射镜样品架中的真空电控调节架,所述真空电控调节架对狭缝、硅光二极管和滤片样品进行30mm的垂直调节;所述调节单元中的真空电控调节架对多层镜反射镜样品进行30mm的垂直调节、30mm的水平调节以及0度至20度的角度调节;对观察狭缝的第一CCD相机和第二CCD相机进行15mm的垂直调节;对观察闪烁体光斑的第三CCD相机进行200mm的垂直调节。The
信号采集控制单元6中的上位机控制所有电控调节架,并通过Labview程序自动切换X射线光束能量及样品。The upper computer in the signal
一种用于标定X射线滤片和反射镜工作效率的测量系统的测量方法,包括以下步骤:A method for measuring a measurement system for calibrating the operating efficiency of an X-ray filter and a mirror, comprising the following steps:
S1、将多块滤片样品及反射镜样品分别置于样品置放单元3中的滤片样品架和反射镜样品架,通过真空单元1将装置内真空度调节至≤10-3Pa;S1. Place multiple filter samples and reflector samples in the filter sample holder and reflector sample holder in the
S2、将同步辐射X射线光束切换至0级衍射光,通过瞄准准直单元2对光路进行瞄准和准直,测角单元5测量反射镜样品的掠入射角度,将调节单元4调节至反射镜样品所需的测量角度;S2. Switch the synchrotron radiation X-ray beam to the 0th-order diffracted light, aim and collimate the optical path through the aiming and
S3、将同步辐射X射线光束切换至750eV能量,通过调节单元4将硅光二级管探测器置于光路中;S3. Switch the synchrotron radiation X-ray beam to 750eV energy, and place the silicon photodiode detector in the optical path through the
S4、将同步辐射X射线光束在100—1500eV能段内进行扫描,通过调节单元4切换硅光二级管探测器和样品,通过信号采集控制单元6对前后硅光二级管探测器输出的电信号进行处理,并计算滤片样品的透射率及反射镜样品的反射率。S4. Scan the synchrotron radiation X-ray beam in the energy range of 100-1500eV, switch the silicon photodiode detector and the sample through the
本实施例以标定用于ICF软X射线能谱测量的X射线滤片以及紧凑型X射线多层膜阵列反射镜的测量装置和测量方法为例对本发明内容进行进一步说明。In this embodiment, the content of the present invention will be further described by taking the measurement device and method of calibrating an X-ray filter for ICF soft X-ray energy spectrum measurement and a compact X-ray multilayer film array mirror as examples.
如图1-3所示为一种用于标定X射线滤片和反射镜工作效率的测量系统的结构示意图,包括真空单元1、瞄准准直单元2、样品置放单元3、调节单元4,测角单元5,信号采集控制单元6、反射镜样品架外框31、反射镜样品架转台32、反射镜镜框33、反射镜样品34、滤片架样品架35、滤片架样品架固定片36、滤片样品37以及GAGG塑料闪烁体51。As shown in Figure 1-3, it is a schematic structural diagram of a measurement system for calibrating the working efficiency of X-ray filters and mirrors, including a
多个X射线滤片样品37放置在与滤片架样品架35定制的滤片架槽中,滤片样品框表面与滤片架槽表面相平,采用滤片架样品架固定片36对滤片样品37进行固定,调节单元4能对滤片样品37进行30mm的垂直调节。A plurality of
紧凑型X射线多层膜阵列反射镜样品34通过反射镜镜框33从侧面进行固定,该反射镜镜框33表面与反射镜样品架转台32的选择中心处于同一平面,确保掠入射角的测量精度,调节单元4能对反射镜样品34进行30mm的垂直调节范围,30mm的水平调节,0度至20度的角度调节。The compact X-ray multilayer film
基于上述装置,本实施例中标定用于ICF软X射线能谱测量的X射线滤片以及紧凑型X射线多层膜阵列反射镜的测量方法包括以下步骤:Based on the above-mentioned device, the measurement method for calibrating the X-ray filter for ICF soft X-ray energy spectrum measurement and the compact X-ray multilayer film array mirror in this embodiment includes the following steps:
步骤1、将X射线滤片及多层膜阵列反射镜样品置于样品架中,通过真空单元1中的前级机械泵与后置分子泵将装置内真空度调节至≤10-3pa,通过真空计观察真空度是否达到要求,若满足要求则进行步骤2。
步骤2、将同步辐射束线切换至0级衍射光。瞄准准直单元2中采用两个距离150mm的涂抹有X射线荧光粉的狭缝,通过监控第一和第二CCD相机,确认束线光路经过两个狭缝;如图4所示,测角单元5通过监控第三CCD相机,配合GAGG塑料闪烁体51分别测量束线直射光斑位置、束线与反射镜样品37平行位置以及束线经过反射镜样品37反射光斑位置,通过3个光斑之间的位置关系,计算出准确的反射镜样品37掠入射角。
步骤3、将同步辐射X射线光束切换至750eV能量,通过调节单元4分别调节前后两个硅光二级管探测器的位置,监测信号采集控制单元6中的信号变化,当信号基本稳定时,探测器位于束线光路中,记录此时探测器位置。
步骤4、针对任一样品,将同步辐射X射线光束在100—1500eV能段进行扫描,通过调节装置4自动切换探测器,通过信号控制单元6对前后探测器的信号进行处理,并计算滤片样品37的透射率及反射镜样品34的反射率以及其他相关参数。
步骤5、将同步辐射X射线光束复位,通过调节装置4自动切换样品,对于反射镜样品34,重复步骤1与步骤4。对于滤片样品37,重复步骤4。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。The preferred specific embodiments of the present invention have been described in detail above. It should be understood that those skilled in the art can make many modifications and changes according to the concept of the present invention without creative efforts. Therefore, all technical solutions that can be obtained by those skilled in the art based on the concept of the present invention through logical analysis, reasoning or limited experiments on the basis of the prior art shall be within the scope of protection defined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211494049.8A CN115793027A (en) | 2022-11-25 | 2022-11-25 | Measuring system and method for calibrating working efficiency of X-ray filter and mirror |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211494049.8A CN115793027A (en) | 2022-11-25 | 2022-11-25 | Measuring system and method for calibrating working efficiency of X-ray filter and mirror |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115793027A true CN115793027A (en) | 2023-03-14 |
Family
ID=85441745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211494049.8A Pending CN115793027A (en) | 2022-11-25 | 2022-11-25 | Measuring system and method for calibrating working efficiency of X-ray filter and mirror |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115793027A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116699674A (en) * | 2023-06-16 | 2023-09-05 | 中国工程物理研究院激光聚变研究中心 | Low-temperature radiation flow diagnosis device |
-
2022
- 2022-11-25 CN CN202211494049.8A patent/CN115793027A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116699674A (en) * | 2023-06-16 | 2023-09-05 | 中国工程物理研究院激光聚变研究中心 | Low-temperature radiation flow diagnosis device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7542547B2 (en) | X-ray diffraction equipment for X-ray scattering | |
CN103512864B (en) | Optical measuring system for measuring reflectivity and transmissivity of substrate by utilizing parallel light | |
AU2020104424A4 (en) | A method and equipment for measuring absorption coefficient of liquid | |
CN101231240A (en) | Apparatus and method for measuring carbon monoxide concentration | |
CN105572005A (en) | Light-scattering-method-based PM2.5 monitor calibration method and device | |
CN108287126B (en) | Nanoparticle size measurement system | |
CN113862629A (en) | Online film thickness monitoring system and method for optical film deposition | |
CN115793027A (en) | Measuring system and method for calibrating working efficiency of X-ray filter and mirror | |
CN109374552B (en) | Water absorption coefficient measuring device based on segmented light path | |
Sheikh et al. | RADCAM—a radiation camera system combining foil bolometers, AXUV diodes, and filtered soft x-ray diodes | |
CN201514316U (en) | Solar Cell Spectral Response Test Instrument | |
CN109470658A (en) | A device and method for measuring reflectivity and absorption coefficient of reflective materials | |
CN108344712A (en) | A kind of measuring device and its measurement method of Refractive Index of Material | |
CN112763187B (en) | Transmission optical performance testing system and method of film material based on telephoto optical path | |
CN107561008A (en) | A kind of device for VUV diffusing reflection plate BRDF feature measurements | |
CN219799211U (en) | Multichannel diffuse reflection near infrared spectrum acquisition system | |
Basso et al. | The expanded, parallel, and monochromatic x-ray beam of BEaTriX: alignment and characterization | |
CN105960086A (en) | Synchronous alignment device and method for short-pulse laser Thomson scattering signal light spots | |
CN111024372A (en) | Point source transmittance testing system and method for optical device | |
WO2020018168A1 (en) | System and method for multi-channel pyrometer allowing non-contact temperature measurements down to 800 k on the microsecond scale | |
CN114216882A (en) | Material transmittance measuring method and material transmittance measuring device | |
Mcintyre et al. | ABSOLUTE LIGHT-SCATTERING PHOTOMETER. 1. DESIGN AND OPERATION | |
CN111487040B (en) | Method and system for measuring point source transmittance of an optical system | |
CN217059077U (en) | Device for improving wavelength measurement precision and calibration of full-aperture optical filter | |
CN221173618U (en) | Standard light source device for PMT module inspection and light source control system thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |