CN115770563A - A bimetallic catalyst for hydrogen production by steam reforming of methanol at high temperature and its preparation method and application - Google Patents
A bimetallic catalyst for hydrogen production by steam reforming of methanol at high temperature and its preparation method and application Download PDFInfo
- Publication number
- CN115770563A CN115770563A CN202111040091.8A CN202111040091A CN115770563A CN 115770563 A CN115770563 A CN 115770563A CN 202111040091 A CN202111040091 A CN 202111040091A CN 115770563 A CN115770563 A CN 115770563A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- zinc
- zirconium
- methanol
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 title claims abstract description 114
- 239000003054 catalyst Substances 0.000 title claims abstract description 105
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 22
- 239000001257 hydrogen Substances 0.000 title claims description 22
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 238000000629 steam reforming Methods 0.000 title claims description 8
- 238000002360 preparation method Methods 0.000 title abstract description 15
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 52
- 238000006243 chemical reaction Methods 0.000 claims abstract description 29
- 239000011787 zinc oxide Substances 0.000 claims abstract description 26
- 239000006104 solid solution Substances 0.000 claims abstract description 14
- 238000001035 drying Methods 0.000 claims abstract description 12
- 239000002105 nanoparticle Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000011701 zinc Substances 0.000 claims description 44
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims description 36
- 239000002243 precursor Substances 0.000 claims description 33
- 229910052725 zinc Inorganic materials 0.000 claims description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 32
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 31
- 239000000243 solution Substances 0.000 claims description 29
- 238000003756 stirring Methods 0.000 claims description 19
- 229910052726 zirconium Inorganic materials 0.000 claims description 19
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 17
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 6
- 238000001651 catalytic steam reforming of methanol Methods 0.000 claims description 6
- 238000001354 calcination Methods 0.000 claims description 5
- 239000002244 precipitate Substances 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 4
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 claims description 4
- 239000001099 ammonium carbonate Substances 0.000 claims description 4
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 4
- 239000004246 zinc acetate Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 claims description 2
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 235000017550 sodium carbonate Nutrition 0.000 claims description 2
- WXKDNDQLOWPOBY-UHFFFAOYSA-N zirconium(4+);tetranitrate;pentahydrate Chemical compound O.O.O.O.O.[Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O WXKDNDQLOWPOBY-UHFFFAOYSA-N 0.000 claims description 2
- 238000007598 dipping method Methods 0.000 claims 2
- 230000000694 effects Effects 0.000 abstract description 9
- 238000002407 reforming Methods 0.000 abstract description 3
- 238000005470 impregnation Methods 0.000 abstract 1
- 238000000465 moulding Methods 0.000 abstract 1
- 150000003751 zinc Chemical class 0.000 abstract 1
- 238000011156 evaluation Methods 0.000 description 32
- 239000008367 deionised water Substances 0.000 description 17
- 229910021641 deionized water Inorganic materials 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 230000001376 precipitating effect Effects 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical group 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000000731 high angular annular dark-field scanning transmission electron microscopy Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000006057 reforming reaction Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
Abstract
本发明公开了一种双金属催化剂及其制备方法,所述甲醇重整催化剂包括ZnZrOx固溶体和分散在ZnZrOx固溶体表面的氧化锌纳米颗粒。该催化剂以固溶体结构和表面高分散的ZnO纳米颗粒为活性中心,采用浸渍法制备,将锌盐浸渍到载体上后,再经过静置、烘干、焙烧、成型后形成催化剂。本发明的催化剂在反应温度400℃下达到最优性能,活性可达99.9%。本发明的优势在于:催化剂活性高,CO选择性低,高温下稳定性良好。The invention discloses a bimetallic catalyst and a preparation method thereof. The methanol reforming catalyst comprises ZnZrO x solid solution and zinc oxide nanoparticles dispersed on the surface of the ZnZrO x solid solution. The catalyst uses solid solution structure and highly dispersed ZnO nanoparticles on the surface as the active center, and is prepared by impregnation method. After the zinc salt is impregnated on the carrier, the catalyst is formed after standing, drying, roasting and molding. The catalyst of the invention achieves optimal performance at a reaction temperature of 400 DEG C, and the activity can reach 99.9%. The invention has the advantages of high catalyst activity, low CO selectivity and good stability at high temperature.
Description
技术领域technical field
本发明属于化工与能源领域,具体涉及一种用于高温甲醇水蒸汽重整制氢的双金属催化剂及其制备方法和应用。The invention belongs to the field of chemical industry and energy, and in particular relates to a bimetallic catalyst for hydrogen production by steam reforming of methanol at high temperature, a preparation method and application thereof.
背景技术Background technique
能源与环境问题是未来人类可持续发展面临的最主要的问题。随着大量化石能源的开发与使用,全球环境恶化与资源短缺问题日益凸显,因此从化石燃料向可持续、无污染的非化石能源转变是未来能源结构改变的必然趋势。氢能作为理想的化学燃料、能源载体和储能工具越来越受到人们的高度重视。由于氢气的储存和运输十分困难,极大地限制了其发展,因此人们迫切寻求易处理且可再生的液体氢载体。甲醇作为一种理想的氢源具有以下原因:第一,甲醇具有高的氢碳比,没有C-C键的连接,与其他碳氢化合物制氢温度(600~800℃)相比,甲醇制氢反应温度较低(150~400℃);第二,在常温常压下甲醇为液体,储存和运输安全便捷,还具有生物可降解性;第三,甲醇来源广泛,国内外甲醇储备十分充裕,可以通过煤炭转化、二氧化碳加氢、页岩气、未来还可通过可燃冰等方式获得。北美页岩气革命,出现了可使用200年以上非常规天然气,加速了世界能源结构转型,天然气向甲醇转化,使得国际海运成本大大降低,为其蒸气重整提供了可观的原料保障。因此,甲醇重整制氢因其成本低、反应条件温和、重整气产物少易于分离等优点受到了广泛关注。Energy and environmental issues are the most important issues facing the sustainable development of human beings in the future. With the development and use of a large amount of fossil energy, the problems of global environmental degradation and resource shortage have become increasingly prominent. Therefore, the transformation from fossil fuels to sustainable and non-polluting non-fossil energy is an inevitable trend of future energy structure changes. As an ideal chemical fuel, energy carrier and energy storage tool, hydrogen energy has been paid more and more attention by people. Since the storage and transportation of hydrogen are very difficult, which greatly limits its development, people are urgently looking for easy-to-handle and renewable liquid hydrogen carriers. Methanol is an ideal source of hydrogen for the following reasons: First, methanol has a high hydrogen-to-carbon ratio and has no C-C bond connection. Compared with other hydrocarbon hydrogen production temperatures (600-800°C), methanol hydrogen production The temperature is low (150-400°C); second, methanol is a liquid at normal temperature and pressure, which is safe and convenient to store and transport, and is also biodegradable; third, methanol has a wide range of sources, and methanol reserves at home and abroad are abundant, which can be Through coal conversion, carbon dioxide hydrogenation, shale gas, and in the future, it can also be obtained through combustible ice. The shale gas revolution in North America led to the emergence of unconventional natural gas that can be used for more than 200 years, which has accelerated the transformation of the world's energy structure. The conversion of natural gas to methanol has greatly reduced the cost of international shipping and provided considerable raw material guarantee for its steam reforming. Therefore, the reforming of methanol to hydrogen has attracted extensive attention due to its advantages of low cost, mild reaction conditions, less reformed gas products and easy separation.
目前,用于甲醇重整反应的催化剂主要有三类:铜基催化剂、含有贵金属的催化剂和氧化物类催化剂(不含贵金属和Cu)。铜基催化剂因其价格低廉,低温活性高,CO选择性低等优点,是使用最为广泛的催化剂。但存在稳定性差,容易发生烧结而失活的问题。第二类含有贵金属的催化剂,同样具有高活性和低CO选择性,稳定性好,但是其价格昂贵,不利于工业上大规模生产。第三类是金属氧化物类催化剂(不含贵金属和Cu),目前文献中关于金属氧化物用于甲醇水蒸气重整反应的报道还比较少。金属氧化物催化剂与前两者不同,在高温下具有高活性、选择性和良好的热稳定性,有利于长时间运行。Currently, there are three main types of catalysts used in methanol reforming reactions: copper-based catalysts, catalysts containing noble metals, and oxide-based catalysts (excluding noble metals and Cu). Copper-based catalysts are the most widely used catalysts because of their low price, high low-temperature activity, and low CO selectivity. However, there are problems of poor stability and prone to sintering and deactivation. The second type of catalysts containing noble metals also has high activity, low CO selectivity, and good stability, but they are expensive and unfavorable for large-scale industrial production. The third category is metal oxide catalysts (without precious metals and Cu). Currently, there are relatively few reports on the use of metal oxides in the steam reforming reaction of methanol in the literature. Different from the former two, metal oxide catalysts have high activity, selectivity and good thermal stability at high temperature, which is beneficial to long-term operation.
通过甲醇蒸汽重整反应可以获得高纯度的氢气,供给质子交换膜燃料电池使用,但是由于反应进行的同时可能会发生甲醇直接分解和逆水汽变换反应,产生副产物CO。CO浓度过高会毒化燃料电池的Pt电极,因此要求CO浓度要低于10ppm。经过科学工作者多年的基础研究和应用探索,仍然没有出现高效、长期、经济的催化剂用于氢能的大规模工业化使用,目前甲醇蒸汽重整反应尚存甲醇不能完全转化、重整气中CO浓度高、稳定性差等问题。High-purity hydrogen can be obtained through methanol steam reforming and supplied to proton exchange membrane fuel cells. However, direct methanol decomposition and reverse water vapor shift reaction may occur during the reaction, producing CO as a by-product. Too high CO concentration will poison the Pt electrode of the fuel cell, so the CO concentration is required to be lower than 10ppm. After years of basic research and application exploration by scientific workers, there is still no efficient, long-term, and economical catalyst for large-scale industrial use of hydrogen energy. At present, the methanol steam reforming reaction still cannot completely convert methanol, and the CO in the reformed gas High concentration, poor stability and other problems.
发明内容Contents of the invention
鉴于上述现有技术的不足,本发明提供一种双金属催化剂及其制备方法,旨在克服现有高温甲醇水蒸汽重整制氢催化剂存在的甲醇不能完全转化、反应选择性差、稳定性差的缺点。In view of the above-mentioned deficiencies in the prior art, the present invention provides a bimetallic catalyst and a preparation method thereof, aiming at overcoming the disadvantages of incomplete conversion of methanol, poor reaction selectivity, and poor stability in existing high-temperature methanol steam reforming hydrogen production catalysts .
本发明提供了一种用于高温甲醇水蒸汽重整制氢的双金属催化剂,所述催化剂包括ZnZrOx固溶体和氧化锌纳米颗粒;所述氧化锌纳米颗粒分散在ZnZrOx固溶体表面。所述催化剂中,锌元素的摩尔量占锌元素和锆元素的总摩尔量的4~50%;所述催化剂的比表面积为30~50m2/g。The invention provides a bimetallic catalyst for hydrogen production by steam reforming of methanol at high temperature. The catalyst includes ZnZrO x solid solution and zinc oxide nanoparticles; the zinc oxide nano particles are dispersed on the surface of the ZnZrO x solid solution. In the catalyst, the molar amount of zinc element accounts for 4-50% of the total molar weight of zinc element and zirconium element; the specific surface area of the catalyst is 30-50m 2 /g.
根据本申请的另一个方面,提供了一种上述的催化剂的制备方法,包括如下步骤:According to another aspect of the present application, a kind of preparation method of above-mentioned catalyst is provided, comprises the steps:
步骤(1):将锆源溶于水,与沉淀剂水溶液在60~75℃下混合得到沉淀物,烘干,得到锆前体;Step (1): dissolving the zirconium source in water, mixing with the aqueous solution of the precipitating agent at 60-75°C to obtain a precipitate, and drying to obtain a zirconium precursor;
步骤(2):将锌源溶于水中得到锌源溶液,将锌源溶液滴至锆前体上,研磨搅拌,室温浸渍,烘干,煅烧得到所述催化剂。Step (2): dissolving the zinc source in water to obtain a zinc source solution, dropping the zinc source solution onto the zirconium precursor, grinding and stirring, impregnating at room temperature, drying, and calcining to obtain the catalyst.
其中,步骤(1)中:Wherein, in step (1):
所述锆源选自硝酸氧锆、五水硝酸锆和氧氯化锆中的至少一种;所述锆源溶于水后得到的水溶液中锆浓度为0.1~0.2mol/L;所述烘干温度为80~120℃。The zirconium source is selected from at least one of zirconium oxynitrate, zirconium nitrate pentahydrate and zirconium oxychloride; the concentration of zirconium in the aqueous solution obtained after the zirconium source is dissolved in water is 0.1-0.2mol/L; the drying The drying temperature is 80-120°C.
所述沉淀剂选自碳酸铵、碳酸钠、氨水中的至少一种;沉淀剂为碳酸铵或者碳酸钠时,沉淀剂水溶液的浓度为0.1~0.2mol/L;沉淀剂为氨水时,沉淀剂水溶液的浓度为10~20%。The precipitating agent is selected from at least one of ammonium carbonate, sodium carbonate, and ammonia water; when the precipitating agent is ammonium carbonate or sodium carbonate, the concentration of the precipitating agent aqueous solution is 0.1 to 0.2mol/L; when the precipitating agent is ammonia water, the precipitating agent The concentration of the aqueous solution is 10-20%.
其中,步骤(2)中:Wherein, in step (2):
所述锌源选自乙酸锌、硝酸锌中的至少一种;每1g锆前体对应使用的锌源的物质的量为0.09~6.5mmol。所述研磨搅拌的时间为5~10min;室温浸渍的时间为6~12h;所述烘干温度为80~120℃;所述煅烧温度为450~550℃;时间为3~6h。The zinc source is selected from at least one of zinc acetate and zinc nitrate; the amount of zinc source used per 1 g of zirconium precursor is 0.09-6.5 mmol. The time for grinding and stirring is 5-10 minutes; the time for soaking at room temperature is 6-12 hours; the drying temperature is 80-120° C.; the calcination temperature is 450-550° C.; the time is 3-6 hours.
根据本申请的另一个方面,提供一种高温甲醇水蒸汽重整制氢的方法,使用上述的催化剂或上述的制备方法所制备的催化剂。According to another aspect of the present application, a method for producing hydrogen by steam reforming of methanol at high temperature is provided, using the above-mentioned catalyst or the catalyst prepared by the above-mentioned preparation method.
包括以下步骤:在加热的条件下,含有甲醇和水的原料与催化剂接触进行反应;所述反应在常压下进行,反应温度为350~400℃;所述水与甲醇的摩尔比为1.0~1.6;所述反应质量空速为1.2~4.5h-1。The method comprises the following steps: under the condition of heating, the raw material containing methanol and water is contacted with a catalyst to react; the reaction is carried out under normal pressure, and the reaction temperature is 350-400°C; the molar ratio of water to methanol is 1.0- 1.6; the reaction mass space velocity is 1.2-4.5h -1 .
所述催化剂反应前要经过还原;所述还原方式为在氢气气氛下,于400℃下还原2~6h。The catalyst needs to be reduced before reacting; the reduction method is at 400° C. for 2 to 6 hours in a hydrogen atmosphere.
上述催化剂在400℃时催化性能最好,甲醇能够基本完全转化,CO选择性低,且在380℃时高空速下(9.0h-1)运行,可保持良好的稳定性。The above-mentioned catalysts have the best catalytic performance at 400°C, methanol can be converted almost completely, CO selectivity is low, and they can maintain good stability at 380°C at high space velocity (9.0h -1 ).
有益效果:本发明公开了一种高温甲醇水蒸气重整制氢催化剂及其制备方法,所述甲醇重整制氢催化剂组成为ZnZrOx固溶体和氧化性纳米颗粒,固溶体及ZnO颗粒同为活性组分。所述催化剂克服了传统Cu基催化剂在高温下,重整反应CO选择性高及高温下不稳定的缺点,最优反应温度为400℃,并且能够在高温下长时间运行。本发明通过表面富含氧空位的ZnZrOx固溶体与ZnO纳米颗粒发生相互协同作用,提高了甲醇转化率和H2产率,降低了CO选择性。该催化剂具有活性高、选择性好等优点,是一种性能优异的甲醇水蒸气重整制氢催化剂。Beneficial effects: the invention discloses a high-temperature methanol steam reforming hydrogen production catalyst and its preparation method. The methanol reforming hydrogen production catalyst is composed of ZnZrO x solid solution and oxidizing nanoparticles, and the solid solution and ZnO particles are both active groups point. The catalyst overcomes the shortcomings of traditional Cu-based catalysts at high temperature, high selectivity of CO reforming reaction and instability at high temperature, the optimum reaction temperature is 400°C, and it can run at high temperature for a long time. In the present invention, the ZnZrO x solid solution rich in oxygen vacancies on the surface interacts with ZnO nanoparticles to synergize, thereby increasing methanol conversion rate and H2 production rate, and reducing CO selectivity. The catalyst has the advantages of high activity, good selectivity, etc., and is a catalyst for hydrogen production by steam reforming of methanol with excellent performance.
附图说明Description of drawings
图1为所有实施例及对比例催化剂的XRD谱图。Fig. 1 is the XRD spectrogram of all embodiment and comparative example catalyst.
图2为实施例6制备的双金属催化剂的元素扫描电镜图,其中a为该催化剂的HAADF-STEM图,c和d分别为Zn和Zr的元素扫描图,b为c和d的元素扫描重叠图。Fig. 2 is the elemental scanning electron micrograph of the bimetallic catalyst prepared in Example 6, wherein a is the HAADF-STEM figure of the catalyst, c and d are the elemental scanning figures of Zn and Zr respectively, and b is the elemental scanning overlap of c and d picture.
图3为实施例4中甲醇转化率随反应时间变化曲线图。Fig. 3 is a graph showing the change of methanol conversion rate with reaction time in Example 4.
具体实施方式Detailed ways
下面结合实施例详述本申请,但本申请并不局限于这些实施例。The present application is described in detail below in conjunction with the examples, but the present application is not limited to these examples.
如无特别说明,本申请的实施例中的原料和催化剂均通过商业途径购买。Unless otherwise specified, the raw materials and catalysts in the examples of the present application were purchased through commercial channels.
本申请的实施例中分析方法如下:Analytic method is as follows in the embodiment of the application:
利用安捷伦气相色谱对流出气进行在线分析,色谱配备TCD和FID双检测器,其中填充柱采用TDX-01,毛细柱采用TG BOND Q。The effluent gas was analyzed online by Agilent gas chromatography equipped with TCD and FID dual detectors, the packed column was TDX-01, and the capillary column was TG BOND Q.
本申请的实施例中转化率、选择性计算如下:Conversion rate, selectivity are calculated as follows in the embodiment of the application:
本申请的实施例中,甲醇转化率以及产物选择性都基于碳摩尔数进行计算。In the examples of the present application, the methanol conversion rate and product selectivity are calculated based on the number of carbon moles.
甲醇转化率:C1和C2分别代表进入和流出甲醇的摩尔量。Methanol conversion: C1 and C2 represent the molar amounts of incoming and outgoing methanol, respectively.
产物选择性:其中xi代表i产物的摩尔百分含量;ni代表i产物中含有的碳原子数。Product selectivity: Among them, xi represents the mole percentage of product i; ni represents the number of carbon atoms contained in product i.
实施例1Example 1
称取35.0g Zr(NO3)4·5H2O溶于500mL去离子水中,70℃下加热搅拌溶解。另量取21.0mL氨水稀释至200mL去离子水中,将氨水溶液快速加入Zr溶液中,搅拌速度为500r/min,所得沉淀物继续在70℃下搅拌10min。所得沉淀物于室温静置冷却,抽滤,用去离子水洗涤三遍,至滤液呈中性。所得滤饼于100℃下过夜烘干,得到Zr(OH)4前体。Weigh 35.0g Zr(NO 3 ) 4 ·5H 2 O and dissolve in 500mL deionized water, heat and stir at 70°C to dissolve. Another 21.0 mL of ammonia water was diluted to 200 mL of deionized water, and the ammonia solution was quickly added to the Zr solution at a stirring speed of 500 r/min, and the obtained precipitate was continuously stirred at 70°C for 10 min. The resulting precipitate was left to cool at room temperature, filtered with suction, and washed three times with deionized water until the filtrate was neutral. The resulting filter cake was dried overnight at 100 °C to obtain the Zr(OH) 4 precursor.
实施例2Example 2
称取0.19mmol硝酸锌溶于1ml去离子水中,得到Zn溶液,称取实施例1中得到的2gZr(OH)4前体于蒸发皿中,将Zn溶液滴至Zr(OH)4前体上,研磨搅拌5min。在室温浸渍7h后,100℃下烘干,最后在500℃下马弗炉中煅烧4h,所得催化剂记为3%ZnO/ZrO2。Weigh 0.19mmol of zinc nitrate and dissolve it in 1ml of deionized water to obtain a Zn solution, weigh 2g of the Zr(OH) 4 precursor obtained in Example 1 in an evaporating dish, and drop the Zn solution onto the Zr(OH) 4 precursor , grind and stir for 5min. After impregnated at room temperature for 7 hours, dried at 100°C, and finally calcined in a muffle furnace at 500°C for 4 hours, the obtained catalyst was recorded as 3% ZnO/ZrO 2 .
压片,破碎,筛选40~80目用于催化剂评价。称取0.3g筛选好的催化剂装入内径为6mm的反应管,在H2或H2/N2混合气氛下,于400℃下还原2~5h。反应在常压下进行,原料为甲醇和水混合溶液,其中n(MeOH):n(H2O)=1.0,氮气为稀释气,流速为30ml/min,反应温度为400℃,WHSV=4.5h-1,催化剂评价结果见表1。Tablets, crushed, and screened with 40-80 meshes for catalyst evaluation. Weigh 0.3 g of the screened catalyst and put it into a reaction tube with an inner diameter of 6 mm, and reduce it at 400° C. for 2 to 5 hours under H 2 or H 2 /N 2 mixed atmosphere. The reaction is carried out under normal pressure, the raw material is a mixed solution of methanol and water, wherein n(MeOH):n(H 2 O)=1.0, nitrogen is the diluent gas, the flow rate is 30ml/min, the reaction temperature is 400°C, WHSV=4.5 h -1 , the catalyst evaluation results are shown in Table 1.
实施例3Example 3
称取0.25mmol硝酸锌溶于1ml去离子水中,称取实施例1中得到的2g Zr(OH)4前体于蒸发皿中,将锌溶液滴至Zr(OH)4前体上,研磨搅拌5min。在室温浸渍7h后,100℃下烘干,最后在500℃下马弗炉中煅烧4h,所得催化剂记为4%ZnO/ZrO2。压片,破碎,筛选40~80目用于催化剂评价。其他评价步骤与实施例2相同,催化剂评价结果见表1。Weigh 0.25mmol of zinc nitrate and dissolve it in 1ml of deionized water, weigh 2g of the Zr(OH) 4 precursor obtained in Example 1 in an evaporating dish, drop the zinc solution onto the Zr(OH) 4 precursor, grind and stir 5min. After impregnated at room temperature for 7 hours, dried at 100°C, and finally calcined in a muffle furnace at 500°C for 4 hours, the obtained catalyst was recorded as 4% ZnO/ZrO 2 . Tablets, crushed, and screened with 40-80 meshes for catalyst evaluation. Other evaluation steps are the same as in Example 2, and the catalyst evaluation results are shown in Table 1.
实施例4Example 4
催化剂制备所用金属盐为1.23mmol硝酸锌及2g实施例1中得到的Zr(OH)4前体,将前体置于蒸发皿中,将硝酸锌溶于1ml去离子水中得到锌溶液,锌溶液滴至Zr(OH)4前体上,研磨搅拌5min。在室温浸渍7h后,100℃下烘干,最后在500℃下马弗炉中煅烧4h,所得催化剂记为9%ZnO/ZrO2。催化剂评价分别在400℃下,n(H2O):n(MeOH)=1.0,泵流速0.040mL/min;350℃,n(H2O):n(MeOH)=1.0~1.5,泵流速0.012mL/min,其他评价步骤与实施例1相同,催化剂评价结果见表1。催化剂的耐高温实验在常压下,380℃,n(H2O):n(MeOH)=1.1,WHSV=4.4h-1,泵流速0.040mL/min下进行评价,在前40h的评价中,催化剂活性降低了6%~7%,在而后的200h之内,催化剂保持良好的稳定性。结果见附图3。Catalyst preparation metal salt used is 1.23mmol zinc nitrate and the Zr(OH) precursor that obtains in
实施例5Example 5
催化剂制备所用金属盐为1.54mmol硝酸锌及2g实施例1中得到的Zr(OH)4前体,将前体置于蒸发皿中,将硝酸锌溶于1ml去离子水中得到锌溶液,锌溶液滴至Zr(OH)4前体上,研磨搅拌5min。在室温浸渍7h后,100℃下烘干,最后在500℃下马弗炉中煅烧4h,所得催化剂记为11%ZnO/ZrO2。其他评价步骤与实施例2相同,催化剂评价结果见表1。Catalyst preparation metal salt used is 1.54mmol zinc nitrate and the Zr(OH) precursor that obtains in
实施例6Example 6
催化剂制备所用金属盐为1.84mmol硝酸锌及2g实施例1中得到的Zr(OH)4前体,将前体置于蒸发皿中,将硝酸锌溶于1ml去离子水中得到锌溶液,锌溶液滴至Zr(OH)4前体上,研磨搅拌5min。在室温浸渍7h后,100℃下烘干,最后在500℃下马弗炉中煅烧4h,所得催化剂记为13%ZnO/ZrO2。其他评价步骤与实施例2相同,催化剂评价结果见表1。所制得的催化剂的电镜图为图2,其中a为该催化剂的HAADF-STEM图,c和d分别为Zn和Zr的元素扫描图,b为c和d的元素元素扫描重叠图。c和d的形状基本相同,可以看出有Zr存在的地方都会有Zn的出现,表明Zn在ZrO2中是高度分散的,证明ZnZrOx固溶体的确形成了。从b中可以看到,将两种元素的扫描图重叠后,有部分单独存在的,没有与Zr重合的聚集的Zn亮点,这说明催化剂中也有一些单独的ZnO纳米颗粒的存在。Catalyst preparation metal salt used is 1.84mmol zinc nitrate and the Zr(OH) precursor that obtains in
实施例7Example 7
催化剂制备所用金属盐为3.14mmol硝酸锌及2g实施例1中得到的Zr(OH)4前体,将前体置于蒸发皿中,将硝酸锌溶于1ml去离子水中得到锌溶液,锌溶液滴至Zr(OH)4前体上,研磨搅拌5min。在室温浸渍7h后,100℃下烘干,最后在500℃下马弗炉中煅烧4h,所得催化剂记为20%ZnO/ZrO2。其他评价步骤与实施例2相同,催化剂评价结果见表1。Catalyst preparation metal salt used is 3.14mmol zinc nitrate and the Zr(OH) precursor that obtains in
实施例8Example 8
催化剂制备所用金属盐为6.28mmol硝酸锌及2g实施例1中得到的Zr(OH)4前体,将前体置于蒸发皿中,将硝酸锌溶于1ml去离子水中得到锌溶液,锌溶液滴至Zr(OH)4前体上,研磨搅拌5min。在室温浸渍7h后,100℃下烘干,最后在500℃下马弗炉中煅烧4h,所得催化剂记为33%ZnO/ZrO2。其他评价步骤与实施例2相同,催化剂评价结果见表1。Catalyst preparation metal salt used is 6.28mmol zinc nitrate and the Zr(OH) precursor that obtains in
实施例9Example 9
催化剂制备所用金属盐为12.56mmol硝酸锌及2g实施例2中得到的Zr(OH)4前体,将前体置于蒸发皿中,将硝酸锌溶于1ml去离子水中得到锌溶液,锌溶液滴至Zr(OH)4前体上,研磨搅拌5min。在室温浸渍7h后,100℃下烘干,最后在500℃下马弗炉中煅烧4h,所得催化剂记为50%ZnO/ZrO2。其他评价步骤与实施例2相同,催化剂评价结果见表1。Catalyst preparation metal salt used is 12.56mmol zinc nitrate and the Zr(OH) precursor that obtains in 2g embodiment 2, precursor is placed in evaporating dish, zinc nitrate is dissolved in 1ml deionized water to obtain zinc solution, zinc solution Drop onto the Zr(OH) 4 precursor, grind and stir for 5 min. After impregnating at room temperature for 7 hours, drying at 100°C, and finally calcining in a muffle furnace at 500°C for 4 hours, the obtained catalyst is recorded as 50% ZnO/ZrO 2 . Other evaluation steps are the same as in Example 2, and the catalyst evaluation results are shown in Table 1.
实施例10Example 10
催化剂制备所用金属盐为1.23mmol乙酸锌及2g实施例2中得到的Zr(OH)4前体,将前体置于蒸发皿中,将乙酸锌溶于1ml去离子水中得到锌溶液,锌溶液滴至Zr(OH)4前体上,研磨搅拌5min。在室温浸渍7h后,100℃下烘干,最后在500℃下马弗炉中煅烧4h,所得催化剂记为9%ZnO/ZrO2-2其他评价步骤与实施例2相同,催化剂评价结果见表1。Catalyst preparation metal salt used is the Zr(OH) 4 precursor that obtains in 1.23mmol zinc acetate and 2g embodiment 2, precursor is placed in evaporating dish, zinc acetate is dissolved in 1ml deionized water to obtain zinc solution, zinc solution Drop onto the Zr(OH) 4 precursor, grind and stir for 5 min. After soaking at room temperature for 7 hours, dry it at 100°C, and finally calcinate it in a muffle furnace at 500°C for 4 hours. The obtained catalyst is recorded as 9% ZnO/ZrO 2 -2. The other evaluation steps are the same as in Example 2. The evaluation results of the catalyst are shown in Table 1. .
对比例1Comparative example 1
催化剂制备所用金属盐为5mmol Zn(NO3)2·6H2O溶于100mL水中,另加入0.1mol尿素和0.005mmol F127,持续搅拌,并用乙酸调节pH值至5.0。在室温下老化2h后,将其转移至晶化釜中,在90℃下晶化24h,冷却至室温,抽滤,用去离子水洗涤三次,在100℃下过夜烘干。得到的固体在马弗炉中400℃下焙烧2h,所得催化剂记为ZnO。其他评价步骤与实施例2相同,催化剂评价结果见表1。The metal salt used for catalyst preparation was 5mmol Zn(NO 3 ) 2 ·6H 2 O dissolved in 100mL water, and 0.1mol urea and 0.005mmol F127 were added, stirring continuously, and the pH value was adjusted to 5.0 with acetic acid. After aging at room temperature for 2 hours, it was transferred to a crystallization kettle, crystallized at 90°C for 24 hours, cooled to room temperature, filtered with suction, washed with deionized water three times, and dried overnight at 100°C. The obtained solid was calcined at 400°C for 2h in a muffle furnace, and the obtained catalyst was designated as ZnO. Other evaluation steps are the same as in Example 2, and the catalyst evaluation results are shown in Table 1.
对比例2Comparative example 2
载体的催化性能测试:称取0.042mol ZrO(NO3)2·H2O和0.105mol尿素于烧杯中,加入70mL去离子水,搅拌溶解后,将混合溶液转移至100mL晶化釜中,150℃下过夜晶化。再经冷却、洗涤、过滤、干燥得到单斜ZrO2前体。最后在马弗炉中400℃下焙烧4h,所得催化剂记为单斜ZrO2。其他评价步骤与实施例2相同,催化剂评价结果见表1。Catalytic performance test of the carrier: Weigh 0.042mol ZrO(NO 3 ) 2 ·H 2 O and 0.105mol urea in a beaker, add 70mL deionized water, stir and dissolve, transfer the mixed solution to a 100mL crystallization kettle, 150 ℃ overnight crystallization. After cooling, washing, filtering and drying, the monoclinic ZrO 2 precursor is obtained. Finally, it was calcined at 400°C for 4 hours in a muffle furnace, and the obtained catalyst was recorded as monoclinic ZrO 2 . Other evaluation steps are the same as in Example 2, and the catalyst evaluation results are shown in Table 1.
对比例3Comparative example 3
称取1.62mmol硝酸锌溶于少量去离子水中,称取实施例11中得到的2g单斜-ZrO2载体于蒸发皿中,将硝酸锌溶于1ml去离子水中得到锌溶液,锌溶液滴至载体上,研磨搅拌5min。在室温浸渍7h后,100℃下烘干,最后在500℃下马弗炉中煅烧4h,所得催化剂记为9%ZnO/单斜ZrO2。压片,破碎,筛选40~80目用于催化剂评价。其他评价步骤与实施例2相同,催化剂评价结果见表1。Take by weighing 1.62mmol zinc nitrate and dissolve it in a small amount of deionized water, take by weighing 2g monoclinic- ZrO2 carrier obtained in Example 11 in an evaporating dish, dissolve zinc nitrate in 1ml deionized water to obtain a zinc solution, and drop the zinc solution to Carrier, grind and stir for 5min. After soaking at room temperature for 7 hours, it was dried at 100°C, and finally calcined in a muffle furnace at 500°C for 4 hours. The obtained catalyst was recorded as 9% ZnO/monoclinic ZrO 2 . Tablets, crushed, and screened with 40-80 meshes for catalyst evaluation. Other evaluation steps are the same as in Example 2, and the catalyst evaluation results are shown in Table 1.
对比例4Comparative example 4
称取实施例6中13%ZnO/ZrO2 500mg于小烧瓶中,另加入1mol/L HNO3水溶液3mL,在70℃下加热搅拌1h。溶液冷却后,过滤,用去离子水洗涤至滤液呈中性,最后在100℃下烘干,所得催化剂记为13%ZnO/ZrO2酸洗。压片,破碎,筛选40~80目用于催化剂评价。其他评价步骤与实施例2相同,催化剂评价结果见表1。Weigh 500 mg of 13% ZnO/ZrO 2 in Example 6 into a small flask, add 3 mL of 1 mol/L HNO 3 aqueous solution, and heat and stir at 70° C. for 1 h. After the solution was cooled, it was filtered, washed with deionized water until the filtrate was neutral, and finally dried at 100 ° C. The obtained catalyst was recorded as 13% ZnO/ZrO 2 pickling. Tablets, crushed, and screened with 40-80 meshes for catalyst evaluation. Other evaluation steps are the same as in Example 2, and the catalyst evaluation results are shown in Table 1.
表1实施例与对比例催化剂评价结果Table 1 embodiment and comparative example catalyst evaluation result
由表格可以看出,在甲醇水蒸气重整制氢反应中在高温下提高甲醇转化率和二氧化碳选择性,同时降低一氧化碳选择性是极具挑战的。从对比例1可以看出,单独的氧化锌是具有一定的催化活性的,但其转化率较低,实际的催化效率不高。It can be seen from the table that it is extremely challenging to increase methanol conversion and carbon dioxide selectivity while reducing carbon monoxide selectivity at high temperature in methanol steam reforming hydrogen production reaction. It can be seen from Comparative Example 1 that zinc oxide alone has certain catalytic activity, but its conversion rate is low, and the actual catalytic efficiency is not high.
从表中还可以看出,将实施例6中催化剂表面ZnO纳米颗粒用硝酸溶液洗掉后,即对比例4,活性大大降低,说明表面高分散的ZnO纳米颗粒同样能够提高催化剂的活性。It can also be seen from the table that after washing the ZnO nanoparticles on the surface of the catalyst in Example 6 with nitric acid solution, that is, Comparative Example 4, the activity is greatly reduced, indicating that the highly dispersed ZnO nanoparticles on the surface can also improve the activity of the catalyst.
从实施例4和对比例3可以看出,含有固溶体结构的催化剂比不含有固溶体的催化剂在提高甲醇转化率和降低CO选择性方面的优势非常明显。综合看来,催化剂中Zn摩尔百分含量为4%~50%时的性能较优。It can be seen from Example 4 and Comparative Example 3 that the catalyst containing a solid solution structure has obvious advantages in increasing methanol conversion and reducing CO selectivity compared with a catalyst not containing a solid solution. Overall, the performance of the catalyst is better when the molar percentage of Zn in the catalyst is 4%-50%.
图1为所有实施例及对比例催化剂的XRD谱图。从图中可以看出,随着Zn含量增加,30.2°峰位置向高角度移动,说明Zn进入了ZrO2晶格,形成了ZnZrOx固溶体。当Zn/(Zn+Zr)增加到20%时,从XRD上明显能看到ZnO衍射峰出现。Fig. 1 is the XRD spectrogram of all embodiment and comparative example catalyst. It can be seen from the figure that with the increase of Zn content, the position of the 30.2° peak moves to a higher angle, indicating that Zn enters the ZrO2 lattice and forms a ZnZrOx solid solution. When Zn/(Zn+Zr) increases to 20%, the ZnO diffraction peak can be clearly seen from XRD.
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。The above are only a few embodiments of the application, and do not limit the application in any form. Although the application is disclosed as above with preferred embodiments, it is not intended to limit the application. Any skilled person familiar with this field, Without departing from the scope of the technical solution of the present application, any changes or modifications made using the technical content disclosed above are equivalent to equivalent implementation cases, and all belong to the scope of the technical solution.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111040091.8A CN115770563B (en) | 2021-09-06 | 2021-09-06 | Bimetallic catalyst for high-temperature methanol steam reforming hydrogen production and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111040091.8A CN115770563B (en) | 2021-09-06 | 2021-09-06 | Bimetallic catalyst for high-temperature methanol steam reforming hydrogen production and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115770563A true CN115770563A (en) | 2023-03-10 |
CN115770563B CN115770563B (en) | 2024-02-02 |
Family
ID=85387407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111040091.8A Active CN115770563B (en) | 2021-09-06 | 2021-09-06 | Bimetallic catalyst for high-temperature methanol steam reforming hydrogen production and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115770563B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1672789A (en) * | 2004-03-25 | 2005-09-28 | 中国科学院大连化学物理研究所 | Catalyst for autothermal reformation of methanol to prepared hydrogen and its prepn process and application |
CA2593413A1 (en) * | 2007-06-26 | 2008-12-26 | Innovatek, Inc. | Hydrocarbon fuel reforming catalyst and use thereof |
US20140308597A1 (en) * | 2011-07-08 | 2014-10-16 | Isis Innovation Limited | Steam Reforming Of Methanol |
CN109420486A (en) * | 2017-08-29 | 2019-03-05 | 中国科学院大连化学物理研究所 | The ZnZrO of synthesizing methanol by hydrogenating carbon dioxidexSolid solution catalyst and preparation and application |
CN110508315A (en) * | 2019-07-18 | 2019-11-29 | 深圳市燃气集团股份有限公司 | A kind of catalyst for preparing hydrogen by reforming methanol and water vapour and preparation method thereof |
CN110743611A (en) * | 2019-10-31 | 2020-02-04 | 厦门大学 | Nano composite catalyst, preparation method and application thereof |
CN113145113A (en) * | 2021-05-07 | 2021-07-23 | 中国科学院上海高等研究院 | Carbon dioxide hydrogenation catalyst, preparation method and application thereof |
WO2022129539A1 (en) * | 2020-12-17 | 2022-06-23 | Universitetet I Oslo | Process |
CN116966897A (en) * | 2022-04-22 | 2023-10-31 | 中国科学院大连化学物理研究所 | Ternary metal oxide catalyst for preparing hydrogen by high-temperature methanol reforming and preparation method and application thereof |
-
2021
- 2021-09-06 CN CN202111040091.8A patent/CN115770563B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1672789A (en) * | 2004-03-25 | 2005-09-28 | 中国科学院大连化学物理研究所 | Catalyst for autothermal reformation of methanol to prepared hydrogen and its prepn process and application |
CA2593413A1 (en) * | 2007-06-26 | 2008-12-26 | Innovatek, Inc. | Hydrocarbon fuel reforming catalyst and use thereof |
US20140308597A1 (en) * | 2011-07-08 | 2014-10-16 | Isis Innovation Limited | Steam Reforming Of Methanol |
CN109420486A (en) * | 2017-08-29 | 2019-03-05 | 中国科学院大连化学物理研究所 | The ZnZrO of synthesizing methanol by hydrogenating carbon dioxidexSolid solution catalyst and preparation and application |
CN110508315A (en) * | 2019-07-18 | 2019-11-29 | 深圳市燃气集团股份有限公司 | A kind of catalyst for preparing hydrogen by reforming methanol and water vapour and preparation method thereof |
CN110743611A (en) * | 2019-10-31 | 2020-02-04 | 厦门大学 | Nano composite catalyst, preparation method and application thereof |
WO2022129539A1 (en) * | 2020-12-17 | 2022-06-23 | Universitetet I Oslo | Process |
CN113145113A (en) * | 2021-05-07 | 2021-07-23 | 中国科学院上海高等研究院 | Carbon dioxide hydrogenation catalyst, preparation method and application thereof |
CN116966897A (en) * | 2022-04-22 | 2023-10-31 | 中国科学院大连化学物理研究所 | Ternary metal oxide catalyst for preparing hydrogen by high-temperature methanol reforming and preparation method and application thereof |
Non-Patent Citations (5)
Title |
---|
CHONGYANG WANG ET AL.: "Low-Temperature Dehydrogenation of Ethanol on Atomically Dispersed Gold Supported on ZnZrO", 《ACS CATALYSIS》 * |
PAUL H. MATTER, DREW J. BRADEN, AND UMIT S. OZKAN: "Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts", 《JOURNAL OF CATALYSIS》, vol. 223, pages 340, XP004500276, DOI: 10.1016/j.jcat.2004.01.031 * |
SUPAMAS DANWITTAYAKUL, JOYDEEP DUTTA: "Zinc oxide nanorods based catalysts for hydrogen production by steam reforming of methanol", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》, vol. 37, pages 5518 - 5526 * |
XUELIAN CHEN ET AL.: "Methanol Steam Reforming over ZnO/ZnZrOx: Performance Enhanced with a Cooperative Effect", 《CHEMCATCHEM》, vol. 14 * |
程文强;宋夫交;高佳;葛艳;许琦;: "Zn_(0.2)Zr_(0.8)O_x固溶体催化剂的制备及其催化甲醇合成性能", 合成化学, vol. 28, no. 04, pages 308 - 313 * |
Also Published As
Publication number | Publication date |
---|---|
CN115770563B (en) | 2024-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116060035B (en) | Solid reverse phase catalyst, preparation method thereof and application of solid reverse phase catalyst in catalyzing methanation of low-temperature carbon dioxide | |
CN103752319B (en) | Anti-carbon Ni methylmethane vapor reforming hydrogen production catalyst and preparation method thereof | |
CN106390978A (en) | Catalyst for synthesis of methanol through high temperature resistant carbon dioxide hydrogenation, and preparation and application thereof | |
CN102513105A (en) | Hydrogen production catalyst | |
CN113058595A (en) | A kind of Ru-based ammonia decomposition hydrogen production catalyst and preparation method thereof | |
CN102151570A (en) | Methane-carbon dioxide reforming reactive catalyst and preparation method thereof | |
CN103599780B (en) | A kind of CuO-ZrO of Al additive modification 2water gas converting catalyst and preparation method thereof | |
CN102344339A (en) | Application of cerium-based catalyst in methane oxyhalogenation methods used for preparing halogenated methane | |
CN106076346B (en) | Catalyst, preparation method and application for methanol steam catalytically reforming hydrogen producing | |
CN101733089B (en) | Catalyst for preparing hydrogen gas, method for preparing same and application thereof | |
CN115318298B (en) | Copper-based three-way catalyst for preparing methanol by carbon dioxide hydrogenation and preparation method and application thereof | |
CN112604691B (en) | A kind of reverse water gas shift catalyst and its preparation method and application | |
CN112121805A (en) | A kind of carbon dioxide hydrogenation catalyst to synthesize methanol and its preparation and application | |
CN103599779B (en) | A kind of CuO/ZrO 2water gas converting catalyst and preparation method thereof | |
CN115770563B (en) | Bimetallic catalyst for high-temperature methanol steam reforming hydrogen production and preparation method and application thereof | |
CN116966897A (en) | Ternary metal oxide catalyst for preparing hydrogen by high-temperature methanol reforming and preparation method and application thereof | |
CN117899857A (en) | A layered high entropy oxide supported ruthenium catalyst and its preparation method and application | |
JP4016100B2 (en) | Catalyst for water gas shift reaction | |
CN116899568A (en) | A reversed-phase Ni/CeO2 catalyst and its preparation method and application | |
CN114602449B (en) | ZnZrO (zinc ZrO-rich alloy) 2 Surface solid solution catalyst, preparation method and application thereof | |
CN104069845A (en) | Zinc-oxide-based ternary oxide catalyst for hydrogen production by dimethyl ether steam reforming and preparation method of zinc-oxide-based ternary oxide catalyst | |
CN109420485A (en) | CdO-TiO for hydrogenation of carbon dioxide methanol2Catalyst and preparation and application | |
CN116328779A (en) | A liquid sunlight zero-carbon emission methanol synthesis catalyst and its preparation method and application | |
CN115254127B (en) | A copper-based solid solution catalyst, its preparation method and application | |
CN115532260B (en) | Cyclic carbonate low-pressure hydrogenation catalyst and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |