CN115769379B - 具有晶片级动态导通电阻监测能力的氮化物基电子装置 - Google Patents
具有晶片级动态导通电阻监测能力的氮化物基电子装置 Download PDFInfo
- Publication number
- CN115769379B CN115769379B CN202280004780.XA CN202280004780A CN115769379B CN 115769379 B CN115769379 B CN 115769379B CN 202280004780 A CN202280004780 A CN 202280004780A CN 115769379 B CN115769379 B CN 115769379B
- Authority
- CN
- China
- Prior art keywords
- conductive
- nitride
- electrode
- switching element
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2607—Circuits therefor
- G01R31/2637—Circuits therefor for testing other individual devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2644—Adaptations of individual semiconductor devices to facilitate the testing thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/282—Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
- G01R31/2831—Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/327—Testing of circuit interrupters, switches or circuit-breakers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/30—Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
- H01L22/34—Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/343—Gate regions of field-effect devices having PN junction gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/05—Manufacture or treatment characterised by using material-based technologies using Group III-V technology
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/811—Combinations of field-effect devices and one or more diodes, capacitors or resistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
本公开提供一种具有晶片级动态导通电阻监测能力的氮化物基电子装置,所述晶片级动态导通电阻监测能力可集成到集成电路芯片中。所述氮化物基电子装置包括:控制端子、第一导电端子、第二导电端子、电压感测端子、功率开关元件、感测开关元件、第一箝位元件和第二箝位元件。当所述功率开关元件由所述控制端子所接收的控制信号导通时,在所述电压感测端子处产生指示跨越所述功率开关元件的所述第一和第二导电端子的导通状态电压的电压感测信号。本发明提供一种实现功率装置的导通电阻的晶片级监测的有成本效益的方法,从而可以极大地缩短所述功率装置的开发周期。
Description
技术领域
本发明大体上涉及具有晶片级动态导通电阻监测能力的电子装置。更具体地说,本发明涉及具有动态导通电阻监测能力的氮化镓(GaN)电子装置。
背景技术
由于低功率损耗和快速开关转换,诸如氮化镓(GaN)功率装置之类的III-V族材料已广泛用于高频电能转换系统。与硅金属氧化物半导体场效应晶体管(MOSFET)相比,GaN高电子迁移率晶体管(HEMT)在高功率、高频应用中具有更好的品质因数和更具前景的性能。然而,GaN功率装置可具有不合需要的电流崩溃现象,从而导致动态导通电阻增加,这可导致装置降级和故障。因此,动态导通电阻测量对于GaN功率装置的性能评估和电路诊断来说是重要的,并且确保系统操作的可靠性。此外,在设计阶段期间评估导通电阻的漂移是具有挑战性的。
发明内容
本发明的一个目标是提供一种实现功率装置的导通电阻的晶片级监测的有成本效益的方法,从而可以极大地缩短功率装置的开发周期。此外,通过将监测漏极到源极电压的能力集成到集成电路(IC)芯片中,保护电路可提供到IC,使得IC可为更可靠的。
根据本发明的一个方面,提供一种具有晶片级动态导通电阻监测能力的氮化物基电子装置。所述氮化物基电子装置包括控制端子、第一导电端子、第二导电端子和电压感测端子。所述氮化物基电子装置进一步包括:功率开关元件,其具有控制电极、第一导电电极和第二导电电极;所述功率开关元件的所述控制电极电连接到所述控制端子;所述功率开关元件的所述第一导电电极电连接到所述第一导电端子且所述功率开关元件的所述第二导电电极电连接到所述第二导电端子;感测开关元件,其具有控制电极、第一导电电极和第二导电电极;所述感测开关元件的所述控制电极电连接到所述控制端子,所述感测开关元件的所述第一导电电极电连接到所述第一导电端子;第一箝位元件,其具有电连接到所述电压感测端子的正电极和电连接到所述第二导电端子的负电极;及第二箝位元件,其具有电连接到所述第二导电端子的正电极和电连接到电压感测端子的负电极。当所述功率开关元件由所述控制端子所接收的控制信号导通时,在所述电压感测端子处产生指示跨越所述功率开关元件的所述第一和第二导电端子的导通状态电压的电压感测信号。
附图说明
通过参考附图从以下详细描述可以容易地理解本公开的各方面。图示可能未必按比例绘制。也就是说,为了论述的清楚起见,各种特征的尺寸可任意增大或减小。由于制造工艺和公差,本公开中的工艺再现与实际设备之间可存在区别。可在整个图式和具体实施方式中使用共同参考标号来指示相同或类似组件。
图1展示根据本发明的一些实施例的具有晶片级动态导通电阻监测能力的氮化物基电子装置的简化电路图;
图2展示根据本发明的各种实施例的氮化物基半导体IC芯片的简化等角视图;
图3展示根据本发明的各种实施例的氮化物基半导体IC芯片的简化横截面图;
图4A到4C展示根据本发明的各种实施例的用于制造氮化物基半导体IC芯片的简化过程流程的不同阶段。
具体实施方式
在以下描述中,将阐述本公开的优选实例作为应被视为说明性而非限制性的实施例。可省略特定细节以免使本公开模糊不清;然而,编写本公开是为了使所属领域的技术人员能够在不进行不当实验的情况下实践本文中的教示。
本说明书中提及“一个实施例”或“实施例”意指结合所述实施例描述的特定特征、结构或特性包含于本发明的至少一个实施例中。在本说明书中不同位置出现的短语“在一个实施例中”或“在一些实施例中”不一定全都指代相同的实施例,也不一定是与其它实施例相互排斥的单独或替代实施例。此外,描述了可由一些实施例而不是由其它实施例呈现的各种特征。
图1为根据本发明的一些实施例的具有动态导通电阻监测能力的氮化物基电子装置的简化电路图。如所展示,装置10可包括控制端子Ctrl、第一导电端子Cdct1、第二导电端子Cdct2和电压感测端子VS。
装置10可进一步包括功率开关元件Q1,其具有控制电极Q1_Ctrl、第一导电电极Q1_Cdct1和第二导电电极Q1_Cdct2;控制电极电连接到控制端子Ctrl,第一导电电极电连接到第一导电端子Cdct1,且第二导电电极电连接到第二导电端子Cdct2。
装置10可进一步包括感测开关元件Q2,其具有控制电极Q2_Ctrl、第一导电电极Q2_Cdct1和第二导电电极Q2_Cdct2;控制电极电连接到控制端子Ctrl,第一导电电极电连接到第一导电端子Cdct1。
装置10可进一步包括第一箝位元件D1,其具有电连接到电压感测端子VS的正电极D1_P和电连接到第二导电端子Cdct2的负电极D1_N。
装置10可进一步包括第二箝位元件D2,其具有电连接到第二导电端子Cdct2的正电极D2_P和电连接到电压感测端子VS的负电极D2_N。
当功率开关元件Q1由控制端子Ctrl所接收的控制信号导通时,在电压感测端子VS处产生指示跨越功率开关元件Q1的第一和第二导电端子的导通状态电压的电压感测信号。
优选地,感测开关元件Q2的导通电阻大于功率开关元件Q1的导通电阻。举例来说,感测开关元件Q2的导通电阻可为功率开关元件Q1的导通电阻的约250倍。
在一些实施例中,功率开关元件Q1为第一氮化物基晶体管,其栅极G充当功率开关元件的控制电极Q1_Ctrl,漏极D充当功率开关元件的第一导电电极Q1_Cdct1,且源极S充当功率开关元件的第二导电电极Q1_Cdct2。优选地,第一氮化物基晶体管为AlGaN/GaN增强型(E型)高电子迁移率晶体管(HEMT)。
在一些实施例中,感测开关元件Q2为第二氮化物基晶体管,其栅极G充当感测开关元件的控制电极Q1_Ctrl,漏极D充当感测开关元件的第一导电电极Q2_Cdct1,且源极S充当感测开关元件的第二导电电极Q2_Cdct2。优选地,第二氮化物基晶体管为AlGaN/GaN增强型(E型)高电子迁移率晶体管(HEMT)。
在一些实施例中,第一箝位元件D1为第三氮化物基晶体管,所述第三氮化物基晶体管具有电连接在一起以充当第一箝位元件D1的正电极D1_P的栅极G和源极S,以及被配置成充当第一箝位元件D1的负电极D1_N的漏极D。第二箝位元件D2为第四氮化物基晶体管,所述第四氮化物基晶体管具有电连接在一起以充当第二箝位元件D2的正电极D2_P的栅极G和源极S,以及被配置成充当第二箝位元件D2的负电极D2_N的漏极D。
在一些实施例中,功率开关元件Q1、感测开关元件Q2、第一箝位元件D1和第二箝位元件D2集成到氮化物基集成电路(IC)芯片中,以便实现功率开关元件Q1的导通电阻的晶片级监测。图2和3分别描绘根据本发明的各种实施例的氮化物基半导体IC芯片100的简化等角视图和简化横截面图。
参看图2和3,半导体芯片100可包含功率开关元件Q1、感测开关元件Q2、第一箝位元件D1和第二箝位元件D2。功率开关元件Q1、感测开关元件Q2、第一箝位元件D1和第二箝位元件D2中的每一者可由形成于堆叠式半导体结构上的晶体管制成,所述堆叠式半导体结构至少包含:衬底102;安置于衬底102上方的第一氮化物基半导体层104;及安置于第一氮化物基半导体层104上方的第二氮化物基半导体层106。
选择氮化物基半导体层104和106的示例性材料以使得氮化物基半导体层106的带隙(即,禁带宽度)大于氮化物基半导体层104的带隙,这会使其电子亲和势彼此不同并且在其间形成异质结。举例来说,当氮化物基半导体层104为带隙大约为3.4eV的未掺杂GaN层时,氮化物基半导体层106可选择为带隙大约为4.0eV的AlGaN层。因此,氮化物基半导体层104和106可分别充当沟道层和势垒层。在沟道层与势垒层之间的接合界面处产生三角阱电势,使得电子在三角阱电势中积聚,由此邻近于异质结产生二维电子气(2DEG)区。因此,多通道开关装置可用于包含一个或多个GaN基高电子迁移率晶体管(HEMT)。
衬底102可为半导体衬底。衬底102的示例性材料可包含例如但不限于Si、p掺杂Si、n掺杂Si、SiC、GaN、蓝宝石或其它合适的半导体材料。
氮化物基半导体层104的示例性材料可包含例如但不限于氮化物或III-V族化合物,例如GaN、AlN、InN、InxAlyGa(1-x-y)N(其中x+y≤1)、AlyGa(1-y)N(其中y≤1)。氮化物基半导体层104的示例性结构可包含例如但不限于多层结构、超晶格结构和组成梯度结构。
氮化物基半导体层106的示例性材料可包含例如但不限于氮化物或III-V族化合物,例如GaN、AlN、InN、InxAlyGa(1-x-y)N(其中x+y≤1)、AlyGa(1-y)N(其中y≤1)。
在一些实施例中,半导体芯片100可进一步包含缓冲层(未图示)和成核层108,或其组合。缓冲层和成核层108可安置于衬底102与氮化物基半导体层104之间。缓冲层和成核层108可被配置成减少衬底102与氮化物基半导体层104之间的晶格和热失配,由此解决因失配/差异而导致的缺陷。缓冲层可包含III-V化合物。III-V化合物可包含例如但不限于铝、镓、铟、氮或其组合。因此,缓冲层的示例性材料还可包含例如但不限于GaN、AlN、AlGaN、InAlGaN或其组合。成核层108的示例性材料可包含例如但不限于AlN或其合金中的任一个。
晶体管Q1、Q2、D1和D2中的每一个可进一步包含安置于堆叠式半导体结构上/之上/上方的多个栅极结构110和多个源极/漏极(S/D)电极116。S/D电极116中的每一个可取决于装置设计而充当源极电极或漏极电极。S/D电极116可位于对应栅极结构110的两个相对侧处,但可使用其它配置,特别是当装置中采用多个源极、漏极或栅极电极时。栅极结构110中的每一个可被布置成使得栅极结构110中的每一个位于至少两个S/D电极116之间。
在示例性图示中,对于晶体管中的每一个,邻近的S/D电极116关于其间的栅极结构110对称。在一些实施例中,邻近的S/D电极116可任选地关于其间的栅极结构110不对称。也就是说,S/D电极116中的一个相比于S/D电极116中的另一个可更接近栅极结构110。
在一些实施例中,栅极结构110中的每一个可包含可任选的栅极半导体层和栅极金属层。栅极半导体层和栅极金属层堆叠于氮化物基半导体层106上。栅极半导体层处于氮化物基半导体层106与栅极金属层之间。栅极半导体层和栅极金属层可形成肖特基势垒(Schottky barrier)。在一些实施例中,晶体管Q1、Q2、D1和D2中的每一个可进一步包含p型掺杂III-V化合物半导体层与栅极金属层之间的可任选的介电层(未图示)。
具体地说,栅极半导体层可为p型掺杂III-V化合物半导体层。p型掺杂III-V化合物半导体层可与氮化物基半导体层106产生至少一个p-n结以耗尽2DEG区,使得2DEG区的对应于在对应栅极结构110下方的位置的至少一个区段具有与2DEG区的其余部分不同的特性(例如,不同电子浓度)并且因此被阻塞。由于此类机构,晶体管Q1、Q2、D1和D2可具有用于形成增强型装置的常关特性,所述增强型装置在其栅极电极处于大致零偏压时处于常关状态。换句话说,当没有电压施加到栅极电极或施加到栅极电极的电压小于阈值电压(即,在栅极结构110下方形成反型层所需的最小电压)时,保持栅极结构110下方的2DEG区的区段被阻塞,且因此没有电流从其穿过。此外,通过提供p型掺杂III-V化合物半导体层,栅极泄漏电流减小,且实现断开状态期间阈值电压的增大。
在一些实施例中,可省略p型掺杂III-V化合物半导体层,使得晶体管Q1、Q2、D1和D2中的每一个为耗尽型装置,这意味着晶体管Q1、Q2、D1和D2中的每一个在零栅极-源极电压下处于常开状态。
p型掺杂III-V化合物半导体层的示例性材料可包含例如但不限于p掺杂III-V族氮化物半导体材料,例如p型GaN、p型AlGaN、p型InN、p型AlInN、p型InGaN、p型AlInGaN,或其组合。在一些实施例中,通过使用例如Be、Mg、Zn、Cd和Mg等p型杂质来实现p掺杂材料。
在一些实施例中,栅极电极可包含金属或金属化合物。栅极电极可形成为单个层,或具有相同或不同组成的多个层。金属或金属化合物的示例性材料可包含例如但不限于W、Au、Pd、Ti、Ta、Co、Ni、Pt、Mo、TiN、TaN、Si、其金属合金或化合物,或其它金属化合物。在一些实施例中,栅极电极的示例性材料可包含例如但不限于氮化物、氧化物、硅化物、掺杂半导体或其组合。
在一些实施例中,可任选的介电层可由单层或多层的介电材料形成。示例性介电材料可包含例如但不限于一个或多个氧化物层、SiOx层、SiNx层、高k介电材料(例如,HfO2、Al2O3、TiO2、HfZrO、Ta2O3、HfSiO4、ZrO2、ZrSiO2等)或其组合。
在一些实施例中,S/D电极116可包含例如但不限于金属、合金、掺杂半导体材料(例如掺杂结晶硅)、例如硅化物和氮化物的化合物、其它导体材料或其组合。S/D电极116的示例性材料可包含例如但不限于Ti、AlSi、TiN,或其组合。S/D电极116可为单个层,或具有相同或不同组成的多个层。在一些实施例中,S/D电极116可与氮化物基半导体层106形成欧姆接触。欧姆接触可通过将Ti、Al或其它合适的材料应用于S/D电极116来实现。在一些实施例中,S/D电极116中的每一个由至少一个共形层和导电填充物形成。共形层可包覆导电填充物。共形层的示例性材料例如但不限于Ti、Ta、TiN、Al、Au、AlSi、Ni、Pt或其组合。导电填充物的示例性材料可包含例如但不限于AlSi、AlCu或其组合。
图4A到4C中展示了用于制造根据本发明的半导体芯片的方法的不同阶段,并且在下文中描述。在下文中,沉积技术可包含例如但不限于原子层沉积(ALD)、物理气相沉积(PVD)、化学气相沉积(CVD)、金属有机CVD(MOCVD)、等离子体增强型CVD(PECVD)、低压力CVD(LPCVD)、等离子体辅助气相沉积、外延生长或其它合适的工艺。用于形成充当平坦化层的钝化层的工艺通常包含化学机械抛光(CMP)工艺。用于形成导电通孔的工艺通常包含在钝化层中形成通孔并且用导电材料填充通孔。用于形成导电迹线的工艺通常包含光刻、曝光和显影、蚀刻、其它合适的工艺或其组合。
参看图4A,提供一种衬底102(典型厚度为约0.7到1.2mm)。
参看图4B,接着可使用上述沉积技术在衬底102上形成两个氮化物基半导体层104和106。氮化物基半导体层104充当初级电流通道,并且氮化物基半导体层106充当势垒层。因此,邻近于氮化物基半导体层104与氮化物基半导体层106之间的异质结界面形成2DEG区。氮化物基半导体层104和106的形成可包含沉积厚度通常为约0.01μm至约0.5μm的GaN或InGaN材料层以形成导电区,以及沉积由AlGaN组成的材料层,其中Al分数(即Al含量,使得Al分数加上Ga分数等于1)在约0.1至约1.0的范围内,并且厚度在约0.01μm至约0.03μm的范围内以形成势垒层。
参看图4C,接着在氮化物基半导体层106之上形成一个或多个栅极结构110、S/D电极116。栅极结构110可例如通过将p型GaN材料沉积在氮化物基半导体层106的表面上、利用p型GaN材料蚀刻栅极结构110以及在GaN材料之上形成例如钽(Ta)、钛(Ti)、氮化钛(TiN)、钨(W)或硅化钨(WSi2)等耐火金属接触件而形成。应理解,还可使用用于提供栅极结构110的其它已知方法和材料。S/D电极116可由任何已知的诸如Ti和/或Al之类的欧姆接触金属以及诸如Ni、Au、Ti或TiN之类的浇灌金属形成。金属层和栅极层的厚度各自优选地为约0.01μm至约1.0μm,并且接着在高温(例如,800℃)下退火达60秒。
应理解,接着可沉积并蚀刻钝化层和路由(导电)层(未图示)以形成栅极结构110和电极116与外部电路之间的连接。在一些实施例中,第二钝化层可安置于第一钝化层上且覆盖S/D电极;一个或多个第一导电通孔可安置于第二钝化层内;第一导电层可安置于第二钝化层上且经图案化以形成一个或多个第一导电线;第三钝化层可安置于第一导电层上且覆盖一个或多个第一导电线;可为安置于第三钝化层内的一个或多个第二导电通孔;可为安置于第三钝化层上且经图案化以形成一个或多个第二导电线的第二导电层;及保护层,其可安置于第二导电层上方且具有一个或多个开口以暴露一个或多个导电垫。
选择和描述实施例是为了最好地解释本发明的原理及其实际应用,由此使得所属领域的其他技术人员能够理解本发明的各种实施例以及适合于所预期的特定用途的各种修改。虽然本文所公开的方法已参考按特定次序执行的特定操作加以描述,但应理解,可在不脱离本公开的教示的情况下组合、细分或重新排序这些操作以形成等效方法。因此,除非在本文中具体指示,否则操作的次序和分组并非限制性的。虽然本文所公开的设备已参考特定结构、形状、材料、物质组成和关系等等加以描述,但这些描述和说明并非限制性的。可进行修改以将特定情形适用于本公开的目标、精神和范围。所有此类修改意图在所附权利要求书的范围内。
Claims (14)
1.一种具有晶片级动态导通电阻监测能力的氮化物基电子装置,其特征在于,包括:
控制端子、第一导电端子、第二导电端子和电压感测端子;
功率开关元件,其具有控制电极、第一导电电极和第二导电电极;所述功率开关元件的所述控制电极电连接到所述控制端子,所述功率开关元件的所述第一导电电极电连接到所述第一导电端子,且所述功率开关元件的所述第二导电电极电连接到所述第二导电端子;及
感测开关元件,其具有控制电极、第一导电电极和第二导电电极;所述感测开关元件的所述控制电极电连接到所述控制端子,所述感测开关元件的所述第一导电电极电连接到所述第一导电端子;
第一箝位元件,所述第一箝位元件具有电连接到所述电压感测端子的正电极和电连接到所述第二导电端子的负电极;
第二箝位元件,所述第二箝位元件具有电连接到所述第二导电端子的正电极和电连接到电压感测端子的负电极;且
其中当所述功率开关元件由所述控制端子所接收的控制信号导通时,在所述电压感测端子处产生指示跨越所述功率开关元件的所述第一和第二导电端子的导通状态电压的电压感测信号;
所述功率开关元件、所述感测开关元件、所述第一箝位元件和所述第二箝位元件集成到氮化物基集成电路(IC)芯片中;
所述氮化物基集成电路芯片包括:
第一氮化物基半导体层,其安置于衬底上方;
第二氮化物基半导体层,其安置于所述第一氮化物基半导体层上,且所述第二氮化物基半导体层的带隙大于所述第一氮化物基半导体层的带隙;
一个或多个栅极结构,其通过对安置于所述第二氮化物基半导体层上的栅极半导体层进行图案化并对安置于所述栅极半导体层上的栅极金属层进行图案化来形成;
第一钝化层,其安置于所述第二氮化物基半导体层上且覆盖所述栅极结构;
一个或多个源极/漏极(S/D)电极,其通过对安置于所述第一钝化层上的源极/漏极电极层进行图案化来形成,并穿透所述第一钝化层以与所述第二氮化物基半导体层接触;
第二钝化层,其安置于所述第一钝化层上且覆盖所述源极/漏极电极;
一个或多个第一导电通孔,其安置于所述第二钝化层内;
第一导电层,其安置于所述第二钝化层上且经图案化以形成一个或多个第一导电线;
第三钝化层,其安置于所述第一导电层上且覆盖所述一个或多个第一导电线;
一个或多个第二导电通孔,其安置于所述第三钝化层内;
第二导电层,其安置于所述第三钝化层上且经图案化以形成一个或多个第二导电线;
保护层,所述保护层安置于所述第二导电层上方且具有一个或多个开口以暴露一个或多个导电垫,多个所述导电垫分别充当第一控制端子、第二控制端子、所述第一导电端子和第二导电端子。
2.根据权利要求1所述的氮化物基电子装置,其特征在于,所述感测开关元件的导通电阻大于所述功率开关元件的导通电阻。
3.根据权利要求1所述的氮化物基电子装置,其特征在于,所述功率开关元件为第一氮化物基晶体管,其栅极充当所述功率开关元件的所述控制电极,漏极充当所述功率开关元件的所述第一导电电极,且源极充当所述功率开关元件的所述第二导电电极。
4.根据权利要求3所述的氮化物基电子装置,其特征在于,所述第一氮化物基晶体管为AlGaN/GaN增强型(E型)高电子迁移率晶体管(HEMT)。
5.根据权利要求1所述的氮化物基电子装置,其特征在于,所述感测开关元件为第二氮化物基晶体管,其栅极充当所述感测开关元件的所述控制电极,漏极充当所述感测开关元件的所述第一导电电极,且源极充当所述感测开关元件的所述第二导电电极。
6.根据权利要求5所述的氮化物基电子装置,其特征在于,所述第二氮化物基晶体管为AlGaN/GaN增强型(E型)高电子迁移率晶体管(HEMT)。
7.根据权利要求1所述的氮化物基电子装置,其特征在于,所述第一箝位元件为第三氮化物基晶体管,所述第三氮化物基晶体管具有电连接在一起以充当所述第一箝位元件的所述正电极的栅极和源极,以及被配置成充当所述第一箝位元件的所述负电极的漏极。
8.根据权利要求7所述的氮化物基电子装置,其特征在于,所述第三氮化物基晶体管为AlGaN/GaN增强型(E型)高电子迁移率晶体管(HEMT)。
9.根据权利要求1所述的氮化物基电子装置,其特征在于,所述第二箝位元件为第四氮化物基晶体管,所述第四氮化物基晶体管具有电连接在一起以充当所述第二箝位元件的所述正电极的栅极和源极,以及被配置成充当所述第二箝位元件的所述负电极的漏极。
10.一种用于制造具有晶片级动态导通电阻监测能力的氮化物基电子装置的方法,所述氮化物基电子装置包括控制端子、第一导电端子、第二导电端子和电压感测端子,其特征在于,所述方法包括:
形成功率开关元件,其具有控制电极、第一导电电极和第二导电电极;所述功率开关元件的所述控制电极电连接到所述控制端子,所述功率开关元件的所述第一导电电极电连接到所述第一导电端子,且所述功率开关元件的所述第二导电电极电连接到所述第二导电端子;及
形成感测开关元件,其具有控制电极、第一导电电极和第二导电电极;所述感测开关元件的所述控制电极电连接到所述控制端子,且所述感测开关元件的所述第一导电电极电连接到所述第一导电端子;
形成第一箝位元件,所述第一箝位元件具有电连接到所述电压感测端子的正电极和电连接到所述第二导电端子的负电极;
形成第二箝位元件,所述第二箝位元件具有电连接到所述第二导电端子的正电极和电连接到电压感测端子的负电极;且
其中当所述功率开关元件由通过所述控制端子接收到的控制信号导通时,在所述电压感测端子处产生指示跨越所述功率开关元件的所述第一和第二导电端子的导通状态电压的电压感测信号;
通过以下步骤将所述功率开关元件、所述感测开关元件、所述第一箝位元件和所述第二箝位元件集成到集成电路(IC)芯片中:
将第一氮化物基半导体层安置于衬底之上;
将第二氮化物基半导体层安置于所述第一氮化物基半导体层上,所述第二氮化物基半导体层的带隙大于所述第一氮化物基半导体层的带隙;
将栅极半导体层安置于所述第二氮化物基半导体层上,且将栅极金属层安置于所述栅极半导体层上,且对所述栅极半导体层和所述栅极金属层进行图案化以形成一个或多个栅极结构;
将第一钝化层安置于所述第二氮化物基半导体层上以覆盖所述栅极结构,并对所述第一钝化层进行图案化以形成一个或多个源极/漏极(S/D)区;
安置源极/漏极电极层以覆盖所述第一钝化层和所述一个或多个源极/漏极区,并对所述源极/漏极电极层进行图案化以形成穿透所述第一钝化层以与所述第二氮化物基半导体层接触的一个或多个源极/漏极电极;
将第二钝化层安置于所述第一钝化层上以覆盖所述源极/漏极电极;
将第一导电层安置于所述第二钝化层上,并对所述第一导电层进行图案化以形成一个或多个第一导电线;
将第三钝化层安置于所述第一导电层上以覆盖所述一个或多个第一导电线;
将第二导电层安置于所述第三钝化层上,并对所述第二导电层进行图案化以形成一个或多个第二导电线;
将保护层安置于所述第二导电层上方,并对所述保护层进行图案化以形成一个或多个开口来暴露一个或多个导电垫,以分别充当第一控制端子、第二控制端子、所述第一导电端子和第二导电端子。
11.根据权利要求10所述的方法,其特征在于,所述感测开关元件的导通电阻大于所述功率开关元件的导通电阻。
12.根据权利要求10所述的方法,其特征在于,所述功率开关元件通过形成第一氮化物基晶体管而形成,所述第一氮化物基晶体管具有充当所述功率开关元件的所述控制电极的栅极、充当所述功率开关元件的所述第一导电电极的漏极,以及充当所述功率开关元件的所述第二导电电极的源极。
13.根据权利要求10所述的方法,其特征在于,所述感测开关元件通过形成第二氮化物基晶体管而形成,所述第二氮化物基晶体管具有充当所述感测开关元件的所述控制电极的栅极、充当所述感测开关元件的所述第一导电电极的漏极,以及充当所述感测开关元件的所述第二导电电极的源极。
14.根据权利要求10所述的方法,其特征在于:
所述第一箝位元件通过形成第三氮化物基晶体管而形成,所述第三氮化物基晶体管具有电连接在一起以充当所述第一箝位元件的所述正电极的栅极和源极,以及被配置成充当所述第一箝位元件的所述负电极的漏极;且
所述第二箝位元件通过形成第四氮化物基晶体管而形成,第四氮化物基晶体管具有电连接在一起以充当所述第二箝位元件的所述正电极的栅极和源极,以及被配置成充当所述第二箝位元件的所述负电极的漏极。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410084513.9A CN117954486A (zh) | 2022-08-25 | 2022-08-25 | 具有晶片级动态导通电阻监测能力的氮化物基电子装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/114810 WO2024040516A1 (en) | 2022-08-25 | 2022-08-25 | Nitride-based electronic device with wafer-level dynamic on-resistance monitoring capability |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410084513.9A Division CN117954486A (zh) | 2022-08-25 | 2022-08-25 | 具有晶片级动态导通电阻监测能力的氮化物基电子装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115769379A CN115769379A (zh) | 2023-03-07 |
CN115769379B true CN115769379B (zh) | 2024-03-08 |
Family
ID=85348456
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202280004780.XA Active CN115769379B (zh) | 2022-08-25 | 2022-08-25 | 具有晶片级动态导通电阻监测能力的氮化物基电子装置 |
CN202410084513.9A Pending CN117954486A (zh) | 2022-08-25 | 2022-08-25 | 具有晶片级动态导通电阻监测能力的氮化物基电子装置 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410084513.9A Pending CN117954486A (zh) | 2022-08-25 | 2022-08-25 | 具有晶片级动态导通电阻监测能力的氮化物基电子装置 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN115769379B (zh) |
WO (1) | WO2024040516A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111192872A (zh) * | 2020-01-07 | 2020-05-22 | 英诺赛科(珠海)科技有限公司 | 集成在氮化镓半导体装置上的嵌位电路及相关半导体装置 |
CN114072909A (zh) * | 2019-05-07 | 2022-02-18 | 剑桥氮化镓器件有限公司 | 具有集成保护功能的iii-v族半导体器件 |
CN114402434A (zh) * | 2021-05-25 | 2022-04-26 | 英诺赛科(苏州)科技有限公司 | 氮化物基半导体双向切换器件和其制造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8207580B2 (en) * | 2009-05-29 | 2012-06-26 | Power Integrations, Inc. | Power integrated circuit device with incorporated sense FET |
US9152163B1 (en) * | 2014-05-15 | 2015-10-06 | Infineon Technologies Austria Ag | Regulation of a load current-to-sensing current ratio in a current sensing power metal-oxide-semiconductor field-effect transistor (MOSFET) |
JP6953512B2 (ja) * | 2016-08-08 | 2021-10-27 | パワー・インテグレーションズ・インコーポレーテッド | 半導体スイッチングデバイスの高速温度検出のための集積回路 |
US11257811B2 (en) * | 2017-07-14 | 2022-02-22 | Cambridge Enterprise Limited | Power semiconductor device with an auxiliary gate structure |
-
2022
- 2022-08-25 WO PCT/CN2022/114810 patent/WO2024040516A1/en unknown
- 2022-08-25 CN CN202280004780.XA patent/CN115769379B/zh active Active
- 2022-08-25 CN CN202410084513.9A patent/CN117954486A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114072909A (zh) * | 2019-05-07 | 2022-02-18 | 剑桥氮化镓器件有限公司 | 具有集成保护功能的iii-v族半导体器件 |
CN111192872A (zh) * | 2020-01-07 | 2020-05-22 | 英诺赛科(珠海)科技有限公司 | 集成在氮化镓半导体装置上的嵌位电路及相关半导体装置 |
CN114402434A (zh) * | 2021-05-25 | 2022-04-26 | 英诺赛科(苏州)科技有限公司 | 氮化物基半导体双向切换器件和其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117954486A (zh) | 2024-04-30 |
CN115769379A (zh) | 2023-03-07 |
WO2024040516A1 (en) | 2024-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111199883B (zh) | 具有经调整的栅极-源极距离的hemt晶体管及其制造方法 | |
CN113228297A (zh) | 半导体器件及其制造方法 | |
US12243938B2 (en) | Semiconductor device and method for manufacturing the same | |
CN113287200B (zh) | 半导体器件及其制造方法 | |
CN113875017A (zh) | 半导体装置及其制造方法 | |
CN114303248A (zh) | 氮基半导体器件及其制造方法 | |
US12074159B2 (en) | Nitride-based semiconductor bidirectional switching device and method for manufacturing the same | |
CN114556561B (zh) | 基于氮化物的半导体ic芯片及其制造方法 | |
CN113272970B (zh) | 半导体器件及其制造方法 | |
CN114207840A (zh) | 氮化物基半导体装置及其制造方法 | |
US20240222423A1 (en) | GaN-BASED SEMICONDUCTOR DEVICE WITH REDUCED LEAKAGE CURRENT AND METHOD FOR MANUFACTURING THE SAME | |
CN115769379B (zh) | 具有晶片级动态导通电阻监测能力的氮化物基电子装置 | |
CN115812253B (zh) | 氮化物基半导体器件及其制造方法 | |
WO2023220872A1 (en) | Nitride-based semiconductor ic chip and method for manufacturing thereof | |
CN115997287B (zh) | 氮化物基半导体ic芯片及其制造方法 | |
WO2024040514A1 (en) | Nitride-based electronic device | |
CN117897818A (zh) | 半导体器件及其制造方法 | |
CN117410318A (zh) | 一种半导体器件 | |
CN118613917A (zh) | 半导体器件及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |