CN115785309A - A kind of catalyst for producing reinforced polyethylene and its preparation and application - Google Patents
A kind of catalyst for producing reinforced polyethylene and its preparation and application Download PDFInfo
- Publication number
- CN115785309A CN115785309A CN202211522532.2A CN202211522532A CN115785309A CN 115785309 A CN115785309 A CN 115785309A CN 202211522532 A CN202211522532 A CN 202211522532A CN 115785309 A CN115785309 A CN 115785309A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- polyethylene
- carrier
- coupling agent
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- -1 polyethylene Polymers 0.000 title claims abstract description 133
- 239000003054 catalyst Substances 0.000 title claims abstract description 126
- 239000004698 Polyethylene Substances 0.000 title claims abstract description 114
- 229920000573 polyethylene Polymers 0.000 title claims abstract description 114
- 238000002360 preparation method Methods 0.000 title claims abstract description 38
- 239000002131 composite material Substances 0.000 claims abstract description 124
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 42
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims abstract description 39
- 239000000463 material Substances 0.000 claims abstract description 39
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 33
- 239000002539 nanocarrier Substances 0.000 claims abstract description 30
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 29
- 239000002114 nanocomposite Substances 0.000 claims abstract description 27
- 150000003624 transition metals Chemical class 0.000 claims abstract description 24
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 21
- 229910001629 magnesium chloride Inorganic materials 0.000 claims abstract description 18
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 10
- 238000013329 compounding Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 52
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 44
- 229910052751 metal Inorganic materials 0.000 claims description 41
- 239000002184 metal Substances 0.000 claims description 41
- 239000000835 fiber Substances 0.000 claims description 39
- 239000007822 coupling agent Substances 0.000 claims description 38
- 229910052717 sulfur Inorganic materials 0.000 claims description 33
- 239000011593 sulfur Substances 0.000 claims description 32
- 238000006243 chemical reaction Methods 0.000 claims description 30
- 239000000654 additive Substances 0.000 claims description 22
- 230000000996 additive effect Effects 0.000 claims description 18
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 17
- 239000004917 carbon fiber Substances 0.000 claims description 17
- 239000012783 reinforcing fiber Substances 0.000 claims description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 11
- 230000003197 catalytic effect Effects 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 10
- 150000001336 alkenes Chemical class 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 8
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 8
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 6
- 239000005977 Ethylene Substances 0.000 claims description 6
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 6
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 239000003365 glass fiber Substances 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 229920002748 Basalt fiber Polymers 0.000 claims description 4
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 4
- 239000004113 Sepiolite Substances 0.000 claims description 4
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 claims description 4
- 239000010425 asbestos Substances 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 229910052895 riebeckite Inorganic materials 0.000 claims description 4
- 235000019355 sepiolite Nutrition 0.000 claims description 4
- 229910052624 sepiolite Inorganic materials 0.000 claims description 4
- 238000004381 surface treatment Methods 0.000 claims description 4
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 239000010456 wollastonite Substances 0.000 claims description 4
- 229910052882 wollastonite Inorganic materials 0.000 claims description 4
- 239000004711 α-olefin Substances 0.000 claims description 4
- 239000011165 3D composite Substances 0.000 claims description 3
- RRKXGHIWLJDUIU-UHFFFAOYSA-N 5-bromo-8-chloroisoquinoline Chemical compound C1=NC=C2C(Cl)=CC=C(Br)C2=C1 RRKXGHIWLJDUIU-UHFFFAOYSA-N 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 150000004645 aluminates Chemical class 0.000 claims description 3
- 238000011068 loading method Methods 0.000 claims description 3
- 150000002894 organic compounds Chemical class 0.000 claims description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 150000002910 rare earth metals Chemical class 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 claims description 2
- 239000004115 Sodium Silicate Substances 0.000 claims description 2
- 150000001786 chalcogen compounds Chemical class 0.000 claims description 2
- 239000010440 gypsum Substances 0.000 claims description 2
- 229910052602 gypsum Inorganic materials 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 230000007935 neutral effect Effects 0.000 claims description 2
- 239000010452 phosphate Substances 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 2
- 229910001848 post-transition metal Inorganic materials 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 239000012429 reaction media Substances 0.000 claims description 2
- 229910052702 rhenium Inorganic materials 0.000 claims description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052711 selenium Inorganic materials 0.000 claims description 2
- 239000011669 selenium Substances 0.000 claims description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052714 tellurium Inorganic materials 0.000 claims description 2
- 150000003623 transition metal compounds Chemical class 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 238000006482 condensation reaction Methods 0.000 claims 1
- 230000007062 hydrolysis Effects 0.000 claims 1
- 238000006460 hydrolysis reaction Methods 0.000 claims 1
- 125000004354 sulfur functional group Chemical group 0.000 claims 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims 1
- 238000011065 in-situ storage Methods 0.000 abstract description 11
- 229920000098 polyolefin Polymers 0.000 abstract description 8
- 229920001410 Microfiber Polymers 0.000 abstract description 2
- 150000004770 chalcogenides Chemical class 0.000 abstract description 2
- 229910052814 silicon oxide Inorganic materials 0.000 abstract 1
- 239000000047 product Substances 0.000 description 48
- 230000000694 effects Effects 0.000 description 46
- AZUYLZMQTIKGSC-UHFFFAOYSA-N 1-[6-[4-(5-chloro-6-methyl-1H-indazol-4-yl)-5-methyl-3-(1-methylindazol-5-yl)pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl]prop-2-en-1-one Chemical compound ClC=1C(=C2C=NNC2=CC=1C)C=1C(=NN(C=1C)C1CC2(CN(C2)C(C=C)=O)C1)C=1C=C2C=NN(C2=CC=1)C AZUYLZMQTIKGSC-UHFFFAOYSA-N 0.000 description 44
- 238000001746 injection moulding Methods 0.000 description 39
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 36
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 18
- 238000000465 moulding Methods 0.000 description 16
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 15
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 15
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 13
- 239000002002 slurry Substances 0.000 description 12
- 239000003446 ligand Substances 0.000 description 11
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000012968 metallocene catalyst Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 229910003471 inorganic composite material Inorganic materials 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical compound C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 5
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229920013716 polyethylene resin Polymers 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- HRLYFPKUYKFYJE-UHFFFAOYSA-N tetraoxorhenate(2-) Chemical compound [O-][Re]([O-])(=O)=O HRLYFPKUYKFYJE-UHFFFAOYSA-N 0.000 description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical group [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000002134 carbon nanofiber Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 239000011949 solid catalyst Substances 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- ZWYDDDAMNQQZHD-UHFFFAOYSA-L titanium(ii) chloride Chemical compound [Cl-].[Cl-].[Ti+2] ZWYDDDAMNQQZHD-UHFFFAOYSA-L 0.000 description 3
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- PAJMKGZZBBTTOY-UHFFFAOYSA-N 2-[[2-hydroxy-1-(3-hydroxyoctyl)-2,3,3a,4,9,9a-hexahydro-1h-cyclopenta[g]naphthalen-5-yl]oxy]acetic acid Chemical compound C1=CC=C(OCC(O)=O)C2=C1CC1C(CCC(O)CCCCC)C(O)CC1C2 PAJMKGZZBBTTOY-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 229910008048 Si-S Inorganic materials 0.000 description 2
- 229910006336 Si—S Inorganic materials 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- OJWQATXFXORIBY-UHFFFAOYSA-J [Cl-].[Cl-].O([Ti++]Oc1ccccn1)c1ccccn1 Chemical compound [Cl-].[Cl-].O([Ti++]Oc1ccccn1)c1ccccn1 OJWQATXFXORIBY-UHFFFAOYSA-J 0.000 description 2
- 239000011609 ammonium molybdate Substances 0.000 description 2
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 2
- 235000018660 ammonium molybdate Nutrition 0.000 description 2
- 229940010552 ammonium molybdate Drugs 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003426 co-catalyst Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- ZKKLPDLKUGTPME-UHFFFAOYSA-N diazanium;bis(sulfanylidene)molybdenum;sulfanide Chemical compound [NH4+].[NH4+].[SH-].[SH-].S=[Mo]=S ZKKLPDLKUGTPME-UHFFFAOYSA-N 0.000 description 2
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 2
- 229910000071 diazene Inorganic materials 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 238000012685 gas phase polymerization Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- UBQKCCHYAOITMY-UHFFFAOYSA-N pyridin-2-ol Chemical compound OC1=CC=CC=N1 UBQKCCHYAOITMY-UHFFFAOYSA-N 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229910052604 silicate mineral Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 description 2
- 239000011684 sodium molybdate Substances 0.000 description 2
- 235000015393 sodium molybdate Nutrition 0.000 description 2
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- YUKQRDCYNOVPGJ-UHFFFAOYSA-N thioacetamide Chemical compound CC(N)=S YUKQRDCYNOVPGJ-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 description 2
- 229910001930 tungsten oxide Inorganic materials 0.000 description 2
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- WKBALTUBRZPIPZ-UHFFFAOYSA-N 2,6-di(propan-2-yl)aniline Chemical compound CC(C)C1=CC=CC(C(C)C)=C1N WKBALTUBRZPIPZ-UHFFFAOYSA-N 0.000 description 1
- BEZVGIHGZPLGBL-UHFFFAOYSA-N 2,6-diacetylpyridine Chemical compound CC(=O)C1=CC=CC(C(C)=O)=N1 BEZVGIHGZPLGBL-UHFFFAOYSA-N 0.000 description 1
- OCVZNQCDPKRNDL-UHFFFAOYSA-N 2-hydroxyethyl-dimethyl-octadecylazanium;nitrate Chemical compound [O-][N+]([O-])=O.CCCCCCCCCCCCCCCCCC[N+](C)(C)CCO OCVZNQCDPKRNDL-UHFFFAOYSA-N 0.000 description 1
- CNDQYTXUVRPGMV-UHFFFAOYSA-M 2-hydroxyethyl-dimethyl-octylazanium;perchlorate Chemical compound [O-]Cl(=O)(=O)=O.CCCCCCCC[N+](C)(C)CCO CNDQYTXUVRPGMV-UHFFFAOYSA-M 0.000 description 1
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- JCCZVLHHCNQSNM-UHFFFAOYSA-N [Na][Si] Chemical compound [Na][Si] JCCZVLHHCNQSNM-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000005234 alkyl aluminium group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- UJJZZIJKCHSBNI-UHFFFAOYSA-N azanide;titanium(2+) Chemical compound [NH2-].[NH2-].[Ti+2] UJJZZIJKCHSBNI-UHFFFAOYSA-N 0.000 description 1
- JBIROUFYLSSYDX-UHFFFAOYSA-M benzododecinium chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 JBIROUFYLSSYDX-UHFFFAOYSA-M 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000005299 dibenzofluorenyl group Chemical group C1(=CC=CC2=C3C(=C4C=5C=CC=CC5CC4=C21)C=CC=C3)* 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- WGFNXLQURMLAGC-UHFFFAOYSA-N diethyl 2,3-di(propan-2-yl)butanedioate Chemical compound CCOC(=O)C(C(C)C)C(C(C)C)C(=O)OCC WGFNXLQURMLAGC-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical group [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002366 halogen compounds Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical group II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- IBOFHQZUWNBWNJ-UHFFFAOYSA-N iron;pyridine-2,3-diimine Chemical compound [Fe].N=C1C=CC=NC1=N IBOFHQZUWNBWNJ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004987 o-phenylenediamines Chemical class 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002133 porous carbon nanofiber Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- BPELEZSCHIEMAE-UHFFFAOYSA-N salicylaldehyde imine Chemical compound OC1=CC=CC=C1C=N BPELEZSCHIEMAE-UHFFFAOYSA-N 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003900 succinic acid esters Chemical class 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 229910021654 trace metal Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- JBIQAPKSNFTACH-UHFFFAOYSA-K vanadium oxytrichloride Chemical compound Cl[V](Cl)(Cl)=O JBIQAPKSNFTACH-UHFFFAOYSA-K 0.000 description 1
- 125000005287 vanadyl group Chemical group 0.000 description 1
- QMBQEXOLIRBNPN-UHFFFAOYSA-L zirconocene dichloride Chemical compound [Cl-].[Cl-].[Zr+4].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 QMBQEXOLIRBNPN-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
本发明涉及一种用于生产增强聚乙烯的催化剂及其制备和应用,该载体催化剂包括:具有多层结构的无机纳米复合材料作为纳米载体的第一组分;反应性氯化镁体系或反应性二氧化硅体系作为纳米载体的第二组分,将上述两种组分充分复合形成纳米载体;将过渡金属催化剂负载在纳米载体上得到载体催化剂。本发明由于形成的纳米硫族化合物与超细纤维均匀分散的三维骨架的存在,与活性氯化镁体系或二氧化硅体系复合制备出负载型催化剂,用于原位聚合自增强,协同增强聚烯烃复合材料的性能,所得到的聚乙烯复合材料的力学性能得到大幅度提升,表现出优异的拉伸性能、耐磨性和耐冲击性等特性等。
The invention relates to a catalyst for producing reinforced polyethylene and its preparation and application. The carrier catalyst comprises: an inorganic nanocomposite material with a multilayer structure as the first component of the nanocarrier; a reactive magnesium chloride system or a reactive two The silicon oxide system is used as the second component of the nano-carrier, and the above-mentioned two components are fully compounded to form a nano-carrier; the transition metal catalyst is loaded on the nano-carrier to obtain a supported catalyst. In the present invention, due to the existence of a three-dimensional framework uniformly dispersed with nanometer chalcogenides and ultrafine fibers, a supported catalyst is prepared by compounding with an active magnesium chloride system or a silicon dioxide system, which is used for in-situ polymerization self-reinforcement and synergistically reinforced polyolefin compounding The performance of the material, the mechanical properties of the obtained polyethylene composite material has been greatly improved, showing excellent tensile properties, wear resistance and impact resistance and other characteristics.
Description
技术领域technical field
本发明属于催化剂制备技术领域,涉及一种用于生产增强聚乙烯的催化剂及其制备和应用。The invention belongs to the technical field of catalyst preparation, and relates to a catalyst for producing reinforced polyethylene and its preparation and application.
背景技术Background technique
聚烯烃是产量最大、用途最广的高分子材料品种,是国民生活和现代国防不可或缺的基础原材料。纳米技术的出现为聚烯烃材料的性能提高提供了广阔的空间,纳米复合材料中由于纳米级尺寸无机分散相均匀分散于聚合物中,存在纳米尺寸效应、超大的比表面积以及很强的界面相互作用,其性能往往明显优于相同组分的常规复合材料的性能,具有比强度高、可设计性强、抗疲劳性能好等优点,这对促进高分子材料科学和塑料工业的发展产生巨大的影响。Polyolefin is the polymer material variety with the largest output and widest application, and is an indispensable basic raw material for national life and modern national defense. The emergence of nanotechnology provides a broad space for the improvement of the performance of polyolefin materials. In nanocomposites, due to the uniform dispersion of nanoscale inorganic dispersed phases in polymers, there are nanoscale effects, large specific surface areas, and strong interfacial interactions. Its performance is often significantly better than that of conventional composite materials with the same components, and it has the advantages of high specific strength, strong designability, and good fatigue resistance, which has a huge impact on promoting the development of polymer material science and the plastics industry. Influence.
二硫化钼、二硫化钨等为代表的过渡金属硫化物MX2,由于其独特的微观结构,利用纳米颗粒的剥片减缓摩擦和磨损,表现出优异的耐摩性能。通常加入二硫化钼对基材进行填充改性、复合改性等,提升高分子或者无机材料的使用性能。专利CN112480578B,利用黏胶基碳纤维、二硫化钼、氟化石墨和硅树脂微粉对聚四氟乙烯进行共混改性,得到优异性能的笼型骨架结构的聚四氟乙烯复合材料。Transition metal sulfides MX 2 , represented by molybdenum disulfide and tungsten disulfide, exhibit excellent anti-friction performance due to their unique microstructure, which uses nano-particle flakes to slow down friction and wear. Molybdenum disulfide is usually added to the substrate for filling modification, compound modification, etc., to improve the performance of polymer or inorganic materials. Patent CN112480578B uses viscose-based carbon fiber, molybdenum disulfide, graphite fluoride and silicone resin powder to blend and modify polytetrafluoroethylene to obtain a cage-shaped skeleton structure polytetrafluoroethylene composite material with excellent performance.
为了提高二硫化钼的性能,拓宽其应用领域,对其进行改性复合。专利CN105304876B,通过高温碳化制备得到石墨烯/碳纳米纤维气凝胶,再利用一步水热法在石墨烯/碳纳米纤维气凝胶上原位生长硫化钼纳米片。专利CN107799757B,在水热条件下,制备出MoS2/氮掺杂碳管三维中空结构的复合材料,这种材料作为钠离子电池负极材料获得了非常优异的循环性能和倍率性能。专利CN107681142B,通过静电纺丝的方法制备出多孔的碳纳米纤维,再用水热法在制得二硫化钼包覆碳纳米纤维复合材料,可以改善二硫化钼的导电性差和在电池充放电过程中的体积膨胀问题,提高稳定性。这些方法,在制备中缺少成型添加剂和偶联剂,二硫化钼无法有效在纤维表面均匀生长,所得的复合材料难以控制结构的均匀性。In order to improve the performance of molybdenum disulfide and broaden its application field, it is modified and compounded. Patent CN105304876B prepares graphene/carbon nanofiber airgel by high-temperature carbonization, and then uses a one-step hydrothermal method to in-situ grow molybdenum sulfide nanosheets on graphene/carbon nanofiber airgel. Patent CN107799757B, under hydrothermal conditions, a composite material with a three-dimensional hollow structure of MoS 2 /nitrogen-doped carbon tubes was prepared. This material obtained excellent cycle performance and rate performance as a negative electrode material for sodium-ion batteries. Patent CN107681142B, prepared porous carbon nanofibers by electrospinning, and then prepared molybdenum disulfide-coated carbon nanofiber composite materials by hydrothermal method, which can improve the poor conductivity of molybdenum disulfide and the charging and discharging process of the battery. Volume expansion problem, improve stability. These methods lack molding additives and coupling agents in the preparation, molybdenum disulfide cannot effectively grow uniformly on the fiber surface, and it is difficult to control the uniformity of the structure of the obtained composite material.
另外,中国专利申请CN104558295A公开了一种生产耐磨阻燃聚乙烯的载体催化剂及其制备方法和应用,载体催化剂包括:层状结构的硅酸盐矿物质或其改性产物作为纳米载体的第一组分;链状结构的硅酸盐矿物质或其改性产物作为纳米载体的第二组分;反应性氯化镁体系或反应性二氧化硅体系作为纳米载体的第三组分,将上述两种组分充分复合形成纳米载体;将过渡金属催化剂负载在纳米载体上得到载体催化剂。该专利中复合载体制备过程中,层状和链状结构的硅酸盐简单混合,无法形成有效的三维立体结构,所得到的催化剂以及树脂性能协同增强作用偏弱。同时,大部分硅酸盐矿物质中除了硅和氧外,还含有一定量的其它化学元素(主要是铝、铁、钙、镁、钾、钠等),这些物质的存在会影响催化剂的活性以及所得树脂的特性,造成树脂中微量金属元素数量多且含量超标,树脂加工所得薄膜产生晶点或缺陷。第三,以硅和氧为主的硅酸盐的由于本身特性,耐磨性能以及增强性能比二硫化钼为代表的过渡金属硫化物偏弱,无法在更加严苛的环境中实现理想的效果。In addition, Chinese patent application CN104558295A discloses a carrier catalyst for producing wear-resistant and flame-retardant polyethylene and its preparation method and application. One component; the chain structure silicate mineral or its modified product as the second component of the nano-carrier; the reactive magnesium chloride system or the reactive silica system as the third component of the nano-carrier, the above two The two components are fully compounded to form a nano-carrier; the transition metal catalyst is supported on the nano-carrier to obtain a supported catalyst. In the preparation process of the composite carrier in this patent, the silicate with layered and chain structures is simply mixed, and an effective three-dimensional structure cannot be formed, and the synergistic enhancement effect of the obtained catalyst and resin performance is relatively weak. At the same time, in addition to silicon and oxygen, most silicate minerals also contain a certain amount of other chemical elements (mainly aluminum, iron, calcium, magnesium, potassium, sodium, etc.), the existence of these substances will affect the activity of the catalyst As well as the characteristics of the obtained resin, the number of trace metal elements in the resin is large and the content exceeds the standard, and the film obtained by processing the resin produces crystal points or defects. Third, the silicates based on silicon and oxygen are weaker than transition metal sulfides represented by molybdenum disulfide due to their own characteristics, wear resistance and reinforcement performance, and cannot achieve the ideal effect in a more severe environment .
发明内容Contents of the invention
本发明的目的就是为了提供一种用于生产增强聚乙烯的催化剂。The object of the present invention is to provide a catalyst for the production of reinforced polyethylene.
本发明的另一目的则是为了提供一种用于生产增强聚乙烯的催化剂的制备方法。Another object of the present invention is to provide a method for preparing a catalyst for producing reinforced polyethylene.
本发明的第三个目的则是为了提供上述用于生产增强聚乙烯的催化剂的应用。A third object of the present invention is to provide the use of the above catalyst for the production of reinforced polyethylene.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
本发明的技术方案之一提供了一种用于生产增强聚乙烯的催化剂,包括纳米载体、以及负载在纳米载体上的过渡金属催化成分,所述纳米载体由第一组分和第二组分复合而成,所述第一组分为具有多层结构的无机纳米复合材料,所述第二组分为反应性氯化镁体系或反应性二氧化硅体系。One of the technical solutions of the present invention provides a catalyst for producing reinforced polyethylene, comprising a nano-carrier and a transition metal catalytic component loaded on the nano-carrier, the nano-carrier consists of a first component and a second component The first component is an inorganic nanocomposite material with a multilayer structure, and the second component is a reactive magnesium chloride system or a reactive silicon dioxide system.
进一步的,所述过渡金属催化成分选自齐格勒-纳塔催化剂、茂金属催化剂、非茂前过渡金属催化剂或后过渡金属催化剂中的至少一种。Further, the transition metal catalytic component is selected from at least one of Ziegler-Natta catalysts, metallocene catalysts, non-cene early transition metal catalysts or late transition metal catalysts.
更进一步的,所述齐格勒-纳塔催化剂具有通式(R’O)nM’X4,其中0≤n<4,R’为C1~C20的烷基、芳基或环烷基团;M’为4-6族过渡金属,X为卤素化合物;齐格勒-纳塔催化剂的含量以金属计为所制得催化剂总量的0.1-20wt%,给电子体的质量百分含量为0.01-50%;Furthermore, the Ziegler-Natta catalyst has the general formula (R'O) n M'X 4 , wherein 0≤n<4, and R' is an alkyl, aryl or ring of C 1 to C 20 Alkyl group; M' is a transition metal of Group 4-6, and X is a halogen compound; the content of the Ziegler-Natta catalyst is 0.1-20wt% of the total amount of the prepared catalyst in terms of metal, and the mass of the electron donor is 100%. Mineral content is 0.01-50%;
更进一步优选的,所述齐格勒-纳塔催化剂含有一定量的给电子体,所述给电子体为含有氧、氮、磷、硫、硅等的有机化合物,优选为单酯类、二酯类、二醚类、琥珀酸酯、二醇酯类、邻苯二胺类等化合物一种或多种。More preferably, the Ziegler-Natta catalyst contains a certain amount of electron donors, and the electron donors are organic compounds containing oxygen, nitrogen, phosphorus, sulfur, silicon, etc., preferably monoesters, di One or more compounds such as esters, diethers, succinates, glycol esters, o-phenylenediamines, etc.
所述茂金属催化剂具有通式CpxMAy,其中x至少是1,M为4、5或6族的过渡金属,Cp表示未取代或取代的环戊二烯基配体、茚基配体、芴基配体、苯并茚基配体、二苯并芴基配体或苯并芴基配体,A为胺类、醚类、羧酸类、二烯类、膦类、卤素、氢原子或烷基中的一种或几种,(x+y)等于M的价数,茂金属催化剂的含量为0.01-1mmol/g纳米载体;The metallocene catalyst has the general formula Cp x MA y , wherein x is at least 1, M is a transition metal of Group 4, 5 or 6, and Cp represents an unsubstituted or substituted cyclopentadienyl ligand, an indenyl ligand , fluorenyl ligands, benzoindenyl ligands, dibenzofluorenyl ligands or benzofluorenyl ligands, A is amines, ethers, carboxylic acids, dienes, phosphines, halogens, hydrogen One or more of atoms or alkyl groups, (x+y) is equal to the valence of M, and the content of the metallocene catalyst is 0.01-1mmol/g nanocarrier;
所述非茂前过渡金属催化剂中,在非茂活性中心不含有双环戊二烯,配体为有机基团,配体原子为O、N、S或P,金属有机配合物的中心金属为前过渡金属元素,该前过渡金属元素包括Ti、Zr、Hf、Cr或V,非茂前过渡金属催化剂的含量为0.01-0.lmmol/g纳米载体;In the non-metallocene early transition metal catalyst, no dicyclopentadiene is contained in the non-metallocene active center, the ligand is an organic group, the ligand atom is O, N, S or P, and the central metal of the metal-organic complex is an anterior Transition metal elements, the former transition metal elements include Ti, Zr, Hf, Cr or V, and the content of the non-procene transition metal catalyst is 0.01-0.1 mmol/g nanocarrier;
所述后过渡金属催化剂是指以VIII B族过渡金属为主催化成分,经烷基铝、烷氧基铝或有机硼化合物活化后对烯烃聚合有高活性的烯烃聚合催化剂,后过渡金属催化剂的含量为0.01-0.lmmol/g纳米载体。The late-transition metal catalyst refers to an olefin polymerization catalyst with high activity for olefin polymerization after being activated by alkylaluminum, alkoxyaluminum or organic boron compound, with the transition metal of Group VIII B as the main catalytic component. The content is 0.01-0.1 mmol/g nano carrier.
更优选的,所述的齐格勒-纳塔催化剂中M’为钛、钒或锆,X为氯、溴或碘,齐格勒-纳塔催化剂的含量以金属计为载体催化剂总量的0.5-10wt%,给电子体的质量百分含量为0.1-5%;;More preferably, in the Ziegler-Natta catalyst, M' is titanium, vanadium or zirconium, X is chlorine, bromine or iodine, and the content of the Ziegler-Natta catalyst is calculated as the total amount of the supported catalyst in terms of metal. 0.5-10wt%, the mass percentage of the electron donor is 0.1-5%;;
所述的茂金属催化剂中M为锆、钛或铪,Cp表示未取代或取代的环戊二烯基、茚基或芴基配体,茂金属催化剂的含量为0.02-0.6mmol/g纳米载体;In the metallocene catalyst, M is zirconium, titanium or hafnium, Cp represents an unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl ligand, and the content of the metallocene catalyst is 0.02-0.6mmol/g nanocarrier ;
所述的非茂前过渡金属催化剂包括双羟基吡啶二氯化钛催化剂,硫桥基联二酚(TBP)TiCl2,苯氧基亚胺(水杨醛亚胺),8-羟基喹啉,螯合二氨基钛或氮杂环钛的一种或者多种;Described non-procene transition metal catalyst comprises bishydroxypyridine titanium dichloride catalyst, sulfur bridging bisphenol (TBP) TiCl 2 , phenoxyimine (salicylaldimine), 8-hydroxyquinoline, chelated One or more of diaminotitanium or azacyclic titanium;
所述的后过渡金属催化剂包括二亚胺基镍催化剂、吡啶二亚胺基铁(II)或钴(II)催化剂;后过渡金属催化剂的含量为0.02-0.06mmol/g纳米载体。The late transition metal catalyst includes nickel diimide catalyst, pyridine diimide iron (II) or cobalt (II) catalyst; the content of the late transition metal catalyst is 0.02-0.06mmol/g nano carrier.
进一步的,所述反应性氯化镁体系为由无水氯化镁和给电子溶剂混合后,再将给电子溶剂经后续处理脱除得到的活性氧化镁。Further, the reactive magnesium chloride system is an active magnesium oxide obtained by mixing anhydrous magnesium chloride and an electron-donating solvent, and then removing the electron-donating solvent through subsequent treatment.
进一步的,所述反应性二氧化硅体系为将硅酸酯或硅酸酯钠与带有反应性基团的含硅有机化合物发生水解和缩合反应得到的反应性二氧化硅,或者是将硅酸酯与碱性反应介质混合,进行溶胶凝胶反应后得到的反应性二氧化硅。Further, the reactive silica system is reactive silica obtained by hydrolyzing and condensing silicate or sodium silicate with a silicon-containing organic compound with a reactive group, or silica Reactive silica obtained by mixing acid ester with alkaline reaction medium for sol-gel reaction.
进一步的,所述第一组分为含硫族化合物和改性增强纤维复合的三维复合材料,具体的,该多层结构的无机纳米复合材料的比表面积为5-700m2/g,平均孔径为1-100纳米,孔容为0.05-500cm3/g。Further, the first component is a three-dimensional composite material composed of chalcogenide-containing compounds and modified reinforcing fibers. Specifically, the specific surface area of the multilayer inorganic nanocomposite material is 5-700m 2 /g, and the average pore diameter is It is 1-100 nanometers, and the pore volume is 0.05-500cm 3 /g.
进一步的,所述具有多层结构的无机纳米复合材料通过以下步骤制备得到:Further, the inorganic nanocomposite material with multilayer structure is prepared through the following steps:
(a)将超细增强纤维采用等离子表面处理改性,洗涤中性后,加入偶联剂处理得到改性增强纤维;(a) modifying the superfine reinforcing fiber by plasma surface treatment, after washing and neutralizing, adding a coupling agent to obtain the modified reinforcing fiber;
(b)将金属源、硫源、成型添加剂溶于溶剂中,再与步骤(a)得到的改性增强纤维进行水热反应;(b) Dissolving the metal source, sulfur source, and molding additive in a solvent, and then performing a hydrothermal reaction with the modified reinforcing fiber obtained in step (a);
(c)将步骤(b)得到的水热产物洗涤、干燥,即得到具有多层结构的无机纳米复合材料。(c) washing and drying the hydrothermal product obtained in step (b) to obtain an inorganic nanocomposite material with a multilayer structure.
更进一步的,等离子表面处理改性在惰性气体下进行,温度控制为70~90℃,时间控制为6~18h。Furthermore, the plasma surface treatment modification is carried out under inert gas, the temperature is controlled at 70-90° C., and the time is controlled at 6-18 hours.
更进一步的,步骤(a)中,所述超细增强纤维选自玻璃纤维、碳纤维、玄武岩纤维、石棉粉、石膏纤维、硅酸铝纤维、陶瓷纤维、海泡石纤维、硅灰石纤维、硫酸钙纤维的一种或几种,其纤维长度为0.1-200微米。Further, in step (a), the superfine reinforcing fibers are selected from glass fibers, carbon fibers, basalt fibers, asbestos powder, gypsum fibers, aluminum silicate fibers, ceramic fibers, sepiolite fibers, wollastonite fibers, One or several types of calcium sulfate fibers, the fiber length of which is 0.1-200 microns.
更进一步的,步骤(b)中,所述金属源包括含钛、钒、钽、钼、钨或铼的过渡金属化合物,优选钼酸钠、钼酸胺、硅钼酸、氧化钼、钨酸钠、钨酸铵、氧化钨、钛酸钠、钛酸钡、钛粉、钒粉、偏钒酸氨、原钒酸钠、五氧化二钒、偏钒酸钾、三氯氧钒、钽酸锂、铼酸铵、铼酸钾等一种或多种。Further, in step (b), the metal source includes a transition metal compound containing titanium, vanadium, tantalum, molybdenum, tungsten or rhenium, preferably sodium molybdate, ammonium molybdate, silicomomolybdic acid, molybdenum oxide, tungstic acid Sodium, ammonium tungstate, tungsten oxide, sodium titanate, barium titanate, titanium powder, vanadium powder, ammonium metavanadate, sodium orthovanadate, vanadium pentoxide, potassium metavanadate, vanadium oxytrichloride, tantalic acid One or more of lithium, ammonium rhenate, potassium rhenate, etc.
更进一步的,步骤(b)中,所述硫源包括含硫、硒、碲等的硫属元素化合物,优选硫化氢、硫代乙酰胺、硫脲、四硫代钼酸铵、硫粉、硒粉、碲粉等一种或多种。Further, in step (b), the sulfur source includes chalcogen compounds containing sulfur, selenium, tellurium, etc., preferably hydrogen sulfide, thioacetamide, thiourea, ammonium tetrathiomolybdate, sulfur powder, One or more of selenium powder, tellurium powder, etc.
更进一步的,步骤(b)中,所述成型添加剂包括烷基卤化铵类化合物、硅钼酸等中的一种或几种。具体的,烷基卤化铵类化合物可以为十六烷基三甲基溴化铵等。Furthermore, in step (b), the molding additive includes one or more of alkyl ammonium halide compounds, molybdosilicic acid and the like. Specifically, the alkylammonium halide compound may be hexadecyltrimethylammonium bromide or the like.
更进一步的,步骤(b)中,所述偶联剂包括硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、铝锆酸酯偶联剂、稀土偶联剂、磷酸酯偶联剂或铬络合物偶联剂中的一种或多种的复合。Further, in step (b), the coupling agent includes silane coupling agent, titanate coupling agent, aluminate coupling agent, aluminum zirconate coupling agent, rare earth coupling agent, phosphoric acid ester A combination of one or more of coupling agents or chromium complex coupling agents.
更进一步的,步骤(b)中,金属源与硫源的摩尔比为(0.01-100):1,成型添加剂与金属源的摩尔比为(0.01-100):1,偶联剂和金属源的摩尔比为(0.01-100):1,金属源与超细增强纤维的重量比为(0.01-100):1。Further, in step (b), the molar ratio of the metal source to the sulfur source is (0.01-100):1, the molar ratio of the molding additive to the metal source is (0.01-100):1, the coupling agent and the metal source The molar ratio of the metal source is (0.01-100):1, and the weight ratio of the metal source to the superfine reinforcing fiber is (0.01-100):1.
更进一步的,步骤(b)中,水热反应的的温度为120-360℃;反应时间为1-36小时。Furthermore, in step (b), the temperature of the hydrothermal reaction is 120-360°C; the reaction time is 1-36 hours.
进一步的,该催化剂中,纳米载体的质量百分含量为70.0-99.99%,过渡金属催化成分的质量百分含量为0.01-30.0%;Further, in the catalyst, the mass percentage of the nano-carrier is 70.0-99.99%, and the mass percentage of the transition metal catalytic component is 0.01-30.0%;
所述第一组分和第二组分的重量比为(0.01-100):1。The weight ratio of the first component to the second component is (0.01-100):1.
本发明的技术方案之二提供了用于生产增强聚乙烯的催化剂的制备方法,包括以下步骤:The second technical solution of the present invention provides a preparation method for producing a catalyst for reinforced polyethylene, comprising the following steps:
(1)取无机纳米复合材料,与反应性氯化镁体系或反应性二氧化硅体系混合,形成包含无机纳米复合材料的氯化镁复合物或二氧化硅复合物;(1) taking the inorganic nanocomposite material and mixing it with a reactive magnesium chloride system or a reactive silica system to form a magnesium chloride compound or a silica compound comprising the inorganic nanocomposite material;
(2)将所得氯化镁复合物或二氧化硅复合物固化,形成包含无机纳米复合材料与氯化镁或二氧化硅的纳米载体;(2) solidifying the magnesium chloride composite or the silicon dioxide composite to form a nanocarrier comprising inorganic nanocomposites and magnesium chloride or silicon dioxide;
(3)将过渡金属催化成分均匀负载在纳米载体上,制备得到目标产物。(3) Uniformly loading the transition metal catalytic component on the nano-carrier to prepare the target product.
本发明中,先将一定量活性组分溶解在溶剂中,再加入一定量的的无机纳米载体,充分搅拌反应负载,一定时间后加入溶剂洗涤数次除去未反应的活性组分,在真空条件下干燥,得到自由流动的固体催化剂。In the present invention, a certain amount of active components are first dissolved in a solvent, then a certain amount of inorganic nanocarriers are added, the reaction load is fully stirred, and after a certain period of time, a solvent is added to wash several times to remove unreacted active components. Drying under the hood yielded a free-flowing solid catalyst.
本发明的技术方案之三提供了用于生产增强聚乙烯的催化剂的应用,该催化剂作为载体催化剂用于烯烃聚合反应生产聚乙烯。The third technical solution of the present invention provides the application of the catalyst for producing reinforced polyethylene, and the catalyst is used as a carrier catalyst for olefin polymerization to produce polyethylene.
进一步的,生产聚乙烯时,在烯烃聚合反应器中,加入乙烯、α-烯烃共聚单体、载体催化剂和助催化剂进行聚合反应以生产聚乙烯。优选的,所述的α-烯烃共聚单体与乙烯的摩尔比为0.01-1:1,加入的载体催化剂浓度为0.01-100ppm,加入的助催化剂的浓度为5-500ppm。Further, when polyethylene is produced, ethylene, α-olefin comonomer, carrier catalyst and co-catalyst are added to the olefin polymerization reactor for polymerization reaction to produce polyethylene. Preferably, the molar ratio of the α-olefin comonomer to ethylene is 0.01-1:1, the concentration of the added carrier catalyst is 0.01-100 ppm, and the concentration of the added co-catalyst is 5-500 ppm.
优选的,聚合反应为淤浆聚合、溶液聚合或气相聚合,其中,淤浆聚合时反应压力为0.1-5MPa,反应温度为0-120℃;气相聚合时反应压力为0.5-6MPa,反应温度为30-150℃;聚合反应时间为0.05-10.0小时,优选0.05-2.0小时。Preferably, the polymerization reaction is slurry polymerization, solution polymerization or gas phase polymerization, wherein, during slurry polymerization, the reaction pressure is 0.1-5MPa, and the reaction temperature is 0-120°C; during gas phase polymerization, the reaction pressure is 0.5-6MPa, and the reaction temperature is 30-150°C; the polymerization reaction time is 0.05-10.0 hours, preferably 0.05-2.0 hours.
纤维特有的结构特点(长径比、高强度等),纤维增强的复合材料具有比强度、比模量大,耐疲劳性能好,减震性好,过载安全性好,加工性能好等优点。因此,为了更能发挥出硫化钼耐磨自润滑等优异的使用性能,需要将层状结构的硫化物与无机纤维材料原位复合。借助等离子表面处理改性技术对纤维的表面进行改性处理,并利用成型添加剂和偶联剂将纤维材料与片层的硫化物原位复合,本发明制备出一种具有多层结构的含硫化物的无机纳米复合材料,两种可以协调增强复合材料的性能,表现出分散性好、相互作用力强、性能优异等特点。此外,将纳米材料作为烯烃聚合催化剂的载体,将烯烃聚合活性中心负载在纳米表面或片层之间,进行原位烯烃聚合反应,可以有效解决在聚合物体系中分散不均匀、团聚的问题。Due to the unique structural characteristics of fibers (length-to-diameter ratio, high strength, etc.), fiber-reinforced composite materials have the advantages of large specific strength and specific modulus, good fatigue resistance, good shock absorption, good overload safety, and good processing performance. Therefore, in order to give full play to the excellent performance of molybdenum sulfide such as wear resistance and self-lubrication, it is necessary to in-situ compound the layered structure of sulfide and inorganic fiber materials. The surface of the fiber is modified by the plasma surface treatment modification technology, and the fiber material and the sulfide of the sheet are compounded in situ by using the molding additive and the coupling agent. Inorganic nanocomposite materials, the two can coordinate and enhance the performance of the composite material, showing the characteristics of good dispersion, strong interaction force and excellent performance. In addition, using nanomaterials as the carrier of olefin polymerization catalysts, loading olefin polymerization active centers on the nano surface or between sheets, and performing in situ olefin polymerization can effectively solve the problems of uneven dispersion and agglomeration in the polymer system.
本发明在颗粒形态为球形的多维结构复合载体上负载过渡金属催化剂原位进行乙烯均聚或与其他共聚单体的共聚反应,从而制得多维结构复合载体增强的聚烯烃复合材料。The invention supports the transition metal catalyst on the spherical multi-dimensional structure composite carrier to carry out the homopolymerization of ethylene or the copolymerization reaction with other comonomers in situ, so as to prepare the polyolefin composite material reinforced by the multi-dimensional structure composite carrier.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
(1)本发明借助成型添加剂的控制作用和偶联剂的分子桥作用,制得以超细增强纤维为核,原位形成的硫化物为壳的多层结构无机复合材料。(1) The invention utilizes the controlling effect of the molding additive and the molecular bridging effect of the coupling agent to prepare a multi-layer inorganic composite material with superfine reinforcing fibers as the core and sulfide formed in situ as the shell.
(2)多层结构的复合材料可以有效提高无机颗粒的表面亲和力,改善增强材料的使用性能,并且可以通过成型添加剂的量调控纤维表面多层硫化物的结构及形状,提高增强性能,拓宽其应用领域。(2) The composite material with multi-layer structure can effectively improve the surface affinity of inorganic particles, improve the performance of the reinforced material, and can regulate the structure and shape of the multi-layer sulfide on the surface of the fiber through the amount of molding additives, improve the reinforced performance, and broaden its range. application field.
(3)本发明着重于多层结构的无机纳米复合载体增强的聚乙烯、聚丙烯均聚及其共聚物的颗粒形态、比表面积进行控制,提供了一种能够制备得到具有高堆密度、细粉少、不发粘的聚乙烯、聚丙烯及其共聚物的方法。由于聚烯烃具有较大的堆密度,在聚合过程中不会造成聚合物粘附于釜壁上的现象,因而易于流动和传输,提高生产效率。(3) The present invention focuses on controlling the particle morphology and specific surface area of polyethylene, polypropylene homopolymerization and copolymers thereof reinforced by inorganic nanocomposite carriers of multilayer structure, and provides a kind of high bulk density, fine Method for polyethylene, polypropylene and their copolymers with less powder and non-tackiness. Because polyolefin has a large bulk density, it will not cause the polymer to adhere to the wall of the kettle during the polymerization process, so it is easy to flow and transport, and the production efficiency is improved.
(4)本发明提供的多层结构的无机纳米复合载体增强的聚烯烃复合材料中,多层结构的无机纳米复合载体是由含硫族化合物和改性增强纤维复合的三维复合材料、反应性氯化镁(二氧化硅)或三者不同比例的混合物组成。由于超细纤维和多层硫化物的原位复合,三维骨架的存在,使两种协调作用增强,经过原位聚合后能够以增强剥片形成三维结构均匀分散于聚烯烃复合材料中,使得到的材料同时具备高的力学性能和使用性能,特别是拉伸性能和耐磨性能的共同提高、增韧和耐磨的同时改善、抗冲和增韧的协同提高等优点。可知本发明通过原位聚合方法成功制备得到了高抗冲击耐磨性能优异的聚烯烃复合材料。(4) In the polyolefin composite material reinforced by the inorganic nanocomposite carrier of the multilayer structure provided by the present invention, the inorganic nanocomposite carrier of the multilayer structure is a three-dimensional composite material composed of a chalcogenide compound and a modified reinforcing fiber, reactive Magnesium chloride (silicon dioxide) or a mixture of the three in different proportions. Due to the in-situ compounding of ultrafine fibers and multi-layer sulfides, the existence of a three-dimensional skeleton enhances the coordination of the two. After in-situ polymerization, it can form a three-dimensional structure that is evenly dispersed in the polyolefin composite material with enhanced peeling, so that the obtained The material has high mechanical properties and performance at the same time, especially the joint improvement of tensile properties and wear resistance, the simultaneous improvement of toughening and wear resistance, and the synergistic improvement of impact resistance and toughening. It can be seen that the present invention has successfully prepared a polyolefin composite material with high impact resistance and excellent wear resistance through the in-situ polymerization method.
(5)本发明提供的多无机纳米复合载体增强聚乙烯复合材料,在汽车用零部件、高耐磨管材和板材、强阻隔性中空容器、包装材料、阻隔材料、阻燃材料、电器材料等领域,具有广泛的应用前景。(5) The multi-inorganic nanocomposite carrier-reinforced polyethylene composite material provided by the present invention is used in automotive parts, high wear-resistant pipes and plates, strong barrier hollow containers, packaging materials, barrier materials, flame retardant materials, electrical materials, etc. field and has broad application prospects.
附图说明Description of drawings
图1为无机复合材料增强聚乙烯耗能因子与温度关系曲线图。Figure 1 is a graph showing the relationship between energy dissipation factor and temperature of inorganic composite reinforced polyethylene.
具体实施方式Detailed ways
下面对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。本发明各实施例中所述实验方法,如无特殊说明,均为常规方法。Specific embodiments of the present invention are described in detail below, but it should be understood that the protection scope of the present invention is not limited by the specific embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention. The experimental methods described in the various embodiments of the present invention are conventional methods unless otherwise specified.
下例方法用于测试所述实施例中生产的聚乙烯树脂的性能:The following example method is used to test the performance of the polyethylene resin produced in the described embodiment:
ASTM D1238用于测试聚乙烯树脂的熔融指数(MI2.16,在2.16kg负荷,190℃),流动指数(FI,在21.6kg负荷,190℃)以及5公斤下的熔融指数(MI5,在5kg负荷,190℃);由于MI2.16数值较低,误差偏大,所以采用FI与MI5的比值来表示产物的熔流比,可以定性描述分子量分布的变化。ASTM D1238 is used to test the melt index of polyethylene resin (MI 2.16 , at 2.16kg load, 190°C), flow index (FI, at 21.6kg load, 190°C) and the melt index at 5 kg (MI 5 , at 5kg load, 190°C); due to the low value of MI 2.16 , the error is relatively large, so the ratio of FI to MI 5 is used to represent the melt flow ratio of the product, which can qualitatively describe the change of molecular weight distribution.
聚合物分子量分布(MWD)用Polymer Laboratories公司的PL-220型凝胶渗透色谱(GPC)仪测定。Polymer molecular weight distribution (MWD) was measured with a PL-220 gel permeation chromatography (GPC) instrument from Polymer Laboratories.
力学性能测试复合材料的拉伸强度与断裂伸长率根据GB 1040-93标准在电子万能试验机上进行测试。室温,拉伸速率为50mm/min。计算公式为:Mechanical properties test The tensile strength and elongation at break of the composite materials were tested on an electronic universal testing machine according to the GB 1040-93 standard. At room temperature, the stretching rate was 50 mm/min. The calculation formula is:
式中,σt-拉伸强度,MPa;P-最大载荷,N;b-试样宽度,mm;h-试样厚度,mm。 In the formula, σt -tensile strength, MPa; P-maximum load, N; b-sample width, mm; h-sample thickness, mm.
以下的具体实施例就发明的用于生产多维尺度纳米增强聚乙烯复合材料的催化剂及其制备方法做出详细的解释。但这些实施例并不限制本发明的范围,也不应该理解为只有本发明提供的条件、参数或数值才能实施本发明。本发明着重于对多维纳米复合载体增强的聚乙烯聚合物颗粒形态的有效控制,进一步调控增强纳米复合材料的力学性能,故对得到的多维纳米复合增强的聚乙烯复合材料进行力学性能测试(测试多维纳米复合载体对聚乙烯复合材料拉伸性能的增强效果)。The following specific examples explain in detail the inventive catalyst for producing multi-dimensional scale nano-reinforced polyethylene composites and its preparation method. But these examples do not limit the scope of the present invention, nor should it be understood that only the conditions, parameters or values provided by the present invention can implement the present invention. The present invention focuses on the effective control of the morphology of polyethylene polymer particles reinforced by multidimensional nanocomposite carriers, and further regulates the mechanical properties of reinforced nanocomposites, so the obtained multidimensional nanocomposite reinforced polyethylene composites are tested for mechanical properties (testing Enhancement effect of multidimensional nanocomposite supports on tensile properties of polyethylene composites).
实施例1:Example 1:
制备齐格勒-纳塔复合载体催化剂体系;Preparation of Ziegler-Natta composite carrier catalyst system;
实施例1aExample 1a
MX2/碳纤维复合材料的制备:Preparation of MX2/carbon fiber composites:
(1)先用丙酮和乙醇常温下浸泡100g碳纤维,将表面进行清洗;然后在惰性气体中、80℃下产生的等离子体对碳纤维处理12h;再将碳纤维用去离子水洗至中性,转移到聚四氟乙烯内衬的搅拌反应釜中,加入10g硅烷偶联剂KH-570,一起搅拌加热60℃保持12小时;(1) First soak 100g of carbon fibers with acetone and ethanol at room temperature, and clean the surface; then treat the carbon fibers with plasma generated at 80°C in an inert gas for 12 hours; then wash the carbon fibers with deionized water until neutral, and transfer to Add 10g of silane coupling agent KH-570 to the stirring reaction kettle lined with polytetrafluoroethylene, stir together and heat at 60°C for 12 hours;
(2)将25g钼酸钠,100g硫化氢和18g十六烷基三甲基溴化铵依次被溶解于去离子水中,得到混合溶液;(2) 25g sodium molybdate, 100g hydrogen sulfide and 18g cetyltrimethylammonium bromide are dissolved in deionized water successively to obtain a mixed solution;
(3)将步骤(2)的混合溶液与加入到步骤(1)的搅拌反应釜中,继续搅拌下加热至200℃保持24h;(3) Add the mixed solution of step (2) into the stirring reaction kettle of step (1), and continue to stir and heat to 200°C for 24h;
(4)将步骤(3)得到的溶液进行离心收集,得到二硫化钼/碳纤维复合材料。(4) Centrifuge the solution obtained in step (3) to obtain a molybdenum disulfide/carbon fiber composite material.
聚乙烯复合载体催化剂的制备:Preparation of polyethylene composite carrier catalyst:
在氮气保护下,在一个带搅拌的反应瓶中添加4g无水氯化镁粉末、20ml无水乙醇和50ml正庚烷,在100℃下搅拌,直至氯化镁溶解。再加入8g MoS2/碳纤维复合材料粉末,充分搅拌2小时。然后降温到室温,得到纳米复合物MgCl2·MoS2/碳纤维·xETOH。往上述体系中再加入17ml纯三乙基铝(TEA),在60℃下反应2h,加入50ml正庚烷洗涤4次除去未反应的TEA,在真空条件下干燥,得到流动性好的载体Mo-S。Under the protection of nitrogen, add 4g of anhydrous magnesium chloride powder, 20ml of absolute ethanol and 50ml of n-heptane into a stirred reaction flask, and stir at 100°C until the magnesium chloride dissolves. Then add 8g of MoS 2 /carbon fiber composite material powder and stir well for 2 hours. Then cool down to room temperature to obtain the nanocomposite MgCl2·MoS 2 /carbon fiber·xETOH. Add 17ml of pure triethylaluminum (TEA) to the above system, react at 60°C for 2 hours, add 50ml of n-heptane to wash 4 times to remove unreacted TEA, and dry under vacuum to obtain a carrier Mo with good fluidity. -S.
取10g载体Mo-S,加入50ml正庚烷,1g 2,3-二异丙基琥珀酸二乙酯和10ml TiCl4,在60℃下反应2h,加入50ml正庚烷洗涤4次除去未反应的TiCl4,在真空条件下干燥,得到自由流动的固体催化剂Cat-Mo-Ti。复合载体催化剂的扫描电镜照片见图1。Take 10g carrier Mo-S, add 50ml n-heptane, 1g 2,3-diisopropyl diethyl succinate and 10ml TiCl 4 , react at 60°C for 2h, add 50ml n-heptane to wash 4 times to remove unreacted TiCl 4 , dried under vacuum to obtain a free-flowing solid catalyst Cat-Mo-Ti. The scanning electron micrograph of the composite carrier catalyst is shown in Figure 1.
淤浆聚合:反应装置为2L钢制耐压水循环控温反应釜,分别加入1L正己烷,50mgCat-Mg-Ti催化剂,0.5ml三乙基铝(助催化剂),85℃下进行聚合反应1小时后,终止反应,降温至室温,出料,干燥,获得聚乙烯产品,计算催化剂活性如表1所示。聚丙烯复合材料经注塑标准制品后性能如表2所示。Slurry polymerization: The reaction device is a 2L steel pressure-resistant water circulating temperature-controlled reactor, add 1L of n-hexane, 50mg of Cat-Mg-Ti catalyst, and 0.5ml of triethylaluminum (cocatalyst), and carry out polymerization at 85°C for 1 hour Afterwards, the reaction was terminated, the temperature was lowered to room temperature, and the material was discharged and dried to obtain a polyethylene product. The catalyst activity was calculated as shown in Table 1. The properties of polypropylene composites after injection molding standard products are shown in Table 2.
该多维多晶纳米复合载体增强的聚乙烯颗粒的表观形态为球形,颗粒粒径大小为10-100微米,从该纳米复合材料的拉伸强度和耐磨性能得到了明显的提高,MoS2/碳纤维三维结构复合材料增强了聚乙烯复合材料的力学性能。The apparent shape of the polyethylene particles reinforced by the multidimensional polycrystalline nanocomposite carrier is spherical, and the particle size is 10-100 microns. The tensile strength and wear resistance of the nanocomposite material have been significantly improved. MoS 2 / Carbon fiber three-dimensional structural composites enhance the mechanical properties of polyethylene composites.
实施例1b:Example 1b:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为钼酸胺,硫源改为硫代乙酰胺。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to ammonium molybdate, and the sulfur source was changed to thioacetamide. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1c:Example 1c:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为硅钼酸,硫源改为硫脲。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to silicomomolybdic acid, and the sulfur source was changed to thiourea. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1d:Example 1d:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为氧化钼,硫源改为四硫代钼酸铵。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to molybdenum oxide, and the sulfur source was changed to ammonium tetrathiomolybdate. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1e:Example 1e:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为钨酸钠,硫源改为硫粉。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to sodium tungstate, and the sulfur source was changed to sulfur powder. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1f:Example 1f:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为钨酸铵,硫源改为硒粉。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The same method as in Example 1a was used to prepare polyethylene composites, except that the metal source was changed to ammonium tungstate, and the sulfur source was changed to selenium powder. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1g:Example 1g:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为氧化钨,硫源改为碲粉。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to tungsten oxide, and the sulfur source was changed to tellurium powder. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1h:Example 1h:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为钛酸钠,硫源改为硫粉。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to sodium titanate, and the sulfur source was changed to sulfur powder. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1i:Example 1i:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为钛酸钡,硫源改为硫粉。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to barium titanate, and the sulfur source was changed to sulfur powder. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1j:Example 1j:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为钛粉,硫源改为硫粉。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to titanium powder, and the sulfur source was changed to sulfur powder. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1k:Example 1k:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为钒粉,硫源改为硫粉。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to vanadium powder, and the sulfur source was changed to sulfur powder. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1l:Embodiment 11:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为偏钒酸氨,硫源改为硫粉。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。A polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to ammonium metavanadate, and the sulfur source was changed to sulfur powder. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1m:Example 1m:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为原钒酸钠,硫源改为硫粉。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to sodium orthovanadate, and the sulfur source was changed to sulfur powder. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1n:Example 1n:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为五氧化二钒,硫源改为硫粉。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to vanadium pentoxide, and the sulfur source was changed to sulfur powder. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1o:Example 1o:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为偏钒酸钾,硫源改为硫脲。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to potassium metavanadate, and the sulfur source was changed to thiourea. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1p:Example 1p:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为三氯氧钒,硫源改为硫粉。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to vanadyl trichloride, and the sulfur source was changed to sulfur powder. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1q:Example 1q:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为钽酸锂,硫源改为硫粉。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to lithium tantalate, and the sulfur source was changed to sulfur powder. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
实施例1r:Example 1r:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为铼酸铵,硫源改为硫脲。计算的催化活性和按上述测试方法测试的聚乙烯树脂的性The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to ammonium rhenate, and the sulfur source was changed to thiourea. Calculated catalytic activity and properties of polyethylene resin tested by the above test method
实施例1s:Example 1s:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了金属源改为铼酸钾,硫源改为硫粉。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The polyethylene composite was prepared using the same method as in Example 1a, except that the metal source was changed to potassium rhenate, and the sulfur source was changed to sulfur powder. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
对比例1:Comparative example 1:
使用与实施例1a相同的方法制备聚乙烯复合材料,除了不加十六烷基三甲基溴化铵。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。A polyethylene composite was prepared using the same method as in Example 1a, except that cetyltrimethylammonium bromide was not added. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
对比例2Comparative example 2
使用与实施例1a相同的方法制备聚乙烯复合材料,除了不加硅烷偶联剂KH-570。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。A polyethylene composite material was prepared using the same method as in Example 1a, except that no silane coupling agent KH-570 was added. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
对比例3Comparative example 3
使用与实施例1a相同的方法制备聚乙烯复合材料,除了不加十六烷基三甲基溴化铵和硅烷偶联剂KH-570。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。A polyethylene composite was prepared using the same method as in Example 1a, except that cetyltrimethylammonium bromide and silane coupling agent KH-570 were not added. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
对比例4Comparative example 4
使用与实施例1a相同的方法制备载体催化剂,除了不加MoS2/碳纤维复合材料。按照与实施例1a相同的程序进行淤浆聚合。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The supported catalyst was prepared using the same method as in Example 1a, except that the MoS 2 /carbon fiber composite was not added. Slurry polymerization was carried out following the same procedure as in Example 1a. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
对比例5Comparative example 5
使用与实施例1a相同的方法制备载体催化剂,除了不加碳纤维复合材料。按照与实施例1a相同的程序进行淤浆聚合。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。The supported catalyst was prepared using the same method as in Example 1a, except that no carbon fiber composite material was added. Slurry polymerization was carried out following the same procedure as in Example 1a. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
对比例6:Comparative example 6:
与实施例1a相比,绝大部分都相同,除了省去了给电子体2,3-二异丙基琥珀酸二乙酯的加入。按照与实施例1a相同的程序进行淤浆聚合。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。Compared with Example 1a, most of them are the same, except that the addition of the electron donor diethyl 2,3-diisopropylsuccinate is omitted. Slurry polymerization was carried out following the same procedure as in Example 1a. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
对比例7:Comparative example 7:
与实施例1a相比,绝大部分都相同,除了碳纤维不进行等离子体改性处理。按照与实施例1a相同的程序进行淤浆聚合。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。Compared to Example 1a, most are the same, except that the carbon fibers are not plasma-modified. Slurry polymerization was carried out following the same procedure as in Example 1a. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
对比例8:Comparative example 8:
与实施例1a相比,绝大部分都相同,除了碳纤维复合材料粉末制备过程中省去了硫源的加入。按照与实施例1a相同的程序进行淤浆聚合。催化剂活性如表1所示。聚乙烯复合材料经注塑标准制品后性能如表2所示。Compared with Example 1a, most of them are the same, except that the addition of sulfur source is omitted during the preparation of carbon fiber composite powder. Slurry polymerization was carried out following the same procedure as in Example 1a. The catalyst activity is shown in Table 1. The properties of polyethylene composites after injection molding standard products are shown in Table 2.
表1聚乙烯催化剂活性和聚乙烯复合材料经注塑标准制品后性能Table 1 Polyethylene catalyst activity and performance of polyethylene composites after injection molding standard products
从表1可以看出,以无机复合材料为载体的聚乙烯树脂的拉伸强度和抗冲性能大幅度提升,也提高了树脂的耐磨性能。说明三维无机复合材料的存在,以及无机材料制备过程中成型添加剂和偶联剂的加入,有助于提升材料的性能,该制备复合材料的方法具有独特性。It can be seen from Table 1 that the tensile strength and impact resistance of the polyethylene resin supported by inorganic composite materials are greatly improved, and the wear resistance of the resin is also improved. It shows that the existence of three-dimensional inorganic composite materials and the addition of molding additives and coupling agents in the preparation process of inorganic materials can help improve the performance of materials. The method of preparing composite materials is unique.
无机复合材料增强聚乙烯耗能因子与温度关系曲线图如图1所示,结合图1可知,损耗因子tanδ反映了复合材料的储能模量与损耗模量的平衡特性,其值越小,材料的界面综合性能就越好。由图1看出,与对比例相比较,原位聚合得到的无机复合材料增强的聚乙烯的损耗因子都大幅度下降,三维结构的无机复合材料不仅能很好地吸收动态冲击能,同时也能很好地将应力传递到三维结构材料上,从而具备优异的综合界面结合性能,大幅度提升了树脂的力学性能。The relationship between energy dissipation factor and temperature of inorganic composite material reinforced polyethylene is shown in Figure 1. Combining with Figure 1, it can be seen that the loss factor tanδ reflects the balance characteristics of the storage modulus and loss modulus of the composite material. The interface performance of the material is better. It can be seen from Figure 1 that compared with the comparative example, the loss factor of the polyethylene reinforced by the inorganic composite material obtained by in-situ polymerization is greatly reduced, and the three-dimensional inorganic composite material can not only absorb dynamic impact energy well, but also It can well transmit the stress to the three-dimensional structural material, thus having excellent comprehensive interfacial bonding performance, and greatly improving the mechanical properties of the resin.
实施例2Example 2
制备茂金属纳米载体催化剂体系Preparation of metallocene nanocarrier catalyst system
实施例2aExample 2a
二硫化钨/玻璃纤维复合材料的制备,使用与实施例1a相同的方法制备复合材料,除了纤维改为玻璃纤维,成型添加剂改为硅烷偶联剂,偶联剂改为十二烷基三甲基氯化铵。The preparation of tungsten disulfide/glass fiber composite material is prepared by the same method as in Example 1a, except that the fiber is changed to glass fiber, the molding additive is changed to a silane coupling agent, and the coupling agent is changed to dodecyltrimethyl ammonium chloride.
聚乙烯复合载体催化剂的制备Preparation of Polyethylene Composite Support Catalyst
取10g二硫化钨/复合玻璃纤维材料载体加入到反应瓶中,然后加入50ml含10%甲基铝氧烷(MAO)的甲苯溶液,于160℃下反应12个小时,然后用甲苯洗涤3次,去除上清液。将0.4g二氯二茂锆加入含有上述MAO改性的多维纳米载体的甲苯悬浮液中,于0℃下反应6个小时。反应完全后,用甲苯洗涤3次,去除上清液,干燥后得到本发明提供的无机复合载体负载的茂金属催化剂Cat-Zr。Take 10g of tungsten disulfide/composite glass fiber material carrier and add it to the reaction flask, then add 50ml of toluene solution containing 10% methylaluminoxane (MAO), react at 160°C for 12 hours, and then wash with toluene for 3 times , remove the supernatant. 0.4 g of zirconocene dichloride was added to the toluene suspension containing the above-mentioned MAO-modified multidimensional nanocarrier, and reacted at 0° C. for 6 hours. After the reaction is complete, wash with toluene three times, remove the supernatant, and dry to obtain the metallocene catalyst Cat-Zr supported by the inorganic composite carrier provided by the present invention.
淤浆聚合:反应装置为2L钢制耐压水循环控温反应釜,分别加入1L正己烷,50mgCat-Zr催化剂,5ml重量含量10%的三异丁基铝正己烷溶液,75℃下进行聚合反应1小时后,终止反应,降温至室温,出料,干燥,获得聚乙烯产品,计算催化剂活性和聚乙烯复合材料经注塑标准制品后性能如表2所示。Slurry polymerization: The reaction device is a 2L steel pressure-resistant water circulation temperature-controlled reactor, add 1L of n-hexane, 50mg of Cat-Zr catalyst, and 5ml of triisobutylaluminum n-hexane solution with a weight content of 10%, and carry out polymerization reaction at 75°C After 1 hour, the reaction was terminated, the temperature was lowered to room temperature, and the material was discharged and dried to obtain a polyethylene product. The catalyst activity and the performance of the polyethylene composite material after injection molding a standard product were calculated as shown in Table 2.
实施例2bExample 2b
二硫化钨/玄武岩纤维复合材料的制备,使用与实施例1a相同的方法制备复合材料,除了纤维改为玄武岩纤维,成型添加剂改为钛酸酯偶联剂,偶联剂改为十二烷基二甲基苄基氯化铵。The preparation of tungsten disulfide/basalt fiber composite material is prepared by the same method as in Example 1a, except that the fiber is changed to basalt fiber, the molding additive is changed to titanate coupling agent, and the coupling agent is changed to dodecyl Dimethylbenzyl ammonium chloride.
聚乙烯复合载体催化剂的制备,使用与实施例2a相同的方法,计算催化剂活性和聚乙烯复合材料经注塑标准制品后性能如表2所示。For the preparation of the polyethylene composite carrier catalyst, use the same method as in Example 2a to calculate the catalyst activity and the performance of the polyethylene composite material after injection molding a standard product, as shown in Table 2.
实施例2cExample 2c
二硫化钨/石棉粉/复合材料的制备,使用与实施例1a相同的方法,除了纤维改为石棉粉,成型添加剂改为铝酸酯偶联剂,偶联剂改为十八烷基二甲基羟乙基硝酸铵。The preparation of tungsten disulfide/asbestos powder/composite material uses the same method as in Example 1a, except that the fiber is changed to asbestos powder, the molding additive is changed to aluminate coupling agent, and the coupling agent is changed to octadecyl dimethyl Hydroxyethylammonium Nitrate.
聚乙烯复合载体催化剂的制备,使用与实施例2a相同的方法,计算催化剂活性和聚乙烯复合材料经注塑标准制品后性能如表2所示。For the preparation of the polyethylene composite carrier catalyst, use the same method as in Example 2a to calculate the catalyst activity and the performance of the polyethylene composite material after injection molding a standard product, as shown in Table 2.
实施例2dExample 2d
二硫化钨/硅酸铝纤维复合材料的制备方法,使用与实施例1a相同的方法,除了纤维改为硅酸铝纤维,成型添加剂改为铝锆酸酯偶联剂,偶联剂改为十八烷基二甲基羟乙基过氯酸铵。The preparation method of the tungsten disulfide/aluminum silicate fiber composite material uses the same method as in Example 1a, except that the fiber is changed to aluminum silicate fiber, the forming additive is changed to aluminum zirconate coupling agent, and the coupling agent is changed to ten Octyl Dimethyl Hydroxyethyl Ammonium Perchlorate.
聚乙烯复合载体催化剂的制备,使用与实施例2a相同的方法,计算催化剂活性和聚乙烯复合材料经注塑标准制品后性能如表2所示。For the preparation of the polyethylene composite carrier catalyst, use the same method as in Example 2a to calculate the catalyst activity and the performance of the polyethylene composite material after injection molding a standard product, as shown in Table 2.
实施例2eExample 2e
MoS2/陶瓷纤维复合材料的制备方法,使用与实施例1a相同的方法,除了纤维改为/陶瓷纤维,成型添加剂改为稀土偶联剂,偶联剂改为十二烷基硅钼酸。The preparation method of the MoS2/ceramic fiber composite material is the same method as in Example 1a, except that the fiber is changed to /ceramic fiber, the molding additive is changed to a rare earth coupling agent, and the coupling agent is changed to dodecyl silicomolybdic acid.
聚乙烯复合载体催化剂的制备,使用与实施例2a相同的方法,计算催化剂活性和聚乙烯复合材料经注塑标准制品后性能如表2所示。For the preparation of the polyethylene composite carrier catalyst, use the same method as in Example 2a to calculate the catalyst activity and the performance of the polyethylene composite material after injection molding a standard product, as shown in Table 2.
实施例2fExample 2f
二硫化钨/海泡石纤维复合材料的制备方法,使用与实施例1a相同的方法,除了纤维改为海泡石纤维,成型添加剂改为磷酸酯偶联剂,偶联剂改为十烷基硅钼酸。The preparation method of tungsten disulfide/sepiolite fiber composite material uses the same method as in Example 1a, except that the fiber is changed to sepiolite fiber, the molding additive is changed to a phosphate coupling agent, and the coupling agent is changed to a decanyl Molybdosilicate.
聚乙烯复合载体催化剂的制备,使用与实施例2a相同的方法,计算催化剂活性和聚乙烯复合材料经注塑标准制品后性能如表2所示。For the preparation of the polyethylene composite carrier catalyst, use the same method as in Example 2a to calculate the catalyst activity and the performance of the polyethylene composite material after injection molding a standard product, as shown in Table 2.
实施例2gExample 2g
二硫化钨/硅灰石纤维复合材料的制备方法,使用与实施例1a相同的方法,除了纤维改为硅灰石纤维,成型添加剂改为铬络合物偶联剂,偶联剂改为硅酸钠。The preparation method of tungsten disulfide/wollastonite fiber composite material uses the same method as in Example 1a, except that the fiber is changed to wollastonite fiber, the forming additive is changed to chromium complex coupling agent, and the coupling agent is changed to silicon Sodium acid.
聚乙烯复合载体催化剂的制备,使用与实施例2a相同的方法,计算催化剂活性和聚乙烯复合材料经注塑标准制品后性能如表2所示。For the preparation of the polyethylene composite carrier catalyst, use the same method as in Example 2a to calculate the catalyst activity and the performance of the polyethylene composite material after injection molding a standard product, as shown in Table 2.
实施例2hExample 2h
二硫化钼/硫酸钙纤维复合材料的制备方法,使用与实施例1a相同的方法,除了纤维改为硫酸钙纤维。The preparation method of the molybdenum disulfide/calcium sulfate fiber composite material uses the same method as in Example 1a, except that the fiber is changed to calcium sulfate fiber.
聚乙烯复合载体催化剂的制备,使用与实施例2a相同的方法,计算催化剂活性和聚乙烯复合材料经注塑标准制品后性能如表2所示。For the preparation of the polyethylene composite carrier catalyst, use the same method as in Example 2a to calculate the catalyst activity and the performance of the polyethylene composite material after injection molding a standard product, as shown in Table 2.
从表2可以看出,茂金属催化体系得到的聚乙烯复合材料也表现出优异的增强性能,三维无机复合材料的存在,以及无机材料制备过程中成型添加剂和偶联剂的加入,有助于提升材料的性能。与对比例相比较,三维结构的无机复合材料具备优异的综合界面结合性能,大幅度提升了树脂的力学性能。It can be seen from Table 2 that the polyethylene composites obtained by the metallocene catalyst system also exhibit excellent reinforcement properties. The existence of three-dimensional inorganic composites, as well as the addition of molding additives and coupling agents during the preparation of inorganic materials, contribute to Improve the performance of materials. Compared with the comparative example, the three-dimensional structure of the inorganic composite material has excellent comprehensive interface bonding performance, which greatly improves the mechanical properties of the resin.
表2聚乙烯催化剂活性和聚乙烯复合材料经注塑标准制品后性能Table 2 Polyethylene catalyst activity and performance of polyethylene composites after injection molding standard products
实施例3Example 3
制备非茂前过渡金属催化剂;Preparation of non-procene transition metal catalysts;
双羟基吡啶二氯化钛催化剂(bis(2-pyridinoxy)titanium dichloride)的合成:Synthesis of bis(2-pyridinoxy)titanium dichloride catalyst (bis(2-pyridinoxy)titanium dichloride):
在氮气保护下,将0.03mol的2-羟基吡啶和0.03mol的三乙胺溶解于50ml四氢呋喃中,搅拌1小时,然后在0℃下缓慢滴加0.015mol的四氯化钛,室温搅拌24小时。抽滤去四氢呋喃的上层清液,减压蒸馏除去溶剂得到催化剂,即为双羟基吡啶二氯化钛催化剂,收率为80.0%。Under nitrogen protection, dissolve 0.03mol of 2-hydroxypyridine and 0.03mol of triethylamine in 50ml of tetrahydrofuran, stir for 1 hour, then slowly add 0.015mol of titanium tetrachloride dropwise at 0°C, and stir at room temperature for 24 hours . The supernatant liquid of tetrahydrofuran was sucked off, and the solvent was distilled off under reduced pressure to obtain a catalyst, which was a bishydroxypyridine titanium dichloride catalyst, with a yield of 80.0%.
多维多晶硅酸盐复合载体催化剂的制备:Preparation of multidimensional polysilicate composite carrier catalyst:
取10g实施例1a制备的二硫化钨/碳纤维材料载体加入到反应瓶中,然后加入80ml含10%甲基铝氧烷(MAO)的甲苯溶液,于120℃下反应12个小时,然后用甲苯洗涤3次。然后加入5ml双羟基吡啶二氯化钛的甲苯溶液(钛浓度8×10-6mol/ml),于60℃下反应2个小时。反应完全后,用甲苯洗涤3次,去除上清液,干燥后得到本发明提供的多维多晶硅酸盐复合载体负载的非茂前过渡金属催化剂。Get the tungsten disulfide/carbon fiber material carrier that 10g embodiment 1a prepares and join in the reaction bottle, then add the toluene solution containing 10% methylaluminoxane (MAO) of 80ml, react at 120 ℃ for 12 hours, then use toluene Wash 3 times. Then 5ml of toluene solution of bishydroxypyridine titanium dichloride (titanium concentration 8×10 -6 mol/ml) was added, and reacted at 60°C for 2 hours. After the reaction is complete, wash with toluene three times, remove the supernatant, and dry to obtain the non-pre-transition metallocene catalyst supported by the multidimensional polysilicate composite carrier provided by the present invention.
淤浆聚合:反反应装置为2L钢制耐压水循环控温反应釜,分别加入1L正己烷,100mg上述所得催化剂,4ml 10%的三异丁基铝,然后乙烯置换4次,除去氮气,补入0.8MPa的压力的乙烯,85℃下进行聚合反应。反应1小时后,终止反应,降温至室温,出料,干燥,获得聚乙烯产品,计算催化剂活性和聚乙烯复合材料经注塑标准制品后性能如表2所示。Slurry polymerization: the reaction device is a 2L steel pressure-resistant water circulation temperature-controlled reactor, respectively add 1L of n-hexane, 100mg of the catalyst obtained above, 4ml of 10% triisobutylaluminum, and then replace ethylene for 4 times, remove nitrogen, and replenish Inject ethylene under a pressure of 0.8MPa, and carry out polymerization at 85°C. After reacting for 1 hour, the reaction was terminated, the temperature was lowered to room temperature, and the material was discharged and dried to obtain a polyethylene product. The calculated catalyst activity and the performance of the polyethylene composite material after injection molding a standard product were shown in Table 2.
实施例4:Example 4:
制备纳米载体后过渡金属催化剂;Preparation of nano-carrier post-transition metal catalysts;
吡啶二亚胺铁系催化剂的合成:Synthesis of pyridinediimine iron-based catalysts:
配体2,6-二(1-(2,6-二异丙基苯胺基乙基))吡啶的合成Synthesis of ligand 2,6-bis(1-(2,6-diisopropylanilinoethyl))pyridine
将3g(18.4mmol)2,6-二乙酰基吡啶和13g(73.6mmol)2,6-二异丙基苯胺溶解于50ml无水乙醇中,加入5滴冰醋酸,加热回流48h。体系冷却至室温,在-18℃下结晶,抽滤后,用冷酒精洗涤,干燥,称量得到7.98g固体,即为2,6-二(1-(2,6-二异丙基苯胺基乙基))吡啶,收率为90.0%。Dissolve 3g (18.4mmol) of 2,6-diacetylpyridine and 13g (73.6mmol) of 2,6-diisopropylaniline in 50ml of absolute ethanol, add 5 drops of glacial acetic acid, and heat to reflux for 48h. The system was cooled to room temperature, crystallized at -18°C, filtered with suction, washed with cold alcohol, dried, and weighed to obtain 7.98g of solid, which was 2,6-bis(1-(2,6-diisopropylaniline Base ethyl)) pyridine, the yield was 90.0%.
催化剂的合成Catalyst Synthesis
在氮气的保护下,在100ml Schlenk瓶中加入2.1mmol上述配体与2mmol FeCl2·4H2O,加入30ml四氢呋喃,在30℃下搅拌反应3小时。反应结束后,滴加加入正己烷,催化剂沉淀过滤,用正己烷、乙醚洗涤数次,得到吡啶二亚胺铁系催化剂。Under the protection of nitrogen, 2.1 mmol of the above ligand and 2 mmol of FeCl 2 ·4H 2 O were added to a 100 ml Schlenk bottle, 30 ml of tetrahydrofuran was added, and the reaction was stirred at 30° C. for 3 hours. After the reaction is finished, n-hexane is added dropwise, the catalyst is precipitated and filtered, and washed several times with n-hexane and ether to obtain a pyridinediimide iron-based catalyst.
多维多晶硅酸盐复合载体催化剂的制备:Preparation of multidimensional polysilicate composite carrier catalyst:
取一定量的实施例1a制备的二硫化钨/碳纤维材料载体加入到反应瓶中,然后加入80ml含10%甲基铝氧烷(MAO)的甲苯溶液,于120℃下反应12个小时,然后用甲苯洗涤3次。然后加入5ml上述制备吡啶二亚胺铁系催化剂的甲苯溶液(铁浓度8×10-6mol/ml),于60℃下反应2个小时。反应完全后,用甲苯洗涤3次,去除上清液,干燥后得到本发明提供的多维纳米载体负载的后过渡金属催化剂。Get a certain amount of tungsten disulfide/carbon fiber material carrier prepared in Example 1a and add it to the reaction flask, then add 80ml of toluene solution containing 10% methylaluminoxane (MAO), react at 120°C for 12 hours, and then Wash 3 times with toluene. Then 5ml of the toluene solution (iron concentration 8×10 -6 mol/ml) of the above prepared pyridinediimide iron-based catalyst was added, and reacted at 60°C for 2 hours. After the reaction is complete, wash with toluene for 3 times, remove the supernatant, and dry to obtain the late transition metal catalyst supported by the multidimensional nano-carrier provided by the present invention.
淤浆聚合:反应装置为2L钢制耐压水循环控温反应釜,分别加入1L正己烷,50mg上述所得催化剂,5ml三异丁基铝(10%),85℃下进行聚合反应1小时后,终止反应,降温至室温,出料,干燥,获得聚乙烯产品,计算催化剂活性和聚乙烯复合材料经注塑标准制品后性能如表2所示。Slurry polymerization: the reaction device is a 2L steel pressurized water circulation temperature control reactor, add 1L of n-hexane, 50mg of the catalyst obtained above, and 5ml of triisobutylaluminum (10%), and carry out the polymerization reaction at 85°C for 1 hour. The reaction was terminated, the temperature was lowered to room temperature, the material was discharged, and dried to obtain a polyethylene product. The catalyst activity and the performance of the polyethylene composite material after injection molding a standard product were calculated as shown in Table 2.
实施例5:Example 5:
制备齐格勒-纳塔复合载体催化剂体系:Preparation of Ziegler-Natta composite carrier catalyst system:
取10g的实施例1a制备的二硫化钨/碳纤维材料载体加入到反应瓶中,经过超声作用分散于乙醇中,20℃下,依次加入10ml的浓氨水、5ml无水乙醇,磁力搅拌12小时后,滴加入0.5ml的正硅酸乙酯。继续反应15小时,然后除去溶剂,干燥后得到含有二氧化硅的无机复合载体微粒Si-S,其平均粒径约为10-100微米。Take 10g of the tungsten disulfide/carbon fiber material carrier prepared in Example 1a and add it into the reaction flask, and disperse it in ethanol through ultrasonic action. , dropwise added 0.5ml of ethyl orthosilicate. The reaction was continued for 15 hours, and then the solvent was removed, and the inorganic composite carrier particles Si-S containing silicon dioxide were obtained after drying, with an average particle diameter of about 10-100 microns.
取10g载体Si-S,加入50ml正庚烷、0.5g邻苯二甲酸二正丁酯和10ml TiCl4,在60℃下反应2h,加入50ml正己烷洗涤4次除去未反应的TiCl4,在真空条件下干燥,得到自由流动的固体催化剂。Take 10g carrier Si-S, add 50ml n-heptane, 0.5g di-n-butyl phthalate and 10ml TiCl 4 , react at 60°C for 2h, add 50ml n-hexane to wash 4 times to remove unreacted TiCl 4 , Drying under vacuum gave a free-flowing solid catalyst.
淤浆聚合:反应装置为2L钢制耐压水循环控温反应釜,分别加入1L正己烷,50mg上述所得催化剂,0.5ml三乙基铝,85℃下进行聚合反应1小时后,终止反应,降温至室温,出料,干燥,获得聚乙烯产品,计算催化剂活性和聚乙烯复合材料经注塑标准制品后性能如表2所示。Slurry polymerization: The reaction device is a 2L steel pressure-resistant water circulation temperature-controlled reactor, add 1L of n-hexane, 50mg of the catalyst obtained above, and 0.5ml of triethylaluminum, and carry out the polymerization reaction at 85°C for 1 hour, then terminate the reaction and lower the temperature to room temperature, discharge, and dry to obtain a polyethylene product. The calculated catalyst activity and the performance of the polyethylene composite material after injection molding a standard product are shown in Table 2.
实施例6:Embodiment 6:
与实施例1a相比,绝大部分都相同,除了本实施例中控制:金属源与硫源的摩尔比为0.01:1,成型添加剂与金属源的摩尔比为100:1,偶联剂和金属源的摩尔比为100:1。Compared with Example 1a, most of them are the same, except for the control in this example: the molar ratio of metal source to sulfur source is 0.01:1, the molar ratio of molding additive to metal source is 100:1, coupling agent and The molar ratio of metal sources is 100:1.
实施例7:Embodiment 7:
与实施例1a相比,绝大部分都相同,除了本实施例中控制:金属源与硫源的摩尔比为100:1,成型添加剂与金属源的摩尔比为0.01:1,偶联剂和金属源的摩尔比为0.01:1。Compared with Example 1a, most of them are the same, except for the control in this example: the molar ratio of metal source to sulfur source is 100:1, the molar ratio of molding additive to metal source is 0.01:1, coupling agent and The molar ratio of metal sources is 0.01:1.
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。The above descriptions of the embodiments are for those of ordinary skill in the art to understand and use the invention. It is obvious that those skilled in the art can easily make various modifications to these embodiments, and apply the general principles described here to other embodiments without creative efforts. Therefore, the present invention is not limited to the above-mentioned embodiments. Improvements and modifications made by those skilled in the art according to the disclosure of the present invention without departing from the scope of the present invention should fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211522532.2A CN115785309B (en) | 2022-11-30 | 2022-11-30 | Catalyst for producing reinforced polyethylene, and preparation and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211522532.2A CN115785309B (en) | 2022-11-30 | 2022-11-30 | Catalyst for producing reinforced polyethylene, and preparation and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115785309A true CN115785309A (en) | 2023-03-14 |
CN115785309B CN115785309B (en) | 2023-11-28 |
Family
ID=85443941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211522532.2A Active CN115785309B (en) | 2022-11-30 | 2022-11-30 | Catalyst for producing reinforced polyethylene, and preparation and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115785309B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5212232A (en) * | 1987-09-28 | 1993-05-18 | Idemitsu Kosan Co., Ltd. | Process for production of styrene-based polymers |
US20020137623A1 (en) * | 2001-02-13 | 2002-09-26 | Gauthier William John | Method for the preparation of metallocene catalysts |
JP2006117642A (en) * | 2004-09-22 | 2006-05-11 | Nippon Polyethylene Kk | Method for producing low molecular weight olefin polymer and olefin copolymer |
CN109535290A (en) * | 2018-11-26 | 2019-03-29 | 上海化工研究院有限公司 | It is suitble to the catalyst and its preparation method and application of production ultra-fine grain diameter polyolefin |
-
2022
- 2022-11-30 CN CN202211522532.2A patent/CN115785309B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5212232A (en) * | 1987-09-28 | 1993-05-18 | Idemitsu Kosan Co., Ltd. | Process for production of styrene-based polymers |
US20020137623A1 (en) * | 2001-02-13 | 2002-09-26 | Gauthier William John | Method for the preparation of metallocene catalysts |
JP2006117642A (en) * | 2004-09-22 | 2006-05-11 | Nippon Polyethylene Kk | Method for producing low molecular weight olefin polymer and olefin copolymer |
CN109535290A (en) * | 2018-11-26 | 2019-03-29 | 上海化工研究院有限公司 | It is suitble to the catalyst and its preparation method and application of production ultra-fine grain diameter polyolefin |
Non-Patent Citations (3)
Title |
---|
孙明卓;柯扬船;王皓;: "MMT/SiO_2复合载体制备聚乙烯纳米复合材料的探索研究", 高分子材料科学与工程, no. 05, pages 249 - 253 * |
张东平, 许学翔, 程薇, 于鹏, 景振华, 段启伟: "一种新型非茂负载催化剂应用于乙烯聚合催化的研究", 化工进展, no. 12, pages 915 - 918 * |
李孟阁;刘文文;王龙飞;王艺璇;刘军海;: "纳米二硫化钼的制备研究现状及展望", 合成技术及应用, no. 01, pages 26 - 30 * |
Also Published As
Publication number | Publication date |
---|---|
CN115785309B (en) | 2023-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103450381B (en) | Produce nano-carrier Catalysts and its preparation method and the application of enhanced polyethylene | |
US7968660B2 (en) | Polymer-based composites comprising carbon nanotubes as a filler, method for producing said composites, and associated uses | |
US6399535B1 (en) | Coordination catalyst systems employing agglomerated metal oxide/clay support-activator and method of their preparation | |
EP1399491B1 (en) | Supported dual transition metal catalyst systems | |
CN101628243B (en) | Single metallocene catalyst composition and polymerizate thereof | |
US20030171207A1 (en) | Metallocene and constrained geometry catalyst systems employing agglomerated metal oxide/clay support-activator and method of their preparation | |
CN107903344A (en) | Produce catalyst of polyalkene diaphragm PP Pipe Compound and its preparation method and application | |
CN101654492A (en) | Super-high molecular polyethylene and preparation method and application thereof | |
CN103910930A (en) | Polypropylene intra-autoclave alloy having carbon nanotubes, preparation method for the alloy, and applications thereof | |
JP5689473B2 (en) | Method for producing ethylene polymer particles and stretched molded product obtained from the ethylene polymer particles | |
CN107022040B (en) | Carrier catalyst for producing wear-resistant antistatic polyolefin and preparation method and application thereof | |
JP2010534749A (en) | Catalyst system for polymerization of olefin monomers, process for producing polymers and polymers produced by the process | |
CN104558295A (en) | Carrier catalyst for producing wear-resistant flame-retardant polyethylene as well as preparation method and application of carrier catalyst | |
CN115785309B (en) | Catalyst for producing reinforced polyethylene, and preparation and application thereof | |
CN104072654A (en) | Core-shell type spherical metallocene ethylene propylene rubber and preparation method thereof | |
CN115785308B (en) | A catalyst for producing enhanced polyolefins and its preparation and application | |
CN108440691A (en) | A kind of preparation method of ultra-fine ultra-high molecular weight polyethylene | |
CN102731880A (en) | Polyolefin resin containing reduced graphite oxide and its preparation method | |
CN106188785A (en) | Fiber-glass reinforced polyethylene compositions, sheet material prepared therefrom or pipe and application thereof | |
JP7518642B2 (en) | Method for producing ethylene polymer particles and method for producing stretched molded product | |
JP2002532580A (en) | Catalytic modifiers and their use in the polymerization of olefins | |
CN101024708B (en) | Method for preparing broad-peak polythenel montmorillonite nano composite material using mixed catalyst | |
KR102656050B1 (en) | Catalyst composition for polymerization of polyolefin, preparing method of catalyst for polymerization of polyolefin and process for polymerization of polyolefin using the same | |
CN115698103A (en) | Catalyst system and method for producing polyethylene using the same | |
CN102040777B (en) | Clay reinforced polypropylene copolymer resin and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |