CN115763443A - Preparation method of semiconductor device and semiconductor device - Google Patents
Preparation method of semiconductor device and semiconductor device Download PDFInfo
- Publication number
- CN115763443A CN115763443A CN202111026589.9A CN202111026589A CN115763443A CN 115763443 A CN115763443 A CN 115763443A CN 202111026589 A CN202111026589 A CN 202111026589A CN 115763443 A CN115763443 A CN 115763443A
- Authority
- CN
- China
- Prior art keywords
- layer
- gas
- silicon
- semiconductor device
- source gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Formation Of Insulating Films (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体器件制备技术领域,尤其涉及一种半导体器件的制备方法及半导体器件。The invention relates to the technical field of semiconductor device preparation, in particular to a method for preparing a semiconductor device and the semiconductor device.
背景技术Background technique
在半导体制造工艺中,随着半导体器件的集成度的提高,电介质层的厚度以及位于电介质层两侧的上、下电极层的厚度均逐渐减小。当在纵横比超过40:1的半导体器件的上方形成锗硅薄膜时,会产生很多的氢气,此时,由于位于电介质层两侧的上、下电极层的厚度较小,产生的氢气可以穿过电极层扩散至电介质层中,使得电介质层中形成氧空位,从而产生泄露电流,对半导体器件的性能产生影响。In the semiconductor manufacturing process, as the integration degree of semiconductor devices increases, the thickness of the dielectric layer and the thicknesses of the upper and lower electrode layers on both sides of the dielectric layer are gradually reduced. When a germanium-silicon film is formed above a semiconductor device with an aspect ratio exceeding 40:1, a lot of hydrogen gas will be generated. At this time, due to the small thickness of the upper and lower electrode layers located on both sides of the dielectric layer, the generated hydrogen gas can penetrate The through-electrode layer diffuses into the dielectric layer, so that oxygen vacancies are formed in the dielectric layer, thereby generating leakage current and affecting the performance of the semiconductor device.
发明内容Contents of the invention
本发明的目的在于提供一种半导体器件的制备方法及半导体器件,用于避免在形成锗硅层时,产生的氢气扩散入电介质层中,形成氧空位,从而产生泄漏电流,对半导体器件的性能产生影响的情况发生。The object of the present invention is to provide a method for preparing a semiconductor device and a semiconductor device, which are used to prevent the hydrogen gas generated from diffusing into the dielectric layer when forming the silicon germanium layer, forming oxygen vacancies, thereby generating leakage current, and affecting the performance of the semiconductor device. Circumstances that have an impact occur.
为了实现上述目的,本发明提供了一种半导体器件的制备方法。该半导体器件的制备方法包括:In order to achieve the above object, the present invention provides a method for manufacturing a semiconductor device. The preparation method of the semiconductor device comprises:
提供衬底。所述衬底包括自下而上层叠设置的下电极层、电介质层以及上电极层。Provide the substrate. The substrate includes a lower electrode layer, a dielectric layer and an upper electrode layer stacked from bottom to top.
在所述上电极层上形成第一硅籽晶层。A first silicon seed layer is formed on the upper electrode layer.
在所述第一硅籽晶层上形成层间氧化层。An interlayer oxide layer is formed on the first silicon seed layer.
在所述层间氧化层上形成锗硅层。A silicon germanium layer is formed on the interlayer oxide layer.
与现有技术相比,本发明提供的半导体器件的制备方法中,在形成锗硅层的过程中,首先在上电极层上形成第一硅籽晶层,并在第一硅籽晶层上形成层间氧化层。此时,在该层间氧化层上形成锗硅层时,由于层间氧化层的存在,生成的大量的氢气会与稳定的层间氧化层发生氧化还原反应,从而防止氢气进入电介质层中,从而避免在电介质层中形成氧空位,避免产生泄露电流,使得半导体器件的性能得到提升。Compared with the prior art, in the preparation method of the semiconductor device provided by the present invention, in the process of forming the silicon germanium layer, firstly, the first silicon seed layer is formed on the upper electrode layer, and the first silicon seed layer is formed on the first silicon seed layer. An interlayer oxide layer is formed. At this time, when the silicon germanium layer is formed on the interlayer oxide layer, due to the existence of the interlayer oxide layer, a large amount of hydrogen gas generated will undergo redox reactions with the stable interlayer oxide layer, thereby preventing hydrogen gas from entering the dielectric layer. Therefore, the formation of oxygen vacancies in the dielectric layer is avoided, and leakage current is avoided, so that the performance of the semiconductor device is improved.
本发明还提供了一种半导体器件,该半导体器件包括:自下而上层叠设置的衬底、第一硅籽晶层、层间氧化层以及锗硅层;The present invention also provides a semiconductor device, which includes: a substrate stacked from bottom to top, a first silicon seed layer, an interlayer oxide layer, and a silicon germanium layer;
其中,衬底包括自下而上层叠设置的下电极层、电介质层以及上电极层。Wherein, the substrate includes a lower electrode layer, a dielectric layer and an upper electrode layer stacked from bottom to top.
本发明提供的半导体器件的有益效果与本发明提供的半导体器件的制备方法的有益效果相同,在此不再赘述。The beneficial effect of the semiconductor device provided by the present invention is the same as that of the method for manufacturing the semiconductor device provided by the present invention, and will not be repeated here.
附图说明Description of drawings
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings described here are used to provide a further understanding of the present invention, and constitute a part of the present invention. The schematic embodiments of the present invention and their descriptions are used to explain the present invention, and do not constitute improper limitations to the present invention. In the attached picture:
图1为本发明实施例提供的一种半导体器件的制备方法的流程框图;FIG. 1 is a block flow diagram of a method for manufacturing a semiconductor device provided by an embodiment of the present invention;
图2为本发明实施例提供的一种半导体器件的结构示意图。FIG. 2 is a schematic structural diagram of a semiconductor device provided by an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。It should be noted that when an element is referred to as being “fixed” or “disposed on” another element, it may be directly on the other element or be indirectly on the other element. When an element is referred to as being "connected to" another element, it can be directly connected to the other element or indirectly connected to the other element.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the present invention, "plurality" means two or more, unless otherwise specifically defined. "Several" means one or more than one, unless otherwise clearly and specifically defined.
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the orientation or positional relationship indicated by the terms "upper", "lower", "front", "rear", "left", "right" etc. are based on those shown in the accompanying drawings. Orientation or positional relationship is only for the convenience of describing the present invention and simplifying the description, and does not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and thus should not be construed as a limitation of the present invention.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that unless otherwise specified and limited, the terms "installation", "connection" and "connection" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connection, or integral connection; it may be mechanical connection or electrical connection; it may be direct connection or indirect connection through an intermediary, and it may be the internal communication of two elements or the interaction relationship between two elements. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
目前,在制备半导体器件时,首先,需要生成氮化钛薄膜作为电容器的下方电极,然后,在该氮化钛薄膜的上方形成该电容器的电介质层。再生成氮化钛薄膜与锗化硅薄膜作为电容器的上方电极。具体的,为了能生成合适的锗化硅薄膜,首先要使用硅烷气体进行第一次的沉积,得到第一硅籽晶层。然后,在使用硅烷气体和三氯化硼气体进行第二次的沉积,得到第二硅籽晶层,最后,使用硅烷气体,氢化锗气体,三氯化硼气体以及氮气进行第三次沉积,生成锗硅层。但是,随着半导体器件的集成度的逐渐提高,电介质层与电极层的厚度逐渐减薄。此时,在形成锗硅层时,由于大量氢气扩散入电介质层中,使得电介质层内形成氧空位,使得该半导体器件产生泄漏电流,从而对该半导体器件的性能产生影响。At present, when preparing a semiconductor device, firstly, a titanium nitride film needs to be formed as the lower electrode of the capacitor, and then, a dielectric layer of the capacitor is formed above the titanium nitride film. The titanium nitride film and the silicon germanium film are regenerated as the upper electrode of the capacitor. Specifically, in order to form a suitable silicon germanium film, the first deposition is performed using silane gas to obtain the first silicon seed layer. Then, use silane gas and boron trichloride gas for the second deposition to obtain the second silicon seed layer, and finally, use silane gas, germanium hydride gas, boron trichloride gas and nitrogen gas for the third deposition, A silicon germanium layer is generated. However, with the gradual improvement of the integration level of semiconductor devices, the thickness of the dielectric layer and the electrode layer is gradually reduced. At this time, when the silicon germanium layer is formed, a large amount of hydrogen gas diffuses into the dielectric layer, so that oxygen vacancies are formed in the dielectric layer, causing the semiconductor device to generate leakage current, thereby affecting the performance of the semiconductor device.
为了克服上述现象,本发明实施例提供了一种半导体器件的制备方法,使用该半导体器件的制备方法制备半导体器件时,产生的氢气不会扩散入电介质层中,从而从根本上避免了产生泄漏电流的可能性。In order to overcome the above phenomenon, an embodiment of the present invention provides a method for preparing a semiconductor device. When using the method for preparing a semiconductor device to prepare a semiconductor device, the generated hydrogen will not diffuse into the dielectric layer, thereby fundamentally avoiding leakage. Possibility of current.
图1示例出本发明实施例提供的一种半导体器件的制备方法的流程框图。FIG. 1 illustrates a flow chart of a method for manufacturing a semiconductor device provided by an embodiment of the present invention.
如图1所示,本发明实施例提供的半导体器件的制备方法包括:As shown in FIG. 1, the method for preparing a semiconductor device provided by an embodiment of the present invention includes:
步骤100:提供衬底。该衬底包括自下而上层叠设置的下电极层、电介质层以及上电极层。Step 100: providing a substrate. The substrate includes a lower electrode layer, a dielectric layer and an upper electrode layer stacked from bottom to top.
在实际应用中,上述下电极层可以是氮化钛薄膜,也可以为氮化钽薄膜等。可以使用化学气相沉积的方式形成该下电极层,然后再在该下电极层上形成电介质层,在电介质层上形成上电极层。这里的上电极层可以为氮化钛薄膜,也可以为氮化钽薄膜等。需要说明的是,在衬底上依次形成下电极层、电介质层以及上电极层的工艺均为常用工艺,再此不做赘述。In practical applications, the above-mentioned lower electrode layer may be a titanium nitride film, or a tantalum nitride film or the like. The lower electrode layer can be formed by chemical vapor deposition, and then a dielectric layer is formed on the lower electrode layer, and an upper electrode layer is formed on the dielectric layer. The upper electrode layer here may be a titanium nitride film, or a tantalum nitride film or the like. It should be noted that the processes of sequentially forming the lower electrode layer, the dielectric layer and the upper electrode layer on the substrate are common processes, and will not be repeated here.
步骤110:在上电极层上形成第一硅籽晶层。具体的,当该上电极层为氮化钛层时,在上电极层上形成第一硅籽晶层包括:采用化学气相沉积工艺,在第一工艺条件下,向工艺腔内通入第一工艺气体,以利用第一工艺气体在该氮化钛层上形成第一硅籽晶层。这里的第一工艺条件包括:工艺腔的压力可以为0.3torr~1.0torr,例如,该工艺腔的压力可以为0.3torr,可以为0.5torr,也可以为1.0torr。该工艺腔的温度可以为350℃~470℃,例如,该工艺腔的温度可以为350℃,可以为370℃,还可以为470℃。第一工艺气体可以为硅源气体,例如,该硅源气体可以为硅烷气体,该硅源气体的流量可以为10sccm~1000sccm,例如,该硅源气体的流量可以是150sccm,可以是500sccm,也可以是1000sccm。Step 110: forming a first silicon seed layer on the upper electrode layer. Specifically, when the upper electrode layer is a titanium nitride layer, forming the first silicon seed layer on the upper electrode layer includes: adopting a chemical vapor deposition process, under the first process condition, introducing the first process gas to form a first silicon seed layer on the titanium nitride layer by using the first process gas. The first process condition here includes: the pressure of the process chamber may be 0.3 torr-1.0 torr, for example, the pressure of the process chamber may be 0.3 torr, 0.5 torr, or 1.0 torr. The temperature of the process chamber may be 350°C-470°C, for example, the temperature of the process chamber may be 350°C, 370°C, or 470°C. The first process gas may be a silicon source gas. For example, the silicon source gas may be silane gas, and the flow rate of the silicon source gas may be 10 sccm to 1000 sccm. For example, the silicon source gas flow rate may be 150 sccm, 500 sccm, or Can be 1000 sccm.
在上电极层上形成第一硅籽晶层之后,在第一硅籽晶层上形成层间氧化层之前,上述半导体器件的制备方法还包括:采用化学气相沉积工艺,在第二工艺条件下,向工艺腔内通入第二工艺气体,以利用第二工艺气体在第一硅籽晶层上形成第二硅籽晶层。具体的,该第二工艺条件包括:工艺腔的压力为0.3torr~1.0torr,例如,该工艺腔的压力可以为0.3torr,可以为0.5torr,也可以为1.0torr。该工艺腔的温度可以为350℃~470℃,例如,该工艺腔的温度可以为350℃,可以为370℃,还可以为470℃。第二工艺气体为硅源气体和硼源气体,该硅源气体可以为硅烷气体,硅源气体的流量可以为10sccm~1000sccm,例如,该硅源气体的流量可以是150sccm,可以是500sccm,也可以是1000sccm。该硼源气体可以为三氯化硼气体,硼源气体的流量可以为10sccm~1000sccm,例如,该硅源气体的流量可以是150sccm,可以是500sccm,也可以是1000sccm。After forming the first silicon seed layer on the upper electrode layer and before forming the interlayer oxide layer on the first silicon seed layer, the method for preparing the above-mentioned semiconductor device further includes: using a chemical vapor deposition process, under the second process condition , introducing a second process gas into the process chamber, so as to form a second silicon seed layer on the first silicon seed layer by using the second process gas. Specifically, the second process condition includes: the pressure of the process chamber is 0.3 torr˜1.0 torr, for example, the pressure of the process chamber may be 0.3 torr, 0.5 torr, or 1.0 torr. The temperature of the process chamber may be 350°C-470°C, for example, the temperature of the process chamber may be 350°C, 370°C, or 470°C. The second process gas is a silicon source gas and a boron source gas. The silicon source gas can be silane gas, and the flow rate of the silicon source gas can be 10 sccm to 1000 sccm. For example, the silicon source gas flow rate can be 150 sccm, 500 sccm, or Can be 1000 sccm. The boron source gas may be boron trichloride gas, and the flow rate of the boron source gas may be 10 sccm-1000 sccm. For example, the silicon source gas flow rate may be 150 sccm, 500 sccm, or 1000 sccm.
步骤120:在第一硅籽晶层上形成层间氧化层。这里需要说明的是,为了保证多晶硅具有导体的作用,该层间氧化层的厚度不能太厚,因此,该层间氧化层的厚度可以为3埃~10埃,例如,该层间氧化层的厚度可以为3埃,可以为7埃,也可以为10埃。具体的,在第一硅籽晶层上形成层间氧化层包括:采用化学气相沉积工艺,在第三工艺条件下,向工艺腔内通入第三工艺气体,以利用第三工艺气体在第一硅籽晶层上形成层间氧化层。这里的第三工艺条件包括:工艺腔的压力为0.3torr~1.0torr,例如,该工艺腔的压力可以为0.3torr,可以为0.5torr,也可以为1.0torr。该工艺腔的温度可以为400℃~470℃,例如,该工艺腔的温度可以为400℃,可以为450℃,还可以为470℃。该层间氧化层可以为二氧化硅薄膜层,也可以为氮氧化硅薄膜层。Step 120: forming an interlayer oxide layer on the first silicon seed layer. It should be noted here that, in order to ensure that polysilicon has the function of a conductor, the thickness of the interlayer oxide layer should not be too thick. Therefore, the thickness of the interlayer oxide layer can be 3 angstroms to 10 angstroms. For example, the thickness of the interlayer oxide layer The thickness can be 3 angstroms, 7 angstroms, or 10 angstroms. Specifically, forming the interlayer oxide layer on the first silicon seed layer includes: adopting a chemical vapor deposition process, under the third process condition, passing a third process gas into the process chamber, so as to use the third process gas to An interlayer oxide layer is formed on the silicon seed layer. The third process condition here includes: the pressure of the process chamber is 0.3 torr˜1.0 torr, for example, the pressure of the process chamber can be 0.3 torr, 0.5 torr, or 1.0 torr. The temperature of the process chamber may be 400°C-470°C, for example, the temperature of the process chamber may be 400°C, 450°C, or 470°C. The interlayer oxide layer can be a silicon dioxide thin film layer, or a silicon nitride oxide thin film layer.
例如,当该层间氧化层可以为二氧化硅薄膜层时,上述第三工艺气体可以包括硅源气体和氧源气体,其中,硅源气体为硅烷气体或乙硅烷气体,硅源气体的流量可以为10sccm~1000sccm,例如,该硅源气体的流量可以是150sccm,可以是500sccm,也可以是1000sccm。氧源气体可以为氧气,氧源气体的流量可以为10sccm~1000sccm,例如,该氧源气体的流量可以是150sccm,可以是500sccm,也可以是1000sccm。For example, when the interlayer oxide layer can be a silicon dioxide thin film layer, the above-mentioned third process gas can include silicon source gas and oxygen source gas, wherein the silicon source gas is silane gas or disilane gas, and the flow rate of silicon source gas It may be 10 sccm-1000 sccm, for example, the flow rate of the silicon source gas may be 150 sccm, 500 sccm, or 1000 sccm. The oxygen source gas can be oxygen, and the flow rate of the oxygen source gas can be 10 sccm-1000 sccm, for example, the flow rate of the oxygen source gas can be 150 sccm, 500 sccm, or 1000 sccm.
又例如,当该层间氧化层为氮氧化硅薄膜层时,上述第三工艺气体包括硅源气体、氧源气体和氮源气体,其中,硅源气体为硅烷气体或乙硅烷气体,硅源气体的流量可以为10sccm~1000sccm,例如,该硅源气体的流量可以是150sccm,可以是500sccm,也可以是1000sccm。氧源气体可以为氧气,氧源气体的流量可以为10sccm~1000sccm,例如,该氧源气体的流量可以是150sccm,可以是500sccm,也可以是1000sccm。氮源气体为氮气或氨气,氮源气体的流量可以为10sccm~1000sccm,例如,该氮源气体的流量可以是150sccm,可以是500sccm,也可以是1000sccm。For another example, when the interlayer oxide layer is a silicon oxynitride thin film layer, the third process gas includes silicon source gas, oxygen source gas and nitrogen source gas, wherein the silicon source gas is silane gas or disilane gas, and the silicon source gas The flow rate of the gas may be 10 sccm-1000 sccm, for example, the silicon source gas may be 150 sccm, 500 sccm, or 1000 sccm. The oxygen source gas can be oxygen, and the flow rate of the oxygen source gas can be 10 sccm-1000 sccm, for example, the flow rate of the oxygen source gas can be 150 sccm, 500 sccm, or 1000 sccm. The nitrogen source gas is nitrogen or ammonia, and the flow rate of the nitrogen source gas can be 10sccm-1000sccm, for example, the flow rate of the nitrogen source gas can be 150sccm, 500sccm, or 1000sccm.
步骤130:在层间氧化层上形成锗硅层。具体的,在层间氧化层上形成锗硅层包括:采用化学气相沉积工艺,在第四工艺条件下,向工艺腔内通入第四工艺气体,以利用第四工艺气体在层间氧化层上形成锗硅层。这里的第四工艺条件包括:工艺腔的压力为0.3torr~1.0torr,例如,该工艺腔的压力可以为0.3torr,可以为0.5torr,也可以为1.0torr。该工艺腔的温度可以为350℃~470℃,例如,该工艺腔的温度可以为350℃,可以为370℃,还可以为470℃。第四工艺气体包括硅源气体、锗源气体、硼源气体和氮源气体。其中,硅源气体为硅烷气体或乙硅烷气体,该硅源气体的流量可以为10sccm~1000sccm,例如,该硅源气体的流量可以是150sccm,可以是500sccm,也可以是1000sccm。锗源气体为四氢化锗气体,该锗源气体的流量可以为10sccm~1000sccm,例如,该锗源气体的流量可以是150sccm,可以是500sccm,也可以是1000sccm。硼源气体为硼气或三氯化硼气体,该硼源气体的流量可以为10sccm~1000sccm,例如,该硼源气体的流量可以是150sccm,可以是500sccm,也可以是1000sccm。氮源气体为氮气。该氮源气体的流量可以为10sccm~1000sccm,例如,该氮源气体的流量可以是150sccm,可以是500sccm,也可以是1000sccm。Step 130: forming a SiGe layer on the interlayer oxide layer. Specifically, forming the germanium-silicon layer on the interlayer oxide layer includes: adopting a chemical vapor deposition process, under the fourth process condition, passing a fourth process gas into the process chamber, so as to use the fourth process gas to form the interlayer oxide layer. A silicon germanium layer is formed on it. The fourth process condition here includes: the pressure of the process chamber is 0.3 torr-1.0 torr, for example, the pressure of the process chamber may be 0.3 torr, 0.5 torr, or 1.0 torr. The temperature of the process chamber may be 350°C-470°C, for example, the temperature of the process chamber may be 350°C, 370°C, or 470°C. The fourth process gas includes silicon source gas, germanium source gas, boron source gas and nitrogen source gas. Wherein, the silicon source gas is silane gas or disilane gas, and the flow rate of the silicon source gas may be 10 sccm-1000 sccm, for example, the silicon source gas flow rate may be 150 sccm, 500 sccm, or 1000 sccm. The germanium source gas is germanium tetrahydrogen gas, and the flow rate of the germanium source gas may be 10 sccm-1000 sccm, for example, the germanium source gas flow rate may be 150 sccm, 500 sccm, or 1000 sccm. The boron source gas is boron gas or boron trichloride gas, and the flow rate of the boron source gas can be 10 sccm-1000 sccm, for example, the flow rate of the boron source gas can be 150 sccm, 500 sccm, or 1000 sccm. The nitrogen source gas is nitrogen. The flow rate of the nitrogen source gas may be 10 sccm˜1000 sccm, for example, the flow rate of the nitrogen source gas may be 150 sccm, 500 sccm, or 1000 sccm.
基于上述内容,本发明实施例提供的半导体器件的制备方法在形成锗硅层的过程中,首先在上电极层上形成第一硅籽晶层,并在第一硅籽晶层上形成层间氧化层,该层间氧化层具有极为稳定的化学性质和电绝缘性质。此时,在该层间氧化层上形成锗硅层时,由于层间氧化层的存在,生成的大量的氢气会与稳定的层间氧化层发生氧化还原反应,从而防止氢气进入电介质层中,从而避免在电介质层中形成氧空位,避免产生泄露电流,使得半导体器件的性能得到提升。基于此,由于该半导体器件的介电层中的氧空位的消失,使得该半导体器件的击穿电压增加,使得该半导体器件在电介质较薄的情况下,增加其电容值。Based on the above, in the process of forming the silicon germanium layer in the method for manufacturing a semiconductor device provided by the embodiment of the present invention, firstly, a first silicon seed layer is formed on the upper electrode layer, and an interlayer silicon layer is formed on the first silicon seed layer. Oxide layer, the interlayer oxide layer has extremely stable chemical properties and electrical insulation properties. At this time, when the silicon germanium layer is formed on the interlayer oxide layer, due to the existence of the interlayer oxide layer, a large amount of hydrogen gas generated will undergo redox reactions with the stable interlayer oxide layer, thereby preventing hydrogen gas from entering the dielectric layer. Therefore, the formation of oxygen vacancies in the dielectric layer is avoided, and leakage current is avoided, so that the performance of the semiconductor device is improved. Based on this, due to the disappearance of oxygen vacancies in the dielectric layer of the semiconductor device, the breakdown voltage of the semiconductor device increases, so that the capacitance of the semiconductor device increases when the dielectric is thinner.
图2示例出本发明实施例提供的一种半导体器件的结构示意图。如图2所示,本发明实施例提供的半导体器件包括:自下而上层叠设置的衬底、第一硅籽晶层4、层间氧化层6以及锗硅层7,其中,FIG. 2 illustrates a schematic structural diagram of a semiconductor device provided by an embodiment of the present invention. As shown in FIG. 2, the semiconductor device provided by the embodiment of the present invention includes: a substrate stacked from bottom to top, a first
衬底包括自下而上层叠设置的下电极层1、电介质层2以及上电极层3。The substrate includes a
如图2所示,上述半导体器件还可以包括第二硅籽晶层5。该第二硅籽晶层5位于第一硅籽晶层4与层间氧化层6之间。As shown in FIG. 2 , the above-mentioned semiconductor device may further include a second
该半导体器件的有益效果与上述半导体器件的制备方法的有益效果相同,在此不再赘述。The beneficial effect of the semiconductor device is the same as that of the above-mentioned method for manufacturing the semiconductor device, and will not be repeated here.
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of the above embodiments, specific features, structures, materials or characteristics may be combined in any one or more embodiments or examples in an appropriate manner.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111026589.9A CN115763443A (en) | 2021-09-02 | 2021-09-02 | Preparation method of semiconductor device and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111026589.9A CN115763443A (en) | 2021-09-02 | 2021-09-02 | Preparation method of semiconductor device and semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115763443A true CN115763443A (en) | 2023-03-07 |
Family
ID=85332703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111026589.9A Pending CN115763443A (en) | 2021-09-02 | 2021-09-02 | Preparation method of semiconductor device and semiconductor device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115763443A (en) |
-
2021
- 2021-09-02 CN CN202111026589.9A patent/CN115763443A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4111427B2 (en) | Capacitor manufacturing method for semiconductor device | |
JPH06244364A (en) | Method for manufacturing semiconductor device | |
JP2010251654A (en) | Deposition method and manufacturing method of semiconductor device | |
JP2012104695A (en) | Method of manufacturing semiconductor device | |
KR100703833B1 (en) | Manufacturing method of capacitor with double dielectric film | |
KR100695887B1 (en) | Method of forming a titanium nitride film and method of forming a lower electrode of a metal-insulator-metal capacitor using the titanium nitride film | |
JP2013089889A (en) | Semiconductor device and method for manufacturing the same | |
CN1449575A (en) | Method of forming a premetal dielectric film on a semiconductor substrate | |
US7759192B2 (en) | Semiconductor device including capacitor and method of fabricating same | |
KR100652426B1 (en) | Capacitor of Semiconductor Device Preventing Dopant Penetration and Its Manufacturing Method | |
US20240213162A1 (en) | Semiconductor device with adjustment layers and method for fabricating the same | |
WO2022062545A1 (en) | Capacitor array structure, manufacturing method therefor, and semiconductor storage device | |
CN102222606B (en) | Forming method of capacitor | |
CN115763443A (en) | Preparation method of semiconductor device and semiconductor device | |
KR100818652B1 (en) | Capacitor with Oxygen Capture Film and Manufacturing Method Thereof | |
JP4088913B2 (en) | Capacitor manufacturing method for semiconductor device | |
KR100513804B1 (en) | Method of manufacturing capacitor for semiconductor device | |
JP2003124348A (en) | Semiconductor device and its manufacturing method | |
KR100680952B1 (en) | Capacitor Formation Method of Semiconductor Device | |
JP3045158B1 (en) | Method for forming CVD-TiN film | |
JP4051922B2 (en) | Manufacturing method of MIS capacitor made of tantalum pentoxide | |
CN102930981B (en) | A kind of electric capacity and preparation method thereof | |
CN111900163B (en) | Transistor and preparation method thereof | |
JP2003045822A (en) | Method for manufacturing semiconductor device | |
TW444329B (en) | Manufacturing method of DRAM passivation layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |