CN115786366A - Eggplant cold-resistant regulatory gene, eggplant cold-resistant regulatory protein and application of eggplant cold-resistant regulatory protein - Google Patents
Eggplant cold-resistant regulatory gene, eggplant cold-resistant regulatory protein and application of eggplant cold-resistant regulatory protein Download PDFInfo
- Publication number
- CN115786366A CN115786366A CN202211524707.3A CN202211524707A CN115786366A CN 115786366 A CN115786366 A CN 115786366A CN 202211524707 A CN202211524707 A CN 202211524707A CN 115786366 A CN115786366 A CN 115786366A
- Authority
- CN
- China
- Prior art keywords
- smerf1
- eggplant
- gene
- seq
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
本发明公开了一种茄子抗寒调控基因、蛋白及其应用,该茄子抗寒调控基因其碱基序列如SEQ ID NO.1所示;SmERF1基因编码的茄子抗寒SmERF1蛋白的氨基酸序列如SEQ ID NO.2所示。本发明首次克隆到茄子抗寒调控基因SmERF1与其编码的蛋白,SmERF1基因受低温、高温和干旱诱导表达,其中受低温诱导表达效果最显著。本发明提供的茄子抗寒调控SmERF1基因可以改良植物在低温中生长不良,赋予植物低温环境良好生长特性,同时适用于茄子抗寒研究、植物分子标记辅助育种和基因工程领域遗传性状的改良,为茄子抗寒分子育种奠定基础。
The invention discloses an eggplant cold-resistant regulation gene, protein and application thereof. The base sequence of the eggplant cold-resistant regulation gene is shown in SEQ ID NO.1; the amino acid sequence of the eggplant cold-resistant SmERF1 protein encoded by the SmERF1 gene is shown in SEQ ID NO.1. Shown in ID NO.2. The present invention clones the eggplant cold-resistance regulatory gene SmERF1 and its encoded protein for the first time. The expression of the SmERF1 gene is induced by low temperature, high temperature and drought, and the expression effect induced by low temperature is the most significant. The eggplant cold-resistance regulating SmERF1 gene provided by the present invention can improve the poor growth of plants in low temperature, endow plants with good growth characteristics in low temperature environment, and is also suitable for the improvement of genetic traits in eggplant cold resistance research, plant molecular marker assisted breeding and genetic engineering fields. Molecular breeding for cold resistance in eggplant lays the foundation.
Description
技术领域technical field
本发明属于生物技术领域,具体涉及一种茄子抗寒调控基因、蛋白及其应用。The invention belongs to the field of biotechnology, and in particular relates to an eggplant cold resistance regulating gene, protein and application thereof.
背景技术Background technique
在自然条件下,植物的生长发育不可避免地要受到低温、高温、干旱和盐胁迫等逆境胁迫的影响,严重者甚至造成植物的死亡,这严重影响了农业的生产及生态环境。因此,提高作物的抗逆性对农业的生产发展具有重要研究意义。ERF转录因子主要通过调控胁迫响应基因转录在植物应对低温、干旱、高温和盐胁迫中发挥重要作用。目前已从很多植物中克隆得到ERF基因,如大豆、马铃薯、番茄和拟南芥等。番茄TERF2/LeERF2基因在烟草和番茄中的超表达,调控了抗寒相关基因的诱导表达,增强了转基因植株的抗寒性。番茄SlERF5基因的超表达,增强了番茄的抗旱性及抗盐性。拟南芥AtERF53基因的超表达,通过调控ABA信号转导途径和脯氨酸合成,使转基因植株的抗热性增强。杨树PtaERF194基因的超表达,通过提高水分的利用效率、限制水分散失,提高了植物对干旱胁迫逆境的抵抗能力。由以上结果可知,不同的ERF转录因子在植物中的功能不同,发掘新的转录因子并阐明其生物学功能具有重要研究意义。茄子作为一种重要的蔬菜作物,与其他茄科蔬菜相比,其受逆境胁迫的危害严重。但目前茄子ERF基因在逆境胁迫响应中的研究报道较少。Under natural conditions, the growth and development of plants are inevitably affected by adversity stresses such as low temperature, high temperature, drought and salt stress. In severe cases, plants may even die, which seriously affects agricultural production and the ecological environment. Therefore, improving the stress resistance of crops has important research significance for the development of agricultural production. ERF transcription factors play an important role in plant response to low temperature, drought, high temperature and salt stress mainly by regulating the transcription of stress response genes. ERF genes have been cloned from many plants, such as soybean, potato, tomato and Arabidopsis. The overexpression of tomato TERF2/LeERF2 genes in tobacco and tomato regulates the induced expression of cold resistance-related genes and enhances the cold resistance of transgenic plants. The overexpression of tomato SlERF5 gene enhanced the drought resistance and salt resistance of tomato. Overexpression of Arabidopsis AtERF53 gene can enhance the heat resistance of transgenic plants by regulating ABA signal transduction pathway and proline synthesis. The overexpression of PtaERF194 gene in poplar improves the resistance of plants to drought stress by increasing water use efficiency and limiting water loss. From the above results, it can be seen that different ERF transcription factors have different functions in plants, and it is of great research significance to discover new transcription factors and clarify their biological functions. As an important vegetable crop, eggplant is seriously harmed by adversity stress compared with other Solanaceae vegetables. However, there are few research reports on eggplant ERF genes in response to adversity stress.
发明内容Contents of the invention
发明目的:针对现有技术中存在的不足,本发明提供一种茄子抗寒调控基因,其可以改良植物如茄子在低温中生长不良,赋予其低温环境良好生长中的特性。Purpose of the invention: Aiming at the deficiencies in the prior art, the present invention provides an eggplant cold-resistant regulation gene, which can improve plants such as eggplant that grow poorly in low temperature, and endow it with good growth characteristics in a low temperature environment.
本发明还提供所述抗寒基因编码的抗寒蛋白和应用。The invention also provides the cold-resistant protein encoded by the cold-resistant gene and its application.
技术方案:为了实现上述目的,本发明一种茄子抗寒调控基因SmERF1,其碱基序列如SEQ ID NO.1所示。Technical solution: In order to achieve the above objectives, the present invention provides an eggplant cold-resistance regulatory gene SmERF1, the base sequence of which is shown in SEQ ID NO.1.
本发明所述的茄子抗寒调控基因SmERF1编码的茄子抗寒调控蛋白SmERF1,所述蛋白的氨基酸序列如SEQ ID NO.2所示。The eggplant cold resistance regulatory protein SmERF1 encoded by the eggplant cold resistance regulatory gene SmERF1 of the present invention has an amino acid sequence as shown in SEQ ID NO.2.
其中,所述的茄子抗寒调控基因的编码区长度为849bp,命名为SmERF1。该基因不含内含子结构,该基因编码一种茄子抗寒调控蛋白,所述的氨基酸序列共含有1个AP2结构域。Wherein, the length of the coding region of the eggplant cold resistance regulation gene is 849bp, named as SmERF1. The gene does not contain an intron structure, and the gene encodes an eggplant cold resistance regulatory protein, and the amino acid sequence contains an AP2 structural domain in total.
本发明所述的用于扩增SmERF1基因的引物对,所述引物对的碱基序列如SEQ IDNO.3、SEQ ID NO.4所示。The primer pair for amplifying the SmERF1 gene according to the present invention, the base sequences of the primer pair are shown in SEQ ID NO.3 and SEQ ID NO.4.
本发明所述的茄子抗寒调控基因SmERF1或者所述的茄子抗寒调控蛋白SmERF1在改良植物品质中的应用。The application of the eggplant cold resistance regulation gene SmERF1 or the eggplant cold resistance regulation protein SmERF1 in improving plant quality.
其中,所述改良植物品质中为改良植物在低温中生长不良,赋予植物低温环境良好生长中的应用。Wherein, the improvement of plant quality refers to the application of improving poor growth of plants in low temperature and endowing plants with good growth in low temperature environment.
本发明所述的茄子抗寒调控基因SmERF1或者所述的茄子抗寒调控蛋白SmERF1在培育植物抗逆品种中应用。The eggplant cold-resistance regulation gene SmERF1 or the eggplant cold-resistance regulation protein SmERF1 of the present invention is used in cultivating plant stress-resistant varieties.
其中,所述应用为培育抗寒植物品种中的应用。Wherein, the application is an application in cultivating cold-resistant plant varieties.
其中,所述植物为茄子或者拟南芥。Wherein, the plant is eggplant or Arabidopsis.
本发明所述的SmERF1基因在茄子响应低温、高温和干旱的时的表达量分析方法,所述方法包括如下步骤:The method for analyzing the expression level of the SmERF1 gene of the present invention when eggplant responds to low temperature, high temperature and drought, the method comprises the following steps:
S1、获得植物低温、高温和干旱胁迫处理不同时间后的叶片组织,提取其总RNA;S1. Obtain the leaf tissues of the plants treated with low temperature, high temperature and drought stress for different periods of time, and extract their total RNA;
S2、以所述总RNA为模板,反转录获得cDNA;S2. Using the total RNA as a template, obtain cDNA by reverse transcription;
S3、以cDNA第一条链为模板,分别用SmERF1基因与内参基因APRT(JX448345)的特异性引物扩增进行荧光定量分析,获得所述SmERF1基因在茄子不同胁迫时的表达量;所述扩增SmERF1基因的特异性引物的碱基序列如SEQ ID NO.5、SEQ ID NO.6所示;所述扩增内参基因APRT(JX448345)特异性引物的碱基序列如SEQ ID NO.7、SEQ ID NO.8所示。S3, using the first strand of cDNA as a template, respectively amplifying the SmERF1 gene and the specific primers of the internal reference gene APRT (JX448345) for fluorescence quantitative analysis to obtain the expression levels of the SmERF1 gene under different stresses in eggplant; The base sequence of the specific primer of the SmERF1 gene is shown in SEQ ID NO.5 and SEQ ID NO.6; the base sequence of the specific primer of the amplification internal reference gene APRT (JX448345) is as SEQ ID NO.7, Shown in SEQ ID NO.8.
本发明为了充分利用分子育种的优势,从分子生物学方法的角度出发,利用无缝克隆、并对其测序、拼接,得到三月茄SmERF1基因编码区序列;随后,对其进行生物信息学分析、检测SmERF1基因在响应不同非生物胁迫时的表达模式,以进一步验证其功能,揭示该基因在抗寒中所发挥的作用,确定抗寒相关基因。本发明从茄子中克隆ERF转录因子基因SmERF1并进行了生物信息学及其对低温、高温和干旱胁迫响应的分析,以期为更深入了解SmERF1转录因子在茄子非生物胁迫响应中的功能及作用机制提供参考依据。In order to make full use of the advantages of molecular breeding, from the perspective of molecular biology methods, the present invention uses seamless cloning, sequencing and splicing to obtain the sequence of the coding region of Solanum solanum SmERF1 gene; and then conducts bioinformatics analysis on it , Detect the expression pattern of the SmERF1 gene in response to different abiotic stresses to further verify its function, reveal the role of the gene in cold resistance, and determine the genes related to cold resistance. The present invention clones the ERF transcription factor gene SmERF1 from eggplant and conducts bioinformatics and analysis of its response to low temperature, high temperature and drought stress, in order to further understand the function and mechanism of SmERF1 transcription factor in response to abiotic stress in eggplant Provide references.
本发明的SmERF1基因获得方法包括以下步骤:1)提取三月茄叶片组织总RNA,并反转录成cDNA;2)以参考基因组序列为模板,设计引物(cP1F和cP1R);3)以步骤1)中反转录的cDNA为模板,并且利用基于步骤2)中设计的引物进行克隆;4)对步骤3)中获得的PCR产物进行回收、测序与序列分析。The method for obtaining the SmERF1 gene of the present invention comprises the following steps: 1) extracting the total RNA of the leaf tissue of March Solanum, and reverse-transcribing it into cDNA; 2) using the reference genome sequence as a template to design primers (cP1F and cP1R); 3) using the steps 1) The reverse-transcribed cDNA is used as a template, and the primers designed in step 2) are used for cloning; 4) The PCR product obtained in step 3) is recovered, sequenced and sequenced.
SmERF1基因受低温、高温和干旱诱导表达,其中受低温诱导表达效果最显著。本发明提供的茄子抗低温基因SmERF1,适用于茄子抗寒研究、植物分子标记辅助育种和基因工程领域遗传性状的改良,为茄子抗寒分子育种奠定基础。The expression of SmERF1 gene was induced by low temperature, high temperature and drought, and the expression induced by low temperature was the most significant. The eggplant low temperature resistance gene SmERF1 provided by the invention is suitable for the improvement of genetic traits in the field of eggplant cold resistance research, plant molecular marker assisted breeding and genetic engineering, and lays the foundation for eggplant cold resistance molecular breeding.
本发明的基因对培育植物抗逆品种,特别是抗寒茄子品种提高作物产量和品质具有重要意义。The gene of the invention is of great significance for cultivating stress-resistant varieties of plants, especially for improving crop yield and quality of cold-resistant eggplant varieties.
具体地,本发明的茄子抗寒调控基因SmERF1获得以及表达量分析按照如下步骤:Specifically, the eggplant cold resistance regulation gene SmERF1 of the present invention is obtained and expressed according to the following steps:
1)提取三月茄样本(生长60d左右的三月茄植株叶片)总RNA;1) Extract the total RNA of March eggplant samples (the leaves of March eggplant plants that have grown for about 60 days);
2)以步骤1)中所提取RNA反转录成的cDNA为模板,进行PCR扩增,得到三月茄SmERF1基因编码区序列,在PCR扩增中所使用的特异引物的核苷酸序列如下:2) Using the cDNA extracted from RNA reverse-transcribed in step 1) as a template, carry out PCR amplification to obtain the sequence of the coding region of the Solanum solanum SmERF1 gene, and the nucleotide sequences of the specific primers used in the PCR amplification are as follows :
cP1F:cP1F:
GGACTCTAGAGGATCCATGGATTCATCTTCACTAGATTTGATAAGACAACA(SEQ ID NO.3)GGACTCTAGAGGATCCATGGATTCATTCTCACTAGATTTGATAAGACAACA (SEQ ID NO. 3)
cP1:R:cP1: R:
GACCACCCGGGGATCCTTATGAAACCAAAAGTTGTGAGTATCCAAAACTTG G(SEQ ID NO.4)GACCACCCGGGGATCCTTATGAAACCAAAAGTTGTGAGTATCCAAAACTTGG (SEQ ID NO. 4)
3)对步骤2)中所获得的PCR产物回收、连接转化、菌落PCR筛选、测序与序列分析。3) Recovering the PCR product obtained in step 2), ligation transformation, colony PCR screening, sequencing and sequence analysis.
4)SmERF1基因在茄子非生物胁迫时表达量分析,所述方法包括如下步骤:4) SmERF1 gene expression level analysis during abiotic stress in eggplant, the method comprises the following steps:
S1、获得植物样品,提取其总RNA;S1. Obtain a plant sample and extract its total RNA;
S2、以所述总RNA为模板,反转录获得cDNA;S2. Using the total RNA as a template, obtain cDNA by reverse transcription;
S3、以cDNA第一条链为模板,分别用SmERF1基因与内参基因APRT(JX448345)的特异性引物扩增进行荧光定量分析,获得所述SmERF1基因在不同非生物胁迫时的表达量;所述扩增SmERF1基因的特异性引物的碱基序列如SEQ ID NO.5和SEQ ID NO.6所示;所述扩增内参基因APRT(JX448345)的碱基序列如SEQ ID NO.7和SEQ ID NO.8所示。S3. Using the first strand of cDNA as a template, amplify the SmERF1 gene and the specific primers of the internal reference gene APRT (JX448345) to perform fluorescence quantitative analysis to obtain the expression of the SmERF1 gene under different abiotic stresses; The base sequence of the specific primer for amplifying the SmERF1 gene is shown in SEQ ID NO.5 and SEQ ID NO.6; the base sequence of the amplified internal reference gene APRT (JX448345) is shown in SEQ ID NO.7 and SEQ ID Shown in NO.8.
有益效果:与现有技术相比,本发明具有的优点和效果:Beneficial effects: compared with the prior art, the present invention has advantages and effects:
(1)本发明筛选到一种全新的茄子抗寒调控基因SmERF1,是首次报道的茄子ERF基因的序列,实验表明该基因响应低温胁迫过程,该基因的克隆及研究对理解茄子抗寒机制具有一定的参考价值;(1) The present invention has screened a brand-new eggplant cold-resistance regulatory gene SmERF1, which is the sequence of the eggplant ERF gene reported for the first time. Experiments have shown that the gene responds to the process of low temperature stress. The cloning and research of this gene are of great importance for understanding the cold-resistant mechanism of eggplant. Certain reference value;
(2)本发明提供的茄子抗寒调控SmERF1基因可以改良植物在低温中生长不良,赋予植物低温环境良好生长特性,该基因的获得既可作为茄子抗寒分子标记辅助育种提供参考基因,也丰富了茄子等植物抗寒转基因育种的基因选择,为茄子抗寒分子育种奠定初步基础。(2) The eggplant cold-resistance regulating SmERF1 gene provided by the present invention can improve the poor growth of plants in low temperature and endow plants with good growth characteristics in low temperature environment. Gene selection for cold-resistant transgenic breeding of eggplant and other plants was established, and a preliminary foundation for cold-resistant molecular breeding of eggplant was laid.
附图说明Description of drawings
图1为本发明的茄子SmERF1基因克隆电泳图;Fig. 1 is eggplant SmERF1 gene clone electrophoresis figure of the present invention;
图2为本发明的茄子SmERF1转录因子多序列比对分析;Fig. 2 is the multiple sequence alignment analysis of the eggplant SmERF1 transcription factor of the present invention;
图3为本发明的茄子SmERF1转录因子的系统进化分析;Fig. 3 is the phylogenetic analysis of eggplant SmERF1 transcription factor of the present invention;
图4为本发明的茄子SmERF1转录因子及其他物种ERF转录因子保守基序及结构域的比较分析;Fig. 4 is the comparative analysis of eggplant SmERF1 transcription factor of the present invention and other species ERF transcription factors conserved motifs and structural domains;
图5为本发明的茄子SmERF1蛋白二级结构的预测结果;Fig. 5 is the prediction result of the eggplant SmERF1 protein secondary structure of the present invention;
图6为本发明的茄子SmERF1蛋白三级结构的预测结果;Fig. 6 is the prediction result of the tertiary structure of eggplant SmERF1 protein of the present invention;
图7为CbERF5蛋白(SmERF1)互作网络分析;Fig. 7 is the interaction network analysis of CbERF5 protein (SmERF1);
图8为本发明的茄子SmERF1基因在不同非生物胁迫下的表达模式;Fig. 8 is the expression pattern of eggplant SmERF1 gene of the present invention under different abiotic stresses;
图9为三月茄子叶侵染后诱导愈伤组织的过程;Fig. 9 is the process of inducing callus after eggplant leaf infection in March;
图10为低温胁迫下(4℃)茄子幼苗的根系生长情况;Fig. 10 is the root growth situation of eggplant seedlings under low temperature stress (4 DEG C);
图11为4℃胁迫下茄子幼苗的根长情况;Fig. 11 is the root length situation of eggplant seedlings under 4 ℃ stress;
图12为SmERF1基因的CDS序列经NCBI Blastn比对结果;Figure 12 is the result of the comparison of the CDS sequence of the SmERF1 gene by NCBI Blastn;
图13为SmERF1转录因子比对结果。Figure 13 is the comparison result of SmERF1 transcription factors.
具体实施方式Detailed ways
以下结合附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with drawings and embodiments.
下述实施例便于更好的理解本发明,但并不限定本发明。下述实施例中的实验方法,如无特殊说明,均为常规方法。实施例中所用到的实验耗材,如无特殊说明,均为自常规生化试剂公司购买得到。The following examples facilitate a better understanding of the present invention, but do not limit the present invention. The experimental methods in the following examples are conventional methods unless otherwise specified. The experimental consumables used in the examples were all purchased from conventional biochemical reagent companies unless otherwise specified.
实施例1Example 1
茄子SmERF1基因的克隆Cloning of Eggplant SmERF1 Gene
1、植物材料的获得1. Acquisition of plant material
本实验所用的植物材料为茄子优良种质资源三月茄。实验材料由淮阴工学院提供。以温室盆栽生长60d左右且大小一致的三月茄为材料,收集三月茄从顶部往下数第二和第三片的真叶用于提取RNA。The plant material used in this experiment is Sanyueqiu, an excellent germplasm resource of eggplant. The experimental materials were provided by Huaiyin Institute of Technology. The second and third true leaves from the top to the bottom of the March nightshade were collected for RNA extraction, using the three-month nightshade grown in a greenhouse pot for about 60 days and having the same size.
2、RNA的提取2. Extraction of RNA
参照植物RNA提取试剂盒(HiPure HP Plant RNA Kit)说明书提取处理后的三月茄叶片RNA,电泳鉴定RNA的完整性,然后在分光光度计上测定RNA的纯度及浓度。利用宝生物反转录酶试剂(PrimeScriptTMRT reagent Kit with gDNA Eraser)进行反转录得到cDNA,用于后续基因的克隆。According to the instructions of the Plant RNA Extraction Kit (HiPure HP Plant RNA Kit), RNA was extracted from the treated March nightshade leaves, and the integrity of the RNA was identified by electrophoresis, and then the purity and concentration of the RNA were measured on a spectrophotometer. cDNA was obtained by reverse transcription using PrimeScript TM RT reagent Kit with gDNA Eraser, which was used for subsequent gene cloning.
3、SmERF1基因的克隆3. Cloning of SmERF1 gene
根据茄子参考基因组序列,利用Snapgene设计SmERF1基因无缝克隆引物。According to the eggplant reference genome sequence, Snapgene was used to design the primers for seamless cloning of SmERF1 gene.
cP1F:cP1F:
GGACTCTAGAGGATCCATGGATTCATCTTCACTAGATTTGATAAGACAACA(SEQ ID NO.3)GGACTCTAGAGGATCCATGGATTCATTCTCACTAGATTTGATAAGACAACA (SEQ ID NO. 3)
cP1R:cP1R:
GACCACCCGGGGATCCTTATGAAACCAAAAGTTGTGAGTATCCAAAACTTG G(SEQ ID NO.4)GACCACCCGGGGATCCTTATGAAACCAAAAGTTGTGAGTATCCAAAACTTGG (SEQ ID NO. 4)
以合成的茄子cDNA为模板,进行PCR,扩增得到预期长度后回收并连接到pBI121载体上,转化大肠杆菌DH5α,菌落PCR筛选阳性克隆,提取质粒并送生工生物工程股份有限公司(南京)进行测序,测序结果表明SmERF1基因的开放阅读框序列为849bp(图1),详细序列见SEQ ID NO.1。根据CDS开放阅读框序列推导出SmERF1的氨基酸序列,共282个氨基酸残基,分子量为31933.74Da,理论等电点(pI)为6.18,详细序列见SEQ ID NO.2所示序列。Using the synthesized eggplant cDNA as a template, perform PCR, amplify to the expected length, recover and connect to the pBI121 vector, transform Escherichia coli DH5α, colony PCR screen positive clones, extract plasmids and send them to Sangon Bioengineering Co., Ltd. (Nanjing) Sequencing was performed, and the sequencing results showed that the open reading frame sequence of the SmERF1 gene was 849bp ( FIG. 1 ). See SEQ ID NO.1 for the detailed sequence. According to the CDS open reading frame sequence, the amino acid sequence of SmERF1 was deduced, with a total of 282 amino acid residues, a molecular weight of 31933.74Da, and a theoretical isoelectric point (pI) of 6.18. See the sequence shown in SEQ ID NO.2 for the detailed sequence.
实施例2Example 2
茄子SmERF1转录因子序列与系统进化分析Sequence and Phylogenetic Analysis of Eggplant SmERF1 Transcription Factor
本发明将SmERF1基因的CDS序列经NCBI Blastn比对后,发现SmERF1基因与马铃薯ERF基因的同源性最高(一致性最高只能达到85.16%)(图12);经Blastp比对后发现SmERF1基因编码的氨基酸序列与烟草ERF转录因子同源性最高(一致性为57.05%)(图13)。利用Jalview软件将茄子SmERF1氨基酸序列与20个已知的AP2/ERF转录因子序列进行氨基酸多序列比对分析,结果发现所有AP2/ERF家族转录因子均含有AP2结构域,且结构域中具有典型的WLG元件,表明该蛋白属于AP2/ERF转录因子家族;进一步的分析发现,在结构域的第14个与第19个氨基酸为丙氨酸和天冬氨酸,所以SmERF1蛋白属于AP2/ERF家族中的ERF亚族(图2)。运用MEGA X软件的大似然法构建系统发育进化树,结果表明,SmERF1蛋白与林烟草NsERF4亲缘性最近,与番茄和拟南芥的ERF转录因子亲缘性较远(图3)。分析原因是由于ERF转录因子家族成员数量大,SmERF1与番茄和拟南芥ERF转录因子序列差异较大,导致三物种的同源性较低。The present invention compares the CDS sequence of the SmERF1 gene by NCBI Blastn, and finds that the homology between the SmERF1 gene and the potato ERF gene is the highest (the highest identity can only reach 85.16%) (Figure 12); after the comparison by Blastp, the SmERF1 gene is found The encoded amino acid sequence has the highest homology (57.05% identity) with tobacco ERF transcription factor (Fig. 13). Using Jalview software, the amino acid sequence of eggplant SmERF1 was compared with 20 known AP2/ERF transcription factor sequences, and it was found that all AP2/ERF family transcription factors contained AP2 domains, and the domains had typical WLG element, indicating that the protein belongs to the AP2/ERF transcription factor family; further analysis found that the 14th and 19th amino acids in the domain are alanine and aspartic acid, so the SmERF1 protein belongs to the AP2/ERF family ERF subfamily (Figure 2). Using the large likelihood method of MEGA X software to construct a phylogenetic evolutionary tree, the results showed that the SmERF1 protein was most closely related to NsERF4 in Nicotiana lindenae, and farther related to the ERF transcription factors of tomato and Arabidopsis (Fig. 3). The reason for the analysis is that due to the large number of ERF transcription factor family members, the sequence differences between SmERF1 and tomato and Arabidopsis ERF transcription factors are relatively large, resulting in low homology among the three species.
实施例3Example 3
茄子及其他物种ERF转录因子保守基序及结构域的比较分析Comparative analysis of conserved motifs and structural domains of ERF transcription factors in eggplant and other species
对茄子及其他物种ERF蛋白的保守基序进行了预测分析,大多数ERF蛋白含有5个或4个Motifs,其中Motif 1和Motif 2分布在每个ERF转录因子中,它们是ERF蛋白的保守区域,且茄子SmERF1蛋白含有5个Motifs(Motif 1、Motif 2、Motif 4、Motif 5和Motif 6);之后利用NCBI中Batch-CD数据库对该转录因子的保守结构域进行预测分析,茄子SmERF蛋白与其他物种的ERF转录因子相同,仅含有1个AP2保守结构域;同时本发明的蛋白SmERF1与林氏烟草NsERF4转录因子的AP2功能域所在位点相近,仅有一个AP2结构功能域,这进一步表明SmERF1属于AP2/ERF家族蛋白的ERF亚族(图4)。The conserved motifs of ERF proteins in eggplant and other species were predicted and analyzed. Most ERF proteins contain 5 or 4 motifs, among which
实施例4Example 4
茄子SmERF1转录因子的二、三级结构预测Prediction of Secondary and Tertiary Structures of Eggplant SmERF1 Transcription Factor
本发明新的茄子SmERF1蛋白的二级结构主要由无规则卷曲、α-螺旋、延伸链和β-转角4种结构元件组成,且4种结构元件所占比例分别为53.90%、27.30%、13.48%和5.32%(图5)。使用在线分析软件SWISS-MODEL,以转录因子AtERF1(PDB:2gcc.1.A)为模板对转录因子SmERF1三级结构进行预测,结果发现SmERF1转录因子主要由无规则卷曲、α-螺旋和延伸链组成,其无规卷曲占比较多(图6)。三级结构预测与二级结构预测结果相符。The secondary structure of the new eggplant SmERF1 protein of the present invention is mainly composed of four structural elements: random coil, α-helix, extended chain and β-turn, and the proportions of the four structural elements are 53.90%, 27.30%, and 13.48%, respectively. % and 5.32% (Figure 5). Using the online analysis software SWISS-MODEL, the transcription factor AtERF1 (PDB: 2gcc.1.A) was used as a template to predict the tertiary structure of the transcription factor SmERF1. It was found that the SmERF1 transcription factor is mainly composed of random coils, α-helices and extended chains composition, and its random coils account for a large proportion (Figure 6). The prediction of the tertiary structure is consistent with the prediction of the secondary structure.
实施例5Example 5
本发明新的茄子SmERF1蛋白与同属茄科作物灯笼辣椒(Capsicum baccatum)的CbERF5转录因子进行比对,序列一致性为78.1%,利用其蛋白互作关系构建互作网络。CbERF5转录因子(Ethylene-responsive transcription factor 5)主要与2个有丝分裂原活化蛋白激酶(Mitogen-activated protein kinase)、1个SNF1相关蛋白激酶调节亚基β-1(SNF1-related protein kinase regulatory subunit beta-1)、2个SNF1相关蛋白激酶调节亚基β-2(SNF1-related protein kinase regulatory subunit beta-2)、1个转录因子KAN2(Putative transcription factor KAN2)、2个鸟嘌呤核苷酸结合蛋白亚基类β蛋白(Guanine nucleotide-binding protein subunit beta-like protein)、1个非特异性丝氨酸/苏氨酸蛋白激酶(Non-specific serine/threonine protein kinase)和1个未注释的蛋白(Uncharacterized protein)互作(图7)。表明茄子SmERF1转录因子在植物生长发育和信号转导过程中发挥着重要的作用。The new eggplant SmERF1 protein of the present invention is compared with the CbERF5 transcription factor of Capsicum baccatum belonging to the same Solanaceae crop, and the sequence identity is 78.1%. The protein interaction relationship is used to construct an interaction network. CbERF5 transcription factor (Ethylene-responsive transcription factor 5) is mainly associated with two mitogen-activated protein kinases (Mitogen-activated protein kinase), one SNF1-related protein kinase regulatory subunit β-1 (SNF1-related protein kinase regulatory subunit beta- 1), 2 SNF1-related protein kinase regulatory subunit beta-2 (SNF1-related protein kinase regulatory subunit beta-2), 1 transcription factor KAN2 (Putative transcription factor KAN2), 2 guanine nucleotide binding protein subunits Base class β protein (Guanine nucleotide-binding protein subunit beta-like protein), a non-specific serine/threonine protein kinase (Non-specific serine/threonine protein kinase) and an uncharacterized protein (Uncharacterized protein) interacted as (Figure 7). It shows that eggplant SmERF1 transcription factor plays an important role in the process of plant growth and development and signal transduction.
实施例6Example 6
茄子SmERF1基因结构及启动子顺式作用元件预测分析Prediction and analysis of gene structure and promoter cis-acting elements of eggplant SmERF1
SmERF1基因的启动子序列中包含真核生物的核心元件27个CAAT-box和72个TATA-box。进一步分析发现启动子区域还有许多功能性元件,如茉莉酸甲酯诱导顺式作用元件CGTCA-motif和TGACG-motif、厌氧诱导顺式作用元件ARE、脱落酸诱导顺式作用元件ABRE、生长素响应元件TGA-element和TGA-box及昼夜节律调控元件circadian等。另外还有光响应相关的元件,如CAG-motif,GA-motif,G-Box,GT1-motif,LAMP-element和TCCC-motif等(表1)。表面SmERF1转录因子可能参与植物生长发育及激素信号转导过程。The promoter sequence of SmERF1 gene contains 27 CAAT-boxes and 72 TATA-boxes which are the core elements of eukaryotes. Further analysis found that there are many functional elements in the promoter region, such as methyl jasmonate-induced cis-acting elements CGTCA-motif and TGACG-motif, anaerobic-induced cis-acting element ARE, abscisic acid-induced cis-acting element ABRE, growth The hormone response elements TGA-element and TGA-box and the circadian rhythm regulatory element circadian, etc. In addition, there are elements related to light response, such as CAG-motif, GA-motif, G-Box, GT1-motif, LAMP-element and TCCC-motif, etc. (Table 1). Surface SmERF1 transcription factor may be involved in plant growth and development and hormone signal transduction process.
表1茄子SmERF1基因启动子区域中的部分顺式作用元件Table 1 Some cis-acting elements in the promoter region of eggplant SmERF1 gene
本发明克隆获得茄子ERF转录因子基因SmERF1,编码区长度为849bp,可编码282个氨基酸,是一种定位于细胞核的不稳定的非分泌型亲水蛋白。SmERF1含有1个保守的AP2结构域,并在结构域的第14与第19位氨基酸为丙氨酸和天冬氨酸,与同属茄科的烟草同源性最高。保守基序的结果表明,ERF类转录因子均含有的Motif 1和Motif 2是AP2结构域的保守区域。SmERF1主要与植物生长发育和信号转导过程中相应激酶和转录因子发生相互作,且SmERF1基因启动子中含有与植物生长发育及激素信号转导过程等有关的顺式作用元件。表明SmERF1基因主要参与植物生长发育和非生物胁迫的激素信号转导过程。The invention clones and obtains the eggplant ERF transcription factor gene SmERF1, the length of the coding region is 849bp, and it can encode 282 amino acids, and it is an unstable non-secreted hydrophilic protein located in the nucleus. SmERF1 contains a conserved AP2 domain, and the 14th and 19th amino acids in the domain are alanine and aspartic acid, and it has the highest homology with tobacco belonging to Solanaceae. The results of conserved motifs showed that
实施例7Example 7
茄子SmERF1基因响应不同非生物胁迫的表达模式分析Expression pattern analysis of eggplant SmERF1 gene in response to different abiotic stresses
1、植物材料的处理1. Processing of plant material
以温室中(光照16h,27℃/黑暗8h,19℃)盆栽的生长60d左右且大小一致的三月茄为材料,在可调温的植物光照培养箱分别对其进行低温(4℃)、高温(40℃)和干旱胁迫处理(20%PEG),以未做任何胁迫处理的叶片组织作为对照组。处理不同时间后(低温和高温分别处理1、3、6、12和24h,干旱处理3、6和12h)。收集三月茄从顶部往下数第二和第三片真叶,将样品分别用铝铂纸包好后立刻投入液氮中,接着转入-80℃超低温冰箱中贮存待用。Using March nightshade grown in pots in the greenhouse (light 16h, 27°C/darkness 8h, 19°C) for about 60 days and with the same size as materials, they were subjected to low temperature (4°C), High temperature (40°C) and drought stress treatments (20% PEG), and leaf tissues without any stress treatment were used as the control group. After treatment for different time (low temperature and
2、RNA的提取2. Extraction of RNA
参照植物RNA提取试剂盒(HiPure HP Plant RNA Kit)说明书提取处理后的三月茄叶片RNA,用普通琼脂糖凝胶电泳(胶浓度1.2%;1×TAE电泳缓冲液;150v,15min)检测完整性。电泳条带中最大rRNA亮度应为第二条rRNA亮度的1.5-2.0倍,否则表示rRNA样品的降解。纯度较好的RNA,A260/A280以及A260/A230约为2.0左右。用分光光度计测定OD值并计算RNA含量。Refer to the instructions of the Plant RNA Extraction Kit (HiPure HP Plant RNA Kit) to extract the processed RNA from the leaves of March nightshade, and use ordinary agarose gel electrophoresis (gel concentration 1.2%; 1 × TAE electrophoresis buffer; 150v, 15min) to detect the integrity sex. The maximum rRNA brightness in the electrophoresis strip should be 1.5-2.0 times the brightness of the second rRNA, otherwise it indicates the degradation of the rRNA sample. For RNA with good purity, A260/A280 and A260/A230 are about 2.0. The OD value was measured with a spectrophotometer and the RNA content was calculated.
3、cDNA的获得3. Acquisition of cDNA
以1μg的总RNA为模板,利用宝生物反转录酶试剂(PrimeScriptTMRT reagent Kitwith gDNA Eraser)进行反转录得到cDNA备用。Using 1 μg of total RNA as a template, reverse transcription was performed using PrimeScript ™ RT reagent Kit with gDNA Eraser to obtain cDNA for future use.
4、设计特异性引物以进行实时荧光定量PCR分析基因在不同胁迫时的表达量。根据已获得的茄子SmERF1基因序列,利用引物设计软件Snapgene设计用于Real-time PCR中SmERF1基因定量分析的特异性引物,4. Design specific primers for real-time fluorescent quantitative PCR analysis of gene expression under different stresses. According to the obtained eggplant SmERF1 gene sequence, the primer design software Snapgene was used to design specific primers for the quantitative analysis of SmERF1 gene in Real-time PCR,
ERF1-F:5′-AGTGCCACCTTTGTCACCAT-3′(SEQ ID NO.5)ERF1-F: 5'-AGTGCCACCTTTGTCACCAT-3' (SEQ ID NO.5)
ERF1-R:5′-TCATGGATTGTAACAGCAAGATGA-3′(SEQ ID NO.6)ERF1-R: 5'-TCATGGATTGTAACAGCAAGATGA-3' (SEQ ID NO.6)
内参基因为APRT,其引物为The internal reference gene is APRT, and its primers are
APRT-F:5′-GAGATGCATGTAGGTGCTGTGCAA-3′(SEQ ID NO.7)APRT-F: 5'-GAGATGCATGTAGGTGCTGTGCAA-3' (SEQ ID NO.7)
APRT-R:5′-GGCCCTTCAATTCTGGCAACTCAA-3′(SEQ ID NO.8)APRT-R: 5'-GGCCCTTCAATTCTGGCAACTCAA-3' (SEQ ID NO.8)
5、待测样品中目的基因的实时荧光定量分析。以合成的cDNA第一条链为模板,分别用目的基因与内参基因的特异性引物扩增进行荧光定量分析,罗氏Cobaz480实时荧光定量PCR仪上进行qRT-PCR试验,反应体系为20μL。5. Real-time fluorescence quantitative analysis of the target gene in the sample to be tested. Using the first strand of the synthesized cDNA as a template, the target gene and the internal reference gene were amplified with specific primers for fluorescence quantitative analysis. The qRT-PCR test was performed on a Roche Cobaz480 real-time fluorescent quantitative PCR instrument, and the reaction system was 20 μL.
反应采用三步法,95℃变性10min,接着40个循环:95℃10s;58℃10s;72℃45s。The reaction adopts a three-step method, denaturation at 95°C for 10 minutes, followed by 40 cycles: 95°C for 10s; 58°C for 10s; 72°C for 45s.
6、采用2-ΔΔCt法作相对定量分析。结果表明在低温胁迫(4℃)处理期间,SmERF1基因的相对表达量受低温诱导表达,整体呈现先上升后下降的趋势。其中SmERF1基因在4℃处理3h时达到最显著水平(约是对照的34.86倍),而处理24h时其相对表达量最低(约为对照的9.97倍),与对照达到差异显著水平。在40℃胁迫下,SmERF1基因表达水平整体呈现先降后升再降的趋势,在6h时显著地诱导表达,约为对照的1.26倍,而SmERF1基因在1h、12h和24h时显著地抑制表达(分别约是对照的0.79倍、0.53倍和0.26倍)。在干旱处理中,SmERF1基因呈先上升后下降的趋势,其中3h时受诱导表达(约为对照的1.82倍)而6h和12h受抑制表达(分别约为对照的0.30倍和0.07倍),但均未达到差异显著水平(图8)。表明SmERF1基因在茄子低温胁迫响应中具有重要的调控作用。6.
实施例8Example 8
茄子SmERF1基因的功能验证Functional verification of eggplant SmERF1 gene
1、SmERF1基因表达载体构建1. Construction of SmERF1 gene expression vector
(1)本实验采用TaKaRa常规限制酶(TaKaRa,日本)对转化载体pBI121进行酶切反应实验,具体反应体系如下:(1) In this experiment, TaKaRa conventional restriction enzymes (TaKaRa, Japan) were used to carry out enzyme digestion reaction experiments on the transformation vector pBI121. The specific reaction system is as follows:
体系中各溶液混合后进行瞬时离心,在37℃水浴锅中保温16h后结束酶切反应,琼脂糖凝胶电泳观察酶切条带,随后将载体片段切胶回收,用于后续的载体连接反应。After the solutions in the system were mixed, they were centrifuged instantaneously, incubated in a water bath at 37°C for 16 hours, and then the enzyme digestion reaction was completed. The enzyme-cut bands were observed by agarose gel electrophoresis, and then the carrier fragments were cut and recovered for subsequent carrier ligation reactions. .
(2)参照TreliefTM SoSoo Cloning Kit Ver.2(擎科生物,中国)操作说明书,将酶切反应后回收的表达载体pBI121与目的基因片段产物相互连接,体系如下:(2) Referring to the operation manual of Trelief TM SoSoo Cloning Kit Ver.2 (Qingke Bio, China), the expression vector pBI121 recovered after the enzyme digestion reaction was connected to the product of the target gene fragment. The system is as follows:
阳性对照体系如下The positive control system is as follows
在微型管中将体系中的溶液混合,50℃反应15min。转化E.coli DH5α,阳性克隆通过PCR鉴定和测序,确认含基因SmERF1的过量表达载体构建成功。Mix the solutions in the system in a microtube and react at 50°C for 15 minutes. E.coli DH5α was transformed, and positive clones were identified by PCR and sequenced, confirming that the overexpression vector containing the gene SmERF1 was successfully constructed.
2、转化农杆菌2. Transformation of Agrobacterium
a.取冻存的农杆菌GV3101感受态细胞,置于冰上缓慢融化。a. Take frozen Agrobacterium GV3101 competent cells and place them on ice to slowly thaw.
b.加入7μL提取纯化的重组质粒DNA于上述100μL未完全融化的感受态细胞中,混匀,放置冰上45min。b. Add 7 μL of extracted and purified recombinant plasmid DNA to the above 100 μL of competent cells that have not completely melted, mix well, and place on ice for 45 minutes.
c.将离心管封口,在液氮中冷冻3min后,迅速转置于37℃水浴环境温育5min;c. Seal the centrifuge tube, freeze it in liquid nitrogen for 3 minutes, and quickly transfer it to a 37°C water bath for 5 minutes;
d.重复c操作,冰上放置5min。d. Repeat operation c and place on ice for 5 minutes.
e.向离心管中加入900μL新鲜的YEB液体培养基,于28℃,225rpm摇床上振荡培养4h。e. Add 900 μL of fresh YEB liquid medium to the centrifuge tube, shake and culture at 28° C. and 225 rpm for 4 hours.
f.4℃,4000rpm离心5min,用移液枪小心吸取上清液,留下约150μl左右,用枪头轻轻吸打以重悬菌体。f. Centrifuge at 4000rpm for 5min at 4°C, carefully absorb the supernatant with a pipette gun, leave about 150μl, and gently pipette with the tip of the pipette to resuspend the bacteria.
g.将菌液均匀涂布于含Kan(50mg/L)、Str(50mg/L)、Rif(80mg/L)和Cb(100mg/L)的YEB固体平板上,28℃恒温箱中培养2天。g. Spread the bacterial solution evenly on the YEB solid plate containing Kan (50mg/L), Str (50mg/L), Rif (80mg/L) and Cb (100mg/L), and cultivate it in a thermostat at 28°C for 2 sky.
h.挑取平板上的单克隆,加入适量的YEB液体培养基,28℃,220rpm,培养48h,PCR检测阳性克隆,然后使用1.0%琼脂糖凝胶电泳检测PCR扩增片段的正确性,获得含有SmERF1基因表达载体的农杆菌。h. Pick the single clone on the plate, add appropriate amount of YEB liquid medium, culture at 28°C, 220rpm for 48h, detect positive clones by PCR, and then use 1.0% agarose gel electrophoresis to detect the correctness of the PCR amplified fragment, and obtain Agrobacterium containing the SmERF1 gene expression vector.
3、茄子SmERF1基因超表达3. Eggplant SmERF1 gene overexpression
茄子材料为三月茄。将含有SmERF1基因表达载体的农杆菌GV3101培养OD值为0.4-0.6,4000rpm离心5min,弃上清,菌体沉淀用MS液重悬,侵染三月茄的子叶18min,并不断振荡,无菌滤纸上吸去多余的菌液,放回愈伤诱导培养基进行暗培养(图9),直至长出愈伤组织。将愈伤组织切成小块转至Kan筛选培养基上分化培养。继代培养至分化出芽,芽生长至2~3cm时转至生根培养基上诱导生根,约一个月后长出完整的根系并移栽到温室中,得到抗性植株,将检测为阳性的转基因植株收获T1代种子。选取籽粒饱满、大小一致的T1代种子,先用75%酒精浸泡90s,进行初步的表面消毒,无菌水冲洗1-2次;再用20%次氯酸钠表面消毒42min,无菌水冲洗5-7次。以平摆法将其接种于种子萌发培养基(MS+3%蔗糖)中,置于25℃的光照条件下培养,待种子萌动后,转至4±0.5℃条件下胁迫处理4周,观察其生长情况并测其根长度。结果发现,转基因植株(O2和O5)的根系长,有明显的侧根,而对照植株(WT)的根系较短,侧根不明显(图10和图11)。表明SmERF1基因的超表达会促进茄子幼苗在低温胁迫时根系的生长发育。The eggplant material is March eggplant. Culture the Agrobacterium GV3101 containing the SmERF1 gene expression vector with an OD value of 0.4-0.6, centrifuge at 4000rpm for 5min, discard the supernatant, resuspend the bacterial cell pellet with MS solution, infect the cotyledon of March Eggplant for 18min, and shake it continuously, sterile Absorb excess bacterial solution on the filter paper, put it back into the callus induction medium for dark culture (Figure 9), until the callus grows. The calli were cut into small pieces and transferred to Kan selection medium for differentiation culture. Subculture until the buds are differentiated, and when the buds grow to 2-3 cm, transfer them to the rooting medium to induce rooting. After about a month, a complete root system grows and is transplanted into the greenhouse to obtain resistant plants. Plants were harvested as T1 generation seeds. Select the T1 generation seeds with plump grains and the same size, first soak them in 75% alcohol for 90 seconds, perform preliminary surface disinfection, rinse with sterile water for 1-2 times; then use 20% sodium hypochlorite for surface disinfection for 42 minutes, rinse with sterile water for 5-7 Second-rate. Inoculate it in the seed germination medium (MS + 3% sucrose) by the pendulum method, and cultivate it under the light condition of 25°C. After the seeds germinate, transfer to the stress treatment at 4±0.5°C for 4 weeks, and observe its growth and measure its root length. It was found that the transgenic plants (O2 and O5) had long root systems with prominent lateral roots, while the control plants (WT) had shorter root systems with indistinct lateral roots (Fig. 10 and Fig. 11). It indicated that the overexpression of SmERF1 gene could promote the root growth and development of eggplant seedlings under low temperature stress.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211524707.3A CN115786366B (en) | 2022-11-30 | 2022-11-30 | Eggplant cold resistance regulating gene, protein and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211524707.3A CN115786366B (en) | 2022-11-30 | 2022-11-30 | Eggplant cold resistance regulating gene, protein and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115786366A true CN115786366A (en) | 2023-03-14 |
CN115786366B CN115786366B (en) | 2024-11-29 |
Family
ID=85444082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211524707.3A Active CN115786366B (en) | 2022-11-30 | 2022-11-30 | Eggplant cold resistance regulating gene, protein and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115786366B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119020378A (en) * | 2024-10-28 | 2024-11-26 | 四川省农业科学院园艺研究所 | Eggplant SmCYP82C1 gene and its application |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006066978A1 (en) * | 2004-12-23 | 2006-06-29 | Galderma Research & Development | Novel ligands that modulate rar receptors, and use thereof in human medicine and in cosmetics |
CN101370938A (en) * | 2005-12-29 | 2009-02-18 | 塞瑞斯公司 | Nucleotide sequences and corresponding polypeptides conferring regulated plant growth rate and biomass to plants |
CN116064592A (en) * | 2023-02-07 | 2023-05-05 | 中国人民解放军海军军医大学 | Danshen ERF transcription factor and its application |
CN118126148A (en) * | 2024-03-12 | 2024-06-04 | 华中农业大学 | Application of gene SlC H2-71 for regulating and controlling soluble solids of tomato fruits |
-
2022
- 2022-11-30 CN CN202211524707.3A patent/CN115786366B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006066978A1 (en) * | 2004-12-23 | 2006-06-29 | Galderma Research & Development | Novel ligands that modulate rar receptors, and use thereof in human medicine and in cosmetics |
CN101370938A (en) * | 2005-12-29 | 2009-02-18 | 塞瑞斯公司 | Nucleotide sequences and corresponding polypeptides conferring regulated plant growth rate and biomass to plants |
CN116064592A (en) * | 2023-02-07 | 2023-05-05 | 中国人民解放军海军军医大学 | Danshen ERF transcription factor and its application |
CN118126148A (en) * | 2024-03-12 | 2024-06-04 | 华中农业大学 | Application of gene SlC H2-71 for regulating and controlling soluble solids of tomato fruits |
Non-Patent Citations (5)
Title |
---|
LEI SHEN 等: "Transcriptome Analysis of Eggplant under Salt Stress: AP2/ERF Transcription Factor SmERF1 Acts as a Positive Regulator of Salt Stress", 《PLANTS》, 25 August 2022 (2022-08-25) * |
万发香 等: "茄子ERF转录因子的克隆及表达分析", 《分子植物育种》, 20 May 2024 (2024-05-20) * |
吴文燕;蒋喜红;刘春生;黄璐琦;申业;: "丹参ERF转录因子SmERF1基因的表达分析和亚细胞定位", 中国中药杂志, no. 07, 1 April 2013 (2013-04-01) * |
贾东坡 等主编: "《植物与植物生理》", 30 September 2015, 重庆大学出版社, pages: 303 - 304 * |
邵欣欣 等: "茄子AP2/E RF转录因子的鉴定及胁迫条件下的表达分析", 《植物生理学报》, 20 November 2015 (2015-11-20) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119020378A (en) * | 2024-10-28 | 2024-11-26 | 四川省农业科学院园艺研究所 | Eggplant SmCYP82C1 gene and its application |
CN119020378B (en) * | 2024-10-28 | 2025-01-24 | 四川省农业科学院园艺研究所 | Eggplant SmCYP82C1 gene and its application |
Also Published As
Publication number | Publication date |
---|---|
CN115786366B (en) | 2024-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101372114B1 (en) | Rice zinc finger protein transcription factor DST and use thereof for regulating drought and salt tolerance | |
CN107118264A (en) | A kind of Rise's boot period cold resistance GAP-associated protein GAP CTB4a and encoding gene and application | |
CN112646818B (en) | Soybean gene GmTCM1 as well as obtaining method and application thereof | |
CN111454972B (en) | The cold resistance gene PtrBADH of Citrus aurantium and its application in genetic improvement of plant cold resistance | |
CN106868018A (en) | White birch BpSPL9 genes and its encoding proteins and application | |
CN108341859B (en) | Proteins related to plant drought resistance, salt tolerance and wheat yield improvement and their genes and applications | |
CN113584047B (en) | Barley HvNAT2 gene and application thereof | |
CN115786366A (en) | Eggplant cold-resistant regulatory gene, eggplant cold-resistant regulatory protein and application of eggplant cold-resistant regulatory protein | |
CN118147175B (en) | Application of MtCOMT13 gene in regulating salt and drought tolerance in plants | |
CN109825511B (en) | Ginkgo GbBBX25 Gene and Its Expression and Application | |
CN103468740B (en) | Application of rice OsDRAP1 gene in enhancing plant drought resistance | |
CN116083437B (en) | Soybean GmNAC56 gene and application thereof in phytophthora root rot stress | |
CN102304176A (en) | Application of rice OsASIE1 gene in enhancing salt tolerance of plants | |
CN117327729A (en) | Application of AtWRKY41 gene in improving plant resistance to root-knot nematode disease | |
CN113584051B (en) | Application of GhGAI Gene in Regulating Plant Flowering | |
CN113234720B (en) | Wheat long non-coding RNA lncR156 and its application in regulating wheat response to drought stress | |
CN115948417A (en) | Barley HvFRF1 gene, protein, expression vector and application | |
CN107904238A (en) | Thick boisiana high salt, drought-inducible promoter IpLEA PRO and its application | |
CN108148849B (en) | A kind of apple MdPHR1 gene and its preparation method and application | |
CN113373159B (en) | SlTGLa10 gene related to low-temperature resistance of tomatoes, silencing vector and application thereof | |
CN118064497B (en) | Overexpression vector of PfbZIP52 gene and its construction method and application in tobacco | |
CN118440985B (en) | Application of soybean GmWRKY123 gene in promoting root nodule production of leguminous plants under salt stress | |
CN117946234B (en) | Peony PoWOX gene and application of coded protein thereof | |
CN110257404B (en) | Functional gene for reducing cadmium accumulation and increasing plant cadmium tolerance and application | |
CN104651395A (en) | Application of rice OsSTAP1 gene in enhancing plant salt tolerance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |