[go: up one dir, main page]

CN115778952B - Application of papaya alkaloids in the preparation of anti-coronavirus drugs - Google Patents

Application of papaya alkaloids in the preparation of anti-coronavirus drugs Download PDF

Info

Publication number
CN115778952B
CN115778952B CN202210791107.7A CN202210791107A CN115778952B CN 115778952 B CN115778952 B CN 115778952B CN 202210791107 A CN202210791107 A CN 202210791107A CN 115778952 B CN115778952 B CN 115778952B
Authority
CN
China
Prior art keywords
papaya
alkaloids
coronavirus
formula
alkaloid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210791107.7A
Other languages
Chinese (zh)
Other versions
CN115778952A (en
Inventor
高祥
孙柯
吴俊�
赵玉芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Jingxiang Pharmaceutical Technology Co ltd
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202210791107.7A priority Critical patent/CN115778952B/en
Publication of CN115778952A publication Critical patent/CN115778952A/en
Application granted granted Critical
Publication of CN115778952B publication Critical patent/CN115778952B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了番木瓜生物碱在制备抗新冠病毒的药物中的应用,属于医药技术领域。本发明实验明,番木瓜生物碱(番木瓜碱、伪番木瓜碱、去氢番木瓜碱I、去氢番木瓜碱II)能高效够抑制新冠病毒S蛋白和ACE2结合,抑制含有新冠病毒S蛋白的假病毒感染细胞,且细胞毒性较低,因此本申请提供了番木瓜生物碱在制备抗病毒的药物中的应用,为防治新冠病毒提供了新的思路。

The invention provides the application of papaya alkaloids in preparing anti-coronavirus drugs, and belongs to the field of medical technology. Experiments of the present invention show that papaya alkaloids (papain, pseudopapain, dehydropapain I, dehydropapain II) can effectively inhibit the binding of the new coronavirus S protein and ACE2, and inhibit the binding of the new coronavirus S protein and ACE2. The pseudovirus of protein infects cells and has low cytotoxicity. Therefore, this application provides the application of papaya alkaloids in the preparation of antiviral drugs, providing new ideas for preventing and treating the new coronavirus.

Description

番木瓜生物碱在制备抗新冠病毒的药物中的应用Application of papaya alkaloids in the preparation of anti-coronavirus drugs

技术领域Technical field

本发明属于医药技术领域,具体涉及番木瓜生物碱在制备抗新冠病毒的药物中的应用。The invention belongs to the field of medical technology, and specifically relates to the application of papaya alkaloids in the preparation of anti-coronavirus drugs.

背景技术Background technique

冠状病毒属于具有阳性单链RNA基因组的包膜病毒。冠状病毒分为α-CoVs、β-CoVs、γ-CoVs和δ-CoVs四个属[1]。严重急性呼吸综合征-冠状病毒-2(SARS-CoV-2)引起一种称为2019年冠状病毒病(COVID-19)的呼吸道疾病,其传播导致大流行,最常见的临床特征包括咳嗽、发热和感染性肺炎,严重者出现急性呼吸窘迫综合征,甚至死亡[2]。目前尚无特异性抗新型冠状病毒药物,针对新型冠状病毒的药物靶点研究特异性阻断新冠病毒入侵的药物小分子尚待研发。Coronaviruses are enveloped viruses with positive single-stranded RNA genomes. Coronaviruses are divided into four genera: α-CoVs, β-CoVs, γ-CoVs and δ-CoVs [1] . Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a respiratory disease known as coronavirus disease 2019 (COVID-19), and its spread has resulted in a pandemic. The most common clinical features include cough, Fever and infectious pneumonia, acute respiratory distress syndrome, and even death in severe cases [2] . There are currently no specific anti-COVID-19 drugs. Research on drug targets for the novel coronavirus and small drug molecules that specifically block the invasion of the novel coronavirus have yet to be developed.

目前,已有多个新冠药物上市,比如病毒RNA聚合酶抑制剂瑞德西韦,莫奈拉韦等,作为核苷类似物能够抑制病毒RNA的复制[3];米非诺韦通过抑制网格蛋白介导的内吞作用,抑制病毒包膜和宿主细胞质膜的膜融合,阻止病毒进入宿主细胞;奈玛特韦和利托那韦抑制新冠病毒的主要蛋白酶3CL蛋白酶对病毒RNA翻译的多聚蛋白的加工[4]。已证实抗疟药氯喹和羟氯喹可抑制ACE2的末端磷酸化并升高内体中的pH值抑制膜融合,从而预防病毒感染,目前正在进行临床试验[5]At present, there are many new coronavirus drugs on the market, such as the viral RNA polymerase inhibitor remdesivir, monegravir, etc., which can inhibit the replication of viral RNA as nucleoside analogs [3] ; mifenovir inhibits the Lattice protein-mediated endocytosis inhibits the membrane fusion of the viral envelope and the host cell plasma membrane, preventing the virus from entering the host cell; nematvir and ritonavir inhibit the 3CL protease, the main protease of the new coronavirus, on the translation of viral RNA. Processing of polyproteins [4] . It has been confirmed that the antimalarial drugs chloroquine and hydroxychloroquine can inhibit the terminal phosphorylation of ACE2 and increase the pH value in endosomes to inhibit membrane fusion, thus preventing viral infection. Clinical trials are currently underway [5] .

SARS-CoV-2的刺突糖蛋白在病毒感染性中起着重要作用。SARS-CoV-2利用刺突蛋白(S蛋白)的受体结合域(RBD)与宿主细胞上的受体血管紧张素转换酶2(ACE2)结合从而感染宿主细胞,刺突糖蛋白可能是阻止SARS-CoV-2进入宿主细胞的良好靶标[6],以S蛋白和ACE2为靶点进行药物筛选,通过阻断S蛋白与ACE2的结合抑制新冠病毒感染[7],并采用细胞实验检测抑制病毒入侵效果,是研究新型冠状病毒入侵抑制剂的重要途经。The spike glycoprotein of SARS-CoV-2 plays an important role in viral infectivity. SARS-CoV-2 uses the receptor binding domain (RBD) of the spike protein (S protein) to bind to the receptor angiotensin-converting enzyme 2 (ACE2) on the host cell to infect the host cell. The spike glycoprotein may prevent SARS-CoV-2 is a good target for entering host cells [6] . Drug screening is carried out with S protein and ACE2 as targets. It inhibits new coronavirus infection by blocking the combination of S protein and ACE2 [7] , and cell experiments are used to detect inhibition. The virus invasion effect is an important way to study new coronavirus invasion inhibitors.

天然产物是抗病毒药物的重要来源。目前有文献报道千金藤素作为一种天然存在的植物生物碱,能够靶向新冠病毒的入侵阶段,显著抑制病毒和宿主细胞的结合[8],在动物体内毒性较低,对人体无明显副作用。Natural products are an important source of antiviral drugs. There are currently reports in the literature that stephanatine, as a naturally occurring plant alkaloid, can target the invasion stage of the new coronavirus and significantly inhibit the combination of the virus and host cells [8] . It has low toxicity in animals and has no obvious side effects on the human body. .

据报道,番木瓜叶中含有4种生物碱,分别为番木瓜碱、伪番木瓜碱、去氢番木瓜碱I、去氢番木瓜碱II,其中番木瓜碱的含量较高[9]。目前,已有研究表明,番木瓜碱具有抗癌活性、抗血小板减少以及驱虫活性,有研究证实番木瓜碱还有抗疟疾的特性[10],但是还未有研究报道番木瓜碱可以抑制新冠病毒。It is reported that papaya leaves contain four kinds of alkaloids, namely papayaine, pseudopapainine, dehydropapainine I, and dehydropapainine II, among which the content of papayaine is relatively high [9] . At present, studies have shown that papaya has anti-cancer activity, anti-thrombocytopenia and anthelmintic activity. Some studies have confirmed that papaya also has anti-malarial properties [10] . However, there are no studies reporting that papaya can inhibit COVID-19.

参考文献references

[1]Seyed Hosseini,E.;Riahi Kashani,N.;Nikzad,H.;Azadbakht,J.;HassaniBafrani,H.;Haddad Kashani,H.The novel coronavirus Disease-2019(COVID-19):Mechanism of action,detection and recent therapeutic strategies.Virology2020,551,1-9.DOI:10.1016/j.virol.2020.08.011.[1] Seyed Hosseini, E.; Riahi Kashani, N.; Nikzad, H.; Azadbakht, J.; Hassani Bafrani, H.; Haddad Kashani, H. The novel coronavirus Disease-2019 (COVID-19): Mechanism of action , detection and recent therapeutic strategies. Virology2020,551,1-9.DOI:10.1016/j.virol.2020.08.011.

[2]Samudrala,P.K.;Kumar,P.;Choudhary,K.;Thakur,N.;Wadekar,G.S.;Dayaramani,R.;Agrawal,M.;Alexander,A.Virology,pathogenesis,diagnosis and in-line treatment of COVID-19.Eur J Pharmacol 2020,883,173375.DOI:10.1016/j.ejphar.2020.173375From NLM Medline.[2]Samudrala, P.K.; Kumar, P.; Choudhary, K.; Thakur, N.; Wadekar, G.S.; Dayaramani, R.; Agrawal, M.; Alexander, A. Virology, pathogenesis, diagnosis and in-line treatment of COVID-19.Eur J Pharmacol 2020,883,173375.DOI:10.1016/j.ejphar.2020.173375From NLM Medline.

[3]Ohashi,H.;Watashi,K.;Saso,W.;Shionoya,K.;Iwanami,S.;Hirokawa,T.;Shirai,T.;Kanaya,S.;Ito,Y.;Kim,K.S.;et al.Potential anti-COVID-19agents,cepharanthine and nelfinavir,and their usage for combinationtreatment.iScience 2021,24(4),102367.DOI:10.1016/j.isci.2021.102367From NLMPubMed-not-MEDLINE.[3]Ohashi, H.; Watashi, K.; Saso, W.; Shionoya, K.; Iwanami, S.; Hirokawa, T.; Shirai, T.; Kanaya, S.; Ito, Y.; Kim, K.S.; et al. Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. iScience 2021, 24(4), 102367. DOI: 10.1016/j.isci.2021.102367From NLMPubMed-not-MEDLINE.

[4]McKee,D.L.;Sternberg,A.;Stange,U.;Laufer,S.;Naujokat,C.Candidatedrugs against SARS-CoV-2and COVID-19.Pharmacological Research 2020,157.DOI:10.1016/j.phrs.2020.104859.[4]McKee, D.L.; Sternberg, A.; Stange, U.; Laufer, S.; Naujokat, C. Candidated drugs against SARS-CoV-2and COVID-19.Pharmacological Research 2020,157.DOI:10.1016/j.phrs .2020.104859.

[5]Wang,N.;Han,S.;Liu,R.;Meng,L.;He,H.;Zhang,Y.;Wang,C.;Lv,Y.;Wang,J.;Li,X.;et al.Chloroquine and hydroxychloroquine as ACE2blockers to inhibitviropexis of 2019-nCoV Spike pseudotyped virus.Phytomedicine 2020,79,153333.DOI:10.1016/j.phymed.2020.153333From NLM Medline.[5]Wang, N.; Han, S.; Liu, R.; Meng, L.; He, H.; Zhang, Y.; Wang, C.; Lv, Y.; Wang, J.; Li, X. et al. Chloroquine and hydroxychloroquine as ACE2blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus. Phytomedicine 2020, 79, 153333. DOI: 10.1016/j.phymed.2020.153333From NLM Medline.

[6]Ou,X.;Liu,Y.;Lei,X.;Li,P.;Mi,D.;Ren,L.;Guo,L.;Guo,R.;Chen,T.;Hu,J.;et al.Characterization of spike glycoprotein of SARS-CoV-2on virus entryand its immune cross-reactivity with SARS-CoV.Nat Commun 2020,11(1),1620.DOI:10.1038/s41467-020-15562-9From NLM Medline.[6]Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020,11(1),1620.DOI:10.1038/s41467-020-15562-9From NLM Medline.

[7]Tai,W.;He,L.;Zhang,X.;Pu,J.;Voronin,D.;Jiang,S.;Zhou,Y.;Du,L.Characterization of the receptor-binding domain(RBD)of 2019novelcoronavirus:implication for development of RBD protein as a viral attachmentinhibitor and vaccine.Cell Mol Immunol 2020,17(6),613-620.DOI:10.1038/s41423-020-0400-4From NLM Medline.[7] Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the receptor-binding domain( RBD) of 2019novelcoronavirus:implication for development of RBD protein as a viral attachmentinhibitor and vaccine. Cell Mol Immunol 2020,17(6),613-620.DOI:10.1038/s41423-020-0400-4From NLM Medline.

[8]Fan,H.H.;Wang,L.Q.;Liu,W.L.;An,X.P.;Liu,Z.D.;He,X.Q.;Song,L.H.;Tong,Y.G.Repurposing of clinically approved drugs for treatment ofcoronavirus disease 2019in a 2019-novel coronavirus-related coronavirusmodel.Chin Med J(Engl)2020,133(9),1051-1056.DOI:10.1097/CM9.0000000000000797From NLM Medline.[8] Fan, H.H.; Wang, L.Q.; Liu, W.L.; An, X.P.; Liu, Z.D.; He, X.Q.; Song, L.H.; Tong, Y.G. related coronavirusmodel.Chin Med J(Engl)2020,133(9),1051-1056.DOI:10.1097/CM9.0000000000000797From NLM Medline.

[9]Munir,S.;Liu,Z.W.;Tariq,T.;Rabail,R.;Kowalczewski,P.L.;Lewandowicz,J.;Blecharczyk,A.;Abid,M.;Inam-Ur-Raheem,M.;Aadil,R.M.Delvinginto the Therapeutic Potential of Carica papaya Leaf againstThrombocytopenia.Molecules 2022,27(9).DOI:10.3390/molecules27092760From NLMMedline.[9]Munir, S.; Liu, Z.W.; Tariq, T.; Rabail, R.; Kowalczewski, P.L.; Lewandowicz, J.; Blecharczyk, A.; Abid, M.; Inam-Ur-Raheem, M.; Aadil, R.M. Delving into the Therapeutic Potential of Carica papaya Leaf against Thrombocytopenia. Molecules 2022, 27(9). DOI: 10.3390/molecules27092760From NLMMedline.

[10]Zunjar,V.;Dash,R.P.;Jivrajani,M.;Trivedi,B.;Nivsarkar,M.Antithrombocytopenic activity of carpaine and alkaloidal extract of Caricapapaya Linn.leaves in busulfan induced thrombocytopenic Wistar rats.JEthnopharmacol 2016,181,20-25.DOI:10.1016/j.jep.2016.01.035From NLM Medline.[10] Zunjar, V.; Dash, R.P.; Jivrajani, M.; Trivedi, B.; Nivsarkar, M. Antithrombocytopenic activity of carpaine and alkaloidal extract of Caricapapaya Linn. leaves in busulfan induced thrombocytopenic Wistar rats. JEthnopharmacol 2016,181, 20-25.DOI:10.1016/j.jep.2016.01.035From NLM Medline.

发明内容Contents of the invention

有鉴于此,本发明的目的在于提供番木瓜生物碱在制备抗新冠病毒的药物药物中的应用。In view of this, the object of the present invention is to provide the application of papaya alkaloids in the preparation of anti-coronavirus drugs.

本发明提供了番木瓜生物碱在制备抗新冠病毒的药物中的应用。The invention provides the application of papaya alkaloids in the preparation of anti-coronavirus drugs.

优选的,所述番木瓜生物碱包括以下一种或几种:结构如式I所示的番木瓜碱、结构式如式II所示的伪番木瓜碱、结构式如式III所示的去氢番木瓜碱I、结构式如式IV所示的去氢番木瓜碱II;Preferably, the papaya alkaloids include one or more of the following: papaya alkaloids with a structural formula shown in Formula I, pseudopapain with a structural formula shown in Formula II, and dehydrophenine alkaloids with a structural formula shown in Formula III. Papaine I, dehydropapain II with a structural formula shown as Formula IV;

优选的,所述番木瓜生物碱包括番木瓜生物碱的水合物形式或番木瓜生物碱的盐形式。Preferably, the papaya alkaloid includes a hydrate form of papaya alkaloid or a salt form of papaya alkaloid.

优选的,所述番木瓜生物碱的盐形式包括以下一种或几种:番木瓜生物碱的醋酸盐、番木瓜生物碱的甲酸盐、番木瓜生物碱的盐酸盐、番木瓜生物碱的磷酸盐和番木瓜生物碱的硫酸盐。Preferably, the salt form of the papaya alkaloids includes one or more of the following: acetate of papaya alkaloids, formate of papaya alkaloids, hydrochloride of papaya alkaloids, papaya alkaloids Phosphates of alkalis and sulfates of papaya alkaloids.

本发明提供了一种阻断冠状病毒S蛋白和ACE2结合的抑制剂在制备抗冠状病毒的药物中的应用,所述抑制剂为番木瓜生物碱。The invention provides the use of an inhibitor that blocks the combination of coronavirus S protein and ACE2 in the preparation of anti-coronavirus drugs. The inhibitor is papaya alkaloid.

优选的,所述番木瓜生物碱包括以下一种或几种:结构如式I所示的番木瓜碱、结构式如式II所示的伪番木瓜碱、结构式如式III所示的去氢番木瓜碱I、结构式如式IV所示的去氢番木瓜碱II;Preferably, the papaya alkaloids include one or more of the following: papaya alkaloids with a structural formula shown in Formula I, pseudopapain with a structural formula shown in Formula II, and dehydrophenine alkaloids with a structural formula shown in Formula III. Papaine I, dehydropapain II with a structural formula shown as formula IV;

优选的,所述冠状病毒包括新冠病毒SARS-COV-2。Preferably, the coronavirus includes the new coronavirus SARS-COV-2.

优选的,所述抗冠状病毒包括预防冠状病毒感染。Preferably, the anti-coronavirus includes preventing coronavirus infection.

本发明提供了一种抗病毒药物,以番木瓜生物碱为活性成分和医学上可接受的辅料。The invention provides an antiviral drug, which uses papaya alkaloids as active ingredients and medically acceptable auxiliary materials.

优选的,所述番木瓜生物碱包括以下一种或几种:结构如式I所示的番木瓜碱、结构式如式II所示的伪番木瓜碱、结构式如式III所示的去氢番木瓜碱I、结构式如式IV所示的去氢番木瓜碱II;Preferably, the papaya alkaloids include one or more of the following: papaya alkaloids with a structural formula shown in Formula I, pseudopapain with a structural formula shown in Formula II, and dehydrophenine alkaloids with a structural formula shown in Formula III. Papaine I, dehydropapain II with a structural formula shown as formula IV;

本发明提供了番木瓜生物碱在制备抗新冠病毒的药物中的应用。本发明构建新冠假病毒筛选模型,获得用S蛋白包裹报告基因Luciferase或GFP的新冠假病毒,同时构建稳定表达ACE2蛋白的A549细胞株作为宿主细胞。采用新冠假病毒感染549-ACE2细胞株,模拟病毒侵染过程,本发明通过添加番木瓜碱、伪番木瓜碱、去氢番木瓜碱I或去氢番木瓜碱II能有效阻断S蛋白和ACE2的结合,从而阻断假病毒对宿主细胞的感染。实验结果表明,上述番木瓜碱、伪番木瓜碱、去氢番木瓜碱I或去氢番木瓜碱II均具有抑制新冠假病毒侵染细胞的能力,IC50依次为5.48μmol/L、8.21μmol/L、24.3μmol/L、30.65μmol/L。同时,细胞毒性实验表明,番木瓜碱作用A549-ACE2细胞具有良好的细胞给药安全性。The invention provides the application of papaya alkaloids in the preparation of anti-coronavirus drugs. The present invention constructs a new coronavirus pseudovirus screening model to obtain a new coronavirus pseudovirus that uses S protein to wrap the reporter gene Luciferase or GFP, and at the same time constructs an A549 cell strain that stably expresses the ACE2 protein as a host cell. The new coronavirus pseudovirus is used to infect the 549-ACE2 cell line to simulate the virus infection process. The present invention can effectively block S protein and The binding of ACE2 blocks the infection of host cells by pseudovirus. Experimental results show that the above-mentioned papayaine, pseudopapain, dehydropapain I or dehydropapain II have the ability to inhibit the infection of cells by the new coronavirus pseudovirus, with IC 50 of 5.48 μmol/L and 8.21 μmol respectively. /L, 24.3μmol/L, 30.65μmol/L. At the same time, cytotoxicity experiments show that papayaine has good cell administration safety when acting on A549-ACE2 cells.

附图说明Description of the drawings

图1为为实施例1中化合物番木瓜碱在不同浓度下对新型冠状病毒感染A549-ACE2细胞的感染率统计图;Figure 1 is a statistical graph showing the infection rate of the compound papayaline in Example 1 at different concentrations against novel coronavirus-infected A549-ACE2 cells;

图2为实施例1中化合物番木瓜碱在不同浓度下对新型冠状病毒感染A549-ACE2细胞的抑制率统计图;Figure 2 is a statistical diagram of the inhibitory rate of the compound papayaline in Example 1 against novel coronavirus infection of A549-ACE2 cells at different concentrations;

图3为实施例2中不同浓度的藜芦碱对A549-ACE2细胞的毒性作用结果。Figure 3 shows the results of the toxic effects of different concentrations of veratrine on A549-ACE2 cells in Example 2.

具体实施方式Detailed ways

本发明提供了番木瓜生物碱在制备抗新冠病毒的药物中的应用。The invention provides the application of papaya alkaloids in the preparation of anti-coronavirus drugs.

在本发明中,所述番木瓜生物碱优选包括以下一种或几种:结构如式I所示的番木瓜碱、结构式如式II所示的伪番木瓜碱、结构式如式III所示的去氢番木瓜碱I、结构式如式IV所示的去氢番木瓜碱II;In the present invention, the papaya alkaloids preferably include one or more of the following: papaya alkaloids with a structural formula shown in Formula I, pseudopapain alkaloids with a structural formula shown in Formula II, and papaya alkaloids with a structural formula shown in Formula III. Dehydropapain I and dehydropapain II having a structural formula as shown in formula IV;

在本发明实施例中,所述番木瓜碱、伪番木瓜碱、去氢番木瓜碱I或去氢番木瓜碱II购自陕西辰光生物科技有限公司。In the embodiment of the present invention, the papayaine, pseudopapainine, dehydropapainine I or dehydropapainine II were purchased from Shaanxi Chenguang Biotechnology Co., Ltd.

在本发明中,所述番木瓜生物碱优选还包括番木瓜生物碱的水合物形式或番木瓜生物碱的盐形式。所述番木瓜生物碱的盐形式优选包括以下一种或几种:番木瓜生物碱的醋酸盐、番木瓜生物碱的甲酸盐、番木瓜生物碱的盐酸盐、番木瓜生物碱的磷酸盐和番木瓜生物碱的硫酸盐。本发明对所述番木瓜生物碱的盐形式的制备方法没有特殊限制,采用本领域所熟知的生物碱盐形式的制备方法即可。本发明对所述番木瓜生物碱的水合物的制备方法没有特殊限制,采用本领域所熟知的化合物的水合物的制备方法即可。In the present invention, the papaya alkaloid preferably further includes a hydrate form of papaya alkaloid or a salt form of papaya alkaloid. The salt form of the papaya alkaloid preferably includes one or more of the following: acetate of papaya alkaloid, formate of papaya alkaloid, hydrochloride of papaya alkaloid, and Phosphates and sulfates of papaya alkaloids. The present invention has no special restrictions on the preparation method of the salt form of the papaya alkaloid, and it is sufficient to adopt the preparation method of the alkaloid salt form well known in the art. The present invention has no special restrictions on the preparation method of the hydrate of the papaya alkaloid, and it is sufficient to adopt the preparation method of the hydrate of the compound well known in the art.

在本发明中,所述抗冠状病毒优选包括预防冠状病毒感染。所述冠状病毒优选包括新冠病毒SARS-COV-2。在本发明实施例中,在细胞水平上,所述番木瓜碱、伪番木瓜碱、去氢番木瓜碱I或去氢番木瓜碱II对新冠假病毒的IC50依次为5.48μmol/L、8.21μmol/L、24.3μmol/L、30.65μmol/L。细胞毒性实验表明,番木瓜碱作用A549-ACE2细胞的IC50值为35.08μmol/L。In the present invention, the anti-coronavirus preferably includes preventing coronavirus infection. The coronavirus preferably includes the novel coronavirus SARS-COV-2. In the embodiments of the present invention, at the cellular level, the IC 50 of papayaine, pseudopapainine, dehydropapainine I or dehydropapainine II against the new coronavirus pseudovirus is 5.48 μmol/L, respectively. 8.21μmol/L, 24.3μmol/L, 30.65μmol/L. Cytotoxicity experiments showed that the IC 50 value of papaya on A549-ACE2 cells was 35.08 μmol/L.

鉴于藜芦碱通过阻断冠状病毒S蛋白和ACE2结合达到抗病毒的作用,本发明提供了一种阻断冠状病毒S蛋白和ACE2结合的抑制剂在制备抗冠状病毒的药物中的应用,所述抑制剂为番木瓜生物碱。In view of the fact that veratrine achieves antiviral effects by blocking the combination of coronavirus S protein and ACE2, the present invention provides an application of an inhibitor that blocks the combination of coronavirus S protein and ACE2 in the preparation of anti-coronavirus drugs. The inhibitor is papaya alkaloid.

在本发明中,所述番木瓜生物碱优选包括以下一种或几种:结构如式I所示的番木瓜碱、结构式如式II所示的伪番木瓜碱、结构式如式III所示的去氢番木瓜碱I、结构式如式IV所示的去氢番木瓜碱II;In the present invention, the papaya alkaloids preferably include one or more of the following: papaya alkaloids with a structural formula shown in Formula I, pseudopapain alkaloids with a structural formula shown in Formula II, and papaya alkaloids with a structural formula shown in Formula III. Dehydropapain I and dehydropapain II having a structural formula as shown in formula IV;

在本发明中,所述冠状病毒优选包括新冠病毒SARS-COV-2。所述抗冠状病毒优选包括预防冠状病毒感染。In the present invention, the coronavirus preferably includes the new coronavirus SARS-COV-2. Said anti-coronavirus preferably includes preventing coronavirus infection.

本发明提供了一种抗病毒药物,以番木瓜生物碱为活性成分和医学上可接受的辅料。The invention provides an antiviral drug, which uses papaya alkaloids as active ingredients and medically acceptable auxiliary materials.

在本发明中,所述番木瓜生物碱优选包括以下一种或几种:结构如式I所示的番木瓜碱、结构式如式II所示的伪番木瓜碱、结构式如式III所示的去氢番木瓜碱I、结构式如式IV所示的去氢番木瓜碱II;In the present invention, the papaya alkaloids preferably include one or more of the following: papaya alkaloids with a structural formula shown in Formula I, pseudopapain alkaloids with a structural formula shown in Formula II, and papaya alkaloids with a structural formula shown in Formula III. Dehydropapain I and dehydropapain II having a structural formula as shown in formula IV;

在本发明中,所述药物的剂型包括以下一种或几种:注射剂、片剂、丸剂、胶囊、悬浮剂和乳剂。所述药物还包括医学上可接受的辅料。所述辅料包括以下一种或几种:稀释剂、崩解剂、填充剂、粘合剂、吸收促进剂、表面活性剂、吸附载体、润滑剂和增效剂。所述药物通过口服、经皮、静脉或肌肉注射等途径给药。In the present invention, the dosage form of the drug includes one or more of the following: injections, tablets, pills, capsules, suspensions and emulsions. The medicine also includes medically acceptable excipients. The auxiliary materials include one or more of the following: diluents, disintegrants, fillers, binders, absorption accelerators, surfactants, adsorption carriers, lubricants and synergists. The drugs are administered orally, transdermally, intravenously or intramuscularly.

下面结合实施例对本发明提供的番木瓜生物碱在制备抗新冠病毒的药物药物中的应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。The application of the papaya alkaloids provided by the present invention in the preparation of anti-coronavirus drugs will be described in detail below with reference to the examples, but they should not be understood as limiting the scope of the present invention.

建立新冠假病毒筛选模型,在293T细胞中运用慢病毒包装体系(pCMVΔ8.2+pCMV3-SARS-Cov-2-S+pBOB-Luciferase/GFP)获得用S蛋白包裹报告基因Luciferase或GFP的新冠假病毒。其中S蛋白的编码序列如SEQ ID NO:1(atgtttgtgttcctggtgctgctgccactggtgtccagccagtgtgtgaacctgaccaccaggacccaacttcctcctgcctacaccaactccttcaccaggggagtctactaccctgacaaggtgttcaggtcctctgtgctgcacagcacccaggacctgttcctgccattcttcagcaatgtgacctggttccatgccatccatgtgtctggcaccaatggcaccaagaggtttgacaaccctgtgctgccattcaatgatggagtctactttgccagcacagagaagagcaacatcatcaggggctggatttttggcaccaccctggacagcaagacccagtccctgctgattgtgaacaatgccaccaatgtggtgattaaggtgtgtgagttccagttctgtaatgacccattcctgggagtctactaccacaagaacaacaagtcctggatggagtctgagttcagggtctactcctctgccaacaactgtacctttgaatatgtgagccaaccattcctgatggacttggagggcaagcagggcaacttcaagaacctgagggagtttgtgttcaagaacattgatggctacttcaagatttacagcaaacacacaccaatcaacctggtgagggacctgccacagggcttctctgccttggaaccactggtggacctgccaattggcatcaacatcaccaggttccagaccctgctggctctgcacaggtcctacctgacacctggagactcctcctctggctggacagcaggagcagcagcctactatgtgggctacctccaaccaaggaccttcctgctgaaatacaatgagaatggcaccatcacagatgctgtggactgtgccctggacccactgtctgagaccaagtgtaccctgaaatccttcacagtggagaagggcatctaccagaccagcaacttcagggtccaaccaacagagagcattgtgaggtttccaaacatcaccaacctgtgtccatttggagaggtgttcaatgccaccaggtttgcctctgtctatgcctggaacaggaagaggattagcaactgtgtggctgactactctgtgctctacaactctgcctccttcagcaccttcaagtgttatggagtgagcccaaccaaactgaatgacctgtgtttcaccaatgtctatgctgactcctttgtgattaggggagatgaggtgagacagattgcccctggacaaacaggcaagattgctgactacaactacaaactgcctgatgacttcacaggctgtgtgattgcctggaacagcaacaacctggacagcaaggtgggaggcaactacaactacctctacagactgttcaggaagagcaacctgaaaccatttgagagggacatcagcacagagatttaccaggctggcagcacaccatgtaatggagtggagggcttcaactgttactttccactccaatcctatggcttccaaccaaccaatggagtgggctaccaaccatacagggtggtggtgctgtcctttgaactgctccatgcccctgccacagtgtgtggaccaaagaagagcaccaacctggtgaagaacaagtgtgtgaacttcaacttcaatggactgacaggcacaggagtgctgacagagagcaacaagaagttcctgccattccaacagtttggcagggacattgctgacaccacagatgctgtgagggacccacagaccttggagattctggacatcacaccatgttcctttggaggagtgtctgtgattacacctggcaccaacaccagcaaccaggtggctgtgctctaccaggatgtgaactgtactgaggtgcctgtggctatccatgctgaccaacttacaccaacctggagggtctacagcacaggcagcaatgtgttccagaccagggctggctgtctgattggagcagagcatgtgaacaactcctatgagtgtgacatcccaattggagcaggcatctgtgcctcctaccagacccagaccaacagcccaaggagggcaaggtctgtggcaagccagagcatcattgcctacacaatgagtctgggagcagagaactctgtggcttacagcaacaacagcattgccatcccaaccaacttcaccatctctgtgaccacagagattctgcctgtgagtatgaccaagacctctgtggactgtacaatgtatatctgtggagacagcacagagtgtagcaacctgctgctccaatatggctccttctgtacccaacttaacagggctctgacaggcattgctgtggaacaggacaagaacacccaggaggtgtttgcccaggtgaagcagatttacaagacacctccaatcaaggactttggaggcttcaacttcagccagattctgcctgacccaagcaagccaagcaagaggtccttcattgaggacctgctgttcaacaaggtgaccctggctgatgctggcttcatcaagcaatatggagactgtctgggagacattgctgccagggacctgatttgtgcccagaagttcaatggactgacagtgctgcctccactgctgacagatgagatgattgcccaatacacctctgccctgctggctggcaccatcacctctggctggacctttggagcaggagcagccctccaaatcccatttgctatgcagatggcttacaggttcaatggcattggagtgacccagaatgtgctctatgagaaccagaaactgattgccaaccagttcaactctgccattggcaagattcaggactccctgtccagcacagcctctgccctgggcaaactccaagatgtggtgaaccagaatgcccaggctctgaacaccctggtgaagcaactttccagcaactttggagccatctcctctgtgctgaatgacatcctgagcagactggacaaggtggaggctgaggtccagattgacagactgattacaggcagactccaatccctccaaacctatgtgacccaacaacttatcagggctgctgagattagggcatctgccaacctggctgccaccaagatgagtgagtgtgtgctgggacaaagcaagagggtggacttctgtggcaagggctaccacctgatgagttttccacagtctgcccctcatggagtggtgttcctgcatgtgacctatgtgcctgcccaggagaagaacttcaccacagcccctgccatctgccatgatggcaaggctcactttccaagggagggagtgtttgtgagcaatggcacccactggtttgtgacccagaggaacttctatgaaccacagattatcaccacagacaacacctttgtgtctggcaactgtgatgtggtgattggcattgtgaacaacacagtctatgacccactccaacctgaactggactccttcaaggaggaactggacaaatacttcaagaaccacaccagccctgatgtggacctgggagacatctctggcatcaatgcctctgtggtgaacatccagaaggagattgacagactgaatgaggtggctaagaacctgaatgagtccctgattgacctccaagaactgggcaaatatgaacaatacatcaagtggccatggtacatctggctgggcttcattgctggactgattgccattgtgatggtgaccataatgctgtgttgtatgacctcctgttgttcctgtctgaaaggctgttgttcctgtggctcctgttgtaagtttgatgaggatgactctgaacctgtgctgaaaggagtgaaactgcactacacctga)所示;具体构建方法见参考文献(Hu J,Gao Q,He C,Huang A,Tang N,Wang K.Development ofcell-based pseudovirus entry assay to identify potential viral entryinhibitors and neutralizing antibodies against SARS-CoV-2.Genes Dis.2020Dec;7(4):551-557.doi:10.1016/j.gendis.2020.07.006.Epub 2020Jul 17.PMID:32837985;PMCID:PMC7366953.Ma H,Zhu Z,Lin H,Wang S,Zhang P,Li Y,Li L,Wang J,Zhao Y,HanJ.Pyroptosis of syncytia formed by fusion of SARS-CoV-2spike and ACE2-expressing cells.Cell Discov.2021Aug 24;7(1):73.doi:10.1038/s41421-021-00310-0.PMID:34429403;PMCID:PMC8384103.)。Establish a new coronavirus pseudovirus screening model, and use the lentiviral packaging system (pCMVΔ8.2+pCMV3-SARS-Cov-2-S+pBOB-Luciferase/GFP) in 293T cells to obtain the new coronavirus pseudovirus that uses S protein to wrap the reporter gene Luciferase or GFP. Virus. The coding sequence of the S protein is shown in SEQ ID NO: 1 (); the specific construction method can be found in the reference literature (Hu J, Gao Q, He C, Huang A, Tang N, Wang K. Development of cell-based pseudovirus entry assay to identify potential viral entryinhibitors and neutralizing antibodies against SARS-CoV-2.Genes Dis.2020Dec;7(4):551-557.doi:10.1016/j.gendis.2020.07.006.Epub 2020Jul 17.PMID:32837985;PMCID: PMC7366953.Ma H,Zhu Z,Lin H,Wang S,Zhang P,Li Y,Li L,Wang J,Zhao Y,HanJ.Pyroptosis of syncytia formed by fusion of SARS-CoV-2spike and ACE2-expressing cells.Cell Discov.2021Aug 24;7(1):73.doi:10.1038/s41421-021-00310-0.PMID:34429403; PMCID:PMC8384103.).

在293T细胞中利用慢病毒包装体系(VSVG+REV+pMDLg/pRRE+pBOB-ACE2)获得VSVG包裹的含ACE2基因(SEQ ID NO:2,atgtcaagctcttcctggctccttctcagccttgttgctgtaactgctgctcagtccaccattgaggaacaggccaagacatttttggacaagtttaaccacgaagccgaagacctgttctatcaaagttcacttgcttcttggaattataacaccaatattactgaagagaatgtccaaaacatgaataatgctggggacaaatggtctgcctttttaaaggaacagtccacacttgcccaaatgtatccactacaagaaattcagaatctcacagtcaagcttcagctgcaggctcttcagcaaaatgggtcttcagtgctctcagaagacaagagcaaacggttgaacacaattctaaatacaatgagcaccatctacagtactggaaaagtttgtaacccagataatccacaagaatgcttattacttgaaccaggtttgaatgaaataatggcaaacagtttagactacaatgagaggctctgggcttgggaaagctggagatctgaggtcggcaagcagctgaggccattatatgaagagtatgtggtcttgaaaaatgagatggcaagagcaaatcattatgaggactatggggattattggagaggagactatgaagtaaatggggtagatggctatgactacagccgcggccagttgattgaagatgtggaacatacctttgaagagattaaaccattatatgaacatcttcatgcctatgtgagggcaaagttgatgaatgcctatccttcctatatcagtccaattggatgcctccctgctcatttgcttggtgatatgtggggtagattttggacaaatctgtactctttgacagttccctttggacagaaaccaaacatagatgttactgatgcaatggtggaccaggcctgggatgcacagagaatattcaaggaggccgagaagttctttgtatctgttggtcttcctaatatgactcaaggattctgggaaaattccatgctaacggacccaggaaatgttcagaaagcagtctgccatcccacagcttgggacctggggaagggcgacttcaggatccttatgtgcacaaaggtgacaatggacgacttcctgacagctcatcatgagatggggcatatccagtatgatatggcatatgctgcacaaccttttctgctaagaaatggagctaatgaaggattccatgaagctgttggggaaatcatgtcactttctgcagccacacctaagcatttaaaatccattggtcttctgtcacccgattttcaagaagacaatgaaacagaaataaacttcctgctcaaacaagcactcacgattgttgggactctgccatttacttacatgttagagaagtggaggtggatggtctttaaaggggaaattcccaaagaccagtggatgaaaaagtggtgggagatgaagcgagagatagttggggtggtggaacctgtgccccatgatgaaacatactgtgaccccgcatctctgttccatgtttctaatgattactcattcattcgatattacacaaggaccctttaccaattccagtttcaagaagcactttgtcaagcagctaaacatgaaggccctctgcacaaatgtgacatctcaaactctacagaagctggacagaaactgttcaatatgctgaggcttggaaaatcagaaccctggaccctagcattggaaaatgttgtaggagcaaagaacatgaatgtaaggccactgctcaactactttgagcccttatttacctggctgaaagaccagaacaagaattcttttgtgggatggagtaccgactggagtccatatgcagaccaaagcatcaaagtgaggataagcctaaaatcagctcttggagataaagcatatgaatggaacgacaatgaaatgtacctgttccgatcatctgttgcatatgctatgaggcagtactttttaaaagtaaaaaatcagatgattctttttggggaggaggatgtgcgagtggctaatttgaaaccaagaatctcctttaatttctttgtcactgcacctaaaaatgtgtctgatatcattcctagaactgaagttgaaaaggccatcaggatgtcccggagccgtatcaatgatgctttccgtctgaatgacaacagcctagagtttctggggatacagccaacacttggacctcctaaccagccccctgtttccatatggctgattgtttttggagttgtgatgggagtgatagtggttggcattgtcatcctgatcttcactgggatcagagatcggaagaagaaaaataaagcaagaagtggagaaaatccttatgcctccatcgatattagcaaaggagaaaataatccaggattccaaaacactgatgatgttcagacctccttttag)的病毒液,该病毒液侵染A549细胞后,通过细胞单克隆筛选以及鉴定,建立A稳定表达ACE2蛋白的A549细胞株(549-ACE2细胞),具体构建方法如下:第一天将293T细胞铺板至六孔板,保证第二天包病毒时细胞密度约90%,包病毒体系如下,每孔DNA量:pCMVΔ8.2μg,pCMV3-SARS-Cov-2-S 0.5μg,pBOB-Luciferase/GFP 2μg,与50μl不加血清和抗生素的DMEM培养基混合,将3倍量的PEI与50μl不加血清和抗生素的DMEM培养基后,将DNA管与PEI管混合均匀后,静置25min后,加入换成5%血清的DMEM的293T细胞,培养箱中培养8h后,换液成30%血清含抗生素的培养基继续培养,36h用0.45um滤器过滤获得病毒液,-80℃冰箱保存。In 293T cells, a lentiviral packaging system (VSVG+REV+pMDLg/pRRE+pBOB-ACE2) was used to obtain the VSVG-wrapped virus fluid containing the ACE2 gene (SEQ ID NO: 2,). After the virus fluid infected A549 cells, Through cell monoclonal screening and identification, an A549 cell line (549-ACE2 cell) that stably expresses ACE2 protein was established. The specific construction method is as follows: Plate 293T cells into a six-well plate on the first day to ensure that the cells are encapsulated with the virus on the second day. The density is about 90%. The encapsulated virus system is as follows. The amount of DNA per well is: pCMVΔ8.2μg, pCMV3-SARS-Cov-2-S 0.5μg, pBOB-Luciferase/GFP 2μg, mixed with 50μl DMEM culture medium without serum and antibiotics. , mix 3 times the amount of PEI with 50 μl of DMEM culture medium without serum and antibiotics, mix the DNA tube and PEI tube evenly, let it stand for 25 minutes, add 293T cells replaced with DMEM with 5% serum, and put it in the incubator After 8 hours of culture, the medium was changed to 30% serum-containing antibiotic medium to continue culturing. After 36 hours, the virus liquid was filtered with a 0.45um filter and stored in a -80°C refrigerator.

实施例1Example 1

化合物番木瓜碱、伪番木瓜碱、去氢番木瓜碱I或去氢番木瓜碱II在不同浓度下对新型冠状病毒感染A549-ACE2细胞的抑制效果The inhibitory effect of the compounds papayaine, pseudopapain, dehydropapain I or dehydropapain II on A549-ACE2 cells infected by the new coronavirus at different concentrations.

1实验方法1Experimental method

将对数生长期的A549-ACE2细胞从直径10cm的培养皿消化下来后,根据细胞密度用含10%胎牛血清的DMEM完全培养基稀释至105个/mL的细胞悬浮液,将细胞混合均匀后接种到96孔板中,每孔加入100μL细胞悬浮液,在周围孔中加入相同体积的PBS缓冲液,轻轻拍打培养板的周围,使细胞分布均匀,待细胞沉淀到培养板底部后放入37℃,5%CO2的细胞培养箱中培养。After the A549-ACE2 cells in the logarithmic growth phase are digested from a 10 cm diameter culture dish, dilute it to a cell suspension of 10 5 cells/mL with DMEM complete medium containing 10% fetal calf serum according to the cell density, and mix the cells After evenly seeding into a 96-well plate, add 100 μL of cell suspension to each well, add the same volume of PBS buffer to the surrounding wells, gently tap around the culture plate to make the cells evenly distributed, wait until the cells settle to the bottom of the culture plate Place in a 37°C, 5% CO2 cell culture incubator.

在293T细胞中运用慢病毒包装体系获得由S蛋白包裹报告基因Luciferase形成的安全性较高的新冠假病毒液。A lentiviral packaging system was used in 293T cells to obtain a safer new coronavirus pseudovirus liquid composed of S protein packaging reporter gene Luciferase.

将A549-ACE2细胞接种到96孔板上,24h后加药,同时进行病毒侵染,将病毒液与培养基以2:3比例混合,获得假病毒溶液,将番木瓜碱、伪番木瓜碱、去氢番木瓜碱I或去氢番木瓜碱II用培养基和病毒液的混合液稀释成浓度为0.2μM、0.5μM、1μM、2μM、5μM、10μM,每孔100μL,同时设空白组(培养基)、阴性对照组(DMSO)、阳性对照组(千金藤素Ceph和氯喹CQ),加药侵染72h后使用荧光酶标仪检测492nm处的荧光发射值。A549-ACE2 cells were inoculated into a 96-well plate, and the drug was added 24 hours later. Virus infection was carried out at the same time. The virus liquid and culture medium were mixed at a ratio of 2:3 to obtain a pseudovirus solution. Add papayaine and pseudopapapain . Dehydropapain I or dehydropapain II was diluted with a mixture of culture medium and virus liquid to a concentration of 0.2 μM, 0.5 μM, 1 μM, 2 μM, 5 μM, 10 μM, 100 μL per well, and a blank group was set up ( culture medium), negative control group (DMSO), and positive control group (Stephanatine Ceph and Chloroquine CQ). After infection for 72 hours, a fluorescent microplate reader was used to detect the fluorescence emission value at 492 nm.

统计各组荧光强度值,使用GraphPad Prism8软件,以抑制剂浓度为横坐标,对应的感染率为纵坐标,结果如图1所示;以抑制剂浓度的对数值为横坐标,对应的抑制感染率为纵坐标,结果如图2所示。各化合物对新冠假病毒的抑制能力见表1。The fluorescence intensity values of each group were counted, using GraphPad Prism8 software, with the inhibitor concentration as the abscissa, and the corresponding infection rate as the ordinate. The results are shown in Figure 1; using the logarithm of the inhibitor concentration as the abscissa, the corresponding infection rate is the ordinate, and the results are shown in Figure 2. The inhibitory abilities of each compound against the new coronavirus pseudovirus are shown in Table 1.

表1番木瓜碱及其类似物抑制新冠病毒活性Table 1. Papain and its analogues inhibit the activity of new coronavirus

编号serial number 化合物compound 抑制新冠病毒活(IC50)Inhibits the activity of new coronavirus (IC 50 ) 11 番木瓜碱papayaline 5.48μmol/L5.48μmol/L 22 伪番木瓜碱pseudopapain 8.21μmol/L8.21μmol/L 33 去氢番木瓜碱IDehydropapain I 24.3μmol/L24.3μmol/L 44 去氢番木瓜碱IIDehydropapain II 30.65μmol/L30.65μmol/L

实施例2Example 2

番木瓜碱对A549-ACE2细胞的毒性作用Toxic effect of papaya on A549-ACE2 cells

1实验方法1Experimental method

1.1将对数生长期的A549-ACE2细胞从直径10cm的培养皿消化下来后,将稀释至105个/mL的细胞悬浮液混合均匀后接种到96孔板中,每孔100μL体积,放入37℃,5%CO2的细胞培养箱中培养。1.1 After the A549-ACE2 cells in the logarithmic growth phase are digested from a 10cm diameter culture dish, mix the cell suspension diluted to 10 5 cells/mL and inoculate it into a 96-well plate. Each well has a volume of 100 μL. Culture in a 37 °C, 5% CO2 cell incubator.

1.2细胞给药1.2 Cell drug delivery

番木瓜碱用DMSO溶解,母液浓度为10mM,之后用DMEM培养基进一步稀释成浓度为1μM、2μM、5μM、10μM、20μM、50μM、100μM,96孔板中每孔加入100μL,每个剂量组设3个平行孔,同时设空白组和对照组,放入培养箱中培养,加药后48h进行细胞毒性检测。Dissolve papayaline with DMSO, the concentration of the mother solution is 10mM, and then further dilute it with DMEM culture medium to a concentration of 1μM, 2μM, 5μM, 10μM, 20μM, 50μM, 100μM. Add 100μL to each well of a 96-well plate, and set each dose group Three parallel wells were set up with a blank group and a control group at the same time. They were placed in an incubator for culture. Cytotoxicity testing was performed 48 hours after adding the drug.

1.3MTT检测番木瓜碱的细胞毒性1.3MTT detection of cytotoxicity of papayaline

1、药物分别处理48h后,弃掉培养基,每孔加入10μL MTT溶液,培养箱中孵育4h后弃去孔内培养液,每孔加入100μL DMSO,并于摇床摇晃10min充分溶解甲臜结晶,用酶标仪于490nm处测OD值。1. After the drugs are treated separately for 48 hours, discard the culture medium, add 10 μL MTT solution to each well, incubate in the incubator for 4 hours, then discard the culture medium in the well, add 100 μL DMSO to each well, and shake on a shaker for 10 minutes to fully dissolve the formazan crystals. , measure the OD value at 490nm with a microplate reader.

2、酶标仪读取490nm波长的吸光值(OD490)。计算得到实验组(即加药组)相对于对照组的细胞存活比率。2. The microplate reader reads the absorbance value at 490nm wavelength (OD 490 ). Calculate the cell survival ratio of the experimental group (i.e., the drug-added group) relative to the control group.

使用GraphPad Prism8计算细胞存活率和IC50值,细胞存活率=(实验组OD-空白组OD)/(对照组OD-空白组OD)×100%。Use GraphPad Prism8 to calculate the cell survival rate and IC 50 value. Cell survival rate = (OD of the experimental group - OD of the blank group) / (OD of the control group - OD of the blank group) × 100%.

结果见图3,番木瓜碱作用A549-ACE2细胞的IC50值为35.08μmol/L。The results are shown in Figure 3. The IC 50 value of papaya on A549-ACE2 cells was 35.08 μmol/L.

综上,藜芦碱能高效够抑制新冠病毒S蛋白和ACE2结合,抑制含有新冠病毒S蛋白的假病毒感染细胞,且细胞毒性较低,由此说明藜芦碱能够用于预防和/或治疗新冠病毒的感染,进而用于制备预防和/或治疗新冠病毒感染的药物。同时化合物番木瓜碱、伪番木瓜碱、去氢番木瓜碱I或去氢番木瓜碱II具有不同程度抑制新冠病毒S蛋白和ACE2结合的能力,因此可以与藜芦碱联合作为活性成分发挥抗新冠病毒的作用,同时制备抗冠状病毒的药物。In summary, veratrine can effectively inhibit the binding of the new coronavirus S protein and ACE2, inhibit the infection of cells by pseudoviruses containing the new coronavirus S protein, and has low cytotoxicity, which shows that veratrine can be used for prevention and/or treatment COVID-19 infection, and then used to prepare drugs for preventing and/or treating COVID-19 infection. At the same time, the compounds papayaine, pseudopapainine, dehydropapainine I or dehydropapainine II have the ability to inhibit the binding of the new coronavirus S protein and ACE2 to varying degrees, so they can be combined with veratrine as an active ingredient to exert anti- The role of the new coronavirus and the preparation of anti-coronavirus drugs.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only preferred embodiments of the present invention. It should be noted that those skilled in the art can make several improvements and modifications without departing from the principles of the present invention. These improvements and modifications can also be made. should be regarded as the protection scope of the present invention.

Claims (4)

1.番木瓜生物碱在制备抗冠状病毒的药物中的应用,所述番木瓜生物碱为以下一种或几种:结构如式I所示的番木瓜碱、结构式如式II所示的伪番木瓜碱、结构式如式III所示的去氢番木瓜碱I和结构式如式IV所示的去氢番木瓜碱II;所述冠状病毒为新冠病毒SARS-COV-2;1. The application of papaya alkaloids in the preparation of anti-coronavirus drugs. The papaya alkaloids are one or more of the following: papaya alkaloids with a structure as shown in formula I, and pseudopaenine with a structural formula as shown in formula II. Papaine, dehydropapain I with a structural formula shown in formula III and dehydropapain II with a structural formula shown in formula IV; the coronavirus is the new coronavirus SARS-COV-2; 式I />式II Formula I /> Formula II 式III/>式IV。 Formula III/> Formula IV. 2.根据权利要求1所述应用,其特征在于,所述番木瓜生物碱为番木瓜生物碱的水合物形式或番木瓜生物碱的盐形式。2. Application according to claim 1, characterized in that the papaya alkaloid is a hydrate form of papaya alkaloid or a salt form of papaya alkaloid. 3.根据权利要求2所述应用,其特征在于,所述番木瓜生物碱的盐形式包括以下一种或几种:番木瓜生物碱的醋酸盐、番木瓜生物碱的甲酸盐、番木瓜生物碱的盐酸盐、番木瓜生物碱的磷酸盐和番木瓜生物碱的硫酸盐。3. The application according to claim 2, characterized in that the salt form of the papaya alkaloids includes one or more of the following: acetate of papaya alkaloids, formate of papaya alkaloids, saponinate of papaya alkaloids. Papaya alkaloid hydrochloride, papaya alkaloid phosphate and papaya alkaloid sulfate. 4.根据权利要求1所述应用,其特征在于,所述抗冠状病毒包括预防冠状病毒感染。4. The application according to claim 1, characterized in that the anti-coronavirus includes preventing coronavirus infection.
CN202210791107.7A 2022-07-05 2022-07-05 Application of papaya alkaloids in the preparation of anti-coronavirus drugs Active CN115778952B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210791107.7A CN115778952B (en) 2022-07-05 2022-07-05 Application of papaya alkaloids in the preparation of anti-coronavirus drugs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210791107.7A CN115778952B (en) 2022-07-05 2022-07-05 Application of papaya alkaloids in the preparation of anti-coronavirus drugs

Publications (2)

Publication Number Publication Date
CN115778952A CN115778952A (en) 2023-03-14
CN115778952B true CN115778952B (en) 2024-02-02

Family

ID=85431288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210791107.7A Active CN115778952B (en) 2022-07-05 2022-07-05 Application of papaya alkaloids in the preparation of anti-coronavirus drugs

Country Status (1)

Country Link
CN (1) CN115778952B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028098A1 (en) * 2009-09-03 2011-03-10 Abul Bashr Mohammed Fazlul Karim Product and method for treating thrombocytopenia

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028098A1 (en) * 2009-09-03 2011-03-10 Abul Bashr Mohammed Fazlul Karim Product and method for treating thrombocytopenia

Also Published As

Publication number Publication date
CN115778952A (en) 2023-03-14

Similar Documents

Publication Publication Date Title
CN110215456A (en) A kind of cat coronavirus inhibitor combination being made of GC376 and GS-441524
CN114028453B (en) Broad-spectrum antiviral medicine, its medicinal composition and application
CN113082049B (en) New application of potassium iodide or composition containing potassium iodide in preparation of drugs for treating African swine fever
WO2022188898A2 (en) Use of cyproheptadine hydrochloride compound in preparation of drug for preventing or treating african swine fever
CN115721654B (en) Application of veratrine in the preparation of anti-coronavirus drugs
US11999806B2 (en) Broad-spectrum polypeptide against enterovirus and application thereof
CN115197231A (en) Broad-spectrum antiviral traditional Chinese medicine monomer berberamine and its application
CN112972476B (en) Medicament for inhibiting marek's disease virus replication and preventing or resisting marek's disease
He et al. C-fiber degeneration enhances alveolar macrophage-mediated IFN-α/β response to respiratory syncytial virus
CN115778952B (en) Application of papaya alkaloids in the preparation of anti-coronavirus drugs
CN117180262B (en) Application of galangin in the preparation of drugs for the treatment of shrimp white spot syndrome
CN106880630A (en) Retro‑2cyclAnd the purposes of related derivatives
CN104997769A (en) Applications of mangiferin in preparation of antiviral drugs
Li et al. Dihydroartemisinin inhibits Micropterus salmoides rhabdovirus infection in vitro and in vivo
CN115350181B (en) Application of small molecular compound in preparation of antiviral infection medicines
CN117899080B (en) Application of Lycorine in the Prevention of Rana chuatsi Iridescence Virus
CN113121645B (en) Prawn PcRab7 protein and WSSV envelope protein VP28 interaction blocker polypeptide
CN111529517B (en) Use of guanidine hydrochloride as a medicament for preventing or treating coronavirus infection
CN117899065B (en) An antiviral drug and application of dehydrodiisoeugenol in the preparation of antiviral drugs
CN116098916B (en) Application of Ma Liba-virus in preparing anti-H13 subtype AIV (air-induced respiratory tract) drugs
JP2009108004A (en) Beta-nodavirus infection inhibitor for fish
CN118078824A (en) Anti-Marek's disease virus medicine and application of RA190 or glycyrrhizic acid and combined use thereof in preparation of medicine
CN118021824A (en) Medicine for resisting Marek's disease virus and application of dandelion sterol or ferulic acid in preparation of medicine by combination
CN116509863A (en) The purposes of paternogenin in the preparation of the medicine for inhibiting SADS-CoV
CN117919378A (en) Application of gnat banna host defensin peptide Siba3

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240526

Address after: Room 702, No. 5006 Xiang'an South Road, Xiangshan Street, Xiang'an District, Xiamen City, Fujian Province, 361102

Patentee after: Xiamen Jingxiang Pharmaceutical Technology Co.,Ltd.

Country or region after: China

Address before: No. 422, Siming South Road, Xiamen City, Fujian Province, 361102

Patentee before: XIAMEN University

Country or region before: China

TR01 Transfer of patent right